
On the Inherent Cost of Atomic Broadcast and
Multicast in Wide Area Networks?

Nicolas Schiper and Fernando Pedone

University of Lugano, Switzerland

Abstract. In this paper, we study the atomic broadcast and multicast problems,
two fundamental abstractions for building fault-tolerant systems. As opposed to
atomic broadcast, atomic multicast allows messages to be addressed to a subset
of the processes in the system, each message possibly being multicast to a differ-
ent subset. Our study focuses on wide area networks where groups of processes,
i.e., processes physically close to each other, are inter-connected through high
latency communication links. In this context, we capture the cost of algorithms,
denoted latency degree, as the minimum number of inter-group message delays
between the broadcasting (multicasting) of a message and its delivery. We present
an atomic multicast algorithm with a latency degree of two and show that it is op-
timal. We then present the first fault-tolerant atomic broadcast algorithm with a
latency degree of one. To achieve such a low latency, the algorithm is proactive,
i.e., it may take actions even though no messages are broadcast. Nevertheless, it is
quiescent: provided that the number of broadcast messages is finite, the algorithm
eventually ceases its operation.

1 Introduction

Distributed applications spanning multiple geographical locations have become
common in recent years. Typically, each geographical site, or group, hosts an
arbitrarily large number of processes connected through high-end local links;
a few groups exist, interconnected through high-latency communication links.
As a consequence, communication among processes in the same group is cheap
and fast; communication among processes in different groups is expensive and
orders of magnitude slower than local communication. Data is replicated both
locally, for high availability, and globally, usually for locality of access. In this
paper we investigate the atomic broadcast and multicast problems, two commu-
nication primitives that offer adequate properties, namely agreement on the set
of messages delivered and on their delivery order, to implement replication [9].

Ideally, we would like to devise algorithms that use inter-group links as
sparingly as possible, saving on both latency and bandwidth (i.e., number of

? The work presented in this paper has been partially funded by the SNSF, Switzerland (project
#200021-107824).



messages). As we explain next, however, atomic broadcast and multicast estab-
lish an inherent tradeoff in this context. As opposed to atomic broadcast, atomic
multicast allows messages to be sent to a subset of processes in the system. More
precisely, messages can be addressed to any subset of the system’s groups, each
message possibly being multicast to a different subset. From a problem solvabil-
ity point of view, atomic multicast can be easily reduced to atomic broadcast:
every message is broadcast to all the groups in the system and only delivered
by those processes the message is originally addressed to. Obviously, this so-
lution is inefficient as it implies communication among processes that are not
concerned by the multicast messages. To rule out trivial implementations of no
practical interest, we require multicast algorithms to be genuine [7], i.e., only
processes addressed by the message should be involved in the protocol. A gen-
uine atomic multicast can thus be seen as an adequate communication primitive
for distributed applications spanning multiple geographical locations in which
processes store a subset of the application’s data (i.e., partial replication).

We show that for messages multicast to at least two groups, no genuine
atomic multicast algorithm can hope to achieve a latency degree lower than
two.1 This result is proven under strong system assumptions, namely processes
do not crash and links are reliable. Moreover, this lower bound is tight, i.e., the
fault-tolerant algorithm A1 of Section 4 and the algorithm in [5] achieve this
latency degree (A1 is an optimized version of [5], see Section 4). A corollary
of this result is that Skeen’s algorithm, initially described in [2] and designed
for failure-free systems, is also optimal—a result that has apparently been left
unnoticed by the scientific community for more than 20 years.

We demonstrate that atomic multicast is inherently more expensive than
atomic broadcast by presenting the first fault-tolerant broadcast algorithm with a
latency degree of one. To achieve such a low latency, the algorithm is proactive,
i.e., it may take actions even though no messages are broadcast. Nevertheless,
we show how it can be made quiescent: provided that a finite number of mes-
sages is broadcast, processes eventually cease to communicate. In runs where
the algorithm becomes quiescent too early, that is, a message m is broadcast
after processes have decided to stop communicating, m will not be delivered in
a single inter-group message delay, but in two. We show that this extra cost is
unavoidable, i.e., no quiescent atomic broadcast algorithm can hope to always
achieve a latency degree of one.2

These two lower bound results stem from a common cause, namely the re-
activeness of the processes at the time when the message is cast. Roughly speak-

1 A precise definition of latency degree is given in Section 2.
2 This result also holds for quiescent (genuine or non-genuine) atomic multicast algorithms. The

genuine case is already covered by the first lower bound result and is therefore irrelevant here.



ing, a process p is said to be reactive when the next message m that p sends is
in response either to a local multicast event or to the reception of another mes-
sage. In Section 3, we first show that no atomic broadcast or multicast algorithm
can hope to deliver the last cast message m with a latency degree of one if m
is cast at a time when processes are reactive. To obtain the lower bounds, we
then show that (i) in runs of any genuine atomic multicast algorithm where one
message is multicast at time t, processes are reactive at t and (ii) in runs of any
quiescent atomic broadcast or atomic multicast algorithm where a finite number
of messages are cast, processes are eventually reactive forever.

These results help better understand the difference between atomic broad-
cast and multicast. In particular, they point out a tradeoff between the latency
degree and message complexity of these two problems. Consider a partial repli-
cation scenario where each group replicates a set of objects. If latency is the
main concern, then every operation should be broadcast to all groups, and only
groups concerned by the operation handle it. This solution, however, has a high
message complexity: every operation leads to sending at least one message to
all processes in the system. Obviously, this is inefficient if the operation only
touches a subset of the system’s groups. To reduce the message complexity,
genuine multicast can be used. However, any genuine multicast algorithm will
have a latency degree of at least two.

The rest of the paper is structured as follows. In Section 2, we present our
system model and definitions. Section 3 shows the genuine atomic multicast la-
tency degree lower bound and investigates the cost of quiescence in a unified
way. In Sections 4 and 5, we present the optimal multicast and broadcast algo-
rithms. Finally, Section 6 discusses the related work and concludes the paper.
The proofs of correctness of the algorithms can be found in [12].

2 System Model and Definitions

2.1 Processes and Links

We consider a system Π = {p1, ..., pn} of processes which communicate
through message passing and do not have access to a shared memory or a global
clock. We assume the benign crash-stop failure model, i.e., processes may fail by
crashing, but do not behave maliciously. A process that never crashes is correct ;
otherwise it is faulty . The system is asynchronous, i.e., messages may experi-
ence arbitrarily large (but finite) delays and there is no bound on relative process
speeds. Furthermore, the communication links do not corrupt or duplicate mes-
sages, and are quasi-reliable: if a correct process p sends a message m to a
correct process q , then q eventually receives m . We define Γ = {g1, ..., gm}
as the set of process groups in the system. Groups are disjoint, non-empty and



satisfy
⋃
g∈Γ g = Π . For each process p ∈ Π , group(p) identifies the group p

belongs to. Hereafter, we assume that in each group: (1) there exists at least one
correct process and (2) consensus is solvable (consensus is defined below).

2.2 Specifications of Agreement Problems

We define the agreement problems considered in this paper, namely consensus,
reliable multicast, and atomic multicast/broadcast. LetA be an agreement algo-
rithm. We defineR(A) as the set of all admissible runs of A.

Consensus In the consensus problem, processes propose values and must reach
agreement on the value decided. Uniform consensus is defined by the primi-
tives propose(v) and decide(v) and satisfies the following properties [8]: (i) uni-
form integrity: if a process decides v, then v was previously proposed by some
process, (ii) termination: every correct process eventually decides exactly one
value, (iii) uniform agreement: if a process decides v, then all correct processes
eventually decide v.

Reliable Multicast With reliable multicast, messages may be addressed to any
subset of the processes in Π . For each message m, m.dest denotes the pro-
cesses to which the message is reliably multicast. Non-uniform reliable mul-
ticast is defined by primitives R-MCast(m) and R-Deliver(m), and satisfies the
following properties : (i) uniform integrity: for any process p and any message
m, p R-Delivers m at most once, and only if p ∈ m.dest and m was previ-
ously R-MCast, (ii) validity: if a correct process p R-MCasts a message m, then
eventually all correct processes q ∈ m.dest R-Deliver m, (iii) agreement: if a
correct process p R-Delivers a message m, then eventually all correct processes
q ∈ m.dest R-Deliver m.

Atomic Multicast Atomic multicast allows messages to be addressed to a subset
of groups in Γ . For each message m, m.dest denotes the groups to which m is
addressed. Let p be a process. By abuse of notation, we write p ∈ m.dest instead
of ∃g ∈ Γ : g ∈ m.dest∧p ∈ g. Hereafter, we denote the sequence of messages
delivered by p at time t as Stp, and the sequence of messages delivered by p at
time t projected on processes p and q as Pp,q(Stp), i.e., Pp,q(Stp) is the sequence
of messages Stp restricted to the messages m such that p, q ∈ m.dest. Atomic
multicast is defined by the primitives A-MCast and A-Deliver, and satisfies the
uniform integrity and validity properties of reliable multicast as well as the two
following properties: (i) uniform agreement: if a process p A-Delivers m, then
all correct processes q ∈ m.dest eventually A-Deliver m, (ii) uniform prefix
order: for any two processes p and q and any time t, either Pp,q(Stp) is a prefix
of Pp,q(Stq) or Pp,q(Stq) is a prefix of Pp,q(Stp).



We also require atomic multicast algorithms to be genuine [7]: An algorithm A
solving atomic multicast is said to be genuine iff for any run R ∈ R(A) and for
any process p, in R if p sends or receives a message then some message m is
A-MCast and either p is the process that A-MCasts m or p ∈ m.dest.
Atomic Broadcast Atomic broadcast is a special case of atomic multicast. It is
defined by the primitives A-BCast and A-Deliver and satisfies the same proper-
ties as atomic multicast where all A-BCast messages m are such that
m.dest = Γ , i.e., messages are always A-BCast to all groups in the system.

2.3 Latency Degree

Let A be a broadcast or multicast algorithm and R be a run of A (R ∈ R(A)).
Moreover, in run R, let m be a message A-XCast (A-BCast or A-MCast) and
Π ′(m) ⊆ Π be the set of processes that A-Deliver m. Intuitively, the latency
degree of R is the minimal length of the causal path between the A-XCast of
m and the last A-delivery of m among the processes in Π ′(m), when counting
inter-group messages only. To define this latency degree we assign timestamps
to process events using a slightly modified version of Lamport’s logical clocks
[9]. Initially, for all processes p ∈ Π , p’s logical clock, LCp, is initialized to 0.
On process p, an event e is assigned its timestamp as follows:

1. If e is a local event, ts(e) = LCp
2. If e is the send event of a message m to a process q,

ts(e) =
{
LCp + 1, if group(p) 6= group(q)
LCp, otherwise

3. If e is the receive event of a message m, ts(e) = max(LCp, ts(send(m)))

The latency degree of a message m A-XCast in run R is defined as follows:
∆(m,R) = maxq∈Π′(m)(ts(A-Deliver(m)q)− ts(A-XCast(m)p))

where A-Deliver(m)q and A-XCast(m)p respectively denote the
A-Deliver(m) event on process q and the A-XCast(m) event on process p. We
refer to the latency degree of an algorithmA as the minimum value of ∆(m,R)
among all admissible runs R of A and messages m A-XCast in R.

3 The Inherent Cost of Reactiveness

We establish the inherent cost of the genuine atomic multicast problem for mes-
sages that are multicast to multiple groups and we show that quiescence has a
cost, i.e., in runs where a message m is cast at a time when the algorithm is qui-
escent, there exists no algorithm that deliversmwith a latency degree of one. As



explained in Section 1, we proceed in two steps. We first show that, if processes
are reactive when the last message m is cast, then m cannot be delivered with
a latency degree of one. We then prove that (i) in runs of any genuine atomic
multicast algorithm where one message is multicast at time t, processes are re-
active at t and (ii) in runs of any quiescent atomic broadcast or atomic multicast
algorithm where a finite number of messages are cast, processes are eventually
reactive forever.

The proofs are done in a model identical to the model of Section 2, except
that processes do not crash and links are reliable, i.e., they do not corrupt, du-
plicate, or lose messages.

Definition 1 In a run R of an atomic broadcast or multicast algorithm, we say
that a process p is reactive at time t iff p sends a message m at time t′ ≥ t only
if p A-XCasts m or if p received a message sent in the interval [t, t′].

Proposition 1 In a system with at least two groups, for any atomic broadcast
or any atomic multicast algorithm A, there does not exist runs R1, R2 of A in
which processes are reactive at the time the last messages m1,m2 are A-XCast
to at least two groups, such that ∆(m1, R1) = ∆(m2, R2) = 1.

Proof: Suppose, by way of contradiction, that there exist an algorithm A and
runs Ri of A, i ∈ {1, 2}, such that ∆(mi, Ri) = 1. Consider two groups, g1
and g2. In run Ri, process pi ∈ gi A-XCasts message mi at time t to g1 and g2.
We first show that (*) in Ri, at or after time t, processes can only send messages
m such that for a sequence of events e1 = A-XCast(mi), e2, ..., ek = send(m),
A-XCast(mi)→ e2 → ...→ send(m).3 Suppose, by way of contradiction, that
there exists a process p in Ri that sends a message m at a time t′i ≥ t such
that the event send(m) is not causally linked to the event A-XCast(mi). We
construct a run R′i identical to run Ri except that message mi is not A-MCast
(note that processes are also reactive at time t in R′i). Since in Ri, there is no
causal chain linking the event A-XCast(mi) with the event send(m), runsR′i and
Ri are indistinguishable to process p up to and including time t′i. Therefore, p
also sendsm inR′i. Hence, since processes are reactive at time t and no message
is A-XCast at or after t, p must have received a messag m′ sent at or after t by
some process q. Applying the same reasoning multiple times, we argue that
there must exist a process r that sends a message m′′ at time t such that for
some events e1 = send(m′′), e2, ..., ex−1 = send(m′), ex = send(m), we have

3 Events e1, ..., ek can be of four kinds, either send(m), receive(m), A-XCast(m), or A-
Deliver(m) for some message m. Moreover, the relation → is Lamport’s transitive happened
before relation on events [9]. It is defined as follows: e1 → e2 ⇔ e1, e2 are two events on
the same process and e1 happens before e2 or e1 = send(m) and e2 = receive(m) for some
message m.



send(m′′) → ... → send(m′) → send(m). However, r cannot send m′′ because
no message is A-XCast at or after t, a contradiction.

By the validity property of A and because there is no failure, all processes
eventually A-Deliver mi. Since ∆(mi, Ri) = 1, by (*), processes in gi A-
Deliver mi before receiving any message from processes in g3−i sent at or after
time t. Let t∗i > t be the time at which all processes in gi have A-Delivered
message mi. We now build run R3 as follows. As in run Ri, pi A-XCasts mi.
Runs Ri and R3 are indistinguishable for processes in group gi up to time t∗i ,
that is, all messages causally linked to the event A-XCast(m3−i) (including A-
XCast(m3−i) itself) sent from processes in group g3−i to processes in group
gi are delayed until after t∗i . Consequently, processes in group gi have all A-
Delivered mi by time t∗i . By the uniform agreement of A, processes in g1 even-
tually A-Deliver m2 and processes in g2 eventually A-Deliver m1, violating the
uniform prefix order property of A. �

Proposition 2 For any run R of any genuine atomic multicast algorithm A
where one message is A-MCast at time t, processes are reactive at time t.

Proof: In run R, by the genuineness property of A, for any message m′ sent,
there exist events e1 = A-MCast(m), e2, ..., ex = send(m′) such that
A-MCast(m) → e2 → ... → send(m′) (otherwise, using a similar argument
as in Proposition 1, we could build a run R′ identical to run R, except that no
message is A-MCast in R′, such that a process sends a message anyway, contra-
dicting the fact that in R′ no message is A-MCast and A is genuine).

Consequently, for any process p, if p sends a message m′ at t′ ≥ t, then p
A-MCasts m′ or p received a message in the interval [t, t′]. �

Proposition 3 For any runR of any quiescent atomic broadcast or atomic mul-
ticast algorithm A in which a finite number of messages are A-XCast, there
exists a time t such that for all t′ ≥ t, processes are reactive at t′.

Proof: In R, a finite number of messages are A-XCast. Because A is quiescent,
there exists a time t at or after which no messages are sent. It follows directly
that for all t′ ≥ t processes are reactive at t′. �

Although our result shows that if the last message m is cast when processes
are reactive, then m cannot be delivered in one inter-group message delay, in
practice, multiple messages may bear this overhead. In fact, this might even be
the case in runs where an infinite number of messages are cast. Indeed, to ensure
quiescence, processes must somehow predict whether any message will be cast
in the future. Hence, if no message is expected to be cast, processes must stop
communicating, and this may happen prematurely.



4 Atomic Multicast for WANs

In this section, we present a latency degree-optimal atomic multicast algorithm
which is inspired by the one from Fritzke et al. [5], an adaptation of Skeen’s
algorithm for failure-prone systems. Due to space constraints, we here only
present the basic principles of the algorithm, the pseudo-code as well as a de-
tailed explanation can be found in [12].

4.1 Algorithm Overview

The algorithm associates every multicast message with a timestamp. To ensure
agreement on the message delivery order, two properties are ensured: (1) pro-
cesses agree on the message timestamps and (2) after a process p A-Delivers
a message with timestamp ts, p does not A-Deliver a message with a smaller
timestamp than ts. To satisfy these two properties, inside each group g, pro-
cesses implement a logical clock that is used to generate timestamps—this is
g’s clock. To guarantee g’s clock consistency, processes use consensus to main-
tain it. Moreover, every message m goes trough the following four stages:

– Stage s0: In every group g ∈ m.dest, processes define a timestamp for m
using g’s clock. This is g’s proposal for m’s final timestamp.

– Stage s1: Groups inm.dest exchange their proposals form’s timestamp and
set m’s final timestamp to the maximum timestamp among all proposals.

– Stage s2: Every group in m.dest sets its clock to a value greater than the
final timestamp of m.

– Stage s3: Message m is A-Delivered when its timestamp is the smallest
among all messages that are in one of the four stages and not yet A-Delivered.

As mentioned above, our algorithm differentiates itself from [5] in several as-
pects. First, when a message is multicast, instead of using a uniform reliable
multicast primitive, we use a non-uniform version of this primitive while still
ensuring properties as strong as in [5]. Second, in contrast to [5], not all mes-
sages go trough all four stages. Messages that are multicast to only one group
can jump from stage s0 to stage s3. Moreover, even if a message m is multicast
to more than one group, on processes belonging to the group that proposed the
largest timestamp (i.e., m’s final timestamp), m can skip stage s2.

4.2 Latency Degree Analysis

Consider a message m that is multicast by a process p. In [12], we show that
if m is multicast to one group, the latency degree of the algorithm, denoted as
A1, is zero if p ∈ g, and one otherwise. Moreover, if m is multicast to multiple
groups, the latency degree is two, which matches the lower bound of Section 3.



Theorem 1 There exists a run R of algorithm A1 in which a message m is
A-MCast to two groups such that ∆(m,R) = 2.

5 Atomic Broadcast for WANs

In this section, we present the first fault-tolerant atomic broadcast algorithm
that achieves a latency degree of one. Together with the lower bound of Sec-
tion 3, this shows that atomic multicast is more costly than atomic broadcast.
Due to space constraints, we here only present an overview of the algorithm, the
pseudo-code as well as a detailed explanation can be found in [12].

5.1 Algorithm Overview

To atomically broadcast a message m, a process p reliably multicasts m to the
processes in p’s group. In parallel, processes execute an unbounded sequence of
rounds. At the end of each round, processes deliver a set of messages according
to some deterministic order. To ensure agreement on the messages delivered in
round r, processes proceed in two steps. In the first step, inside each group g,
processes use consensus to define g’s bundle of messages. In the second step,
groups exchange their message bundles. The set of message delivered at the end
of round r is the union of all bundles. Note that we also wish to ensure quies-
cence, i.e., if there is a time after which no message is broadcast, then processes
eventually stop sending messages. To do so, processes try to predict when no
further messages will be broadcast. Our prediction strategy is simple, it consists
in checking, at the end of each round, whether any message was delivered or
not. If no messages were delivered, processes stop executing rounds. Note that
our algorithm is indulgent with regards to prediction mistakes, i.e., if processes
become quiescent too early, they can restart so that liveness is still ensured.

5.2 Latency Degree Analysis

In [12], we analyze the latency degree of the algorithm, denoted as A2. We first
show that its best latency degree (among all its admissible runs) is one, which
is optimal. We then consider runs where processes become quiescent too early,
i.e., processes stop executing rounds before a message is broadcast. In these
runs, the latency degree of the algorithm is two.

Theorem 2 There exists a run R of algorithm A2 in which a message m is
A-BCast such that ∆(m,R) = 1.

Theorem 3 There exists a run R of algorithm A2 in which the last message m
is A-BCast when processes are reactive such that ∆(m,R) = 2.



It is worth noting that the presented broadcast algorithm never becomes re-
active if the time between two consecutive broadcasts is smaller than the time to
execute a round. Moreover, in this case, all rounds are useful, i.e., they all deliver
at least one message. For example, in a system where the inter-group latency is
100 milliseconds, a broadcast frequency of 10 messages per second is enough
to obtain this desired behavior. In case the broadcast frequency is too low or
not constant, to prevent processes from stopping prematurely, more elaborate
prediction strategies based on application behavior could be used.

6 Related Work and Final Remarks

The literature on atomic broadcast and multicast algorithms is abundant [3]. We
here review the most relevant papers to our protocols.

Atomic Multicast In [7], the authors show the impossibility of solving genuine
atomic multicast with unreliable failure detectors when groups are allowed to
intersect. Hence, the algorithms cited below circumvent this impossibility result
by considering non-intersecting groups that contain a sufficient number of cor-
rect processes to solve consensus. They can be viewed as variations of Skeen’s
algorithm [2], a multicast algorithm designed for failure-free systems, where
messages are associated with timestamps and the message delivery follows the
timestamp order. In [10], the addressees of a message m, i.e., the processes to
which m is multicast, exchange the timestamp they assigned to m, and, once
they receive this timestamp from a majority of processes of each group, they
propose the maximum value received to consensus. Because consensus is run
among the addressees of a message and can thus span multiple groups, this al-
gorithm is not well-suited for wide area networks. In [4], consensus is run inside
groups exclusively. Consider a message m that is multicast to groups g1, ..., gk.
The first destination group of m, g1, runs consensus to define the final times-
tamp of m and hands over this message to group g2. Every subsequent group
proceeds similarly up to gk. To avoid cycles in the message delivery order, be-
fore handling other messages, every group waits for a final acknowledgment
from group gk. The latency degree of this algorithm is therefore proportional to
the number of destination groups. In [5], to ensure that processes agree on the
timestamps associated to every message and to deliver messages according to
the timestamp order, every message goes through four stages. In contrast to [5],
the algorithm presented in this paper allows messages to skip stages, therefore
reducing the number of intra-group messages sent by sparing the execution of
consensus instances.
Atomic Broadcast In [1], the authors consider the atomic broadcast and multi-
cast problems in a publish-subscribe system where links are reliable, publishers



do not crash, and cast infinitely many messages. Agreement on the message
ordering is ensured by using the same deterministic merge function at every
subscriber process. Given the cast rate of publishers, the authors give optimal
algorithms with regards to the merge delay, i.e., the time elapsed between the
reception of a message by a subscriber and its delivery. Both algorithms achieve
a latency degree of one.4 In [13], a time-based protocol is introduced to increase
the probability of spontaneous total order in wide area networks by artificially
delaying messages. Although the latency degree of the optimistic delivery of a
message is one, the latency degree of its final delivery is two. Moreover, their
protocol is non-uniform, i.e., the agreement property of Section 2 is only en-
sured for correct processes. In [14], a uniform protocol based on multiple se-
quencers is proposed. Every process p is assigned a sequencer that associates
sequence numbers to the messages p broadcasts. Processes optimistically de-
liver a message m when they receive m’s sequence number. The final delivery
of m occurs when the sequence number of m has been validated by a majority
of processes. The latency degree of this algorithm is identical to [13].

In Figure 1, we compare the latency degree and the number of inter-group
exchanged messages of the aforementioned algorithms. In this comparison, we
consider the best-case scenario, in particular there is no failure nor failure sus-
picion. We denote n as the total number of processes in the system, d as the
number of processes in each group, and k as the number of groups to which a
message is cast (k ≥ 2). To compute the latency degree and number of inter-
group messages sent, we consider the oracle-based uniform reliable broadcast
and uniform consensus algorithms of [6] and [11] respectively (note that [6] can
easily be modified to implement reliable multicast). The latency degrees of [6]
and [11] are respectively one and two. Furthermore, considering that a process
p multicasts a message to k groups (we consider that p belongs to one of these
k groups) or that k groups execute consensus, the algorithms respectively send
d(k − 1) and 2kd(kd− 1) inter-group messages.

From Figure 1, we conclude that, among uniform fault-tolerant broadcast
protocols, Algorithm A2 achieves the best latency degree and message com-
plexity. In the case of the atomic multicast problem, although Algorithm A1
and [5] achieve the best latency degree among fault-tolerant protocols, [4] has

4 Note that this does not contradict the latency degree lower bound of genuine atomic multicast.
Indeed, their assumptions are different than ours, i.e., to ensure liveness of their multicast algo-
rithm, they require that each publisher multicast infinitely many messages to each subscriber.

5 This paper considers a strong model where links are reliable, multicaster processes do not
crash, and multicast infinitely many messages to every process.

6 This algorithm is non-uniform, i.e., it guarantees the agreement property of Section 2 only for
correct processes.



Algorithm latency degree inter-group msgs.
[4] k + 1 O(kd2)

[10] 4 O(k2d2)

[5] 2 O(k2d2)

Algorithm A1 2 O(k2d2)

[1]5 1 O(kd)
(a) Atomic Multicast

Algorithm latency degree inter-group msgs.
[13]6 2 O(n)

[14] 2 O(n2)

Algorithm A2 1 O(n2)

[1]5 1 O(n)
(b) Atomic Broadcast

Fig. 1. Comparison of the algorithms (d : nb. of processes per group, k : nb. of destination groups)

a lower message complexity. Deciding which algorithm is best is not straight-
forward as it depends on factors such as the network topology as well as the
latencies and bandwidths of links.

References

1. M. K. Aguilera and R. E. Strom. Efficient atomic broadcast using deterministic merge. In
PODC ’00: Proceedings of the nineteenth annual ACM symposium on Principles of dis-
tributed computing, pages 209–218, New York, NY, USA, 2000. ACM Press.

2. K. P. Birman and T. A. Joseph. Reliable communication in the presence of failures. ACM
Trans. Comput. Syst., 5(1):47–76, 1987.

3. X. Défago, A. Schiper, and P. Urbán. Total order broadcast and multicast algorithms: Tax-
onomy and survey. ACM Comput. Surv., 36(4):372–421, 2004.

4. C. Delporte-Gallet and H. Fauconnier. Fault-tolerant genuine atomic multicast to multiple
groups. In Proceedings of the 4th International Conference on Principles of Distributed
Computing, pages 107–122, 2000.

5. U. Fritzke, Ph. Ingels, A. Mostéfaoui, and M. Raynal. Fault-tolerant total order multicast to
asynchronous groups. In Proceedings of the 17th IEEE Symposium on Reliable Distributed
Systems, pages 578–585, October 1998.

6. S. Frolund and F. Pedone. Ruminations on domain-based reliable broadcast. In DISC ’02:
Proceedings of the 16th International Conference on Distributed Computing, pages 148–
162, London, UK, 2002. Springer-Verlag.

7. R. Guerraoui and A. Schiper. Genuine atomic multicast in asynchronous distributed systems.
Theor. Comput. Sci., 254(1-2):297–316, 2001.

8. V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Sape J.
Mullender, editor, Distributed Systems, chapter 5, pages 97–145. Addison-Wesley, 1993.

9. L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, 21(7):558–565, July 1978.

10. L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic multicast. In Proceedings of the
7th IEEE International Conference on Computer Communications and Networks (IC3N’98),
pages 840–847, Lafayette, Louisiana, USA, 1998.

11. A. Schiper. Early consensus in an asynchronous system with a weak failure detector. Dis-
tributed Computing, 10(3):149–157, 1997.

12. N. Schiper and F. Pedone. Optimal atomic broadcast and multicast algorithms for wide area
networks. Technical Report 2007/004 Revision 1, University of Lugano, 2007.

13. A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks.
In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems, pages 190–
199. IEEE CS, October 2002.

14. P. Vicente and L. Rodrigues. An indulgent uniform total order algorithm with optimistic
delivery. In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems,
page 92, Washington, DC, USA, 2002. IEEE Computer Society.


