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Complexity and Scale: Understanding the Creative 

Oliver Richardson 

Abstract. This paper proposes a method of examining large informational bo-

dies through the eyes of an information consumer. There is a well-studied cryp-

tographic dichotomy between the random and the predictable, and between the 

simple and the complex, but autonomous information consumers (people, for 

instance), tend not to prefer data too far towards either end of the spectrum. 

They cognitively detect some over property of data and call it “interesting”.  

 

By defining a quantity called novelty, as the integral of Kolmogorov complexity 

with respect to scale, we can capture many of the properties of the common-

sense notion of the word.  The quantity so defined is somewhat subject-relative, 

though it has a well-defined objective component. The paper will apply this 

analysis to the appreciation of narrative, shedding light on the meaning of the 

word “interesting”. All of this demonstrates how mathematics can reveal as-

pects of the nature of creativity and intellectual motivation. 

 

Introduction 

You are a pilot. Every day you go to work at the same time. Every day you check 

the weather and flight schedule, board the plane, press the same switches, and say the 

same thing to your passengers.You like your job, but the piece that bothers you is its 

completely static nature.So you decide to do something bold.To make life interesting 

and reach your maximum potential, you quit your job and resolve to work in a new 

place every day. You become a barber, then a political organizer, then a janitor, an 

accountant, a chemical engineer… and by the end of the week, you are happy with the 

amount of progress you have made towards having a stimulating life. A year later, 

however, you begin to feel bored with your life, just as you were before, although you 

are not immediately sure why this might be the case. At this point, some people 

mightcrawl back to their old jobs, muttering that there is no escape from life’s crush-

ing monotony. Others might continue to look for new jobs, insisting that the jadedness 

was an artifact of their imaginations. But you do neither - instead, you make a crucial 

connection between these two pieces of your life: while every day is new and differ-

ent, every week feels the same. These lifestyles differ only in time scale. You begin to 

see that interestingness lies neither in absolute pattern, nor in complete randomness. 

 



The purpose of this paper is to give a mathematical account of this insight, in terms 

of computational complexity – an account that will be very widely applicable to many 

areas where the terms “interesting” and “novelty” are routinely applied. Though it is 

necessary to lay out some formal structural framework in order to clearly define the 

quantities that we wish to discuss, the majority of the interesting ideas in this piece 

are approximations and observations that stem from the core definitions. 

The Basic Technical Apparatus: String Complexity 

The conception to be introduced here relies heavily on the notion of the complexity 

of anobject oas represented in terms of a string of characters s. For this, I will use 

Kolmogorov’s definition: 

 

Let P be the set of all programs in any universal programming language that de-

terministically outputs. P is a non-empty set, as the line “print s” in python, for exam-

ple, is in P.  Choose 𝒅 ∈   x ∶   x ≤  y  ∀  y ∈ P  .We can now define the K-

complexity by K 𝐨 =  𝐝 , where | m | is the number of bytes in the program m. 

 

Though it may be obvious what this operation does, the following examples serve 

to illustrate that although this definition is extremely useful, it is not a great measure 

of the “interestingness” of a string. Consider the following three alphanumeric strings: 

(1)AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

(2)0CrMQXAhpkzGllzYcW3N wcy6TONwPn79IyxzJdW0F BZot3XPTpWrKi0Q78 

(3)a mathematician is a device for turning coffee into theorems
1
 

String (1) has low relatively complexity, as the following coarse python snippet al-

ready does a decent job of compressing the string into a description. 

  for x in range (1, 60) 

    print “A” 

By contrast, string (2) was randomly generated, and hence has extremely high 

complexity. It is not apparent that it is possible to provide any description shorter than 

the length of the string itself.String (3) is by far the most interesting of the three 

strings, but it is not maximally complex. All of the words are in an English dictionary, 

delimited by spaces, and utilize only lower-case letters –all patterns that a program 

could easily exploit to generate the same data in a fewer number of bytes. 

 

Observe: complexity and interestingness are not the same thing. A random se-

quence is maximal in K-complexity but can be quite low in interestingness, but a 

                                                           
1 This is a famous Paul Erdős joke. Using this example is cheating somewhat because it draws 

outside source of information for context (knowledge of the English language, mathematics, 

coffee) – but the point is obvious anyway. 



considerably more interesting string (Moby Dick) will be less complex than an equal-

ly long string of random characters selected from the same pool. 

 

For convenience, we will define a quantity called “information density” as the ratio 

of a string’s complexity to its length. 

 

𝛔 𝒔 =
𝐾 𝒔 

|𝒔|
 

Complexity-Scale Curves 

 

Let us now consider an arbitrarily long random string s – but this time instead of 

immediately looking at its complexity, we will first divide it into uniform mutually 

exclusive regions of size n(Assume that for any given n, |s|≫n). Furthermore, we will 

introduce a new alphabet in which to represent our new meta-strings, composed of 

sorted
2
n-tuples of the letters in the original language

3
. We also wish to exploit the fact 

that (AAABBBC) is “kind of close” to (AAAABBC), so we optimize our language 

such that we represent sequences of similar meta-letters with lists of replacements, 

hence decreasing the amount of information in sequences of close letters, and, by 

extension, the size of the minimal description. To denote the i
th 

such partition of s, we 

write [s]i. Although this may seem like an unnecessarily complicated formulation, this 

optimization gives us a significant asymptotic informational improvement as n goes 

to infinity. Now: what happens as we examine the information density of the new 

string comprised of these meta-letters? 

 

For n = 1, we know that this abstraction is no different from examining the string 

with itself. Since it is a giant random string, we know that we know that we have 

maximal K-complexity, and so σ([s]1) = 1. 

 

On the other end of the spectrum, if we were to chunk our arbitrarily large string 

into arbitrarily large pieces, we would find that every chunk (or meta-letter) looks 

roughly the same. This isdue to the fact that each meta-letter is now also an arbitrarily 

large random string, and hence should have equal distributions of letters. The K com-

plexity of the object constructed as a sequence of these pieces is minimal 

(lim𝑛→∞ 𝝈 [𝒔]𝒏 = 0); this case is analogous to the case of the sequence of a repeated 

single character.  

                                                           
2 This is necessary to eliminate order as a discriminating factor within chunks. For example, 

(A, B, C), and (C, B, A), become the same triplet when sorted. 
3 For n = 3, for example, an element in our new alphabet becomes something of the form 

(x,y,z), where x, y, and z are members of the old one, such that for our sorting metric, x ≤ y 

≤ z. For brevity’s sake, we will omit commas. 



Now that we know what our endpoints look like, we can make some decent predic-

tions about the intermediate behavior. For this random string s, partitioned into 

chunks of size m or n, 

m >  𝑛 ⇒ σ([s]m ) < σ([s]n), 
since a larger partition size indicates a larger stability and grouping of the characters 

relative to their possible configurations.  

 

It is much faster and more intuitive to visualize this process, which is what we will 

refer to as a “Complexity-scale curve”. The culmination of our previous discussion of 

a random string is shown below, in a rather cartoonish fashion. 

 

 

Fig. 1.  Above is the complexity-scale curve for an infinitely long string of random numbers. 

But the fun doesn’t end there! We can represent any string of text or information in 

this manner. Bellow we have a diagram of our other, more trivial extreme case, and 

also a slightly more interesting one that illustrates the fact that these curves are not, in 

general, strictly decreasing. By trippling every letter, the string is random when look-

ing at sets of three letters at once, and hence is maximized at n = 3. 

 



Fig. 2. A few more illustrative complexity-scale diagrams 

But these analyses of data streams apply (in theory, at least) to data streams that 

look far more human. Literature, for example, is one field in which the strings of in-

formation are long enough to merit a scale-based analysis, and in which being inter-

esting is of primary importance. With this in mind, we begin to examine some com-

plexity-scale diagrams. In order to do this, we will need to mentally extend our defini-

tion of partition size to apply to any scale n ∈ℝ. Let us start by labeling a few com-

monly cited narrative traits on our scale-complexity diagram
4
. 

 

 

 

In the above diagram, there are several things to take away. Firstly, as one would 

expect of an analysis of literature, different traits are independent degrees of freedom 

– but not completely independent from one another, due to the continuity of the func-

tion
5
. This is one sign that we’re on the right track.  

 

Furthermore, by being slightly less pedantic about the formal framework defini-

tions provided earlier, you can use this technique to quickly understand some very 

important intrinsic qualities about a large quantity of information. This model also 

                                                           
4 Note that this diagram extrapolates a little bit. In particular, “Clichéd writing style” reacts 

against other people’s work, not one’s own, and to correct for this, you provide the relevant 

context in the beginning of the string s 
5  This comes from our informal extension of the partition scale domain to ℝ. 



does a good job of explaining the relationship between the length of a piece and the 

time that a person puts into it. 

 

It is perhaps interesting to note that there is another way of diagramming novels, 

commonly used in the study of narrative: an intensity-time diagram. This construction 

allows analysts to see similarities in plot intensity over the course of the novel, but it 

does a poor job of showing the smaller details, which are often just as important. The 

transformation from intensity-time to complexity-scale functions as an informal ana-

logue of a Fourier or LaPlace transform, in that it decomposes a large number of data 

into their frequencies. We will continue with one more example in literature. 

 

 

This illustrates something that many people have found in their experience of both 

genres of writing. Across smaller time scales, reading smaller books is more reward-

ing. If this is the order of time that you like to focus on, be it due to scheduling or 

intrinsic mental processes, short stories and poems are more rewarding on the smaller 

scale. Longer books, on the other hand, have more total complexity over a long period 

of time, if you would prefer to focus on five hundred pages of narrative at once and 

see the over-arching connections between smaller pieces. 

 

It is superficially useful to think of information density as a scoring mechanism for 

how interesting something is. However, one needs to recognize that it’s a rather poor 

scoring mechanism, since changes based on the perspective and scale that a person 

cares about. What we need is something that takes all the scales into account and 

gives us a single score for “interestingness”. 



Novelty 

Finally, we have a formal description of the “interestingness” property. We will 

call this the novelty of an object o. 

 

N 𝒐 =   𝝈 [𝒔]𝐱 𝑒
𝑥𝑑𝑥

∞

−∞

 

This is the total area underneath our complexity-novelty curve, finally giving us 

the desired scoring algorithm that takes into account complexities for all breakdowns 

of an object into pieces on a given scale. From its definition alone, after a little bit of 

fiddling, it is fairly easy to find a way to kindly persuade this metric of novelty to give 

you infinite values over the absolute range, and overly large ones over a given scale 

range. This exploit is to design our noise with fractals, so that we hit every scale with 

a value that is close to our maximum information density.  Fractally generated noise, 

also known as “Perlin Noise” does this, more or less. 

 

 

Well, first of all: If we’re going to fail at classifying human information, then this 

is a pretty good way to do it. Perlin noise is some of the prettiest, most interesting 

noise that a person could come up with. It is often used to generate aesthetically 

pleasing constructs such as terrain, lightening, and clouds in video games, and when 

done right, it looks absolutely brilliant. 

 

Fig. 3. Examples of why Perlin noise isn’t so far from maximally interesting 



But we haven’t failed yet. Perhaps this is the best our novelty function can do with 

only the data stream we care about as input – but people have a huge backlog of in-

formational context from their culture and experiences. Obviously, we can’t take into 

account cultural facets and clichés without access to some source of contextual infor-

mation. Obtaining warped cultural information is clearly extremely difficult, and per-

haps worth an entire paper unto itself, so we will proceed without it
6
. But there is also 

a second reason that Perlin Noise hasn’t broken our novelty system yet, stemming 

from the subjectivity that was hinted at earlier. 

The Eye of the Beholder 

Some people enjoy 1000-page novels; others prefer shorter stories. We can now 

explain this in mathematical terms. 

 

Information consumers often have different affinities for different scales. For ex-

ample, extremely detail-oriented people and specialists focus on smaller scales, whe-

reas other groups of people are better described as generalists, focusing on larger 

scales. In general let’s define the interest function, of a scale s, as the amount of inter-

est, affinity, or attention that an information consumer has for a given scale. This now 

allows us to define a more precise version of novelty tailored towards an individual, 

by masking off the pieces that are  

 

N 𝒐 =   𝝈  𝒔 𝐱 ∗ 𝐼 𝑥 ∗ 𝑒𝑥𝑑𝑥
∞

−∞

, 

𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝐼 𝑥 ≤ 1 ∀ 𝑥 ∈ ℝ 

 

 

One benefit of this construction is that we can ensure that with a finitely large zone 

of interest, the derived novelty will also be finite.  It is also nice that this definition 

allows us to apply the concept to quite different forms of information consumers, such 

as individuals with smaller memory, children, and perhaps even larger god-scale enti-

ties.  

 

Creativity 

Until this point in the essay, we have dealt only with information consumers, and 

the way in which they interact with the world. Now it is time to look at the production 

of information in a way such that it is valuable to the consumers. Creativity is a co-

veted aspect of the information producer. Not only do we want our artists to be crea-

tive, but also our scientists, our journalists, and even people we talk to. Though there 

                                                           
6 However, if we had it in the right format, we could place it at the beginning of our data 

stream, so as to simulate having encountered those data first. 



are many good definitions in other places for what this actually means, we will pro-

vide our own, in terms of the quantities that we have spent so long formalizing. 

 

Creativity is increasing the novelty of an existing string of information, by append-

ing something new to the end. It is often easy to append something to the end of a 

string which does not change its novelty, particularly if it’s already uniformly low: 

you need merely to follow the pattern that has already been laid out by the previous 

data in the string.  

 

It is also significant that we have not restricted ourselves to a length of the “some-

thing new”. This is not only immediately necessary in order to be able to make any 

impact on larger scales of complexity, but also a key property that allows creativity to 

flourish. Because we have a finite alphabet, novelty-focused producers soon exhaust 

their supply of novel one and two-letter ideas, and quickly move on to bigger things, 

recycling these smaller ideas as pieces of a bigger idea. This shows us something 

about a creative process: even though all of the good ideas and possibilities have been 

exhausted, you can always move to a new scale and positively impact novelty in a 

bigger or smaller place than previous producers have tried to explore – and while the 

permutations on a given scale are numbered, the infinitude of scales makes up for it. 

Conclusion 

Not only do live in a world riddled with information, but we live in a world where 

information is immensely popular. Producing good information gets you food, and 

sometimes mates. Consuming information is what people do for pleasure, for work, 

and practically for everything else. It is clear that an understanding of how people 

deal with information could be extremely useful. 

 

 This construction has applications in advertising and art distribution, where com-

panies can learn their subscribers’ interest curves and thereby filter through data to 

find the ones that customers are most likely to enjoy. The concept of novelty has ap-

plications in personalized lossy compression, where object could be compressed in 

such a way that information that consumers don’t care about and that is masked away 

by their preference functions is the information that is dropped.  

 

It is a very effective way of describing different scales of musical structure, and 

matching similarly constructed pieces. It effectively describes and breaks symmetries 

between political ideologies, by showing where people want to place their govern-

mental complexity on a complexity-scale curve. It is a tool for analyzing the effec-

tiveness of organizational command hierarchy, and is extremely applicable in describ-

ing fashion and artistic movements.  

 

In the end, having an understanding of what people look for in their information is 

both extremely useful and explanatorily powerful.  


