Applying Formal Verification to Microkernel IPC at Meta

Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter O’Hearn, and Francesco Zappa Nardelli

Certified Programs and Proofs
January 17, 2022
Introduction

- Complexity of modern software is growing extraordinarily fast – *how do we know if it works?*
- Verification toolchains are improving too – *are they ready for industry?*
- Project goal – answer the following questions:
 - Can formal verification be successfully applied in a “move fast” industrial setting?
 - What benefits can we achieve by using formal verification?
Facebook is building an operating system so it can ditch Android

Josh Constine @joshconstine / 11:15 AM EST • December 19, 2019

Facebook is working on its own OS that could reduce its reliance on Android

Led by a co-author of Windows NT
By Jon Porter | @JonPorty | Dec 19, 2019, 12:54pm EST

Zuckerberg Explains Why Facebook Is Building A ‘Reality Operating System’
The XROS Operating System

- The success of the Metaverse relies on a new wave of wearable devices
- These devices have stringent power constraints
- XROS is a microkernel; inter-process communication (IPC) is the most crucial part of the OS
- OS components exchange messages via concurrent, non-blocking, multi-producer, multi-consumer queues
- These are our target for verification
Motivation

- Can formal verification be applied in industry?
- XROS IPC is a good fit
 - Easy to specify – we know exactly what it is supposed to do
 - Self-contained functionality
 - High leverage – entire OS relies on correctness of IPC
 - Algorithm is unlikely to change
Strategy

▶ Use off the shelf proof environment based on Concurrent Separation Logic (Coq + Iris)
▶ First verify the algorithm, not the actual C code
▶ Use our most valuable resource (human brain power) on the hardest problem (non-blocking concurrency)
Algorithm vs Code

The Algorithm
- 24 lines of pseudocode
- Simple and readable
- Only contains core logic
- Unlikely to change
- Changes require update to proof

The Code
- Several thousand lines of C
- Maximally performant
- Contains complex, low-level operations
- Changes frequently
- No updates to proof

Correspondence is certified by inspection of the OS engineers
Results

- We proved the correctness of two different queues (Generic Queue and Ports Queue)
- We found algorithmic simplifications (elimination of an atomic load and a conditional check)
- We found a bug in real OS device driver code
Primer on Concurrent Separation Logic
Use pre- and post-conditions (Hoare Triples) to specify program behavior.

\{P\} \implies \{Q\}

Triples are proven using a program logic.

For example, the following triple is valid:

\{x \text{ is even}\} \ y := x + 2 \ \{y \text{ is even}\}
Separation Logic

- A logic for reasoning about resources
- The \textit{points-to} predicate specifies knowledge about a heap location
 \[x \mapsto n \]
- The \textit{separating conjunction} allows for local reasoning
 \[P \ast Q \]
- Here, \(P \) and \(Q \) can only reference disjoint \textit{heaplets}
- In the following example, it is impossible for \(x \) and \(y \) to alias each other
 \[(x \mapsto n) \ast (y \mapsto m) \]
Specifications are more complicated in concurrent code

For example, the following triple is no longer valid

$$\{ \exists n, (x \mapsto n) \star (n \text{ is even}) \} \ y :=!x + 2 \ \{ y \text{ is even} \}$$

The value of x could be changed by another thread before we read it.
Invariants

- Invariants are persistent assertions that are *always true*
- The following triple is valid:
 \[
 \exists n, (x \mapsto n) \ast (n \text{ is even}) \vdash \{\top\} \ y := x + 2 \ \{y \text{ is even}\}
 \]
- Even so, the following triple is not valid for any pre- or post-condition
 \[
 \exists n, (x \mapsto n) \ast (n \text{ is even}) \vdash \{?\} \ f\text{aa}(x, 1); \ f\text{aa}(x, 1) \ {?}\]
- The invariant holds knowledge about the *physical state*
Specifying Concurrent Data Structures

- **QueueContent**(\(q, \ell\)) – The physical queue \(q\) contains the elements in the logical list \(\ell\)
- **QueueInv**(\(q\)) – The physical structure of \(q\) is valid

\[
\text{QueueInv}(q) \vdash \begin{cases}
\text{enqueue}(q, x) \\
\{ \text{QueueContent}(q, \ell + x) \}
\end{cases}
\]
Proof Sketch
The XROS Generic Queue

- The generic queue is used in the XROS kernel to exchange messages between threads
- Based on a fixed-size ring buffer
- All operations are non-blocking
- Enqueues and dequeues happen in two phases
The Code

```
start_enqueue(q):
    while true:
        pc = atomic_load(q.pc)
        i, k = pc / q.cap, pc % q.cap
        ik = atomic_load(q.itr[k])
        ok = atomic_load(q.own[k])
        if ik == i-1 && ok == PROD:
            if CAS(q.pc, pc, pc+1):
                return (k, &q.dat[k])

mark_ready(q, k):
    atomic_store(q.own[k], CONS)
    atomic_incr(q.itr[k])
```

```
start_dequeue(q):
    while true:
        cc = atomic_load(q.cc)
        i, k = cc / q.cap, cc % q.cap
        ok = atomic_load(q.own[k])
        ik = atomic_load(q.itr[k])
        if ik == i && ok == CONS:
            if CAS(q.cc, cc, cc+1):
                return (k, &q.dat[k])

mark_free(q, k):
    atomic_store(q.own[k], PROD)
```
The Endless Ribbon

- Physically, the queue data is stored in a ring buffer

- Reasoning about modular arithmetic is hard, so logically we unfold the ring into an endless ribbon
The Ribbon State

- The queue invariant tracks a mapping from ribbon locations to logical states

\[
\text{state ::= Empty} \\
\text{ClaimEnq} \\
\text{OwnerSet(v)} \\
\text{Ready(v)} \\
\text{ClaimDeq} \\
\text{Free}
\]

- The logical state says *more* about a cell than just its physical value
Queue Invariant

\[\text{QueueInv}(\langle C, \ell_{pc}, \ell_{cc}, \ell_d, \ell_o, \ell_i \rangle) = \exists z, ci, r. \]

\[
(l_{pc} \mapsto z + C) \cdot \\
(l_{cc} \mapsto z + ci) \cdot \\
\star (l_d + i \mod C \mapsto \text{Data}(r_i)) \cdot \\
z \leq i < z + C
\]

\[
\ldots
\]

\[\text{z} \quad \text{z + ci} \quad \text{z + C}\]
Proof Sketch – Logical States

```
start_enqueue(q):
    while true:
        pc = atomic_load(q.pc)
        i, k = pc / q.cap, pc % q.cap
        ik = atomic_load(q.itr[k])
        ok = atomic_load(q.own[k])
        if ik == i-1 && ok == PROD:
            if CAS(q.pc, pc, pc+1):
                return (k, &q.dat[k])

mark_ready(q, k):
    atomic_store(q.own[k], CONS)
    atomic_incr(q.itr[k])

start_dequeue(q):
    while true:
        cc = atomic_load(q.cc)
        i, k = cc / cap, cc % cap
        ok = atomic_load(q.own[k])
        ik = atomic_load(q.itr[k])
        if ik == i && ok == CONS:
            if CAS(q.cc, cc, cc+1):
                return (k, &q.dat[k])

mark_free(q, k):
    atomic_store(q.own[k], PROD)
```
Conclusion

- This project is evidence that it is practical and useful to apply formal methods in industry
- Proofs were completed quickly, especially after ramp up
- Reception was good, especially after simplifications and bugs were found
- Concurrent Separation Logic makes you a better programmer!
Thank You!