
Research Statement: Formal Foundations for Programs with Outcomes
Noam Zilberstein, Cornell University

The reliance on complex software in security and privacy sensitive domains has made techniques to ensure the correctness
of that software critical. Formal methods provide tools for expressing and proving correctness properties, many of which
center on program logics. Countless success stories have shown how formal methods eliminate bugs in production software
[10, 30, 38, 29, 43, 21], including my prior work as a Sta� Software Engineer at Facebook [Haskell ’20, CPP ’22].

But the emergence of new paradigms means that there are now many disjoint logical foundations for program analysis.
For example, Meta engineers found that the Infer static analyzer excelled at bug detection over correctness veri�cation [21],
requiring a new theoretical foundation tailored for reasoning about incorrectness [40]. Orthogonally, programs behave un-
predictably due to e�ects such as nondeterminism, randomization, nontermination, memory access, and concurrency, which
also make testing di�cult. As a result, many new logics have been developed for specialized reasoning about those e�ects.

The core idea behind my research is that a wide variety of analysis techniques can be captured by directly reasoning
about the program’s outcomes: the behaviors arising from e�ects such as nondeterminism, randomness, or concurrency. I
have developed a new foundational approach calledOutcome Logic, which describes programs in terms of their full spectrum of
possible behaviors and surpasses the expressiveness of traditional approaches where only a single behavior can be described.

Key Insight: Outcome Logic provides a unifying perspective for reasoning about a wide variety of programs and
properties about those programs.

Two of the practical bene�ts of Outcome Logic are described below:

1. Unifying Correctness and Incorrectness: Outcome Logic bridges reasoning about the absence of errors (correctness)
and the presence of bugs (incorrectness). Whereas prior techniques were specialized to one modality, Outcome Logic
enables new forms of static analysis by incorporating elements from both styles.

2. Logics for Randomized Concurrency: By composing multiple types of e�ects, I have developed an expressive foun-
dation for the analysis of randomized distributed algorithms, which goes beyond prior approaches in its ability to reason
about probabilistic behavior. Applications include veri�cation of security, privacy, and blockchain algorithms.

Stemming from those theoretical advancements, my research has formed the basis for over onemillion dollars of funding from
Amazon, ARIA, and the NSF, and earned me the 2024 ACM SIGPLAN John Vlissides Award [SPLASH ’24]. My research has
positionedme as an expert on program logics, further evidenced by the fact that I have been asked to provide expert reviews for
over a dozen papers at top PL conferences and journals, and I have organized an annual static analysis workshop at POPL for
the last three years. My foundational formal methods expertise paired with my previous applied formal methods experience
in industry uniquely position me to develop novel, but also practical, techniques. In the remainder of this statement, I will
overview my prior work on Outcome Logic and then discuss my ongoing research vision.

INITIAL RESULTS: OUTCOME LOGIC

Correctness and Incorrectness. Traditional correctness analysis, based on Hoare Logic triples {𝑃 } 𝐶 {𝑄}, describes the
behavior of a program 𝐶 in terms of a precondition 𝑃 and a postcondition 𝑄 : if the program 𝐶 is run in a state satisfying 𝑃 ,
then it will end in a state satisfying 𝑄 . Thus, 𝑄 over-approximates the reachable states, as seen in the diagram below, making
Hoare Logic suitable for correctness. As long as 𝑄 only describes safe behaviors, then the program will never go wrong.
However, as shown by O’Hearn, Hoare Logic cannot identify true positive bugs, As an alternative, Incorrectness Logic (IL)
triples [𝑃] 𝐶 [𝑄] mean that any state satisfying 𝑄 is reachable from a state satisfying 𝑃 [40]. So, in IL, 𝑄 under-approximates
the reachable states, meaning that IL can describe bugs that sometimes—but not always—arise.

Hoare Logic (Correctness)
{𝑃 } 𝐶 {𝑄}

𝑄𝑃 È𝐶É•
X

X

X

Incorrectness Logic
[𝑃] 𝐶 [𝑄]

𝑄

𝑃 È𝐶É• •
•

More concretely, consider the C program 𝑥 B malloc() # ∗𝑥 B 1, which allocates a pointer, but does not perform a null-
check before dereferencing it. In static analysis, malloc is often treated as nondeterministic: it either returns a valid pointer

1

or null. The program above has two outcomes, one of which results in the program crashing. Because Hoare Logic is over-
approximate, any speci�cation for the programmust encompass all of the outcomes, meaning that the crash cannot be singled
out as a reachable outcome. Incorrectness Logic can guarantee that the crash is a true positive, but IL is incompatible with
techniques such as abstract interpretation [5, 6] and struggles to describe the cause of a bug [32, OOPSLA ’24a, 7].

I �rst developed Outcome Logic as a means to unify correctness and incorrectness reasoning by guaranteeing true positives
using a theory that is closer to Hoare Logic [OOPSLA ’23]. Similar to Hoare Logic, Outcome Logic uses d𝑃e to indicate that
𝑃 over-approximates the reachable states, but OL also provides a new logical connective 𝜑 ⊕ 𝜓—the outcome conjunction—to
state that multiple outcomes are non-vacuously reachable. In the context of incorrectness, we can specify a bug using the
postcondition d𝑄e ⊕ > where 𝑄 describes the error state and > vacuously covers the remaining outcomes.

Outcome Logic
〈d𝑃e〉 𝐶 〈d𝑄1e ⊕ d𝑄2e ⊕ d𝑄3e〉

𝑄1

𝑄2

𝑄3

𝑃 È𝐶É•

•

•

•

Outcome Logic (Incorrectness)
〈d𝑃e〉 𝐶 〈d𝑄e ⊕ >〉

𝑄

>
𝑃 È𝐶É• •

•

Following the initial success of Outcome Logic, Amazon funded further development of automated reasoning for correct-
ness and incorrectness through an Amazon Research Award1. Together with an undergraduate mentee, I developed joint
techniques for veri�cation and bug-�nding. In doing so, we showed that our approach accurately models the bug �nding
analyses built at Meta [OOPSLA ’24a], which was also corroborated by Raad et al. [42], some of the original developers of
Incorrectness Logic. Further tools developed at Meta [7] and Bloomberg [42] have subsequently moved towards the OL style
of incorrectness, as IL is unable to capture properties such as nontermination.

Generalizing to Additional E�ects. Remarkably, the Outcome Logic metatheory generalizes cleanly to programs with
many di�erent kinds of branching by assigning weights to each outcome. In the case of nondeterministic programs, those
weights are Booleans, indicating whether or not each end state is possible. In a probabilistic program, weights are real
numbers indicating the likelihood of each outcome.

Nondeterministic
〈d𝑃e〉 𝐶 〈d𝑄1e ⊕ d𝑄2e〉

𝑄1

𝑄2
𝑃 È𝐶É•

•

•

true

true

Probabilistic
〈d𝑃e〉 𝐶 〈d𝑄1e ⊕𝑝 d𝑄2e〉

𝑄1

𝑄2
𝑃 È𝐶É•

•

•

𝑝

1 − 𝑝

More instantiations represent outcomes as multisets [27, 31] and indexed valuations [45] (two semantic domains for mixing
nondeterminism and randomization), path conditions in symbolic execution, and more. The result is a single sound and
relatively complete logic for reasoning about a wide variety of programs [TOPLAS ’25].

I have also investigated how outcomes interact with other kinds of e�ects including exceptions [OOPSLA ’23] andmutable
state [OOPSLA ’24a]. Together with a Masters student, I added abilities to reason about nontermination in Outcome Logic,
and we additionally showed that Outcome Logic subsumes multiple taxonomies of nondeterminism logics [TPSA ’25]. Finally,
with collaborators at Cornell and NYU, I combined two kinds of outcomes—nondeterministic and probabilistic—to produce
Demonic Outcome Logic [POPL ’25]. Based on that body of work [SPLASH ’24], I was awarded the 2024 ACM SIGPLAN John
Vlissides award for Outcome Logic’s “strong potential for practical impact.”2

Probabilistic Concurrency. For decades, randomization has played a central role in distributed computing, o�ering el-
egant and practical solutions to problems that are di�cult or impossible to solve deterministically. Applications include
distributed cryptography and blockchain [1, 23, 36, 2], database systems [18, 25], and beyond. But despite their prevalence,
randomized distributed algorithms are notoriously di�cult to reason about, as unexpected behavior arises from the interac-
tion between random sampling and concurrent execution. As Lehmann and Rabin remarked when developing a proof of the
randomized Dining Philosophers:

1https://www.amazon.science/research-awards/recipients/alexandra-silva
2https://www.sigplan.org/Awards/Other/#2024_Noam_Zilberstein__Cornell_University

2

https://www.amazon.science/research-awards/recipients/alexandra-silva
https://www.sigplan.org/Awards/Other/#2024_Noam_Zilberstein__Cornell_University

“Proofs of correctness for probabilistic distributed systems are extremely slippery; in fact the proof presented here
(hopefully correct) is only the last one in a sequence of incorrect proofs.” [33]

My research in formal methods for probabilistic concurrency o�ers a solution, guaranteeing that we do not further extend the
“sequence of incorrect proofs.” While formal veri�cation is broadly applicable, the cost is often a barrier, and therefore it is most
e�ectively deployed on critical components of a system where bugs are catastrophic, and testing is di�cult or impossible. In
my prior industry role at Facebook, I participated in such a veri�cation e�ort that uncovered bugs and an optimization in
the underlying data structure of a microkernel [CPP ’22], demonstrating that formal methods lead to real world impact when
applied appropriately. Those bugs involved non-blocking concurrency and manifested only under a rare thread interleaving,
making them unlikely to be caught through testing alone. Randomization introduces another layer of complexity; it is di�cult
to ensure that tests exercise all the random behaviors, and tests cannot ensure that the results are distributed correctly over
many runs, or that the program avoids deadlock in the limit. Those complications, along with the fact that randomization
is critical to security, privacy, and blockchain applications, make randomized distributed systems a prime target for formal
veri�cation. As further evidence of the importance of this work, the development is supported by a $900,000 NSF Medium
grant (awards #2504142 and #2504143).

Whereas many approaches to probabilistic concurrency veri�cation start with concurrency and add randomness [44, 35],
we have taken the opposite approach of adding concurrency to Demonic Outcome Logic [POPL ’25], which has rich capa-
bilities for probabilistic reasoning combined with the ability to reason about the nondeterminism of the scheduler. However,
concurrency adds an extraordinary amount of technical complexity. We needed to start from �rst principles to develop a
new semantic model for probabilistic concurrency, as existing ones could not adequately capture the interaction between
scheduling, random sampling, and while loops [CONCUR ’25]. Building on that semantic model, we developed Probabilistic
Concurrent Outcome Logic (pcOL), which is the �rst program logic for reasoning about randomized concurrent programs in
terms of the full distributions of outcomes that they produce [POPL ’26].

By incorporating elements fromConcurrent Separation Logic (CSL) [39, 14] and Probabilistic Separation Logics (PSLs) [12,
34, 11] into Outcome Logic, pcOL introduces expressive new compositional reasoning techniques. In a concurrent program,
nondeterminism occurs at every step of computation, as the scheduler nondeterministically chooses how to interleave the
threads of computation. Reasoning about all of the possible interleavings is intractable, so compositional techniques are
needed to tame the space of outcomes. Consider the following two OL speci�cations, stating that after �ipping a coin and
storing the result in 𝑥 (resp. 𝑦), the value of 𝑥 (resp. 𝑦) is distributed like a fair coin �ip.

〈𝑥 ↦→ −〉 𝑥 B flip
(1
2
)
〈𝑥 ∼ flip

(1
2
)
〉 〈𝑦 ↦→ −〉 𝑦 B flip

(1
2
)
〈𝑦 ∼ flip

(1
2
)
〉

Now, if we run these threads in parallel, we would ideally not only like to know how 𝑥 and 𝑦 are distributed, but also their
joint distribution. The pcOL Par inference rule below, inspired by CSL, allows us to analyze two threads compositionally as
long as their memory footprints are disjoint, which is signi�ed by the separating conjunction 𝜑 ∗𝜓 .

〈𝑥 ↦→ −〉 𝑥 B flip
(1
2
)
〈𝑥 ∼ flip

(1
2
)
〉 〈𝑦 ↦→ −〉 𝑦 B flip

(1
2
)
〈𝑦 ∼ flip

(1
2
)
〉

〈(𝑥 ↦→ −) ∗ (𝑦 ↦→ −)〉 𝑥 B flip
(1
2
)
‖ 𝑦 B flip

(1
2
)
〈
(
𝑥 ∼ flip

(1
2
))
∗
(
𝑦 ∼ flip

(1
2
))
〉
Par

In PSL, 𝜑 ∗𝜓 additionally guarantees that the resources of 𝜑 and𝜓 are probabilistically independent, so we can conclude that
𝑥 = 𝑦 = 1 with probability 1

2 ·
1
2 = 1

4 , hence we obtain the entire joint distribution over all the variables. While putting CSL and
PSL together may seem like a sensible idea, it required a brand-new logical foundation to ensure soundness, making pcOL

muchmore than the sum of its parts. Incorporating Outcome Logic additionally allows us to do case analysis over randomized
shared state. We have demonstrated pcOL on a variety of case studies, including concurrent shu�ing algorithms [9], private
information retrieval [16], and randomness-conserving protocols [46].

RESEARCH VISION: OUTCOME LOGIC AS A GENERALIZED FOUNDATION

Throughmy prior research, I have repeatedly shown that outcomes provide a key abstraction for a large variety of veri�cation
tasks. As I move into a faculty role, I plan to build a research group with a diverse skillset to simultaneously advance the
Outcome Logic theory, and to apply that theory to new and more complex domains.

Unifying Research Vision: Make it easier to bootstrap veri�cation of new types of programs by providing an
extensible foundation for formal methods.

For the next several years, I plan to work towards that vision across three axes: mechanizing Outcome Logic in Lean, deep-
ening Outcome Logic’s applicability to distributed probabilistic algorithms, and applying Outcome Logic to automated cor-
rectness and incorrectness static analysis. The axes are comprised of many projects, suitable for students whose research
interests range from theoretical to applied.

3

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2504142
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2504143

Axis I: Lean Mechanization and Real-World Verification
The Lean Proof Assistant [37] is quickly gainingmomentum amongmathematicians, computer scientists, and companies such
as Amazon and Google DeepMind. I plan to mechanize Outcome Logic in Lean in order to formally verify the underlying
metatheory, boost its extensibility, and scale it to larger applications. Lean is the ideal choice for Outcome Logic, as a large
amount of the underlying probability theory, domain theory, and topology have already been formalized in mathlib [17].

Outcome Logic in cslib. Following the success of mathlib, Amazon and Google DeepMind have backed the Lean commu-
nity to formalize undergraduate-level computer science in a new Lean development called cslib3. Program logics will feature
in cslib, as they are an important part of programming language theory and formal methods. Given Outcome Logic’s ex-
pressiveness [TOPLAS ’25], a single Lean mechanization of OL could subsume many otherwise disjoint implementations for
nondeterministic programs, probabilistic programs, incorrectness, and others. I will therefore advocate for Outcome Logic to
become a core component of cslib, which will reduce the overall implementation load.

The initial OL mechanization will make it easier for researchers to extend veri�cation to new domains. For example,
veri�cation of quantum computation requires reasoning about the probabilistic outcomes of quantum phenomena, so I believe
that it can build on the core OL theory.

Scaling Outcome Logic Verification. Building on my experience formally verifying the inter-process communication of
an operating system at Facebook [CPP ’22], I plan to use the Lean mechanization of Outcome Logic to verify more real-world
software. Although formal veri�cation is extremely time consuming, at Facebook, we achieved success by focusing our e�ort
on a crucial component: correctness of the entire system hinged on a non-blocking concurrent queue data structure. By
applying formal methods to that queue, we found a bug and an optimization in the implementation, which uncovered more
bugs in client code.

The key lesson was that formal methods have the largest return on investment when applied in a targeted way to highly
intricate components of a system. That is why I plan to focus on distributed randomized algorithms, which are used in critical
applications such as cryptography, privacy, and consensus protocols, and which are extremely hard to understand and test.
To begin, I will verify increasingly complex case studies, which would be impossible using pen-and-paper. For example, I
will verify randomized consensus protocols such as Ben-Or’s algorithm [13], which will stretch the capabilities of the logic in
that it requires a fair scheduler, and because the probability of avoiding deadlock only converges to 1 after an in�nite amount
of time. Once the mechanization is ironed out, I plan to move to veri�cation of open source software, following the same
formula that I used at Facebook.

Axis II: Verification of Distributed Probabilistic Algorithms
I have a long-term vision to position Probabilistic Concurrent Outcome Logic (pcOL) as an extensible platform for veri�cation
of probabilistic programs, similar to how Iris [28] is positioned for higher order concurrent programs. Part of this vision has
already been funded by an NSF medium award.

The combination of reasoning about concurrency and also the full distribution of program outcomes makes pcOL a unique
foundational theory, but substantial developments are needed before it can be applied to industrial veri�cation tasks. It took
Iris 10 years to reach its current state of maturity; building on those lessons, I believe that we can develop pcOLmore quickly,
but this research direction nonetheless represents years of work. The following milestones will bring pcOL to the point where
it can be used to verify real world algorithms.

Abstractions for Fine-Grained Concurrency. State of the art concurrency logics such as Iris [28] and VST [3] include
advanced additional features to guarantee that threads interact with shared state in well-behaved ways. Examples include:

• Resource Algebras and Ghost State. Users must be able to de�ne custom resource structures to express logical
ownership over shared state. For example, a certain memory con�guration may indicate that a particular thread owns
a lock, and therefore no other threads can modify the resources guarded by that lock.

• Linearizability and Logical Atomicity. Linearizability ensures that each operation on a concurrent object appears to
occur instantaneously, while logical atomicity further allows complex operations to behave as if they were atomic. For
example, a logically atomic read-modify-write on a lock-free counter behaves like a single atomic update, even though
it may retry internally.

• Protocols and Updates. When threads interact with shared state, there are often rules governing how each thread is
allowed to update that state. For example, a counter’s value increases monotonically over time.

3https://docs.google.com/presentation/d/1aJFM3EaI4LcppHR_2YFQHiBjUfMMhMKxCeM3BfINi48

4

https://docs.google.com/presentation/d/1aJFM3EaI4LcppHR_2YFQHiBjUfMMhMKxCeM3BfINi48

These features are necessary for reasoning about �ne-grained concurrency; however, many questions remain about how they
interact with probabilistic computation. It will take a substantial amount of theoretical work to �t the two models together.

New Threat Models. In pcOL, we assume that the scheduler is controlled by a very strong adversary, which is free to pick
thread interleavings in any way it chooses. While this provides robust guarantees, it is too strong for many veri�cation tasks,
which are only correct subject to weaker adversaries [24, 13, 33, 8, 22]. Two examples are:

• Fair Schedulers. A fair scheduler cannot starve any thread for an in�nite amount of time. Fairness is a common
assumption and often arises, e.g., when one thread busy-waits on a resource. An unfair adversary can choose to only
schedule the waiting thread, causing the program to never terminate, but wewould not consider that program incorrect.

• Oblivious Schedulers. A scheduler is oblivious if it cannot see the outcome of random coin �ips. Many security
applications require oblivious schedulers; we must assume that the adversary cannot see randomly sampled keys.

Reasoning in weaker threat models introduces signi�cant technical challenges [4]. While pen-and-paper proof techniques
exist [24], they are not compositional in that they involve reasoning globally about all the threads and do not generalize into
reusable rules. I plan to develop thread-local reasoning techniques, which will be applicable to large classes of programs.

Axis III: Correctness and Incorrectness
In my prior work, I have explored Outcome Logic’s theoretical applicability to incorrectness [OOPSLA ’23, OOPSLA ’24a,
OOPSLA ’24b, TOPLAS ’25], which provides bene�ts such as easily identifying the causes of bugs and the ability to capture
additional kinds of incorrectness such as nontermination bugs. Going forward, I will develop real static analysis tools and
investigate novel ways to improve their performance and e�cacy, leveraging the OL theory.

Abstract Interpretation for Bug Finding. Incorrectness Logic (IL) is not compatible with abstract interpretation [5, 6],
and therefore Meta’s Infer static analyzer, which is based on IL, relies on alternative techniques [41, 32]. Practically speaking,
the following issues arise:

• E�ciency: Abstract interpretation [19] has traditionally been the key to scalable static analysis [20], providing a sound
way to approximate program behavior. The e�ciency of Infer’s bug �nding algorithm can thus likely be improved using
abstract interpretation and shape analysis.

• Soundness: Infer currently handles unknown functions in an unsound way, leading to false positives [32]. Outcome
Logic can �x this problem, as its underlying theory is able to capture uncertainty of the program state.

• Analysis of Loops: Incorrectness Logic gives no way to approximate the behavior of loops, so Infer simply unrolls
loops for a �xed number of iterations [41]. This means that bugs will be missed, whereas in Outcome Logic, standard
techniques based on loop invariants and termination checking can be used to properly approximate the loop’s behavior.

• Manifest Errors are bugs that occur regardless of how a procedure is invoked and are particularly important as they
have the highest �x rates [32]. In Incorrectness Logic, manifest errors cannot be identi�ed easily, so a secondary �ltering
step is used. In Outcome Logic, manifest errors can be identi�ed trivially from the precondition.

Outcome Logic has the ability to address the issues above. I plan to develop an Outcome Logic analysis inside of Infer and
evaluate it against existing tools.

Unified Static Analysis Algorithms. The previous project will bring incorrectness analysis closer to correctness analy-
sis. The next step is to develop a single analysis that is able to perform both functions, using heuristics to move between
correctness and incorrectness modes. One of the costliest steps in static analysis is to precompute speci�cations for all inter-
mediary procedures [15]. In the setting where correctness is based on Hoare Logic and bug-�nding is based on Incorrectness
Logic, multiple summaries are needed for each procedure. Take the malloc procedure for instance, we would need three
speci�cations: one for correctness and two for the reachability of each incorrectness outcome.

{true} 𝑥 B malloc() {(𝑥 ↦→ −) ∨ (𝑥 = null)} [true] 𝑥 B malloc() [𝑥 ↦→ −] [true] 𝑥 B malloc() [𝑥 = null]

All three of those could be replaced by a single outcome logic speci�cation, which both guarantees reachability of the two
outcomes while also over-approximating the overall program behavior, thereby making it usable for both correctness and
incorrectness applications.

〈dtruee〉 𝑥 B malloc() 〈d𝑥 ↦→ −e ⊕ d𝑥 = nulle〉
I conjecture that this reduction in intermediary speci�cations will again result in a performance improvement, and plan to
implement and evaluate such an algorithm against IL-based tools.

5

PAST WORK

[POPL ’26] Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. “Probabilistic Concurrent Reasoning in Outcome Logic: In-
dependence, Conditioning, and Invariants”. In: Proc. ACM Program. Lang. 10.POPL [Jan. 2026]. To Appear.

[TPSA ’25] James Li, Noam Zilberstein, and Alexandra Silva. Total Outcome Logic: Termination and Nontermination Proving for
E�ectful Branching. Presented at the Workshop on Theory and Practice of Static Analysis. Colocated with POPL ’25,
Denver, CO. Jan. 2025. url: https://popl25.sigplan.org/details/tpsa- 2025- papers/10/Total- Outcome-
Logic-Termination-and-Nontermination-Proving-for-Effectful-Branching.

[TOPLAS ’25] Noam Zilberstein. “Outcome Logic: A Uni�ed Approach to the Metatheory of Program Logics with Branching E�ects”.
In: ACM Trans. Program. Lang. Syst. 47.3 [Sept. 2025]. issn: 0164-0925. doi: 10.1145/3743131.

[CONCUR ’25] Noam Zilberstein, Daniele Gorla, and Alexandra Silva. “Denotational Semantics for Probabilistic and Concurrent Pro-
grams”. In: 36th International Conference on Concurrency Theory (CONCUR 2025). Vol. 348. LIPIcs. Dagstuhl, Germany:
Schloss Dagstuhl – Leibniz-Zentrum f"ur Informatik, 2025, 39:1–39:24. doi: 10.4230/LIPIcs.CONCUR.2025.39.

[POPL ’25] Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. “A Demonic Outcome Logic for Randomized
Nondeterminism”. In: Proc. ACM Program. Lang. 9.POPL [Jan. 2025]. doi: 10.1145/3704855.

[OOPSLA ’24b] Linpeng Zhang, Noam Zilberstein, Benjamin Lucien Kaminski, and Alexandra Silva. “Quantitative Weakest Hyper
Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers”. In: Proc. ACM Program. Lang.
8.OOPSLA2 [Oct. 2024]. doi: 10.1145/3689740.

[SPLASH ’24] Noam Zilberstein. “Uni�ed Analysis Techniques for Programs with Outcomes”. In: Companion Proceedings of the 2024
ACM SIGPLAN SPLASH Conference. Pasadena, CA, USA: Association for Computing Machinery, 2024, pp. 4–6. isbn:
9798400712142. doi: 10.1145/3689491.3691814.

[OOPSLA ’24a] NoamZilberstein, Angelina Saliling, and Alexandra Silva. “Outcome Separation Logic: Local Reasoning for Correctness
and Incorrectness with Computational E�ects”. In: Proc. ACM Program. Lang. 8.OOPSLA1 [Apr. 2024]. doi: 10.1145/
3649821.

[OOPSLA ’23] Noam Zilberstein, Derek Dreyer, and Alexandra Silva. “Outcome Logic: A Unifying Foundation for Correctness and
Incorrectness Reasoning”. In: Proc. ACM Program. Lang. 7.OOPSLA1 [Apr. 2023]. doi: 10.1145/3586045.

[CPP ’22] Quentin Carbonneaux, Noam Zilberstein, Christoph Klee, Peter W. O’Hearn, and Francesco Zappa Nardelli. “Applying
Formal Veri�cation to Microkernel IPC at Meta”. In: Proceedings of the 11th ACM SIGPLAN International Conference on
Certi�ed Programs and Proofs. CPP 2022. Philadelphia, PA, USA: Association for ComputingMachinery, 2022, pp. 116–129.
isbn: 9781450391825. doi: 10.1145/3497775.3503681.

[Haskell ’20] Noam Zilberstein. “Eliminating Bugs with Dependent Haskell (Experience Report)”. In: Proceedings of the 13th ACM
SIGPLAN International Symposium on Haskell. Haskell 2020. Virtual Event, USA: Association for Computing Machinery,
2020, p. 9. isbn: 9781450380508. doi: 10.1145/3406088.3409020.

FURTHER REFERENCES

[1] Orestis Alpos and Christian Cachin. “Do Not Trust in Numbers: Practical Distributed Cryptography with General Trust”. In: Stabi-
lization, Safety, and Security of Distributed Systems. Cham: Springer Nature Switzerland, 2023, pp. 536–551. isbn: 978-3-031-44274-2.

[2] Ignacio Amores-Sesar, Christian Cachin, and Philipp Schneider. “An Analysis of Avalanche Consensus”. In: Structural Information
and Communication Complexity. Ed. by Yuval Emek. Cham: Springer Nature Switzerland, 2024, pp. 27–44. isbn: 978-3-031-60603-8.
doi: 10.1007/978-3-031-60603-8_2.

[3] AndrewW. Appel. “Veri�ed software toolchain”. In: Proceedings of the 20th European Conference on Programming Languages and Sys-
tems: Part of the Joint European Conferences on Theory and Practice of Software. ESOP’11/ETAPS’11. Saarbrücken, Germany: Springer-
Verlag, 2011, pp. 1–17. isbn: 9783642197178.

[4] Krzysztof Apt and Gordon Plotkin. “Countable nondeterminism and random assignment”. In: J. ACM 33.4 [Aug. 1986], pp. 724–767.
issn: 0004-5411. doi: 10.1145/6490.6494.

[5] Flavio Ascari, Roberto Bruni, and Roberta Gori. “Limits and di�culties in the design of under-approximation abstract domains”. In:
Foundations of Software Science and Computation Structures. Cham: Springer International Publishing, 2022, pp. 21–39. isbn: 978-3-
030-99253-8. doi: 10.1007/978-3-030-99253-8_2.

[6] Flavio Ascari, Roberto Bruni, and Roberta Gori. “Limits and Di�culties in the Design of Under-Approximation Abstract Domains”.
In: ACM Trans. Program. Lang. Syst. 46.3 [Oct. 2024]. issn: 0164-0925. doi: 10.1145/3666014.

[7] Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo. “Revealing Sources of (Memory) Errors via Backward Analysis”.
In: Proc. ACM Program. Lang. 9.OOPSLA1 [Apr. 2025]. doi: 10.1145/3720486.

[8] Yonatan Aumann and Michael A. Bender. “E�cient low-contention asynchronous consensus with the value-oblivious adversary
scheduler”. In: Distributed Computing 17.3 [Mar. 2005], pp. 191–207. issn: 1432-0452. doi: 10.1007/s00446-004-0113-4.

6

https://popl25.sigplan.org/details/tpsa-2025-papers/10/Total-Outcome-Logic-Termination-and-Nontermination-Proving-for-Effectful-Branching
https://popl25.sigplan.org/details/tpsa-2025-papers/10/Total-Outcome-Logic-Termination-and-Nontermination-Proving-for-Effectful-Branching
https://doi.org/10.1145/3743131
https://doi.org/10.4230/LIPIcs.CONCUR.2025.39
https://doi.org/10.1145/3704855
https://doi.org/10.1145/3689740
https://doi.org/10.1145/3689491.3691814
https://doi.org/10.1145/3649821
https://doi.org/10.1145/3649821
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3497775.3503681
https://doi.org/10.1145/3406088.3409020
https://doi.org/10.1007/978-3-031-60603-8_2
https://doi.org/10.1145/6490.6494
https://doi.org/10.1007/978-3-030-99253-8_2
https://doi.org/10.1145/3666014
https://doi.org/10.1145/3720486
https://doi.org/10.1007/s00446-004-0113-4

[9] Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie Lumbroso. MergeShu�e: A Very Fast, Parallel Random Permutation
Algorithm. 2015. arXiv: 1508.03167 [cs.DS]. url: https://arxiv.org/abs/1508.03167.

[10] Thomas Ball and Sriram K. Rajamani. “The SLAM project: debugging system software via static analysis”. In: SIGPLAN Not. 37.1 [Jan.
2002], pp. 1–3. issn: 0362-1340. doi: 10.1145/565816.503274.

[11] Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. “Bluebell: An Alliance of Relational Lifting and Independence for Probabilistic
Reasoning”. In: Proc. ACM Program. Lang. 9.POPL [Jan. 2025]. doi: 10.1145/3704894.

[12] Gilles Barthe, Justin Hsu, and Kevin Liao. “A Probabilistic Separation Logic”. In: Proc. ACM Program. Lang. 4.POPL [Jan. 2020]. doi:
10.1145/3371123.

[13] Michael Ben-Or. “Another advantage of free choice: Completely asynchronous agreement protocols”. In: Proceedings of the 2nd ACM
Symposium on Principles of Distributed Computing. PODC ’83. Montreal, Quebec, Canada: Association for Computing Machinery,
1983, pp. 27–30. isbn: 0897911105. doi: 10.1145/800221.806707.

[14] Stephen Brookes. “A Semantics for Concurrent Separation Logic”. In: CONCUR 2004 - Concurrency Theory. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 16–34. isbn: 978-3-540-28644-8. doi: 10.1007/978-3-540-28644-8_2.

[15] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. “Compositional Shape Analysis byMeans of Bi-Abduction”.
In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’09. Savannah,
GA, USA: Association for Computing Machinery, 2009, pp. 289–300. doi: 10.1145/1480881.1480917.

[16] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. “Private information retrieval”. In: J. ACM 45.6 [Nov. 1998],
pp. 965–981. issn: 0004-5411. doi: 10.1145/293347.293350.

[17] The mathlib Community. “The lean mathematical library”. In: Proceedings of the 9th ACM SIGPLAN International Conference on
Certi�ed Programs and Proofs. CPP 2020. New Orleans, LA, USA: Association for Computing Machinery, 2020, pp. 367–381. isbn:
9781450370974. doi: 10.1145/3372885.3373824.

[18] James C. Corbett, Je�rey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Mel-
nik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. “Spanner: Google’s globally-distributed database”. In: Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation. OSDI’12. Hollywood, CA, USA: USENIX Association, 2012, pp. 251–264. isbn:
9781931971966. url: https://dl.acm.org/doi/10.5555/2387880.2387905.

[19] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A Uni�ed Lattice Model for Static Analysis of Programs by Construction
or Approximation of Fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages.
POPL ’77. Los Angeles, California: Association for Computing Machinery, 1977, pp. 238–252. isbn: 9781450373500. doi: 10.1145/
512950.512973.

[20] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné, and Xavier Rival. “Why does Astrée scale up?” In:
Formal Methods Syst. Des. 35.3 [2009], pp. 229–264. doi: 10.1007/S10703-009-0089-6.

[21] Dino Distefano, Manuel Fähndrich, Francesco Logozzo, and Peter W. O’Hearn. “Scaling Static Analyses at Facebook”. In: Commun.
ACM 62.8 [July 2019], pp. 62–70. issn: 0001-0782. doi: 10.1145/3338112.

[22] Weijie Fan, Hongjin Liang, Xinyu Feng, and Hanru Jiang. “A Program Logic for Concurrent Randomized Programs in the Oblivious
Adversary Model”. In: Programming Languages and Systems. Ed. by Viktor Vafeiadis. Cham: Springer Nature Switzerland, 2025,
pp. 322–348. isbn: 978-3-031-91118-7. doi: 10.1007/978-3-031-91118-7_13.

[23] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. “Algorand: Scaling Byzantine Agreements for
Cryptocurrencies”. In: Proceedings of the 26th Symposium on Operating Systems Principles. SOSP ’17. Shanghai, China: Association
for Computing Machinery, 2017, pp. 51–68. isbn: 9781450350853. doi: 10.1145/3132747.3132757.

[24] Sergiu Hart, Micha Sharir, and Amir Pnueli. “Termination of Probabilistic Concurrent Program”. In: ACM Trans. Program. Lang. Syst.
5.3 [July 1983], pp. 356–380. issn: 0164-0925. doi: 10.1145/2166.357214.

[25] StefanHeule, Marc Nunkesser, and Alexander Hall. “HyperLogLog in practice: algorithmic engineering of a state of the art cardinality
estimation algorithm”. In: Proceedings of the 16th International Conference on Extending Database Technology. EDBT ’13. Genoa, Italy:
Association for Computing Machinery, 2013, pp. 683–692. isbn: 9781450315975. doi: 10.1145/2452376.2452456.

[26] Charles Antony Richard Hoare. “An Axiomatic Basis for Computer Programming”. In: Commun. ACM 12.10 [Oct. 1969], pp. 576–580.
issn: 0001-0782. doi: 10.1145/363235.363259.

[27] Bart Jacobs. “From Multisets over Distributions to Distributions over Multisets”. In: Proceedings of the 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science. LICS ’21. Rome, Italy: Association for Computing Machinery, 2021. isbn: 9781665448956. doi:
10.1109/LICS52264.2021.9470678.

[28] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. “Iris from the ground up: A
modular foundation for higher-order concurrent separation logic”. In: Journal of Functional Programming 28 [2018]. doi: 10.1017/
S0956796818000151.

7

https://arxiv.org/abs/1508.03167
https://arxiv.org/abs/1508.03167
https://doi.org/10.1145/565816.503274
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3371123
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1145/1480881.1480917
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/3372885.3373824
https://dl.acm.org/doi/10.5555/2387880.2387905
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/512950.512973
https://doi.org/10.1007/S10703-009-0089-6
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-3-031-91118-7_13
https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1145/2166.357214
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/LICS52264.2021.9470678
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151

[29] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra Pandav, Anna Slobodová, Christo-
pher Taylor, Vladimir Frolov, Erik Reeber, and Armaghan Naik. “Replacing Testing with Formal Veri�cation in Intel Core i7 Processor
Execution Engine Validation”. In: Computer Aided Veri�cation. Ed. by Ahmed Bouajjani and Oded Maler. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 414–429. isbn: 978-3-642-02658-4. doi: 10.1007/978-3-642-02658-4_32.

[30] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. “seL4: formal veri�cation of an OS kernel”. In:
Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana, USA: Association for
Computing Machinery, 2009, pp. 207–220. isbn: 9781605587523. doi: 10.1145/1629575.1629596.

[31] Dexter Kozen and Alexandra Silva. “Multisets and Distributions”. In: Logics and Type Systems in Theory and Practice: Essays Dedicated
to Herman Geuvers on The Occasion of His 60th Birthday. Ed. by Venanzio Capretta, Robbert Krebbers, and Freek Wiedijk. Cham:
Springer Nature Switzerland, 2024, pp. 168–187. isbn: 978-3-031-61716-4. doi: 10.1007/978-3-031-61716-4_11.

[32] Quang Loc Le, Azalea Raad, Jules Villard, Josh Berdine, Derek Dreyer, and Peter W. O’Hearn. “Finding Real Bugs in Big Programs
with Incorrectness Logic”. In: Proc. ACM Program. Lang. 6.OOPSLA1 [Apr. 2022]. doi: 10.1145/3527325.

[33] Daniel Lehmann and Michael O. Rabin. “On the advantages of free choice: a symmetric and fully distributed solution to the dining
philosophers problem”. In: Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’81. Williamsburg, Virginia: Association for Computing Machinery, 1981, pp. 133–138. isbn: 089791029X. doi: 10.1145/567532.
567547.

[34] John M. Li, Amal Ahmed, and Steven Holtzen. “Lilac: A Modal Separation Logic for Conditional Probability”. In: Proc. ACM Program.
Lang. 7.PLDI [June 2023]. doi: 10.1145/3591226.

[35] Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. Modu-
lar Reasoning about Error Bounds for Concurrent Probabilistic Programs. 2025. arXiv: 2503.04512 [cs.LO]. url: https://arxiv.
org/abs/2503.04512.

[36] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. “The Honey Badger of BFT Protocols”. In: Proceedings of the 2016
ACM SIGSACConference on Computer and Communications Security. CCS ’16. Vienna, Austria: Association for ComputingMachinery,
2016, pp. 31–42. isbn: 9781450341394. doi: 10.1145/2976749.2978399.

[37] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. “The Lean Theorem Prover (System De-
scription)”. In: Automated Deduction - CADE-25. Ed. by Amy P. Felty and Aart Middeldorp. Cham: Springer International Publishing,
2015, pp. 378–388. isbn: 978-3-319-21401-6. doi: 10.1007/978-3-319-21401-6_26.

[38] Chris Newcombe. “Why Amazon Chose TLA+”. In: Abstract State Machines, Alloy, B, TLA, VDM, and Z. Ed. by Yamine Ait Ameur and
Klaus-Dieter Schewe. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 25–39. isbn: 978-3-662-43652-3. doi: 10.1007/978-
3-662-43652-3_3.

[39] Peter W. O’Hearn. “Resources, Concurrency and Local Reasoning”. In: CONCUR 2004 - Concurrency Theory. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 49–67. isbn: 978-3-540-28644-8. doi: 10.1016/j.tcs.2006.12.035.

[40] Peter W. O’Hearn. “Incorrectness Logic”. In: Proc. ACM Program. Lang. 4.POPL [Jan. 2020]. doi: 10.1145/3371078.
[41] Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter O’Hearn, and Jules Villard. “Local Reasoning About the Presence of

Bugs: Incorrectness Separation Logic”. In: Computer Aided Veri�cation. Cham: Springer International Publishing, 2020, pp. 225–252.
isbn: 978-3-030-53291-8. doi: 10.1007/978-3-030-53291-8_14.

[42] Azalea Raad, Julien Vanegue, and Peter O’Hearn. “Non-termination Proving at Scale”. In: Proc. ACM Program. Lang. 8.OOPSLA2 [Oct.
2024]. doi: 10.1145/3689720.

[43] Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. “Formal Veri�cation of Avionics Software Products”. In: FM 2009:
Formal Methods. Ed. by Ana Cavalcanti and Dennis R. Dams. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 532–546. isbn:
978-3-642-05089-3. doi: 10.1007/978-3-642-05089-3_3.

[44] Joseph Tassarotti and Robert Harper. “A Separation Logic for Concurrent Randomized Programs”. In: Proc. ACM Program. Lang.
3.POPL [Jan. 2019]. doi: 10.1145/3290377.

[45] Daniele Varacca. “The powerdomain of indexed valuations”. In: Proceedings 17th Annual IEEE Symposium on Logic in Computer
Science. 2002, pp. 299–308. doi: 10.1109/LICS.2002.1029838.

[46] John von Neumann. “Various techniques used in connection with random digits”. In: Monte Carlo Method. Ed. by A.S. Householder,
G.E. Forsythe, and H.H. Germond. Washington, D.C.: U.S. Government Printing O�ce: National Bureau of Standards Applied Math-
ematics Series, 12, 1951, pp. 36–38.

8

https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/978-3-031-61716-4_11
https://doi.org/10.1145/3527325
https://doi.org/10.1145/567532.567547
https://doi.org/10.1145/567532.567547
https://doi.org/10.1145/3591226
https://arxiv.org/abs/2503.04512
https://arxiv.org/abs/2503.04512
https://arxiv.org/abs/2503.04512
https://doi.org/10.1145/2976749.2978399
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1007/978-3-662-43652-3_3
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1145/3371078
https://doi.org/10.1007/978-3-030-53291-8_14
https://doi.org/10.1145/3689720
https://doi.org/10.1007/978-3-642-05089-3_3
https://doi.org/10.1145/3290377
https://doi.org/10.1109/LICS.2002.1029838

