
Outcome Logic: A Unified Approach to the Metatheory of
Program Logics with Branching Effects

NOAM ZILBERSTEIN, Cornell University, USA

Starting with Hoare Logic over 50 years ago, numerous program logics have been devised to reason about

the different kinds of programs encountered in the real world. This includes reasoning about computational

effects, particularly those effects that cause the program execution to branch into multiple paths due to, e.g.,

nondeterministic or probabilistic choice.

Outcome Logic reimagines Hoare Logic with branching at its core, using an algebraic representation of

choice to capture programs that branch into many outcomes. In this article, we give a comprehensive account

of the Outcome Logic metatheory. This includes a relatively complete proof system for Outcome Logic with

the ability to reason about general purpose looping. We also show that this proof system applies to programs

with various types of branching, that it subsumes some well known logics such as Hoare Logic, and that it

facilitates the reuse of proof fragments across different kinds of specifications.

CCS Concepts: • Theory of computation→ Logic and verification; Programming logic; Hoare logic.
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1 Introduction
The seminal work of Floyd [1967a] and Hoare [1969] on program logics in the 1960s has paved

the way towards modern program analysis. The resulting Hoare Logic—still ubiquitous today—

defines triples {𝑃 } 𝐶 {𝑄} to specify the behavior of a program 𝐶 in terms of a precondition 𝑃 and

a postcondition 𝑄 . In the ensuing years, many variants of Hoare Logic have emerged, in part to

handle the numerous computational effects found in real-world programs.

Relevant effects include nontermination, arising from while loops; nondeterminism, useful for

modeling adversarial behavior or concurrent scheduling; and randomization, required for security

and machine learning applications. These effects have historically warranted specialized program

logics with distinct inference rules. For example, partial correctness [Floyd 1967a; Hoare 1969] vs

total correctness [Manna and Pnueli 1974] can be used to specify that the postcondition holds if

the program terminates vs that it holds and the programs terminates, respectively. While Hoare

Logic has classically taken a demonic view of nondeterminism (the postcondition must apply

to all possible outcomes), recent work on formal methods for incorrectness [Möller et al. 2021;

O’Hearn 2020] has motivated the need for new program logics based on angelic nondeterminism

(the postcondition applies to some reachable outcome). Further, probabilistic Hoare Logics are

quantitative, allowing one to specify the likelihood of each outcome, not just that they may occur

[Barthe et al. 2018; den Hartog 2002, 1999; Rand and Zdancewic 2015].

Despite the fact that distinct logics are used to handle different types of branching (e.g., nonde-

terministic vs probabilistic), all of the aforementioned program logics share common reasoning

principles. For instance, no-ops preserve the precondition, sequences of commands 𝐶1 # 𝐶2 are

analyzed compositionally and the precondition (resp., postcondition) can be strengthened (resp.,

weakened) using logical consequences, as shown below.

{𝑃 } skip {𝑃 }

{𝑃 } 𝐶1 {𝑄} {𝑄} 𝐶2 {𝑅}

{𝑃 } 𝐶1 #𝐶2 {𝑅}

𝑃 ′⇒ 𝑃 {𝑃 } 𝐶 {𝑄} 𝑄 ⇒ 𝑄 ′

{𝑃 ′} 𝐶 {𝑄 ′}
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In this article, we show that those common reasoning principles are no mere coincidence. We

develop Outcome Logic (OL), which provides a uniform metatheory for a variety of computational

effects—including nondeterminism and randomization—culminating in a single proof system for

all of them. We also show how specialized reasoning principles (e.g., loop invariants for partial

correctness) are derived from more general rules and how proof fragments can be shared between

programs with different effects.

This work is also valuable in the context of static analysis. Recent interest in bug finding tools

[Blackshear et al. 2018; Gorogiannis et al. 2019] prompted the development of Incorrectness Logic

(IL) [Möller et al. 2021; O’Hearn 2020; Raad et al. 2020, 2022], which under-approximates a program’s

reachable states in order to identify true positive bugs. This theory was put to use in Meta’s Pulse

tool, which is deployed in large scale industrial codebases [Le et al. 2022]. Subsequently—and

largely with the goal of consolidating static analysis tools—more logics were proposed to capture

both correctness and incorrectness. Some of those approaches involved combining Hoare Logic and

Incorrectness Logic [Bruni et al. 2021, 2023; Maksimović et al. 2023], but came with the significant

downside of needing to simultaneously over- and under-approximate the set of reachable states,

thereby inheriting the weaknesses of both logics without being able to leverage their strengths.

One specific downside of IL is the inability to reason in abstract domains [Ascari et al. 2022].

Möller et al. [2021] and Zilberstein et al. [2023] proposed to instead capture incorrectness with

an angelic version of Hoare Logic, often referred to as Lisbon Logic, which has the advantage of

easily identifying manifest errors [Le et al. 2022], bugs that occur regardless of context. It was later

shown that Pulse does not take advantage of Incorrectness Logic’s unique features, and therefore

could equivalently be modeled using Lisbon Logic [Raad et al. 2024; Zilberstein et al. 2024a]. Lisbon

Logic was then further developed as part of new bug finding tools, for which Incorrectness Logic

was not a good fit [Ascari et al. 2025; Raad et al. 2024] and there is ongoing interest in developing

more consolidated tools [Lööw et al. 2024; Zilberstein 2024].

The key insight from the aforementioned work is that correctness and incorrectness can be

represented by a choice between demonic or angelic nondeterminism. Outcome Logic supports both

angelic and demonic reasoning, as well as more expressive ways to reason about the reachability of

multiple different nondeterministic outcomes, or other effects such as probabilistic computation.

Outcome Logic was first proposed as a unified basis for correctness and incorrectness reasoning in

nondeterministic and probabilistic programs, with semantics parametric on a monad and a monoid

[Zilberstein et al. 2023]. The semantics was later refined such that each trace is weighted using

an element of a semiring [Zilberstein et al. 2024a]. For example, Boolean weights specify which

states are in the set of outcomes for a nondeterministic program, whereas real-valued weights

quantify the probabilities of outcomes in a probabilistic program. Exposing these weights in pre-

and postconditions means that a single program logic can express multiple termination criteria,

angelic and demonic nondeterminism, probabilistic properties, and more.

But while the aforementioned papers demonstrated the value of Outcome Logic in correctness

and incorrectness applications, they left large gaps. Most notably, no proof strategies were given

for unbounded iteration—loops could only be analyzed via bounded unrolling—and the connections

to other logics were not deeply explored. In this article, we fill those gaps and provide a more

authoritative and comprehensive reference on the Outcome Logic metatheory. In addition to

demonstrating the applications of Outcome Logic to correctness and incorrectness reasoning,

we provide a cleaner account of the semiring weights, which supports more models; we provide

inference rules for unbounded looping and a relative completeness proof; and we more deeply

explore the connections between OL and other logics by showing how the rules of those logics can

be derived from the OL proof system. The structure and contributions are follows:



Outcome Logic: A Unified Approach to the Metatheory of Program Logics with Branching Effects 3

• We give an overview of the technical approach, highlighting the key ideas that will be formalized

throughout the remainder of the article (Section 2).

• We give a cleaner Outcome Logic semantics and give six models (Examples 3.7 to 3.12), including

a multiset model (Example 3.9) not supported by previous formalizations due to more restrictive

algebraic constraints (Sections 3 and 4). Our new looping construct naturally supports determin-

istic (while loops), nondeterministic (Kleene star), and probabilistic iteration—whereas previous

OL versions supported fewer kinds of iteration [Zilberstein et al. 2024a] or used a non-unified,

ad-hoc semantics [Zilberstein et al. 2023].

• We provide an extensional proof system based on semantic pre- and postconditions and prove

that it is sound and relatively complete (Section 4.3). Relative completeness means that the rules

are sufficient for deriving any true specification, provided an oracle for deciding consequences

between assertions used in pre- and postcondition [Cook 1978]; it is the best case scenario for

program logics because those consequences are necessarily undecidable [Apt 1981]. This is the

first OL proof system that handles loops that iterate an indeterminate number of times. Our

Iter rule is sufficient for analyzing any iterative command, and from it we derive the typical

loop invariant rule (for partial correctness), loop variants (with termination guarantees), and

probabilistic loops (Sections 4.5 and 6.1).

• In Section 6, we prove that OL subsumes Hoare Logic and derive the entire Hoare Logic proof

system (e.g., loop invariants) in Outcome Logic. Inspired by Dynamic Logic [Harel et al. 2001;

Pratt 1976], our encoding of Hoare Logic uses modalities to generalize partial correctness to types

of branching beyond just nondeterminism. We also show that OL subsumes Lisbon Logic (a new

logic for incorrectness), and its connections to Hyper Hoare Logic for proving hyperproperties

of nondeterministic programs [Dardinier and Müller 2024].

• Through case studies, we demonstrate the reusability of proofs across different effects (e.g.,

nondeterminism or randomization) and properties (e.g., angelic or demonic nondeterminism)

(Section 7). Whereas choices about how to handle loops typically require selecting a specific

logic (e.g., partial vs total correctness), loop analysis strategies can be mixed within a single

OL derivation; we discuss the implications to program analysis in Section 7.4. We also perform

combinatorial analysis of graph algorithms based on alternative computation models (Section 8).

• We contextualize the paper in terms of related work (Section 9) and discuss limitations and

opportunities for future development (Section 10).

2 Overview
Outcome Logic is formalized in layers. At the bottom layer, there is a denotational model of

programs, which uses various kinds of weights to represent computational effects arising due to

different kinds of branching. Those weights are then reflected up into the logical layer, where they

are used to quantify collections of outcomes, providing significant expressive power. In this section,

we give an informal overview of these semantic and logical models, and show their applicability

toward correctness and incorrectness.

2.1 Unified Denotational Semantics
Typical denotational models select a particular mathematical domain, corresponding to the compu-

tational effects of the program. For example, semantics of nondeterministic programs use powerdo-

mains [Plotkin 1976; Smyth 1978] to represent the result of the program as a set of possible states,

i.e., let 𝐶 be a program and S be the set of all states, then the semantics is captured by a function

J𝐶KND : S → 2S (where 2𝑋 is the powerset of 𝑋 ). A program that involves a nondeterministic
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choice—expressed as 𝐶1 +𝐶2—produces a set of two outcomes:

J(𝑥 B 0) + (𝑥 B 1)KND (𝑠) = {𝑠 [𝑥 B 0], 𝑠 [𝑥 B 1]}
On the other hand, probabilistic programs are interpreted in the probabilistic powerdomain

[Jones and Plotkin 1989]; the result of the program is represented as a distribution of outcomes

J𝐶KProb : S → D(S), where distributions are maps from states to probabilitiesD(S) = S → [0, 1].
A convex choice 𝐶1 +𝑝 𝐶2—where 𝐶1 is executed with probability 𝑝 and 𝐶2 is executed with proba-

bility 1 − 𝑝—results in a distribution over two outcomes.

q
(𝑥 B 0) +𝑝 (𝑥 B 1)

y
Prob (𝑠) =

{
𝑠 [𝑥 B 0] ↦→ 𝑝

𝑠 [𝑥 B 1] ↦→ 1 − 𝑝
While these two computational domains at first appear distinct, they can in fact be unified through

the lens of weighted programming [Batz et al. 2022], where different kinds of weights are used

to represent different kinds of effects. It is quite clear that the weights in a probabilistic program

are real numbers on the unit interval, i.e., probabilities. That is, the semantics of a probabilistic

program weights each end state by a probability.

However, it is also well known that sets 𝑆 ∈ 2S are isomorphic to maps into the Booleans

𝑓 : S → B (where B = {0, 1}), i.e., 𝑆 � 𝑓 iff 𝑆 = {𝑠 ∈ S | 𝑓 (𝑠) = 1}. Using this fact, we can rewrite

the nondeterministic semantics above to look more similar to the probabilistic one, omitting any

states that map to 0.

J(𝑥 B 0) + (𝑥 B 1)KND (𝑠) =
{
𝑠 [𝑥 B 0] ↦→ 1

𝑠 [𝑥 B 1] ↦→ 1

Probabilities and Booleans are two examples of valid weights, which more generally must carry

a semiring structure, meaning that they can be added and multiplied. Addition corresponds to

branching; the semantics of the two programs above can more abstractly be captured by a lifted

addition operation +, which sums the weights of each outcome in both computation branches:

J𝐶1 +𝐶2K (𝑠) = J𝐶1K (𝑠) + J𝐶2K (𝑠)
In the Boolean instance, addition is logical disjunction, meaning that the weight of an outcome is 1

if it appears in either branch. In the probabilistic instance, addition has the standard arithmetic

meaning, so the weight of an outcome is the cumulative probability across the two branches.

Multiplication is used to interpret sequential composition. In the Boolean instance, multiplication

corresponds to logical conjunction, so in the program (𝐶1 +𝐶2) # (𝐶3 +𝐶4), the weight of executing
both 𝐶1 and 𝐶3 is 1 ∧ 1 = 1. In the probabilistic instance, multiplication is also arithmetic, so the

weight of executing both 𝐶1 and 𝐶3 in (𝐶1 +𝑝 𝐶2) # (𝐶3 +𝑞 𝐶4) is 𝑝 · 𝑞. In Section 3, we will give all

the formal properties of these weights, and introduce a few more interpretations.

2.2 A Unified Program Logic
Outcome Logic’s expressive power comes from exposing the semiring weights from Section 2.1

to the program logic, so that specifications can quantify the weight of each outcome. While this

ability has previously featured in probabilistic logics—where expressing the probabilities of each

event is essential [Barthe et al. 2018; den Hartog 2002, 1999; Rand and Zdancewic 2015]—it had not

appeared in a logic for nondeterministic programs. Exposing the weights allows Outcome Logic

to reason about nondeterminism in either an angelic or demonic style, or even mix the two. This

mixture makes Outcome Logic a good foundation for unifying correctness and incorrectness, as we

will see in Section 2.3. In addition, the metatheoretic unification means that a single logic can be

used for quantitative reasoning about probabilistic programs and correctness and incorrectness in

nondeterministic ones.
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Weights are exposed to the logic via outcome assertions, which are described formally in Section 4.1.

In this section, we focus on two of these assertions. The first one—⌈𝑃⌉ (𝑢)—lifts a basic assertion
𝑃 describing individual states to an assertion about weighted collections of states, such that the

collection has cumulative weight 𝑢 and every state with nonzero weight satsifies 𝑃 . When the

cumulative weight is 1, we simply write ⌈𝑃⌉. To describe how the states are distributed across a

collection, the outcome conjunction 𝜑 ⊕𝜓 asserts that the weight of the collection is split across the

two outcomes 𝜑 and𝜓 . This means that if a program is composed of two branches 𝐶1 +𝐶2, then an

outcome conjunction can be used to specify the result of that program:

J𝐶1K (𝑠) ⊨ 𝜑 and J𝐶2K (𝑠) ⊨ 𝜓 =⇒ J𝐶1 +𝐶2K (𝑠) ⊨ 𝜑 ⊕𝜓

Just as in Hoare Logic, Outcome Logic judgements are given as triples ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, but the pre- and

postconditions are outcome assertions rather than assertions about individual states. This allows

for inference rules to compositionally reason about the branching behavior of a program.

⟨𝜑⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑⟩ 𝐶1 +𝐶2 ⟨𝜓1 ⊕𝜓2⟩
Plus

Stemming from this one rule, we can derive specifications for both the probabilistic and nondeter-

ministic programs in Section 2.1. The probabilistic specification expresses the precise probabilities

of the two outcomes.

⟨⌈true⌉⟩ 𝑥 B 0 ⟨⌈𝑥 = 0⌉⟩ ⟨⌈true⌉⟩ 𝑥 B 1 ⟨⌈𝑥 = 1⌉⟩
⟨⌈true⌉⟩ (𝑥 B 0) +𝑝 (𝑥 B 1) ⟨⌈𝑥 = 0⌉ (𝑝) ⊕ ⌈𝑥 = 1⌉ (1−𝑝)⟩

The nondeterministic one also gives a precise weight for the outcomes (i.e., 1), meaning that both

are definitely represented in the set of possible end states.

⟨⌈true⌉⟩ 𝑥 B 0 ⟨⌈𝑥 = 0⌉⟩ ⟨⌈true⌉⟩ 𝑥 B 1 ⟨⌈𝑥 = 1⌉⟩
⟨⌈true⌉⟩ (𝑥 B 0) + (𝑥 B 1) ⟨⌈𝑥 = 0⌉ ⊕ ⌈𝑥 = 1⌉⟩

As such, this specification is a mix of both demonic and angelic styles. On the angelic side, we

know there exist traces that reach both outcomes. On the demonic side, we know that all traces fall

into the conjunction of the two outcomes. This is something that prior logics could not express,

and it is useful for unifying correctness and incorrectness reasoning, as we will now see.

2.3 Applications to Correctness and Incorrectness
We begin by explaining why typical correctness logics like Hoare Logic are not suitable for incorrect-

ness reasoning. In a Hoare triple {𝑃 }𝐶 {𝑄}, all reachable states must fall within the postcondition𝑄 .

Suppose that 𝐶 is a nondeterministic program, which sometimes displays a bug ( ), and sometimes

results in a desirable outcome (✓):

J𝐶K (𝑠) =
{

↦→ 1

✓ ↦→ 1

Now let 𝑄ok be the desired postcondition of the program, where ✓ ⊨ 𝑄ok and ⊭ 𝑄ok. The above

program is incorrect, because it does not satisfy the correctness specification {𝑃 } 𝐶 {𝑄ok}. However,

the best we can do to specify the bug in Hoare logic is to use a disjunction: {𝑃 } 𝐶 {𝑄ok ∨ 𝑄er},

where 𝑄er is a description of the bug such that ⊨ 𝑄er. The problem is that the disjunction is not

strong enough to guarantee the reachability of the bug; a program where ✓ is the only outcome

would also satisfy the postcondition 𝑄ok ∨𝑄er, meaning that reporting a bug based on the above

Hoare triple may in fact be a false positive. This is a significant problem, and in practice many bugs
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do arise nondeterministically, e.g., when the programmer forgets a null check after allocating a

pointer [O’Hearn 2020; Raad et al. 2020].

As we already saw, the above problem can be mitigated in Outcome Logic by using the specifica-

tion ⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄ok⌉ ⊕ ⌈𝑄er⌉⟩, which guarantees that𝑄er is non-vacuously reachable. In fact, we can

even drop information about the ok outcome, to obtain the simpler specification ⟨⌈𝑃⌉⟩𝐶 ⟨⌈𝑄er⌉⊕⊤⟩,
stating that 𝑄er is reachable, and additional outcomes may be reachable too (⊤ is a trivial assertion

that is satisfied by any collection of states). Triples of this type are equivalent to specifications in

Lisbon Logic, an increasingly popular foundation for bug finding tools [Ascari et al. 2025; Raad

et al. 2024]. As we show in Section 6.1, Outcome Logic subsumes Hoare Logic as well.

However, the real power of Outcome Logic comes not only from the ability to express correctness

and incorrectness separately, but also to express specifications that can be repurposed for both.

For example, consider a program 𝐶1 # 𝐶2, where nondeterministic branching occurs in 𝐶1, and

depending on which branch the program ends up in, 𝐶2 may or may not result in a bug:

J𝐶1K (𝑠) =
{
𝑠1 ↦→ 1

𝑠2 ↦→ 1

J𝐶2K (𝑠1) =
{

↦→ 1 J𝐶2K (𝑠2) =
{
✓ ↦→ 1

Letting 𝑄1 and 𝑄2 be such that 𝑠 ⊨ 𝑄𝑖 iff 𝑠 = 𝑠𝑖 for each 𝑖 ∈ {1, 2}, we could obtain the triples below.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨⌈𝑄1⌉ ⊕ ⌈𝑄2⌉⟩ ⟨⌈𝑄1⌉⟩ 𝐶2 ⟨⌈𝑄er⌉⟩ ⟨⌈𝑄2⌉⟩ 𝐶2 ⟨⌈𝑄ok⌉⟩

Now, suppose that we are analyzing the program in a forward fashion. After obtaining the above

specification for𝐶1, we do not yet know if a bug will be encountered, orwhich branchwill encounter

it. As such, it is useful to retain the intermediate assertion ⌈𝑄1⌉ ⊕ ⌈𝑄2⌉ to guarantee that both

branches are reachable (in case one encounters a bug) and also that they cover all possible outcomes

(in case we want to ensure correctness). To complete the proof, we need the two composition rules

shown below: Seq is the standard sequential composition rule from, e.g., Hoare Logic; and Choice

allows us to compositionally reason about each outcome.

⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓⟩
Seq

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 ⊕ 𝜑2⟩ 𝐶 ⟨𝜓1 ⊕𝜓2⟩
Choice

By applying these rules, we can obtain a specification for the complete programwith a postcondition

indicating that an error state is reachable, signifying that the program is incorrect.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨⌈𝑄1⌉ ⊕ ⌈𝑄2⌉⟩
⟨⌈𝑄1⌉⟩ 𝐶2 ⟨⌈𝑄er⌉⟩ ⟨⌈𝑄2⌉⟩ 𝐶2 ⟨⌈𝑄ok⌉⟩

⟨⌈𝑄1⌉ ⊕ ⌈𝑄2⌉⟩ 𝐶2 ⟨⌈𝑄er⌉ ⊕ ⌈𝑄ok⌉⟩
Choice

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨⌈𝑄er⌉ ⊕ ⌈𝑄ok⌉⟩
Seq

Of course, if a bug is encountered on one side of the ⊕, then it is not necessarily worthwhile

to continue analyzing the other outcomes. This was one of O’Hearn’s [2020] key motivations

in developing Incorrectness Logic, as its ability to drop disjuncts from the postcondition meant

that extraneous traces could be ignored. In our case, knowing that 𝑄ok is a reachable outcome is

unimportant; the fact that 𝑄er is reachable already tells us everything that we need to know. So, it

desirable to be able to drop outcomes using that following inference rule that allows us to trivially

analyze a program using the vacuous postcondition ⊤, which is satisfied by any collection of states.

⟨𝜑⟩ 𝐶 ⟨⊤⟩
True

Indeed, the specification ⟨⌈𝑄2⌉⟩ 𝐶2 ⟨⌈𝑄ok⌉⟩ may not be simple to prove;𝐶2 itself may be a complex

sequence of commands. By contrast, True can be applied regardless of how complex 𝐶2 is. With
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this in mind, we perform a simpler derivation for the composite program below.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨⌈𝑄1⌉ ⊕ ⌈𝑄2⌉⟩
⟨⌈𝑄1⌉⟩ 𝐶2 ⟨⌈𝑄er⌉⟩ ⟨⌈𝑄2⌉⟩ 𝐶2 ⟨⊤⟩

True

⟨⌈𝑄1⌉ ⊕ ⌈𝑄2⌉⟩ 𝐶2 ⟨⌈𝑄er⌉ ⊕ ⊤⟩
Choice

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨⌈𝑄er⌉ ⊕ ⊤⟩
Seq

Here, we have obtained the postcondition ⌈𝑄er⌉ ⊕ ⊤, which states that 𝑄er is reachable and there

may be any number of other reachable outcomes too.

If 𝐶1 were reused in a different context 𝐶1 # 𝐶3, where 𝐶3 does not encounter a bug on state

𝑠1, then we could instead collapse the two outcomes into a concise correctness specification

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨⌈𝑄ok⌉⟩1. Importantly, this correctness specification does not involve ⊤—the program
is only correct if it behaves properly in all traces. The ability to witness reachability of multiple

outcomes is a unique capability of Outcome Logic—which cannot be achieved in any prior logics

such as Hoare Logic, Incorrectness Logic, or Lisbon Logic—and is what makes it suitable for both

correctness and incorrectness.

In the remainder of this article, we formalize the details that have been outlined thus far. We begin

with the algebraic properties of weights and program semantics in Section 3. Next, we define

Outcome Logic and its proof system in Sections 4 and 5. In Section 6, we prove that Outcome Logic

subsumes a variety of other logics including Hoare Logic and Lisbon Logic, and derive the proof

systems of those logics as well. We then present a variety of case studies in Sections 7 and 8, and

finally we conclude by discussing related and future work in Sections 9 and 10.

3 Weighted Program Semantics
We begin the technical development by defining a basic programming language and describing its

semantics based on various interpretations of choice. The syntax for the language is shown below.

𝐶 F skip | 𝐶1 #𝐶2 | 𝐶1 +𝐶2 | assume 𝑒 | 𝐶 ⟨𝑒, 𝑒
′⟩ | 𝑎 (𝑎 ∈ Act, 𝑢 ∈ 𝑈 , 𝑡 ∈ Test)

𝑒 F 𝑏 | 𝑢
𝑏 F true | false | 𝑏1 ∨ 𝑏2 | 𝑏1 ∧ 𝑏2 | ¬𝑏 | 𝑡

This language is similar to imperative languages such as Dijkstra’s [1975] Guarded Command

Language (GCL), with familiar constructs such as skip, sequential composition (𝐶1 #𝐶2), branching

(𝐶1 +𝐶2), and atomic actions 𝑎 ∈ Act. The differences arise from the generalized assume operation,

which weights the current computation branch using an expression 𝑒 (either a test 𝑏 or a weight

𝑢 ∈ 𝑈 , to be described fully in Section 3.1). We already saw two examples of weights in Section 2:

probabilities and Booleans.

Weighting is also used in the iteration command𝐶 ⟨𝑒, 𝑒
′⟩
, which iterates𝐶 with weight 𝑒 and exits

with weight 𝑒 ′. It is a generalization of the Kleene star𝐶★
, and is also more general than the iteration

constructs found in previous Outcome Logic work [Zilberstein et al. 2023, 2024a]. In Section 3.4, we

will show how to encode while loops, Kleene star, and probabilistic loops using 𝐶 ⟨𝑒, 𝑒
′⟩
. Although

the latter constructs can be encoded using while loops and auxiliary variables, capturing this

behavior without state can be advantageous, as it opens up the possibility for equational reasoning

over programs with uninterpreted atomic commands [Kozen 1997; Różowski et al. 2023].

1
This could be done either by analyzing 𝐶3 twice using two triples ⟨ ⌈𝑄1 ⌉ ⟩ 𝐶3 ⟨ ⌈𝑄ok ⌉ ⟩ and ⟨ ⌈𝑄2 ⌉ ⟩ 𝐶3 ⟨ ⌈𝑄ok ⌉ ⟩, or by
first weakening the postcondition ⌈𝑄1 ⌉ ⊕ ⌈𝑄2 ⌉ ⇒ ⌈𝑄 ⌉ for some𝑄 such that𝑄1 ⇒ 𝑄 and𝑄2 ⇒ 𝑄 , and then proving a

single specification ⟨ ⌈𝑄 ⌉ ⟩ 𝐶3 ⟨ ⌈𝑄ok ⌉ ⟩.
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Tests 𝑏 contain the typical operations of Boolean algebras as well as primitive tests 𝑡 ∈ Test,
assertions about a program state. Primitive tests are represented semantically, so Test ⊆ 2Σ where

Σ is the set of program states (each primitive test 𝑡 ⊆ Σ is the set of states that it describes). Tests

evaluate to 0 or 1, which represent the Boolean values false and true, respectively.

The values 0 and 1 are examples of weights from the set {0, 1} ⊆ 𝑈 . These weights have algebraic

properties, which were introduced in Section 2.1 and will be described fully in Section 3.1. Using a

test 𝑏, the command assume 𝑏 chooses whether or not to continue evaluating the current branch,

whereas assume 𝑢 more generally picks a weight for the branch, which may be a Boolean (0 or 1),

but may also be some other type of weight such as a probability. In the remainder of this section,

we will define the semantics formally.

3.1 Algebraic Preliminaries
We begin by reviewing some algebraic structures. As explained in Section 2.1, our program semantics

relies on semiring weights to represent different kinds of branching. We begin by formally defining

the properties of those weights.

Definition 3.1 (Monoid). A monoid ⟨𝑈 , +, 0⟩ consists of a carrier set 𝑈 , an associative binary

operation + : 𝑈 ×𝑈 → 𝑈 , and an identity element 0 ∈ 𝑈 (𝑢 + 0 = 0 + 𝑢 = 𝑢). If + : 𝑈 ×𝑈 ⇀ 𝑈

is partial, then the monoid is partial. If + is commutative (𝑢 + 𝑣 = 𝑣 + 𝑢), then the monoid is

commutative.

As an example, ⟨{0, 1},∨, 0⟩ is a monoid on Booleans. Building on monoids, we now introduce

semirings. As we saw in Section 2, the outcome weights used to formalize our program semantics

must carry a semiring structure.

Definition 3.2 (Semiring). A semiring ⟨𝑈 , +, ·, 0, 1⟩ is a structure such that ⟨𝑈 , +, 0⟩ is a commuta-

tive monoid, ⟨𝑈 , ·, 1⟩ is a monoid, and the following holds:

(1) Distributivity: 𝑢 · (𝑣 +𝑤) = 𝑢 · 𝑣 + 𝑢 ·𝑤 and (𝑢 + 𝑣) ·𝑤 = 𝑢 ·𝑤 + 𝑣 ·𝑤
(2) Annihilation: 0 · 𝑢 = 𝑢 · 0 = 0

The semiring is partial if ⟨𝑈 , +, 0⟩ is a partial monoid (but · remains total).

In the remainder of this section, we introduce additional properties of semirings needed to make

the semantics of loops well defined. First, we define an order based on the addition operator of the

semiring.

Definition 3.3 (Natural Ordering). Given a (partial) semiring ⟨𝑈 , +, ·, 0, 1⟩, the natural order is
defined to be:

𝑢 ≤ 𝑣 iff ∃𝑤. 𝑢 +𝑤 = 𝑣

The semiring is naturally ordered if the natural order ≤ is a partial order. Note that ≤ is trivially

reflexive and transitive, but it remains to show that it is anti-symmetric.

Based on this order, we also define the notion of Scott continuity, which will be important for

defining infinite sums and the semantics of while loops. This definition relies on directed sets and

dcpos. A set 𝐷 is directed iff every pair of elements 𝑥,𝑦 ∈ 𝐷 have an upper bound in 𝐷 . A dcpo is a

poset where every directed set has a supremum.

Definition 3.4 (Scott Continuity [Karner 2004]). A (partial) semiring with order ≤ is Scott continu-

ous if it is a dcpo and for any directed set 𝐷 ⊆ 𝑋 , the following hold:

sup

𝑥 ∈𝐷
(𝑥 + 𝑦) = (sup𝐷) + 𝑦 sup

𝑥 ∈𝐷
(𝑥 · 𝑦) = (sup𝐷) · 𝑦 sup

𝑥 ∈𝐷
(𝑦 · 𝑥) = 𝑦 · sup𝐷

Given a Scott continuous semiring, we can also define a notion of infinite sums.
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Definition 3.5 (Infinite Sums). Let ⟨𝑈 , +, ·, 0, 1⟩ be a Scott continuous semiring. Now, for any

(possibly infinite) indexed collection (𝑢𝑖 )𝑖∈𝐼 , we define the following operator:∑︁
𝑖∈𝐼

𝑢𝑖 ≜ sup{𝑢𝑖1 + · · · + 𝑢𝑖𝑛 | 𝑛 ∈ N, {𝑖1, . . . , 𝑖𝑛} ⊆fin 𝐼 }

That is, an infinite sum is the supremum of the sums of all finite subsequences. As shown by Kuich

[2011, Corollary 1],

∑
makes𝑈 a complete semiring, meaning it upholds the following properties:

(1) If 𝐼 = {𝑖1, . . . , 𝑖𝑛} is finite, then
∑
𝑖∈𝐼 𝑢𝑖 = 𝑢𝑖1 + · · · + 𝑢𝑖𝑛

(2) If

∑
𝑖∈𝐼 𝑢𝑖 is defined, then 𝑣 ·∑𝑖∈𝐼 𝑢𝑖 =

∑
𝑖∈𝐼 𝑣 · 𝑢𝑖 and (

∑
𝑖∈𝐼 𝑢𝑖 ) · 𝑣 =

∑
𝑖∈𝐼 𝑢𝑖 · 𝑣

(3) Let (𝐽𝑘 )𝑘∈𝐾 be a family of nonempty disjoint subsets of 𝐼 (𝐼 =
⋃
𝑘∈𝐾 𝐽𝑘 and 𝐽𝑘 ∩ 𝐽ℓ = ∅ if

𝑘 ≠ ℓ), then
∑
𝑘∈𝐾

∑
𝑗 ∈𝐽𝑘 𝑢 𝑗 =

∑
𝑖∈𝐼 𝑢𝑖

3.2 Weighting Functions
Semirings elements will act as the weights for traces in our semantics. The interpretation of a

program at a state 𝜎 ∈ Σ will map each end state to a semiring element J𝐶K (𝜎) : Σ→ 𝑈 . Varying

the semiring will yield different kinds of effects. For example, as we saw in Section 2, the Boolean

semiring where 𝑈 = {0, 1} corresponds to nondeterminism; J𝐶K (𝜎) : Σ → {0, 1} � 2Σ tells us

which states are in the set of outcomes. A probabilistic semiring where𝑈 = [0, 1] (the unit interval
of real numbers) gives us a map from states to probabilities—a distribution of outcomes. More

formally, the result is a weighting function, defined below.

Definition 3.6 (Weighting Function). Given a set 𝑋 and a partial semiring A = ⟨𝑈 , +, ·, 0, 1⟩, the
set of weighting functions is:

WA (𝑋 ) ≜
{
𝑚 : 𝑋 → 𝑈

��� |𝑚 | is defined and supp(𝑚) is countable
}

Where supp(𝑚) ≜ {𝜎 | 𝑚(𝜎) ≠ 0} and |𝑚 | ≜ ∑
𝜎 ∈supp(𝑚)𝑚(𝜎).

Weighting functions can encode the following types of computation.

Example 3.7 (Nondeterminism). Nondeterministic computation is based on the Boolean semiring

Bool = ⟨B,∨,∧, 0, 1⟩, where weights are drawn from B = {0, 1} and conjunction ∧ and disjunction

∨ are the usual logical operations. This gives usWBool (𝑋 ) � 2𝑋—weighting functions on Bool are
isomorphic to sets, i.e., any𝑚 ∈ WBool (𝑋 ), is isomorphic to the set {𝑥 ∈ 𝑋 | 𝑚(𝑥) = 1}.

Example 3.8 (Determinism). Deterministic computation also uses Boolean weights, but with

a different interpretation of the semiring +. That is, 0 ∔ 𝑥 = 𝑥 ∔ 0 = 𝑥 , but 1 ∔ 1 is undefined.

The semiring is therefore Bool′ = ⟨B, ∔,∧, 0, 1⟩. With this definition of ∔, the requirement of

Definition 3.6 that |𝑚 | is defined means that |supp(𝑚) | ≤ 1, so we get thatWBool′ (𝑋 ) � 𝑋 + { }—it
is either a single value 𝑥 ∈ 𝑋 , or  , indicating that the program diverged.

Example 3.9 (Multiset Nondeterminism). Rather than indicating which outcomes are possible

using Booleans, we use natural numbers (extended with∞) 𝑛 ∈ N∞ to count the traces leading to

each outcome. This yields the semiringNat = ⟨N∞, +, ·, 0, 1⟩ with the standard arithmetic operations,

and we get thatWNat (𝑋 ) �M(𝑋 ) whereM(𝑋 ) is the set of multisets over 𝑋 . Multisets are useful

for encoding probabilistic nondeterminism [Jacobs 2021; Kozen and Silva 2023; Ong et al. 2025].

Example 3.10 (Randomization). Probabilities 𝑝 ∈ [0, 1] ⊂ R form a partial semiring Prob =

⟨[0, 1], +, ·, 0, 1⟩ where + and · are real-valued arithmetic operations, but + is undefined if 𝑥 + 𝑦 > 1

(just like in Example 3.8). This gives usWProb (𝑋 ) � D(𝑋 ), where D(𝑋 ) is the set of discrete
probability sub-distributions over 𝑋 (the mass can be less than 1 if some traces diverge).
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Example 3.11 (Tropical Computation). Tropical = ⟨[0,∞],min, +,∞, 0⟩ uses real-valued weights,

but semiring addition is minimum and semiring multiplication is arithmetic addition. Computations

inWTropical (𝑋 ) correspond to programs that choose the cheapest path for each outcome.

Example 3.12 (Formal Languages). For some alphabet Γ, let Γ∗ be the set of finite strings over
that alphabet, Γ𝜔 is the set of infinite strings, and Γ∞ = Γ∗ ∪ Γ𝜔 is the set of all strings. Then

Lang = ⟨2Γ∞ ,∪, ·, ∅, {𝜀}⟩ is the semiring of formal languages (sets of strings) where addition is

given by the standard union, multiplication is given by concatenation (if the first string is finite):

ℓ1 · ℓ2 ≜ {𝑠𝑡 | 𝑠 ∈ ℓ1, 𝑡 ∈ ℓ2} where 𝑠𝑡 = 𝑠 if 𝑠 ∈ Γ𝜔

The unit of addition is the empty language and the unit of multiplication is the language con-

taining only the empty string 𝜀. Note that multiplication (i.e., concatenation) is not commutative.

Computations inWLang (Σ) correspond to programs that log sequences of letters [Batz et al. 2022].

Wewill occasionally writeW(𝑋 ) instead ofWA (𝑋 ) whenA is obvious. The semiring operations

for addition, scalar multiplication, and zero are lifted pointwise to weighting functions as follows

(𝑚1 +𝑚2) (𝑥) ≜ 𝑚1 (𝑥) +𝑚2 (𝑥) 0(𝑥) ≜ 0

(𝑢 ·𝑚) (𝑥) ≜ 𝑢 ·𝑚(𝑥) (𝑚 · 𝑢) (𝑥) ≜ 𝑚(𝑥) · 𝑢
Natural orders also extend to weighting functions, where𝑚1 ⊑ 𝑚2 iff there exists𝑚 such that

𝑚1 +𝑚 =𝑚2. This corresponds exactly to the pointwise order, so𝑚1 ⊑𝑚2 iff𝑚1 (𝜎) ≤ 𝑚2 (𝜎) for
all 𝜎 ∈ supp(𝑚1).
These lifted semiring operations give us a way to interpret branching, but we also need an

interpretation for sequential composition. As is standard in program semantics with effects, we use

a monad, which we define as a Klesli triple [Manes 1976; Moggi 1991].

Definition 3.13 (Kleisli Triple). AKleisli triple ⟨𝑇, 𝜂, (−)†⟩ in Set consists of a functor𝑇 : Set→ Set,
and two morphisms 𝜂 : Id ⇒ 𝑇 and for any sets 𝑋 and 𝑌 , (−)† : (𝑋 → 𝑇 (𝑌 )) → 𝑇 (𝑋 ) → 𝑇 (𝑌 )
such that:

𝜂† = id 𝑓 † ◦ 𝜂 = 𝑓 𝑓 † ◦ 𝑔† = (𝑓 † ◦ 𝑔)†

For any semiring A, ⟨WA, 𝜂, (−)†⟩ is a Kleisli triple where 𝜂 and (−)† are defined below.

𝜂 (𝑥) (𝑦) ≜
{
1 if 𝑥 = 𝑦

0 if 𝑥 ≠ 𝑦
𝑓 † (𝑚) (𝑦) ≜

∑︁
𝑥 ∈supp(𝑚)

𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

3.3 Denotational Semantics
We interpret the semantics of our language using the five-tuple ⟨A, Σ,Act, Test, J·KAct⟩, where the
components are:

(1) A = ⟨𝑈 , +, ·, 0, 1⟩ is a naturally ordered, Scott continuous, partial semiring with a top element

⊤ ∈ 𝑈 such that ⊤ ≥ 𝑢 for all 𝑢 ∈ 𝑈 .

(2) Σ is the set of concrete program states.

(3) Act is the set of atomic actions.

(4) Test ⊆ 2Σ is the set of primitive tests.

(5) J−KAct : Act→ Σ→WA (Σ) is the interpretation of atomic actions.

This definition is a generalized version of the one used in Outcome Separation Logic [Zilberstein et al.

2024a]. For example, we have dropped the requirement that ⊤ = 1, meaning that we can capture

more types of computation, such as the multiset model (Example 3.9). Multiset nondeterminism has

been shown to be useful in computational domains that combine nondeterministic and probabilistic

computation [Jacobs 2021; Kozen and Silva 2023; Ong et al. 2025].
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JskipK (𝜎) ≜ 𝜂 (𝜎)

J𝐶1 #𝐶2K (𝜎) ≜ J𝐶2K† (J𝐶1K (𝜎))
J𝐶1 +𝐶2K (𝜎) ≜ J𝐶1K (𝜎) + J𝐶2K (𝜎)

J𝑎K (𝜎) ≜ J𝑎KAct (𝜎)
Jassume 𝑒K (𝜎) ≜ J𝑒K (𝜎) · 𝜂 (𝜎)
r
𝐶 ⟨𝑒, 𝑒

′⟩
z
(𝜎) ≜ lfp

(
Φ⟨𝐶,𝑒,𝑒′⟩

)
(𝜎)

where Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) ≜ J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

Fig. 1. Denotational semantics for commands J𝐶K : Σ ⇀WA (Σ), given a partial semiring A = ⟨𝑋, +, ·, 0, 1⟩,
a set of program states Σ, atomic actions Act, primitive tests Test, and an interpretation of atomic actions
J𝑎KAct : Σ→WA (Σ).

Commands are interpreted denotationally as maps from states 𝜎 ∈ Σ to weighting functions on

states J𝐶K : Σ →WA (Σ), as shown in Figure 1. The first three commands are defined in terms

of the monad (Definition 3.13) and semiring operations (Definitions 3.2 and 3.6): skip uses 𝜂,

sequential composition𝐶1 #𝐶2 uses (−)†, and𝐶1 +𝐶2 uses the (lifted) semiring +. Since + is partial,
the semantics of 𝐶1 +𝐶2 may be undefined. In Section 3.4, we discuss simple syntactic checks to

ensure that the semantics is total. Atomic actions are interpreted using J−KAct.
The interpretation of assume relies on the ability to interpret expressions and tests. We first

describe the interpretation of tests, which maps 𝑏 to the weights 0 or 1, that is J𝑏KTest : Σ→ {0, 1},
with 0 representing false and 1 representing true, so JfalseK (𝜎) = 0 and JtrueK (𝜎) = 1. The

operators ∧, ∨, and ¬ are interpreted in the obvious ways, and for primitive tests J𝑡K (𝜎) = 1 if

𝜎 ∈ 𝑡 otherwise J𝑡K (𝜎) = 0. The full semantics of tests is given in Appendix A.1.

Since an expression is either a test or a weight, it remains only to describe the interpretation of

weights, which is J𝑢K (𝜎) = 𝑢 for any 𝑢 ∈ 𝑈 . So, assume 𝑒 uses J𝑒K : Σ→ 𝑈 to obtain a program

weight, and then scales the current state by it. If a test evaluates to false, then the weight is 0, so the

branch is eliminated. If it evaluates to true, then it is scaled by 1—the identity of multiplication—so

the weight is unchanged. The iteration command continues with weight 𝑒 and terminates with

weight 𝑒 ′. We can start by defining it recursively as follows.

r
𝐶 ⟨𝑒, 𝑒

′⟩
z
(𝜎) =

r
assume 𝑒 #𝐶 #𝐶 ⟨𝑒, 𝑒

′⟩ + assume 𝑒 ′
z
(𝜎)

= J𝑒K (𝜎) ·
r
𝐶 ⟨𝑒, 𝑒

′⟩
z†
(J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

To ensure that this equation has a well-defined solution, we formulate the semantics as a least fixed

point. Requiring that the semiring is Scott continuous (Definition 3.4), ensures that this fixed point

exists. For the full details, see Appendix A.

3.4 Syntactic Sugar for Total Programs
As mentioned in the previous section, the semantics of 𝐶1 +𝐶2 and 𝐶

⟨𝑒, 𝑒′⟩
are not always defined

given the partiality of the semiring +. The ways that + can be used in programs depends on

the particular semiring instance. We begin with guarded branching, i.e., if-statements, which are

encoded below.

if 𝑏 then 𝐶1 else 𝐶2 ≜ (assume 𝑏 #𝐶1) + (assume ¬𝑏 #𝐶2)
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Regardless of which semiring is used, guarded choice is always valid. Since the two branches are

guarded by opposing tests, the weight of one branch will be multiplied by 1 and the other by 0.

Since 0 is the identity of addition, then 0 + 𝑥 = 𝑥 for any 𝑥 , so the semantics of the sum of the

two branches is equal to just the nonzero branch, which is defined. For example, suppose that

J𝑏K (𝜎) = 1, then we get:

Jif 𝑏 then 𝐶1 else 𝐶2K (𝜎) = J(assume 𝑏 #𝐶1) + (assume ¬𝑏 #𝐶2)K (𝜎)
= J𝑏K (𝜎) · J𝐶1K (𝜎) + J¬𝑏K (𝜎) · J𝐶2K (𝜎)
= 1 · J𝐶1K (𝜎) + 0 · J𝐶2K (𝜎)
= J𝐶1K (𝜎)

SinceBool,Nat, and Tropical are total semirings, unguarded choice is always valid in those execution

models. In the probabilistic case, choice can be used as long as the sum of the weights of both

branches is at most 1. One way to achieve this is to weight one branch by a probability 𝑝 ∈ [0, 1]
and the other branch by 1 − 𝑝 , a biased coin-flip. We provide syntactic sugar for that operation:

𝐶1 +𝑝 𝐶2 ≜ (assume 𝑝 #𝐶1) + (assume 1 − 𝑝 #𝐶2)
We also provide syntactic sugar for iterating constructs. While loops use a test to determine whether

iteration should continue, making them deterministic.

while 𝑏 do 𝐶 ≜ 𝐶 ⟨𝑏, ¬𝑏 ⟩

The Kleene star 𝐶★
is defined for interpretations based on total semirings only; it iterates 𝐶

nondeterministically many times.
2

𝐶★ ≜ 𝐶 ⟨1, 1⟩

Finally, the probabilistic iterator 𝐶 ⟨𝑝 ⟩ continues to execute with probability 𝑝 and exits with

probability 1 − 𝑝 .
𝐶 ⟨𝑝 ⟩ ≜ 𝐶 ⟨𝑝, 1−𝑝 ⟩

This behavior can be replicated using a while loop and auxiliary variables, but adding state com-

plicates reasoning about the programs and precludes, e.g., devising equational theories over un-

interpreted atomic commands [Różowski et al. 2023]. This construct—which was not included in

previous Outcome Logic work—is therefore advantageous.

In Appendix A, we prove that programs constructed using appropriate syntax have total semantics.

For the remainder of the paper, we assume that programs are constructed in this way, and are thus

always well-defined.

4 Outcome Logic
In this section, we define Outcome Logic, provide extensional definitions for assertions used in the

pre- and postconditions of Outcome Triples, and present a relatively complete proof system.

4.1 Outcome Assertions
Outcome assertions are the basis for expressing pre- and postconditions in Outcome Logic. Unlike

pre- and postconditions of Hoare Logic—which describe individual states—outcome assertions

expose the weights from Section 3.1 to enable reasoning about branching and the weights of

reachable outcomes. We represent these assertions semantically; outcome assertions 𝜑,𝜓 ∈ 2WA (Σ)
are the sets of elements corresponding to their true assignments. For any𝑚 ∈ WA (Σ), we write
𝑚 ⊨ 𝜑 (𝑚 satisfies 𝜑) to mean that𝑚 ∈ 𝜑 .
2
In nondeterministic languages, while 𝑏 do𝐶 ≡ (assume 𝑏 #𝐶)★ # assume ¬𝑏, however this encoding does not work in

general since (assume 𝑏 #𝐶)★ is not a well-defined program when using a partial semiring (e.g., Examples 3.8 and 3.10).
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The use of semantic assertions makes our approach extensional. We will therefore show that

the Outcome Logic proof system is sufficient for analyzing programs structurally, but it cannot be

used to decide entailments between the pre- and postconditions themselves. No program logic is

truly complete, as analyzing loops inevitably reduces to the (undecidable) halting problem [Apt

1981; Cook 1978]—it is well known that the ability to express intermediate assertions and loop

invariants means that the assertion language must at least contain Peano arithmetic [Lipton 1977].

As a result, many modern developments such as Separation Logic [Calcagno et al. 2007; Yang 2001],

Incorrectness Logic [O’Hearn 2020], Iris [Jung et al. 2018, 2015], probabilistic Hoare-style logics

[Barthe et al. 2018; Kaminski 2019], and others [Ascari et al. 2025; Cousot et al. 2012; Dardinier and

Müller 2024; Raad et al. 2024] use semantic assertions.

We now define useful notation for assertions, which is also repeated in Figure 2. For example ⊤
(always true) is the set of all weighted collections, ⊥ (always false) is the empty set, and logical

negation is the complement.

⊤ ≜WA (Σ) ⊥ ≜ ∅ ¬𝜑 ≜WA (Σ) \ 𝜑

Conjunction, disjunction, and implication are defined as usual:

𝜑 ∨𝜓 ≜ 𝜑 ∪𝜓 𝜑 ∧𝜓 ≜ 𝜑 ∩𝜓 𝜑 ⇒ 𝜓 ≜ (WA (Σ) \ 𝜑) ∪𝜓

Given a predicate 𝜙 : 𝑇 → 2WA (Σ) on some (possibly infinite) set 𝑇 , existential quantification over

𝑇 is the union of 𝜙 (𝑡) for all 𝑡 ∈ 𝑇 , meaning it is true iff there is some 𝑡 ∈ 𝑇 that makes 𝜙 (𝑡) true.

∃𝑥 : 𝑇 . 𝜙 (𝑥) ≜
⋃
𝑡 ∈𝑇

𝜙 (𝑡)

Next, we define notation for assertions based on the operations of the semiring A = ⟨𝑈 , +, ·, 0, 1⟩.
The outcome conjunction 𝜑 ⊕𝜓 asserts that the collection of outcomes𝑚 can be split into two parts

𝑚 = 𝑚1 +𝑚2 such that 𝜑 holds in𝑚1 and 𝜓 holds in𝑚2. For example, in the nondeterministic

interpretation, we can view𝑚1 and𝑚2 as sets (not necessarily disjoint), such that𝑚 =𝑚1 ∪𝑚2, so

𝜑 and𝜓 each describe subsets of the reachable states. We define outcome conjunctions formally for

a predicate 𝜙 : 𝑇 → 2WA (Σ) over some (possibly infinite) set 𝑇 .⊕
𝑥 ∈𝑇

𝜙 (𝑥) ≜
{∑︁
𝑡 ∈𝑇

𝑚𝑡

��� ∀𝑡 ∈ 𝑇 . 𝑚𝑡 ∈ 𝜙 (𝑡)
}

That is,𝑚 ∈
⊕

𝑥 ∈𝑇 𝜙 (𝑥) if𝑚 is the sum of a sequence of𝑚𝑡 elements for each 𝑡 ∈ 𝑇 such that each

𝑚𝑡 ∈ 𝜙 (𝑡). The binary ⊕ operator can be defined in terms of the one defined above.

𝜑 ⊕𝜓 ≜
⊕
𝑖∈{1,2}

𝜙 (𝑖) where 𝜙 (1) = 𝜑 and 𝜙 (2) = 𝜓

The weighting operations 𝜑 ⊙ 𝑢 and 𝑢 ⊙ 𝜑 , inspired by Batz et al. [2022], scale the outcome 𝜑 by a

literal weight 𝑢 ∈ 𝑈 . Note that there are two variants of this assertion for scaling on the left and

right, since multiplication is not necessarily commutative (see Example 3.12).

𝜑 ⊙ 𝑢 ≜ {𝑚 · 𝑢 | 𝑚 ∈ 𝜑} 𝑢 ⊙ 𝜑 ≜ {𝑢 ·𝑚 | 𝑚 ∈ 𝜑}

Finally, given a semantic assertion on states 𝑃 ⊆ Σ, we can lift 𝑃 to be an outcome assertion, ⌈𝑃⌉ (𝑢) ,
meaning that 𝑃 covers all the reachable states (supp(𝑚) ⊆ 𝑃 ) and the cumulative weight is 𝑢.

⌈𝑃⌉ (𝑢) ≜
{
𝑚 ∈ WA (Σ)

��� |𝑚 | = 𝑢, supp(𝑚) ⊆ 𝑃

}
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⊤ ≜WA (Σ) ⊥ ≜ ∅ ¬𝜑 ≜ ⊤ \ 𝜑
𝜑 ∧𝜓 ≜ 𝜑 ∩𝜓 𝜑 ∨𝜓 ≜ 𝜑 ∪𝜓 𝜑 ⇒ 𝜓 ≜ ¬𝜑 ∪𝜓

∃𝑥 : 𝑇 .𝜙 (𝑥) ≜
⋃
𝑡 ∈𝑇

𝜙 (𝑡) 𝜑 ⊙ 𝑢 ≜ {𝑚 · 𝑢 | 𝑚 ∈ 𝜑} 𝑢 ⊙ 𝜑 ≜ {𝑢 ·𝑚 | 𝑚 ∈ 𝜑}

⊕
𝑥 ∈𝑇

𝜙 (𝑥) ≜
{∑︁
𝑡 ∈𝑇

𝑚𝑡

��� ∀𝑡 ∈ 𝑇 . 𝑚𝑡 ∈ 𝜙 (𝑡)
}

⌈𝑃⌉ (𝑢) ≜
{
𝑚 ∈ WA (Σ)

��� |𝑚 | = 𝑢, supp(𝑚) ⊆ 𝑃

}
Fig. 2. Outcome assertion semantics, given a partial semiringA = ⟨𝑈 , +, ·, 0, 1⟩ where𝑢 ∈ 𝑈 ,𝜙 : 𝑇 → 2WA (Σ) ,
and 𝑃 ∈ 2Σ.

When the weight is 1, we will write ⌈𝑃⌉ instead of ⌈𝑃⌉ (1) . These assertions can interact with

weighting assertions, for instance 𝑢 ⊙ ⌈𝑃⌉ (𝑣) ⇒ ⌈𝑃⌉ (𝑢 ·𝑣) and ⌈𝑃⌉ (𝑣) ⊙𝑢 ⇒ ⌈𝑃⌉ (𝑣 ·𝑢) . We also permit

the use of tests 𝑏 as assertions, for instance:

⌈𝑃 ∧ 𝑏⌉ =
{
𝑚 ∈ W(Σ)

�� |𝑚 | = 1,∀𝜎 ∈ supp(𝑚). 𝜎 ∈ 𝑃 ∧ J𝑏KTest (𝜎) = 1
}

There is a close connection between the ⊕ of outcome assertions and the choice operator 𝐶1 +𝐶2

for programs. If 𝑃 is an assertion describing the outcome of 𝐶1 and 𝑄 describes the outcome of

𝐶2, then ⌈𝑃⌉ ⊕ ⌈𝑄⌉ describes the outcome of 𝐶1 +𝐶2 by stating that both 𝑃 and 𝑄 are reachable

outcomes via a non-vacuous program trace. This is more expressive than using the disjunction

⌈𝑃⌉ ∨ ⌈𝑄⌉ or ⌈𝑃 ∨𝑄⌉, since the disjunction cannot not guarantee that both 𝑃 and 𝑄 are reachable.

Suppose 𝑃 describes a desirable program outcome whereas 𝑄 describes an erroneous one; then

⌈𝑃⌉ ⊕ ⌈𝑄⌉ tells us that the program has a bug (it can reach an error state) whereas neither ⌈𝑃⌉ ∨ ⌈𝑄⌉
nor ⌈𝑃 ∨𝑄⌉ is not strong enough to make this determination [Zilberstein et al. 2023].

Similar to the syntactic sugar for probabilistic programs in Section 3.4, we define:

𝜑 ⊕𝑝 𝜓 ≜ (𝑝 ⊙ 𝜑) ⊕ ((1 − 𝑝) ⊙𝜓 )
If 𝜑 and𝜓 are the results of running𝐶1 and𝐶2, then 𝜑 ⊕𝑝𝜓—meaning that 𝜑 occurs with probability

𝑝 and𝜓 occurs with probability 1 − 𝑝—is the result of running 𝐶1 +𝑝 𝐶2.

4.2 Outcome Triples
Inspired by Hoare Logic, Outcome Triples ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ specify program behavior in terms of pre- and

postconditions [Zilberstein et al. 2023]. The difference is that Outcome Logic describes weighted

collections of states as opposed to Hoare Logic, which can only describe individual states. We write

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ to mean that a triple is semantically valid, as defined below.

Definition 4.1 (Outcome Triples). Given ⟨A, Σ,Act, Test, J·KAct⟩, the semantics of outcome triples

is defined as follows:

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ iff ∀𝑚 ∈ WA (Σ). 𝑚 ⊨ 𝜑 =⇒ J𝐶K† (𝑚) ⊨ 𝜓

Informally, ⟨𝜑⟩𝐶 ⟨𝜓⟩ is valid if running the program𝐶 on aweighted collection of states satisfying

𝜑 results in a collection satisfying𝜓 . Using outcome assertions to describe these collections of states

in the pre- and postconditions means that Outcome Logic can express many types of properties

including reachability (⌈𝑃⌉ ⊕ ⌈𝑄⌉), probabilities (𝜑 ⊕𝑝𝜓 ), and nontermination (the lack of outcomes,

⌈true⌉ (0) ). In Section 6, we will see how Outcome Logic can encode several familiar program logics.
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⟨𝜑⟩ skip ⟨𝜑⟩
Skip

⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓⟩
Seq

⟨𝜑⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑⟩ 𝐶1 +𝐶2 ⟨𝜓1 ⊕𝜓2⟩
Plus

𝜑 ⊨ 𝑒 = 𝑢

⟨𝜑⟩ assume 𝑒 ⟨𝜑 ⊙ 𝑢⟩
Assume

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞ ∀𝑛 ∈ N. ⟨𝜑𝑛⟩ assume 𝑒 #𝐶 ⟨𝜑𝑛+1⟩ ⟨𝜑𝑛⟩ assume 𝑒
′
⟨𝜓𝑛⟩

⟨𝜑0⟩ 𝐶
⟨𝑒,𝑒′⟩

⟨𝜓∞⟩
Iter

Fig. 3. Inference rules for program commands

4.3 Inference Rules
We now describe the Outcome Logic rules of inference, which are shown in Figures 3 and 4. The

rules are split into three categories.

Sequential Commands. The rules for sequential (non-looping) commands mostly resemble those of

Hoare Logic. The Skip rule stipulates that the precondition is preserved after running a no-op. Seq

derives a specification for a sequential composition from two sub-derivations for each command.

Similarly, Plus joins the derivations of two program branches using an outcome conjunction.

Assume has a side condition that 𝜑 ⊨ 𝑒 = 𝑢, where 𝑢 ∈ 𝑈 is a semiring element. Informally, this

means that the precondition entails that the expression 𝑒 is some concrete weight 𝑢. More formally,

it is defined as follows:

𝜑 ⊨ 𝑒 = 𝑢 iff ∀𝑚 ∈ 𝜑. ∀𝜎 ∈ supp(𝑚). J𝑒K (𝜎) = 𝑢

If 𝑒 is a weight literal 𝑢, then 𝜑 ⊨ 𝑢 = 𝑢 vacuously holds for any 𝜑 , so the rule can be simplified to

⊢ ⟨𝜑⟩ assume 𝑢 ⟨𝜑 ⊙ 𝑢⟩. But if it is a test 𝑏, then 𝜑 must contain enough information to conclude

that 𝑏 is true or false. Additional rules to decide 𝜑 ⊨ 𝑒 = 𝑢 are given in Appendix B.

Iteration. The Iter rule uses two families of predicates: 𝜑𝑛 represents the result of 𝑛 iterations

of assume 𝑒 # 𝐶 and 𝜓𝑛 is the result of iterating 𝑛 times and then weighting the result by 𝑒 ′, so⊕
𝑛∈N𝜓𝑛 represents all the aggregated terminating traces. This is captured by the assertion𝜓∞,

which must have the following property.

Definition 4.2 (Converging Assertions). A family (𝜓𝑛)𝑛∈N converges to𝜓∞ (written (𝜓𝑛)𝑛∈N ⇝ 𝜓∞)
iff for any collection (𝑚𝑛)𝑛∈N, if𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛 ∈ N, then

∑
𝑛∈N𝑚𝑛 ⊨ 𝜓∞.

Structural Rules. We also give rules that are not dependent on the program command in Figure 4.

This includes rules for trivial preconditions (False) and postconditions (True). The Scale rule

states that we may multiply the pre- and postconditions by a weight to obtain a new valid triple.

Subderivations can be combined with logical connectives using the Disj, Conj, and Choice)

rules. Existential quantifiers are introduced using Exists. Finally, the rule of Conseqence can be

used to strengthen preconditions and weaken postconditions in the style of Hoare Logic. These

implications are semantic ones: 𝜑 ′⇒ 𝜑 iff 𝜑 ′ ⊆ 𝜑 . We do not explore the proof theory for outcome

assertions, although prior work in this area exists as outcome conjunctions are similar to the

separating conjunction from Bunched Implications [Docherty 2019; O’Hearn and Pym 1999].
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⟨⊥⟩ 𝐶 ⟨𝜑⟩
False

⟨𝜑⟩ 𝐶 ⟨⊤⟩
True

⟨𝜑⟩ 𝐶 ⟨𝜓⟩

⟨𝑢 ⊙ 𝜑⟩ 𝐶 ⟨𝑢 ⊙𝜓⟩
Scale

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 ∨ 𝜑2⟩ 𝐶 ⟨𝜓1 ∨𝜓2⟩
Disj

⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩

⟨𝜑1 ∧ 𝜑2⟩ 𝐶 ⟨𝜓1 ∧𝜓2⟩
Conj

∀𝑡 ∈ 𝑇 . ⟨𝜙 (𝑡)⟩ 𝐶 ⟨𝜙 ′(𝑡)⟩
⟨
⊕

𝑥 ∈𝑇 𝜙 (𝑥)⟩ 𝐶 ⟨
⊕

𝑥 ∈𝑇 𝜙
′(𝑥)⟩

Choice

∀𝑡 ∈ 𝑇 . ⟨𝜙 (𝑡)⟩ 𝐶 ⟨𝜙 ′(𝑡)⟩
⟨∃𝑥 : 𝑇 . 𝜙 (𝑥)⟩ 𝐶 ⟨∃𝑥 : 𝑇 . 𝜙 ′(𝑥)⟩

Exists

𝜑 ′⇒ 𝜑 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ 𝜓 ⇒ 𝜓 ′

⟨𝜑 ′⟩ 𝐶 ⟨𝜓 ′⟩
Conseqence

Fig. 4. Structural rules.

4.4 Soundness and Relative Completeness
Soundness of the Outcome Logic proof system means that any derivable triple (using the inference

rules in Figure 3 and axioms about atomic actions) is semantically valid according to Definition 4.1.

We write Γ ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ to mean that the triple ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ is derivable given a collection of axioms

⟨𝜑⟩ 𝑎 ⟨𝜓⟩ ∈ Γ. Let Ω consist of all triples ⟨𝜑⟩ 𝑎 ⟨𝜓⟩ such that 𝑎 ∈ Act, and ⊨ ⟨𝜑⟩ 𝑎 ⟨𝜓⟩ (all the true

statements about atomic actions). We also presume that the program 𝐶 is well-formed as described

in Section 3.4. The soundness theorem is stated formally below.

Theorem 4.3 (Soundness).

Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ =⇒ ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

The full proof is shown in Appendix B and proceeds by induction on the structure of the derivation

Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, with cases in which each rule is the last inference. Most of the cases are straightfor-

ward, but the following lemma is needed to justify the soundness of the Iter case, where𝐶0 = skip
and 𝐶𝑛+1 = 𝐶𝑛 #𝐶 .

Lemma 4.4. The following equation holds:

r
𝐶 ⟨𝑒, 𝑒

′⟩
z
(𝜎) =

∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K (𝜎)

Completeness—the converse of soundness—tells us that our inference rules are sufficient to deduce

any true statement about a program. As is typical, Outcome Logic is relatively complete, meaning

that proving any valid triple can be reduced to implications 𝜑 ⇒ 𝜓 in the assertion language. For

OL instances involving state (and Hoare Logic), those implications are undecidable since they must,

at the very least, encode Peano arithmetic [Apt 1981; Cook 1978; Lipton 1977].

The first step is to show that given any program 𝐶 and precondition 𝜑 , we can derive the triple

⟨𝜑⟩ 𝐶 ⟨𝜓⟩, where𝜓 is the strongest postcondition [Dijkstra and Schölten 1990], i.e., the strongest

assertion making that triple true. As defined below,𝜓 is exactly the set resulting from evaluating 𝐶

on each𝑚 ∈ 𝜑 . The proceeding lemma shows that the triple with the strongest postcondition is

derivable.

Definition 4.5 (Strongest Postcondition).

post(𝐶,𝜑) ≜ {J𝐶K† (𝑚) | 𝑚 ∈ 𝜑}
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Lemma 4.6 (Derivability of the Strongest Postcondition).

Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨post(𝐶,𝜑)⟩

The proof is by induction on the structure of the program, and is shown in its entirety in

Appendix B. The cases for skip and 𝐶1 # 𝐶2 are straightforward, but the other cases are more

challenging and involve existential quantification. To give an intuition as to why existentials are

needed, let us examine an example involving branching. We use a concrete instance of Outcome

Logic with variable assignment (formalized in Section 5).

Consider the program skip + (𝑥 B 𝑥 + 1) and the precondition ⌈𝑥 ≥ 0⌉. It is tempting to say

that post is obtained compositionally by joining the post of the two branches using ⊕:

post(skip + (𝑥 B 𝑥 + 1), ⌈𝑥 ≥ 0⌉) = post(skip, ⌈𝑥 ≥ 0⌉) ⊕ post(𝑥 := 𝑥 + 1, ⌈𝑥 ≥ 0⌉)
= ⌈𝑥 ≥ 0⌉ ⊕ ⌈𝑥 ≥ 1⌉

However, that is incorrect. While ⌈𝑥 ≥ 0⌉ ⊕ ⌈𝑥 ≥ 1⌉ is a valid postcondition, it is not the strongest

one because it does not account for the relationship between the values of 𝑥 in the two branches; if

𝑥 = 𝑛 in the first branch, then it must be 𝑛 + 1 in the second branch. A second attempt could use

existential quantification to dictate that relationship.

∃𝑛 : N. ⌈𝑥 = 𝑛⌉ ⊕ ⌈𝑥 = 𝑛 + 1⌉

Unfortunately, that is also incorrect; it does not account for the fact that that precondition ⌈𝑥 ≥ 0⌉
may be satisfied by a set of states in which 𝑥 has many different values—the existential quantifier

requires that 𝑥 takes on a single value in all the initial outcomes. The solution is to quantify over

the collections𝑚 ∈ 𝜑 satisfying the precondition, and then to take the post of 1𝑚 = {𝑚}.

post(𝐶1 +𝐶2, 𝜑) = ∃𝑚 : 𝜑. post(𝐶1, 1𝑚) ⊕ post(𝐶2, 1𝑚)

While it may seem unwieldy that the strongest post is hard to characterize even in this seemingly

innocuous example, the same problem arises in logics for probabilistic [Barthe et al. 2018; den Hartog

2002] and hyperproperty [Dardinier and Müller 2024] reasoning, both of which are encodable in OL.

Although the strongest postcondition is quite complicated, something weaker suffices in most cases.

We will later see how rules for those simpler cases are derived (Section 4.5) and used (Sections 7

and 8). The main relative completeness result is now a straightforward corollary of Lemma 4.6

using the rule of Conseqence, since any valid postcondition is implied by the strongest one.

Theorem 4.7 (Relative Completeness).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ =⇒ Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

Proof. We first establish that post(𝐶,𝜑) ⇒ 𝜓 . Suppose that𝑚 ∈ post(𝐶,𝜑). That means that

there must be some𝑚′ ∈ 𝜑 such that𝑚 = J𝐶K† (𝑚′). Using ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, we get that𝑚 ⊨ 𝜓 . Now,
we complete the derivation as follows:

Ω

⟨𝜑⟩ 𝐶 ⟨post(𝐶,𝜑)⟩
Lemma 4.6

post(𝐶,𝜑) ⇒ 𝜓

⟨𝜑⟩ 𝐶 ⟨𝜓⟩
Conseqence

□
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4.5 Derived Rules for Syntactic Sugar
Recall from Section 3.4 that if statements and while loops are encoded using the choice and iteration

constructs. We now derive convenient inference rules for if and while. The full derivations of these

rules are shown in Appendix E.

If statements are defined as (assume 𝑏 #𝐶1) + (assume ¬𝑏 #𝐶2). Reasoning about them generally

requires the precondition to be separated into two parts, 𝜑1 and 𝜑2, representing the collections of

states in which 𝑏 is true and false, respectively. This may require—e.g., in the probabilistic case—that

𝜑1 and 𝜑2 quantify the weight (likelihood) of the guard.

If it is possible to separate the precondition in that way, then 𝜑1 and 𝜑2 act as the preconditions

for 𝐶1 and 𝐶2, respectively, and the overall postcondition is an outcome conjunction of the results

of the two branches.

𝜑1 ⊨ 𝑏 ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ 𝜑2 ⊨ ¬𝑏 ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑1 ⊕ 𝜑2⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓2 ⊕𝜓2⟩
If

From If, we can also derive one-sided rules, which apply when one of the branches is certainly

taken.

𝜑 ⊨ 𝑏 ⟨𝜑⟩ 𝐶1 ⟨𝜓⟩

⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
If1

𝜑 ⊨ ¬𝑏 ⟨𝜑⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
If2

The rule for while loops is slightly simplified compared to Iter, as it only generates a proof

obligation for a single triple instead of two. There are still two families of assertions, but 𝜑𝑛 now

represents the portion of the program configuration where the guard 𝑏 is true, and𝜓𝑛 represents

the portion where it is false. So, on each iteration, 𝜑𝑛 continues to evaluate and𝜓𝑛 exits; the final

postcondition𝜓∞ is an aggregation of all the terminating traces. Note that in all the rules below,

the universal quantifiers apply to everything to their right.

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞ ∀𝑛 ∈ N. ⟨𝜑𝑛⟩ 𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩ 𝜑𝑛 ⊨ 𝑏 𝜓𝑛 ⊨ ¬𝑏
⟨𝜑0 ⊕𝜓0⟩ while 𝑏 do 𝐶 ⟨𝜓∞⟩

While

This While rule is similar to those found in probabilistic Hoare Logics [Barthe et al. 2018; den

Hartog 1999] and Hyper Hoare Logic [Dardinier and Müller 2024].

Loop variants are an alternative way to reason about loops that terminate after a finite number

of steps. They were first studied in the context of total Hoare Logic [Manna and Pnueli 1974], but

are also used in other logics that require termination guarantees such as Reverse Hoare Logic

[de Vries and Koutavas 2011], Incorrectness Logic [O’Hearn 2020], and Lisbon Logic [Ascari et al.

2025; Möller et al. 2021; Raad et al. 2024].
3

The rule uses a family of variants (𝜑𝑛)𝑛∈N such that 𝜑𝑛 implies that the loop guard 𝑏 is true

for all 𝑛 > 0, and 𝜑0 implies that it is false, guaranteeing that the loop exits. The inference rule is

shown below, and states that starting at some 𝜑𝑛 , the execution will eventually count down to 𝜑0,

at which point it terminates.

∀𝑛 ∈ N. 𝜑0 ⊨ ¬𝑏 𝜑𝑛+1 ⊨ 𝑏 ⟨𝜑𝑛+1⟩ 𝐶 ⟨𝜑𝑛⟩

⟨∃𝑛 : N.𝜑𝑛⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩
Variant

3
Outcome Logic guarantees the existence of terminating traces, but it is not a total correctness logic in that it cannot

ensure that all traces terminate. This stems from the program semantics, which collects the finite traces, but does not

preclude additional nonterminating ones. For example, JskipK (𝜎) = Jskip + while true do skipK (𝜎) . The exception is the

probabilistic interpretation, where almost sure termination can be established by proving that the probability of terminating

is 1. See Section 10 for a more in depth discussion.
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Since the premise guarantees termination after precisely 𝑛 steps, it is easy to establish convergence—

the postcondition only consists of a single trace.

5 Adding Variables and State
We now develop a concrete Outcome Logic instance with variable assignment as atomic actions.

Let Var be a countable set of variable names and Val = Z be integer program values. Program stores

𝑠 ∈ S ≜ Var→ Val are maps from variables to values and we write 𝑠 [𝑥 ↦→ 𝑣] to denote the store

obtained by extending 𝑠 ∈ S such that 𝑥 has value 𝑣 . Actions 𝑎 ∈ Act are variable assignments

𝑥 B 𝐸, where 𝑥 ∈ Var and 𝐸 ∈ Exp can be a variable 𝑥 ∈ Var, constant 𝑣 ∈ Val, test 𝑏, or an
arithmetic operation (+, −, ×).

Act ∋ 𝑎 F 𝑥 B 𝐸

Exp ∋ 𝐸 F 𝑥 ∈ Var | 𝑣 ∈ Val | 𝑏 | 𝐸1 + 𝐸2 | 𝐸1 − 𝐸2 | 𝐸1 × 𝐸2
In addition, we let the set of primitive tests Test = 2S be all subsets of the program states S. We

will often write these tests symbolically, for example 𝑥 ≥ 5 represents the set {𝑠 ∈ S | 𝑠 (𝑥) ≥ 5}.
The interpretation of atomic actions is shown below, where the interpretation of expressions

J𝐸KExp : S → Val is in Appendix C.

J𝑥 B 𝐸KAct (𝑠) ≜ 𝜂 (𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)])
We define substitutions in the standard way [Ascari et al. 2025; Barthe et al. 2018; Dardinier and

Müller 2024; Kaminski 2019], as follows:

𝜑 [𝐸/𝑥] ≜ {𝑚 ∈ W(S) | (𝜆𝑠.𝜂 (𝑠 [𝑥 ↦→ J𝐸KExp (𝑠))])† (𝑚) ∈ 𝜑}
That is,𝑚 ∈ 𝜑 [𝐸/𝑥] exactly when assigning 𝑥 to 𝐸 in𝑚 satisfies 𝜑 . This behaves as expected in

conjunction with symbolic tests, for example ⌈𝑥 ≥ 5⌉ [𝑦 + 1/𝑥] = ⌈𝑦 + 1 ≥ 5⌉ = ⌈𝑦 ≥ 4⌉. It also
distributes over most of the operations in Figure 2, e.g., (𝜑 ⊕𝜓 ) [𝐸/𝑥] = 𝜑 [𝐸/𝑥] ⊕𝜓 [𝐸/𝑥]. Using
substitution, we add an inference rule for assignment, mirroring the typical weakest-precondition

style rule of Hoare [1969] Logic.

⟨𝜑 [𝐸/𝑥]⟩ 𝑥 B 𝐸 ⟨𝜑⟩
Assign

When used in combination with the rule of Conseqence, Assign can be used to derive any

semantically valid triple about variable assignment. Though it is not needed for completeness, we

also include the rule of Constancy, which allows us to add information about unmodified variables

to a completed derivation. Here, free(𝑃) is the set of free variables that are used by the assertion 𝑃

(e.g., free(𝑥 ≥ 5) = {𝑥}) and mod(𝐶) are the variables modified by 𝐶 , both defined in Appendix C.

In addition, the □𝑃 modality means that 𝑃 holds over the entire support of the weighting function,

but does not specify the total weight. It is defined □𝑃 ≜ ∃𝑢 : 𝑈 . ⌈𝑃⌉ (𝑢) , and is discussed further in

Section 6.1. We use □𝑃 to guarantee that the rule of Constancy applies regardless of whether or

not 𝐶 terminates, branches, or alters the weights of traces.

⟨𝜑⟩ 𝐶 ⟨𝜓⟩ free(𝑃) ∩mod(𝐶) = ∅
⟨𝜑 ∧ □𝑃⟩ 𝐶 ⟨𝜓 ∧ □𝑃⟩

Constancy

In the Outcome Logic instance with variable assignment as the only atomic action, all triples can

be derived without the axioms Ω from Theorem 4.7.

Theorem 5.1 (Soundness and Completeness).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ ⇐⇒ ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩
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6 Connections to Other Logics
Outcome Logic, in its full generality, allows one to quantify the precise weights of each outcome,

providing significant expressive power. Nevertheless, many common program logics do not provide

this much power, which can be advantageous as they offer simplified reasoning principles—for

example, Hoare Logic’s loop Invariant rule is considerably simpler than the While rule needed

for general Outcome Logic (Section 4.5). In this section, we show the connections between Outcome

Logic and several other logics by first showing that OL can capture the semantics of specifications

in those logics, and then also deriving the proof rules of those logics using the OL proof system.

6.1 Dynamic Logic, Hoare Logic, and Lisbon Logic
Wewill now devise an assertion syntax to show the connections between Outcome Logic and Hoare

Logic. We take inspiration from modal logic and Dynamic Logic [Harel et al. 2001; Pratt 1976],

using the modalities □ and ^ to express that assertions always or sometimes occur, respectively.

We encode these modalities using the operations from Section 4.1, where 𝑈 is the set of semiring

weights.

□𝑃 ≜ ∃𝑢 : 𝑈 . ⌈𝑃⌉ (𝑢) = {𝑚 | supp(𝑚) ⊆ 𝑃}
^𝑃 ≜ ∃𝑢 : (𝑈 \ {0}) . ⌈𝑃⌉ (𝑢) ⊕ ⊤ = {𝑚 | supp(𝑚) ∩ 𝑃 ≠ ∅}

We define □𝑃 to mean that 𝑃 occurs with some weight, so𝑚 ⊨ □𝑃 exactly when supp(𝑚) ⊆ 𝑃 .

Dually, ^𝑃 requires that 𝑃 has nonzero weight and the −⊕⊤ permits additional elements to appear

in the support. So,𝑚 ⊨ ^𝑃 when 𝜎 ∈ 𝑃 for some 𝜎 ∈ supp(𝑚). It is relatively easy to see that

these two modalities are De Morgan duals, that is □𝑃 ⇔ ¬^¬𝑃 and ^𝑃 ⇔ ¬□¬𝑃 . Defining these

constructs as syntactic sugar allows us to reason about them with the inference rules in Section 4.3,

rather than new specialized ones. For Boolean-valued semirings (Examples 3.7 and 3.8), we get the

following:

□𝑃 = ∃𝑢 : {0, 1}. ⌈𝑃⌉ (𝑢) = ⌈𝑃⌉ (0) ∨ ⌈𝑃⌉ (1)

Only 0, the empty collection, satisfies ⌈𝑃⌉ (0) , indicating that there are no outcomes and therefore the

program diverged (let us call this assertion div), and ⌈𝑃⌉ (1) is equivalent to ⌈𝑃⌉. So, □𝑃 = ⌈𝑃⌉ ∨ div,
meaning that either 𝑃 covers all the reachable outcomes, or the program diverged (□ will be useful
for expressing partial correctness). Similarly, in Boolean semirings, we have:

^𝑃 = ∃𝑢 : ({0, 1} \ {0}). ⌈𝑃⌉ (𝑢) ⊕ ⊤ = ⌈𝑃⌉ (1) ⊕ ⊤ = ⌈𝑃⌉ ⊕ ⊤
So, ^𝑃 = ⌈𝑃⌉ ⊕ ⊤, which means that 𝑃 is one of the possibly many outcomes. This is useful for

incorrectness applications, as we saw in Section 2.3.

Now, we are going to use these modalities to encode other program logics in Outcome Logic.

We start with nondeterministic, partial correctness Hoare Logic, where the meaning of the triple

{𝑃 } 𝐶 {𝑄} is that any state resulting from running the program 𝐶 on a state satisfying 𝑃 must

satisfy𝑄 . There are many equivalent ways to formally define the semantics of Hoare Logic; we will

use a characterization based on Dynamic Logic [Harel et al. 2001; Pratt 1976], which is inspired by

modal logic in that it defines modalities similar to □ and ^.

[𝐶]𝑄 = {𝜎 | J𝐶K (𝜎) ⊆ 𝑄} ⟨𝐶⟩𝑄 = {𝜎 | J𝐶K (𝜎) ∩𝑄 ≠ ∅}
That is, [𝐶]𝑄 asserts that𝑄 must hold after running the program𝐶 (if it terminates). In the predicate

transformer literature, [𝐶]𝑄 is called the weakest liberal precondition [Dijkstra 1975, 1976]. The

dual modality ⟨𝐶⟩𝑄 states that 𝑄 might hold after running 𝐶 (also called the weakest possible

precondition [Hoare 1978; Möller et al. 2021]). A Hoare Triple {𝑃 } 𝐶 {𝑄} is valid iff 𝑃 ⊆ [𝐶]𝑄 , so to

show that Outcome Logic subsumes Hoare Logic, it suffices to prove that we can express 𝑃 ⊆ [𝐶]𝑄 .

We do so using the □ modality defined previously.
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Theorem 6.1 (Subsumption of Hoare Logic).

⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ iff 𝑃 ⊆ [𝐶]𝑄 iff ⊨ {𝑃 } 𝐶 {𝑄}

While Zilberstein et al. [2023] previously showed that Outcome Logic subsumes Hoare Logic, our

characterization is not tied to nondeterminism; the triple ⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ does not necessarily have

to be interpreted in a nondeterministic way, but can rather be taken to mean that running 𝐶 in a

state satisfying 𝑃 results in𝑄 covering all the terminating traces with some weight. We will shortly

develop rules for reasoning about loops using invariants, which will be applicable to any instance

of Outcome Logic.

Given that the formula 𝑃 ⊆ [𝐶]𝑄 gives rise to a meaningful program logic, it is natural to ask

whether the same is true for 𝑃 ⊆ ⟨𝐶⟩𝑄 . In fact, this formula is colloquially known as Lisbon Logic,

which was proposed by Derek Dreyer and Ralf Jung during a meeting in Lisbon as a possible

foundation for incorrectness reasoning [Möller et al. 2021; O’Hearn 2020; Zilberstein et al. 2023].

The semantics of Lisbon triples, denoted {|𝑃 |} 𝐶 {|𝑄 |}, is that for any start state satisfying 𝑃 , there

exists a state resulting from running 𝐶 that satisfies 𝑄 . Given that 𝑄 only covers a subset of the

outcomes, it is not typically suitable for correctness, however it is useful for incorrectness as some

bugs only occur in some of the traces.

Theorem 6.2 (Subsumption of Lisbon Logic).

⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩ iff 𝑃 ⊆ ⟨𝐶⟩𝑄 iff ⊨ {|𝑃 |} 𝐶 {|𝑄 |}

We now present derived rules for simplified reasoning in our embeddings of Hoare and Lisbon

Logic within Outcome Logic. For the full derivations, refer to Appendix E.

Sequencing. The Seq rule requires that the postcondition of the first command exactly matches

the precondition of the next. This is at odds with our encodings of Hoare and Lisbon Logic, which

have asymmetry between the modalities used in the pre- and postconditions. Still, sequencing is

possible using derived rules.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨□𝑄⟩ ⟨⌈𝑄⌉⟩ 𝐶2 ⟨□𝑅⟩

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨□𝑅⟩
Seq (Hoare)

⟨⌈𝑃⌉⟩ 𝐶1 ⟨^𝑄⟩ ⟨⌈𝑄⌉⟩ 𝐶2 ⟨^𝑅⟩

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨^𝑅⟩
Seq (Lisbon)

These rules rely on the fact that ⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ ⊢ ⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩ and ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩ ⊢ ⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩,
which is true since for any𝑚 ∈ □𝑃 , it must be that each 𝜎 ∈ supp(𝑚) satisfies 𝑃 , meaning that

J𝐶K (𝜎) ∈ □𝑄 and so J𝐶K† (𝑚) must also satisfy □𝑄 . The ^ case is similar, also making use of the

fact that (⌈𝑅⌉ ⊕ ⊤) ⊕ ⊤ ⇔ ⌈𝑅⌉ ⊕ ⊤. Lisbon Logic adds an additional requirement on the semiring;

0 must be the unique annihilator of multiplication (𝑢 · 𝑣 = 0 iff 𝑢 = 0 or 𝑣 = 0), which ensures that a

finite sequence of commands does not eventually cause a branch to have zero weight. Examples 3.7

to 3.12 all obey this property.

Note that since ⌈𝑃⌉ ⇒ □𝑃 and ⌈𝑃⌉ ⇒ ^𝑃 , the rule of Conseqence also gives us ⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩ ⊢
⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ and ⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩ ⊢ ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩, so we could have equivalently defined Hoare

and Lisbon Logic as ⊨ ⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩ and ⊨ ⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩, respectively. We prefer the asymmetric

use of modalities, as it allows for specifications of the form ⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄⌉⟩, which can be easily

weakened for use in both Hoare and Lisbon Logic, as we will see in Section 7.4.

If Statements andWhile Loops. The familiar rule for if statements inHoare Logic is also derivable, and

does not require any semantic entailments, instead using the fact that ⌈𝑃⌉ ⇒ □(𝑃 ∧𝑏) ⊕□(𝑃 ∧¬𝑏).
⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶1 ⟨□𝑄⟩ ⟨⌈𝑃 ∧ ¬𝑏⌉⟩ 𝐶2 ⟨□𝑄⟩

⟨⌈𝑃⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄⟩
If (Hoare)
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A similar rule is derivable for Lisbon Logic, although the derivation is a bit more complex due to the

reachability guarantees provided by Lisbon Logic, and the fact that ⌈𝑃⌉ ⇏ ^(𝑃 ∧ 𝑏) ⊕ ^(𝑃 ∧ ¬𝑏).
Instead, the derivation involves case analysis on whether ^(𝑃 ∧ 𝑏) or ^(𝑃 ∧ ¬𝑏) is true.

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶1 ⟨^𝑄⟩ ⟨⌈𝑃 ∧ ¬𝑏⌉⟩ 𝐶2 ⟨^𝑄⟩

⟨⌈𝑃⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
If (Lisbon)

Loop Invariants. Loop invariants are a popular analysis technique in partial correctness logics. The

idea is to find an invariant 𝑃 that is preserved by the loop body and therefore must remain true

when—and if—the loop terminates. Because loop invariants are unable to guarantee termination,

the Outcome Logic rule must indicate that the program may diverge. We achieve this using the □
modality from Section 6.1. The rule for Outcome Logic loop invariants is as follows:

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶 ⟨□𝑃⟩

⟨⌈𝑃⌉⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩
Invariant

This rule states that if the program starts in a state described by 𝑃 , which is also preserved by each

execution of the loop, then 𝑃 ∧ ¬𝑏 is true in every terminating state. If the program diverges and

there are no reachable end states, then □(𝑃 ∧ ¬𝑏) is vacuously satisfied, just like in Hoare Logic.

Invariant is derived using the While rule with 𝜑𝑛 = □(𝑃 ∧ 𝑏) and𝜓𝑛 = □(𝑃 ∧ ¬𝑏). To show

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞, first note that𝑚𝑛 ⊨ □(𝑃 ∧¬𝑏) simply means that supp(𝑚𝑛) ⊆ (𝑃 ∧¬𝑏). Since this
is true for all 𝑛 ∈ N, then all the reachable states satisfy 𝑃 ∧ ¬𝑏.
It is well known that Skip, Seq (Hoare), If (Hoare), Invariant, Assign, and Conseqence

constitute a relatively complete proof system for Hoare Logic [Cook 1978; Kozen and Tiuryn

2001]. It follows that these rules are complete for deriving any Outcome Logic triples of the form

⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩, avoiding the more complex machinery of Lemma 4.6
4
.

Loop Variants. Although loop variants are valid in any Outcome Logic instance, they require

loops to be deterministic—the loop executes for the same number of iterations regardless of any

computational effects that occur in the body. Examples of such scenarios include for loops, where

the number of iterations is fixed upfront.

We also present a more flexible loop variant rule geared towards Lisbon triples. In this case, we

use the ^ modality to only require that some trace is moving towards termination.

∀𝑛 ∈ N. ⌈𝑃0⌉ ⊨ ¬𝑏 ⌈𝑃𝑛+1⌉ ⊨ 𝑏 ⟨⌈𝑃𝑛+1⌉⟩ 𝐶 ⟨^𝑃𝑛⟩

⟨∃𝑛 : N. ⌈𝑃𝑛⌉⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩
Lisbon Variant

In other words, Lisbon Variant witnesses a single terminating trace. As such, it does not require

the lockstep termination of all outcomes like Variant does.

6.2 Hyper Hoare Logic
Hyper Hoare Logic (HHL) is a generalized version of Hoare Logic that uses predicates over sets of

states as pre- and postconditions to enable reasoning about hyperproperties—properties of multi-

ple executions of a single program [Dardinier and Müller 2024]. Hyperproperties are useful for

expressing information flow security properties of programs, among others. In this section, we

show how hyperproperty reasoning inspired by HHL can be done in Outcome Logic.

4
N.B., this only includes the deterministic program constructs—if statements and while loops instead of𝐶1 +𝐶2 and𝐶

⟨𝑒, 𝑒′⟩
.

The inclusion of a few more derived rules completes the proof system for nondeterministic programs.



Outcome Logic: A Unified Approach to the Metatheory of Program Logics with Branching Effects 23

Although HHL triples have equivalent semantics to the powerset instance of Outcome Logic

(Example 3.7), the spirit of those triples are quite different.
5
In Outcome Logic the precondition

often describes a single state, whereas the postcondition specifies the nondeterministic outcomes

that stem from that state. By contrast, in HHL the precondition may describe the relationship

between several executions of a program. To achieve this, HHL uses assertions that quantify over

states. We provide equivalent notation for this below:

∀⟨𝜎⟩.𝜑 ≜ {𝑚 | ∀𝑠 ∈ supp(𝑚). 𝑚 ∈ 𝜑 [𝑠/𝜎]} ∃⟨𝜎⟩.𝜑 ≜ {𝑚 | ∃𝑠 ∈ supp(𝑚). 𝑚 ∈ 𝜑 [𝑠/𝜎]}

These bound metavariables 𝜎 , referring to states, can then be referenced in hypertests 𝐵, using the

syntax below, where ≍ ∈ {=, ≤, . . .} ranges over the usual comparators.

𝐵 F true | false | 𝜎 (𝑥) | 𝐵1 ∧ 𝐵2 | 𝐵1 ∨ 𝐵2 | ¬𝐵 | 𝐵1 ≍ 𝐵2 | · · ·

Unlike normal tests 𝑏, which can reference program variables, hypertests can only reference

variables from particular executions 𝜎 (𝑥). So, for example, the assertion ∀⟨𝜎⟩. 𝜎 (𝑥) = 5 means that

the variable 𝑥 has the value 5 in every execution, similar to the assertion □(𝑥 = 5) that we saw in

Section 6.1. However, the quantifiers introduced by HHL provide significant expressive power over

the □ and ^ modalities, since they allow us to express the relationship between program variables

in multiple executions. For example, we can define the following low predicate [Dardinier and

Müller 2024], which states that the value of some variable ℓ is the same in all executions.

low(ℓ) ≜ ∀⟨𝜎⟩. ∀⟨𝜏⟩. 𝜎 (ℓ) = 𝜏 (ℓ)

We call this low, since wewill use it to indicate that a variable has low sensitivity from an information

security point of view. This allows us to both prove and disprove noninterference, a hyperproperty

stating that high sensitivity information cannot flow into the low sensitivity program variables.

For example, the program below on the left is secure; if two executions have the same initial values

of ℓ , then they will also have the same final values for ℓ . On the other hand, the program on the

right is insecure; information flows from ℎ (a high-sensitivity input) to ℓ , so the final values of ℓ

will differ in any pair of executions where the initial values of ℎ differ.

⟨low(ℓ)⟩ ℓ B ℓ + 1 ⟨low(ℓ)⟩ ⟨low(ℓ) ∧ ¬low(ℎ)⟩ ℓ B ℎ + 1 ⟨¬low(ℓ)⟩

We will not explore the full expressiveness of Hyper Hoare Logic here, as it is discussed extensively

by Dardinier and Müller [2024]. Instead, we will show how some of the Hyper Hoare Logic rules can

be derived using the Outcome Logic proof system. In particular, although the use of quantifiers over

states may appear to complicate reasoning significantly, Dardinier and Müller [2024, §4] showed

that this kind of reasoning can be achieved with simple syntactic rules. We recreate this result here

by deriving the syntactic rules of HHL in Outcome Logic.

The first step is to fix a syntax for assertions. We use the one below, where the semantics of

the assertions are the same as were defined notationally in Figure 2, with a few caveats. First,

existential qualification can now only range over program values (as defined in Section 5), so that

𝑇 ⊆ Val. Rather than use a predicate 𝜙 : 𝑇 → 2WA (Σ) , we also now presume that the syntactic

assertion 𝜑 may reference the newly bound variable 𝑣 . We have added universal quantification,

which is defined analogously to existential quantification, but using an intersection instead of a

union. The quantifiers over states ∀⟨𝜎⟩.𝜑 and ∃⟨𝜎⟩.𝜑 are as described above. Finally, hypertests 𝐵

only have a meaning if they are closed, that is, they do not contain any unbound state metavariables

5
Note that we also used the powerset instance of Outcome Logic to encode Hoare Logic and Lisbon Logic in Section 6.1,

however those examples used restricted pre- and postconditions to limit their expressivity. As was shown by Dardinier and

Müller [2024, Propositions 2 and 9], HHL also subsumes Hoare and Lisbon Logic.
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(notationally, we use 𝜎 and 𝜏). Closed hypertests can be evaluated to Booleans in the usual way,

and open hypertests (containing unbound variables) are considered to be false.

𝜑 F 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | ∀𝑣 : 𝑇 . 𝜑 | ∃𝑣 : 𝑇 . 𝜑 | ∀⟨𝜎⟩. 𝜑 | ∃⟨𝜎⟩. 𝜑 | 𝐵

We define ¬ inductively, for example ¬(𝜑 ∧ 𝜓 ) ≜ ¬𝜑 ∨ ¬𝜓 and ¬(∀⟨𝜎⟩.𝜑) ≜ ∃⟨𝜎⟩.¬𝜑 , the full
details are in Appendix F. In addition, we let 𝜑 ⇒ 𝜓 ≜ ¬𝜑 ∨𝜓 .

We will now give syntactic rules due to Dardinier and Müller [2024] for commands that interact

with state. These rules are significant, since they define precisely how substitution and satisfaction

of tests interact with the new quantifiers introduced in HHL.

Variable Assignment. We do not need a new rule for variable assignment, but rather we will show

how to syntactically transform the postcondition 𝜑 to match the semantic substitutions that we

use in the Assign rule from Section 5. We first define an operation 𝐸 [𝜎] which transforms an

expression 𝐸 into a hyper-expression by replacing all occurrences of variables 𝑥 with 𝜎 (𝑥). So
for example, (𝑥 + 2 × 𝑦) [𝜎] = 𝜎 (𝑥) + 2 × 𝜎 (𝑦). We write 𝜑 [𝐸 [𝜎]/𝜎 (𝑥)] to be a standard capture-

avoiding substitution, syntactically replacing any occurrence of 𝜎 (𝑥) with 𝐸 [𝜎]. Now, we define a
transformation on assertions A𝐸

𝑥 [−], which substitutes the expression 𝐸 for the variable 𝑥 .

A𝐸
𝑥 [ 𝜑 ∧𝜓 ] ≜ A𝐸

𝑥 [𝜑] ∧ A𝐸
𝑥 [𝜓 ] A𝐸

𝑥 [ 𝜑 ∨𝜓 ] ≜ A𝐸
𝑥 [𝜑] ∨ A𝐸

𝑥 [𝜓 ]
A𝐸
𝑥 [ ∀𝑣 : 𝑇 . 𝜑 ] ≜ ∀𝑣 : 𝑇 . A𝐸

𝑥 [𝜑] A𝐸
𝑥 [ ∃𝑣 : 𝑇 . 𝜑 ] ≜ ∃𝑣 : 𝑇 . A𝐸

𝑥 [𝜑]
A𝐸
𝑥 [ ∀⟨𝜎⟩. 𝜑 ] ≜ ∀⟨𝜎⟩. A𝐸

𝑥 [𝜑 [𝐸 [𝜎]/𝜎 (𝑥)]] A𝐸
𝑥 [ ∃⟨𝜎⟩. 𝜑 ] ≜ ∃⟨𝜎⟩. A𝐸

𝑥 [𝜑 [𝐸 [𝜎]/𝜎 (𝑥)]]
A𝐸
𝑥 [ 𝐵 ] ≜ 𝐵

For most of the syntactic assertions, the A𝐸
𝑥 [−] operation is just propagated recursively. The

interesting cases are the state quantifiers. Whenever a state 𝜎 is quantified (either universally or

existentially), then 𝐸 [𝜎] is syntactically substituted for 𝜎 (𝑥). In Lemma F.1 we show that A𝐸
𝑥 [−] is

equivalent to the semantic substitution defined in Section 5, meaning that the Assign rule can be

written as follows:

⟨A𝐸
𝑥 [𝜑]⟩ 𝑥 B 𝐸 ⟨𝜑⟩

Assign

As an example, we will show how the Assign rule can be used to derive the specification that we

gave above for the insecure program ℓ B ℎ + 1. We begin by applying the syntactic substitution to

our desired postcondition ¬low(ℓ), as follows:

Aℎ+1
ℓ [¬low(ℓ)] = Aℎ+1

ℓ [¬(∀⟨𝜎⟩. ∀⟨𝜏⟩. 𝜎 (ℓ) = 𝜏 (ℓ))]
= Aℎ+1

ℓ [∃⟨𝜎⟩. ∃⟨𝜏⟩. 𝜎 (ℓ) ≠ 𝜏 (ℓ))]
= ∃⟨𝜎⟩. ∃⟨𝜏⟩. 𝜎 (ℎ) + 1 ≠ 𝜏 (ℎ) + 1
= ¬low(ℎ + 1)

Now, it is relatively easy to see that low(ℓ) ∧ ¬low(ℎ) ⇒ ¬low(ℎ) ⇒ ¬low(ℎ + 1), so a simple

application of Assign and the rule of Conseqence completes the proof.

Assume. We now discuss a syntactic rule for assume statements. This will again involve defining

some syntactic transformations on the postconditions. First, for any test 𝑏, we let 𝑏 [𝜎] be the

hypertest obtained by replacing all occurrences of variables 𝑥 with 𝜎 (𝑥). For example, (𝑥 =

𝑦 + 1) [𝜎] = (𝜎 (𝑥) = 𝜎 (𝑦) + 1). Now, we define Π𝑏 [−], which transforms an assertion 𝜑 such that
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the test 𝑏 is true in all the quantified states.

Π𝑏 [ 𝜑 ∧𝜓 ] ≜ Π𝑏 [𝜑] ∧ Π𝑏 [𝜓 ] Π𝑏 [ 𝜑 ∨𝜓 ] ≜ Π𝑏 [𝜑] ∨ Π𝑏 [𝜓 ]
Π𝑏 [ ∀𝑣 : 𝑇 . 𝜑 ] ≜ ∀𝑣 : 𝑇 . Π𝑏 [𝜑] Π𝑏 [ ∃𝑣 : 𝑇 . 𝜑 ] ≜ ∃𝑣 : 𝑇 . Π𝑏 [𝜑]
Π𝑏 [ ∀⟨𝜎⟩. 𝜑 ] ≜ ∀⟨𝜎⟩. 𝑏 [𝜎] ⇒ Π𝑏 [𝜑] Π𝑏 [ ∃⟨𝜎⟩. 𝜑 ] ≜ ∃⟨𝜎⟩. 𝑏 [𝜎] ∧ Π𝑏 [𝜑]
Π𝑏 [ 𝐵 ] ≜ 𝐵

Once again, all cases except for the state quantifiers simply recursively apply Π𝑏 [−]. In the case of

state quantifiers, we modify quantification to be only over all states where 𝑏 holds. As we show in

Lemma F.5, this means that Π𝑏 [𝜑] ⇒ (𝜑 ∧ □𝑏) ⊕ □(¬𝑏), so that 𝜑 will still hold after executing

assume 𝑏. This allows us to derive the following Assume HHL rule:

⟨Π𝑏 [𝜑]⟩ assume 𝑏 ⟨𝜑⟩
Assume HHL

Nondeterministic Assignment. The final syntactic rules that we will define pertain to nondeterminis-

tic assignment. We again define a syntactic transformation on postconditionsH𝑆
𝑥 [−] for programs

where 𝑥 is nondeterministically assigned a value from the set 𝑆 .6

H𝑆
𝑥 [ 𝜑 ∧𝜓 ] ≜ H𝑆

𝑥 [𝜑] ∧ H𝑆
𝑥 [𝜓 ] H𝑆

𝑥 [ 𝜑 ∨𝜓 ] ≜ H𝑆
𝑥 [𝜑] ∨ H𝑆

𝑥 [𝜓 ]
H𝑆
𝑥 [ ∀𝑣 : 𝑇 . 𝜑 ] ≜ ∀𝑣 : 𝑇 . H𝑆

𝑥 [𝜑] H𝑆
𝑥 [ ∃𝑣 : 𝑇 . 𝜑 ] ≜ ∃𝑣 : 𝑇 . H𝑆

𝑥 [𝜑]
H𝑆
𝑥 [ ∀⟨𝜎⟩. 𝜑 ] ≜ ∀⟨𝜎⟩. ∀𝑣 : 𝑆. H𝑆

𝑥 [𝜑 [𝑣/𝜎 (𝑥)] H𝑆
𝑥 [ ∃⟨𝜎⟩. 𝜑 ] ≜ ∃⟨𝜎⟩. ∃𝑣 : 𝑠 . H𝑆

𝑥 [𝜑 [𝑣/𝜎 (𝑥)]
H𝑆
𝑥 [ 𝐵 ] ≜ 𝐵

The operation H𝑆
𝑥 [−] is similar to A𝐸

𝑥 [−], except that in the cases for state quantifiers, 𝜎 (𝑥) is
replaced with any (or some) value in the set 𝑆 . So, for example, if we wish to nondeterministically

set 𝑥 to be either 1 or 2, and then assert that ∀⟨𝜎⟩. ∃⟨𝜏⟩. 𝜎 (𝑥) ≠ 𝜏 (𝑥), then we get:

H {1,2}𝑥 [∀⟨𝜎⟩. ∃⟨𝜏⟩. 𝜎 (𝑥) ≠ 𝜏 (𝑥)] = ∀⟨𝜎⟩. ∀𝑣 : {1, 2}. ∃⟨𝜏⟩. ∃𝑣 ′ : {1, 2}. 𝑣 ≠ 𝑣 ′

The above assertion is trivially true. We can now useH𝑆
𝑥 [−] to derive inference rules for nondeter-

ministic assignments. First, we will define syntactic sugar for an additional programming construct

that nondeterministically assigns a variable 𝑥 to be any natural number. We define this using the

Kleene star 𝐶★
defined in Section 3.4, which repeats 𝐶 a nondeterministic number of times.

𝑥 B ⋆ ≜ 𝑥 B 0 # (𝑥 B 𝑥 + 1)★

Now, by selecting the appropriate set 𝑆 , we can derive the following havoc rules for nondeterministic

assignments. The derivations of these rules are shown in Appendix F.2.

⟨H {𝑎,𝑏 }𝑥 [𝜑]⟩ (𝑥 B 𝑎) + (𝑥 B 𝑏) ⟨𝜑⟩
Havoc-2

⟨HN𝑥 [𝜑]⟩ 𝑥 B ⋆ ⟨𝜑⟩
Havoc-N

7 Case Study: Reusing Proof Fragments
The following case study serves as a proof of concept for how Outcome Logic’s unified reasoning

principles can benefit large-scale program analysis. The efficiency of such systems relies on pre-

computing procedure specifications, which can simply be inserted whenever those procedures are

invoked rather than being recomputed at every call-site. Existing analysis systems operate over

homogenous effects. Moreover—when dealing with nondeterministic programs—they must also fix

either a demonic interpretation (for correctness) or an angelic interpretation (for bug-finding).

6
This varies slightly from the definition of Dardinier and Müller [2024], H𝑥 [−], in which 𝑥 is assigned any value, not from

a particular set. We can recover their operation as H𝑥 [−] = HVal
𝑥 [−].
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But many procedures do not have effects—they do not branch into multiple outcomes and use

only limited forms of looping where termination is easily established (e.g., iterating over a data

structure)—suggesting that specifications for such procedures can be reused across multiple types of

programs (e.g., nondeterministic or probabilistic) and specifications (e.g., partial or total correctness).

Indeed, this is the case for the program in Section 7.1. We then show how a single proof about that

program can be reused in both a partial correctness specification (Section 7.2) and a probabilistic

program (Section 7.3). The full derivations are given in Appendix G.

7.1 Integer Division
In order to avoid undefined behavior related to division by zero, our expression syntax from

Section 5 does not include division. However, we can write a simple procedure to divide two natural

numbers 𝑎 and 𝑏 using repeated subtraction.

Div ≜


𝑞 B 0 # 𝑟 B 𝑎 #
while 𝑟 ≥ 𝑏 do
𝑟 B 𝑟 − 𝑏 #
𝑞 B 𝑞 + 1

At the end of the execution, 𝑞 holds the quotient and 𝑟 is the remainder. Although the Div program

uses a while loop, it is quite easy to establish that it terminates. To do so, we use the Variant rule

with the family of variants 𝜑𝑛 shown below.

𝜑𝑛 ≜

{
⌈𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏⌉ if 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋
⊥ if 𝑛 > ⌊𝑎 ÷ 𝑏⌋

Executing the loop body in a state satisfying 𝜑𝑛 results in a state satisfying 𝜑𝑛−1. At the end, 𝜑0

stipulates that 𝑞 = ⌊𝑎 ÷ 𝑏⌋ and 𝑟 = 𝑎 mod 𝑏, which immediately implies that 𝑟 < 𝑏, so the loop

must exit. This allows us to give the following specification for the program.

⟨⌈𝑎 ≥ 0 ∧ 𝑏 > 0⌉⟩ Div ⟨⌈𝑞 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = 𝑎 mod 𝑏⌉⟩

Note that the Div program is deterministic; it does not use branching and we did not make any

assumptions about which interpretation of choice is used. This will allow us to reuse the proof of

Div in programs with different kinds of effects in the remainder of the section.

7.2 The Collatz Conjecture
Consider the function 𝑓 defined below.

𝑓 (𝑛) ≜
{
𝑛 ÷ 2 if 𝑛 mod 2 = 0

3𝑛 + 1 if 𝑛 mod 2 = 1

The Collatz Conjecture—an elusive open problem in the field of mathematics—postulates that for

any positive 𝑛, repeated applications of 𝑓 will eventually yield the value 1. Let the stopping time

𝑆𝑛 be the minimum number of applications of 𝑓 to 𝑛 that it takes to reach 1. For example, 𝑆1 = 0,

𝑆2 = 1, and 𝑆3 = 7. When run in an initial state where 𝑎 = 𝑛, the following program computes 𝑆𝑛 ,

storing the result in 𝑖 . Note that this program makes use of DIV, defined previously.

Collatz ≜


𝑖 B 0 #
while 𝑎 ≠ 1 do
𝑏 B 2 # Div #
if 𝑟 = 0 then 𝑎 B 𝑞 else 𝑎 B 3 × 𝑎 + 1 #
𝑖 B 𝑖 + 1
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Since some numbers may not have a finite stopping time—in which case the program will not

terminate—this is a perfect candidate for a partial correctness proof. Assuming that 𝑎 initially holds

the value 𝑛, we can use a loop invariant stating that 𝑎 = 𝑓 𝑖 (𝑛) on each iteration. If the program

terminates, then 𝑎 = 𝑓 𝑖 (𝑛) = 1, and so 𝑆𝑛 = 𝑖 . We capture this using the following triple, where the

□ modality indicates that the program may diverge.

⟨⌈𝑎 = 𝑛 ∧ 𝑛 > 0⌉⟩ Collatz ⟨□(𝑖 = 𝑆𝑛)⟩

7.3 Embedding Division in a Probabilistic Program
The following program loops for a random number of iterations, deciding whether to continue by

flipping a fair coin. It is interpreted using the Prob semiring from Example 3.10.

𝑎 B 0 # 𝑟 B 0 # (𝑎 B 𝑎 + 1 # 𝑏 B 2 # Div) ⟨
1

2
⟩

Suppose we want to know the probability that it terminates after an even or odd number of

iterations. The program makes use of DIV to divide the current iteration number 𝑎 by 2, therefore

the remainder 𝑟 will indicate whether the program looped an even or odd number of times. We can

analyze the program with the Iter rule, using the following two families of assertions.

𝜑𝑛 ≜ ⌈𝑎 = 𝑛 ∧ 𝑟 = 𝑎 mod 2⌉ ( 1

2
𝑛 ) 𝜓𝑛 ≜ ⌈𝑎 = 𝑛 ∧ 𝑟 = 𝑎 mod 2⌉ (

1

2
𝑛+1 )

According to Iter, the final postcondition can be obtained by taking an outcome conjunction of all

the𝜓𝑛 for 𝑛 ∈ N. However, we do not care about the precise value of 𝑎, only whether 𝑟 is 0 or 1. The
probability that 𝑟 = 0 is

1

2
+ 1

8
+ 1

32
+ · · · , a geometric series whose sum converges to

2

3
. A similar

calculation for the 𝑟 = 1 case gives us the following specification, indicating that the program

terminates after an even or odd number of iterations with probability
2

3
and

1

3
, respectively.

⟨⌈true⌉⟩ 𝑎 B 0 # 𝑟 B 0 # (𝑎 B 𝑎 + 1 # 𝑏 B 2 # Div) ⟨
1

2
⟩
⟨⌈𝑟 = 0⌉ ⊕ 2

3

⌈𝑟 = 1⌉⟩

7.4 Implications to Program Analysis
Building on the proof reusability demonstrated in this case study, we now explore how Outcome

Logic can be used as a unifying foundation for correctness and incorrectness static analysis.

Although correctness and incorrectness can have many meanings, we follow the lead of O’Hearn

[2020], with the distinction coming down to demonic vs angelic nondeterminism. More precisely,

a correctness specification covers all traces whereas an incorrectness specification witnesses the

existence of a single faulty one.

Many real world static analysis systems operate in this way, such as Meta’s Infer tool [Calcagno

et al. 2015], which was initially developed as a verification engine to prove memory safety in large

codebases. It accordingly reports specifications as Hoare Triples {𝑃 } 𝐶 {𝑄}, where 𝑃 specifies the

resources that must be available in order for the program𝐶 to execute safely in all traces [Calcagno

et al. 2009, 2011]. However, it was later discovered that Infer was more effective as a bug finding tool,

both because correctness analysis was sometimes computationally intractable and also because the

codebases contained bugs [Distefano et al. 2019].

The problem is that Hoare Logic is not sound as a logical foundation for bug finding—it admits

false positives [O’Hearn 2020]. More specifically, if an erroneous outcome occurs nondeterministi-

cally, then Hoare Logic has no way to witness a trace proving that the bug occurs. For example, if

𝑄ok represents the desired outcome and 𝑄er represents the erroneous one, then the Hoare Logic

postcondition must be a disjunction of the two: {𝑃 } 𝐶 {𝑄ok ∨ 𝑄er}, but given a specification of

that form, it is possible that every execution falls into the 𝑄ok branch. In practice, postconditions

become imprecise due to the use of abstraction [Calcagno et al. 2009], and so Infer often fails to

prove the absence of bugs, but that cannot be used as evidence that a bug exists [Raad et al. 2020].
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In response, the Infer team developed a new analysis called Pulse, which is based on angelic

nondeterminism and therefore has a different logical foundation [Le et al. 2022; Raad et al. 2020].

As we saw in Section 6.1, both forms of nondeterminism can be represented in Outcome Logic, by

using different modalities in the postcondition
7
.

⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩

However, these two types of specifications are still incompatible; one cannot be used in a sub-

derivation of the other. Crucially—as is the case with Infer and Pulse—this means that intermediate

procedure specifications cannot be shared between correctness and incorrectness analyses. This is

unfortunate, as computing those intermediate specifications in a large codebase is costly.

Fortunately, sharable specifications can be expressed in Outcome Logic. The trick is to use

specifications of the form ⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄1⌉ ⊕ · · · ⊕ ⌈𝑄𝑛⌉⟩ wherever possible, which both cover all the

outcomes (for correctness) and also guarantee reachability of each ⌈𝑄𝑘⌉ (for bug finding). Many

procedures—even looping ones—fit into this format, e.g., the one we saw in Section 7.1.

On the other hand, some procedures will need to be analyzed using specialized techniques. For

example, the use of a loop invariant in Section 7.2 introduced a □ modality to indicate that there

may not be any terminating outcomes. Alternatively, if a bug arises in one of the paths, the analysis

can introduce a ^ modality in order to retain less information about the other paths. Both of these

can be achieved by an application of the rule of consequence.

⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄1⌉ ⊕ · · · ⊕ ⌈𝑄𝑛⌉⟩ ∀𝑘. 𝑄𝑘 ⇒ 𝑄

⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩

⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄1⌉ ⊕ · · · ⊕ ⌈𝑄𝑛⌉⟩
⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄𝑘⟩

Zilberstein et al. [2024a] designed an algorithm for this type of analysis, showing not only that

Outcome Logic models Infer and Pulse, but also that the engines of those tools could be consolidated

so as to share procedure specifications in many cases. That algorithm is described in Section 10.

8 Case Study: Graph Problems
We now examine case studies using Outcome Logic to derive quantitative properties in alternative

models of computation.

8.1 Counting RandomWalks
Suppose we wish to count the number of paths between the origin and the point (𝑁,𝑀) on a two

dimensional grid. To achieve this, we first write a program that performs a random walk on the

grid; while the destination is not yet reached, it nondeterministically chooses to take a step on

either the 𝑥 or 𝑦-axis (or steps in a fixed direction if the destination on one axis is already reached).

Walk ≜



while 𝑥 < 𝑁 ∨ 𝑦 < 𝑀 do
if 𝑥 < 𝑁 ∧ 𝑦 < 𝑀 then
(𝑥 B 𝑥 + 1) + (𝑦 B 𝑦 + 1)

else if 𝑥 ≥ 𝑁 then
𝑦 B 𝑦 + 1

else
𝑥 B 𝑥 + 1

Using a standard program logic, it is relatively easy to prove that the program will always terminate

in a state where 𝑥 = 𝑁 and 𝑦 = 𝑀 . However, we are going to interpret this program using the Nat
semiring (Example 3.9) in order to count how many traces (i.e., random walks) reach that outcome.

7
Although Pulse was initially based on Incorrectness Logic [O’Hearn 2020], it was observed by Zilberstein et al. [2024a] and

Raad et al. [2024] that it can also be modeled using Lisbon Logic
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First of all, we know it will take exactly 𝑁 +𝑀 steps to reach the destination, so we can analyze

the program using the Variant rule, where the loop variant 𝜑𝑛 records the state of the program 𝑛

steps away from reaching (𝑁,𝑀).
If we are 𝑛 steps away, then there are several outcomes ranging from 𝑥 = 𝑁 − 𝑛 ∧ 𝑦 = 𝑀 to

𝑥 = 𝑁 ∧ 𝑦 = 𝑀 − 𝑛. More precisely, let 𝑘 be the distance to 𝑁 on the 𝑥-axis, meaning that the

distance to 𝑀 on the 𝑦-axis must be 𝑛 − 𝑘 , so 𝑥 = 𝑁 − 𝑘 and 𝑦 = 𝑀 − (𝑛 − 𝑘). At all times, it

must be true that 0 ≤ 𝑥 ≤ 𝑁 and 0 ≤ 𝑦 ≤ 𝑀 , so it must also be true that 0 ≤ 𝑁 − 𝑘 ≤ 𝑁 and

0 ≤ 𝑀 − (𝑛 − 𝑘) ≤ 𝑀 . solving for 𝑘 , we get that 0 ≤ 𝑘 ≤ 𝑁 and 𝑛 −𝑀 ≤ 𝑘 ≤ 𝑛. So, 𝑘 can range

between max(0, 𝑛 −𝑀) and min(𝑁,𝑛).
In addition, the number of paths to (𝑥,𝑦) is

(
𝑥+𝑦
𝑥

)
, i.e., the number of ways to pick 𝑥 steps on the

𝑥-axis out of 𝑥 + 𝑦 total steps. Putting all of that together, we define our loop variant as follows:

𝜑𝑛 ≜

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)⌉ ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

The loop body moves the program state from 𝜑𝑛+1 to 𝜑𝑛 . The outcomes of 𝜑𝑛+1 get divided among

the three if branches. In the outcome where 𝑥 = 𝑁 already, 𝑦 must step, so this goes to the second

branch. Similarly, if 𝑦 = 𝑀 already, then 𝑥 must step, corresponding to the third branch. All other

outcomes go to the first branch, which further splits into two outcomes due to the nondeterministic

choice. Since we start 𝑁 +𝑀 steps from the destination, we get the following precondition:

𝜑𝑁+𝑀 =

𝑁⊕
𝑘=𝑁

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑁 − 𝑘⌉ ((
0

𝑁−𝑁)) = ⌈𝑥 = 0 ∧ 𝑦 = 0⌉

In addition, the postcondition is:

𝜑0 =

0⊕
𝑘=0

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 + 𝑘⌉ ((
𝑁 +𝑀
𝑁 )) = ⌈𝑥 = 𝑁 ∧ 𝑦 = 𝑀⌉ ((

𝑁 +𝑀
𝑁 ))

This gives us the final specification below, which tells us that there are

(
𝑁+𝑀
𝑁

)
paths to reach (𝑁,𝑀)

from the origin. The full derivation is given in Appendix H.1.

⟨⌈𝑥 = 0 ∧ 𝑦 = 0⌉⟩ Walk ⟨⌈𝑥 = 𝑁 ∧ 𝑦 = 𝑀⌉ ((
𝑁 +𝑀
𝑁 ))⟩

8.2 Shortest Paths
We will now use an alternative interpretation of computation to analyze a program that nondeter-

ministically finds the shortest path from 𝑠 to 𝑡 in a directed graph. Let 𝐺 be the 𝑁 × 𝑁 Boolean

adjacency matrix of a directed graph, so that 𝐺 [𝑖] [ 𝑗] = true if there is an edge from 𝑖 to 𝑗 (or false
if no such edge exists). We also add the following expression syntax to read edge weights in a

program, noting that 𝐺 [𝐸1] [𝐸2] ∈ Test since it is Boolean-valued.

𝐸 ::= · · · | 𝐺 [𝐸1] [𝐸2]

J𝐺 [𝐸1] [𝐸2]KExp (𝑠) ≜ 𝐺
[
J𝐸1KExp (𝑠)

] [
J𝐸2KExp (𝑠)

]
The following program loops until the current position 𝑝𝑜𝑠 reaches the destination 𝑡 . At each step,

it nondeterministically chooses which edge (𝑛𝑒𝑥𝑡) to traverse using an iterator; for all 𝑛𝑒𝑥𝑡 ≤ 𝑁 ,

each trace is selected if there is an edge from 𝑝𝑜𝑠 to 𝑛𝑒𝑥𝑡 , and a weight of 1 is then added to the
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path, signifying that we took a step.

SP ≜


while 𝑝𝑜𝑠 ≠ 𝑡 do
𝑛𝑒𝑥𝑡 B 1 #
(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #
𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 #
assume 1

We will interpret this program using the Tropical semiring from Example 3.11, in which addition

corresponds to min and multiplication corresponds to addition. So, path lengths get accumulated

via addition and nondeterministic choices correspond to taking the path with minimal weight. That

means that at the end of the program execution, we should end up in a scenario where 𝑝𝑜𝑠 = 𝑡 ,

with weight equal to the shortest path length from 𝑠 to 𝑡 .

To prove this, we first formalize the notion of shortest paths below: sp𝑡𝑛 (𝐺, 𝑠, 𝑠 ′) indicates whether
there is a path of length 𝑛 from 𝑠 to 𝑠 ′ in 𝐺 in without passing through 𝑡 and sp(𝐺, 𝑠, 𝑡) is the
shortest path length from 𝑠 to 𝑡 . Let 𝐼 = {1, . . . , 𝑁 } \ {𝑡}.

sp𝑡
0
(𝐺, 𝑠, 𝑠 ′) ≜ (𝑠 = 𝑠 ′)

sp𝑡𝑛+1 (𝐺, 𝑠, 𝑠 ′) ≜
∨
𝑖∈𝐼

sp𝑡𝑛 (𝐺, 𝑠, 𝑖) ∧𝐺 [𝑖] [𝑠 ′]

sp(𝐺, 𝑠, 𝑡) ≜ inf {𝑛 ∈ N∞ | sp𝑡𝑛 (𝐺, 𝑠, 𝑡)}

We analyze the while loop using the While rule, which requires 𝜑𝑛 and𝜓𝑛 to record the outcomes

where the loop guard is true or false, respectively, after 𝑛 iterations. We define these as follows,

where + denotes regular arithmetic addition rather than addition in the tropical semiring.

𝜑𝑛 =
⊕
𝑖∈𝐼
⌈𝑝𝑜𝑠 = 𝑖⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) 𝜓𝑛 = ⌈𝑝𝑜𝑠 = 𝑡⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑡 )+𝑛) 𝜓∞ = ⌈𝑝𝑜𝑠 = 𝑡⌉ (sp(𝐺,𝑠,𝑡 ))

Recall that in the tropical semiring false = ∞ and true = 0. So, after 𝑛 iterations, the weight of

the outcome 𝑝𝑜𝑠 = 𝑖 is equal to 𝑛 if there is an 𝑛-step path from 𝑠 to 𝑖 , and∞ otherwise. The final

postcondition𝜓∞ is the shortest path length to 𝑡 , which is also the infimum of sp𝑡𝑛 (𝐺, 𝑠, 𝑡) + 𝑛 for

all 𝑛. Using the Iter rule we get the following derivation for the inner loop:〈⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 1⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)

〉
(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #〈⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)

〉
𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 # assume 1〈⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛+1)

〉
=⇒〈⊕𝑁

𝑗=1⌈𝑝𝑜𝑠 = 𝑗⌉ (sp𝑡𝑛+1 (𝐺,𝑠,𝑗)+𝑛+1)
〉

The outcome conjunction over 𝑖 ≠ 𝑡 (corresponding to the minimum weight path) gives us 𝑝𝑜𝑠 = 𝑗

with weight sp𝑡𝑛+1 (𝐺, 𝑠, 𝑗) + 𝑛 + 1—it is 𝑛 + 1 if there is path of length 𝑛 to some 𝑖 and 𝐺 [𝑖] [ 𝑗].
The precondition is 𝜑0 ⊕ 𝜓0 = (𝑝𝑜𝑠 = 𝑠), since sp𝑡

0
(𝐺, 𝑠, 𝑖) = false when 𝑖 ≠ 𝑠 and true when

𝑖 = 𝑠 . Putting this all together, we get the following triple, stating that the final position is 𝑡 and the

weight is equal to the shortest path.

⟨⌈𝑝𝑜𝑠 = 𝑠⌉⟩ SP ⟨⌈𝑝𝑜𝑠 = 𝑡⌉ (sp(𝐺,𝑠,𝑡 ))⟩
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This program does not terminate if there is no path from 𝑠 to 𝑡 . In that case there are no reachable

outcomes, so the interpretation of the program is 0. Indeed, 0 = ∞ in the tropical semiring, which

is the shortest path between two disconnected nodes. The postcondition is ⌈𝑝𝑜𝑠 = 𝑡⌉ (∞) , meaning

that the program diverged.

9 Related Work
Correctness, Incorrectness, and Unified Program Logics. While formal verification has long been the

aspiration for static analysis, bug-finding tools are often more practical in real-world engineering

settings. This partly comes down to efficiency—bugs can be found without considering all traces—

and partly due to the fact that most real world software just is not correct [Distefano et al. 2019].

However, the standard logical foundations of program analysis such as Hoare Logic are prone to

false positives when used for bug-finding—they cannot witness the existence of erroneous traces. In

response, O’Hearn [2020] developed Incorrectness Logic, which under-approximates the reachable

states (as opposed to Hoare Logic’s over-approximation) so as to only report bugs that truly occur.

Although Incorrectness Logic successfully serves as a logical foundation for bug-finding tools

[Le et al. 2022; Raad et al. 2020], it is semantically incompatible with correctness analysis, making

sharing of toolchains difficult or impossible. Attention has therefore turned to unifying correctness

and incorrectness theories. This includes Exact Separation Logic, which combines Hoare Logic and

Incorrectness Logic to generate specifications that are valid for both, but that also precludes under-

or over-approximation via the rule of consequence [Maksimović et al. 2023]. Local Completeness

Logic combines Incorrectness Logic with an over-approximate abstract domain to similar effect; it

also precludes dropping paths [Bruni et al. 2021, 2023].

There have also been recent efforts to organize correctness and incorrectness logics into tax-

onomies, where their similarities and differences are expressed in terms of weakening, contraposi-

tives, and Galois connections [Ascari et al. 2025; Cousot 2024; Verscht and Kaminski 2025; Zhang

and Kaminski 2022]. Our goal in this article is orthogonal; we capture many different types of

specifications with a single semantics and proof theory, so as to reuse proof fragments as much as

possible. We also include several kinds of effects rather than just nondeterminism.

Outcome Logic. Outcome Logic unifies correctness and incorrectness reasoning without compro-

mising the use of logical consequences. This builds on an idea colloquially known as Lisbon Logic,

first proposed by Derek Dreyer and Ralf Jung in 2019, that has similarities to the diamond modality

of Dynamic Logic [Harel et al. 2001; Pratt 1976] and Hoare’s [1978] calculus of possible correctness.

The idea was briefly mentioned in the Incorrectness Logic literature [Le et al. 2022; Möller et al.

2021; O’Hearn 2020], but using Lisbon Logic as a foundation of incorrectness analysis was not

fully explored until the introduction of Outcome Logic [Zilberstein et al. 2023], which subsumes

both Lisbon Logic and Hoare Logic, as we saw in Section 6.1. The metatheory of Lisbon Logic

has subsequently been explored more deeply and extended [Ascari et al. 2025; Raad et al. 2024].

Hyper Hoare Logic also generalizes Hoare and Lisbon Logics [Dardinier and Müller 2024], and is

semantically equivalent to the Boolean instance of OL (Example 3.7), but does not support effects

other than nondeterminism.

Outcome Logic initially used a model based on both a monad and a monoid, with looping defined

via the Kleene star 𝐶★
[Zilberstein et al. 2023]. The semantics of 𝐶★

had to be justified for each

instance, however it is not compatible with probabilistic computation (see Footnote 2), so an ad-hoc

semantics was used in the probabilistic case. Moreover, only the Induction rule was provided for

reasoning about 𝐶★
, amounting to unrolling the loop one time. Some loops can be analyzed by

applying Induction repeatedly, but it is inadequate if the number of iterations depends at all on

the program state. Our 𝐶 ⟨𝑒, 𝑒
′⟩
construct fixes this, defining iteration in a way that supports both
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Kleene star (𝐶 ⟨1, 1⟩) and also probabilistic computation. As we showed in Sections 7 and 8, Iter can

be used to reason about any loop, even ones that iterate an unbounded number of times.

The next Outcome Logic paper focused on a particular separation logic instance [Zilberstein et al.

2024a]. The model was refined to use semirings, and the programming language included while

loops instead of 𝐶★
so that a single well-definedness proof could extend to all instances. However,

the evaluation model included additional constraints (1 = ⊤ and normalization) that preclude, e.g.,

the multiset model (Example 3.9). Rather than giving inference rules, the paper provided a symbolic

execution algorithm, which also only supported loops via bounded unrolling.

This article extends the prior conference papers on Outcome Logic by giving a more general

model with more instances and better support for iteration, providing a relatively complete proof

system that is able to handle any loop, deriving additional inference rules for Hoare and Lisbon Logic

embeddings, and exploring case studies related to previously unsupported types of computation

and looping.

Computational Effects. Effects have been present since the early years of program analysis. Even

basic programming languages with while loops introduce the possibility of nontermination. Partial

correctness was initially used to sidestep the termination question [Floyd 1967a; Hoare 1969],

but total correctness (requiring termination) was later introduced too [Manna and Pnueli 1974].

More recently, automated tools were developed to prove (non)termination in real-world software

[Berdine et al. 2006; Brockschmidt et al. 2013; Cook et al. 2014, 2006a,b; Raad et al. 2024].

Nondeterminism also showed up in early variants of Hoare Logic, stemming from Dijkstra’s

Guarded Command Language (GCL) [Dijkstra 1975] and Dynamic Logic [Harel et al. 2001; Pratt

1976]; it is useful formodeling backtracking algorithms [Floyd 1967b] and opaque aspects of program

evaluation such as user input and concurrent scheduling. While Hoare Logic has traditionally used

demonic nondeterminism [Broy and Wirsing 1981], other program logics have recently arisen

to deal with nondeterminism in different ways, particularly for incorrectness [Ascari et al. 2025;

Dardinier and Müller 2024; de Vries and Koutavas 2011; Möller et al. 2021; O’Hearn 2020; Raad et al.

2024; Zilberstein et al. 2023].

Beginning with the seminal work of Kozen [1979, 1983], the study of probabilistic programs

has a rich history. This eventually led to the development of probabilistic Hoare Logic variants

[Barthe et al. 2018; den Hartog 2002, 1999; Rand and Zdancewic 2015] that enable reasoning about

programs in terms of likelihoods and expected values. Doing so requires pre- and postconditions to

be predicates on probability distributions.

Outcome Logic provides abilities to reason about those effects using a common set of inference

rules. This opens up the possibility for static analysis tools that soundly share proof fragments

between different types of programs, as shown in Section 7.

Relative Completeness and Expressivity. Any sufficiently expressive program logic must necessarily

be incomplete since, for example, the Hoare triple {true} 𝐶 {false} states that the program 𝐶 never

halts, which is not provable in an axiomatic deduction system. In response, Cook [1978] devised

the idea of relative completeness to convey that a proof system is adequate for analyzing a program,

but not necessarily assertions about the program states.

Expressivity requires that the assertion language used in pre- and postconditions can describe the

intermediate program states needed to, e.g., apply the Seq rule. In other words, the assertion syntax

must be able to express post(𝐶, 𝑃) from Definition 4.5. Implications for an expressive language

quickly become undecidable, as they must encode Peano arithmetic [Apt 1981; Lipton 1977]. With

this in mind, the best we can hope for is a program logic that is complete relative to an oracle that

decides implications in the rule of Conseqence.
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The question of what an expressive (syntactic) assertion language for Outcome Logic looks

like remains open. In fact, the question of expressive assertion languages for probabilistic Hoare

Logics (which are subsumed by Outcome Logic) is also open [Barthe et al. 2018; den Hartog 1999].

den Hartog [2002] devised a relatively complete probabilistic logic with syntactic assertions, but

the programming language does not include loops and is therefore considerably simplified; it is

unclear if this approach would extend to looping programs. In addition Batz et al. [2021] created an

expressive language for expectation-based reasoning, however the language only has constructs to

describe states and expected values; it does not contain a construct like ⊕ to express properties

involving of multiple traces of the program. As we saw in the discussion following Definition 4.5,

the ability to describe multiple executions makes the expressivity question more complex.

Several program logics (including our own) use semantic assertions, which are trivially expressive

[Ascari et al. 2025; Barthe et al. 2018; Calcagno et al. 2007; Cousot et al. 2012; Dardinier and Müller

2024; Jung et al. 2018, 2015; Kaminski 2019; O’Hearn 2020; Raad et al. 2024; Yang 2001]. This includes

logics that are mechanized within proof assistants [Barthe et al. 2018; Dardinier and Müller 2024;

Jung et al. 2018, 2015], so we do not see the extensional nature of our approach as a barrier to

mechanization in the future.

Quantitative Reasoning and Weighted Programming. Whereas Hoare Logic provides a foundation for

propositional program analysis, quantitative program analysis has been explored too. Probabilistic

Propositional Dynamic Logic [Kozen 1983] and weakest pre-expectation calculi [Kaminski 2019;

McIver and Morgan 2005; Morgan et al. 1996a] are used to reason about randomized programs in

terms of expected values. This idea has been extended to non-probabilistic quantitative properties

too [Batz et al. 2022; Zhang and Kaminski 2022; Zhang et al. 2024].

Weighted programming [Batz et al. 2022] generalizes pre-expectation reasoning using semirings

to model branch weights, much like this paper. Outcome Logic is a propositional analogue to

weighted programming’s quantitative model, but it is also more expressive in its ability to reason

about quantities over multiple outcomes. For example, in Section 7.3, we derive a single OL triple

that gives the probabilities of two outcomes, whereas weighted programming (or weakest pre-

expectations) would need to compute the weight of each branch individually. In addition, Batz

et al. [2022] only support total semirings, so they cannot analyze standard probabilistic programs.

Weighted programming was extended to handle hyperproperties by Zhang et al. [2024], which can

be seen as a weakest precondition calculus for Outcome Logic.

10 Conclusion, Limitations, and Future Work
In this article, we have presented a proof system for Outcome Logic, which is sufficient for reasoning

about programswith branching effects. That is, effects that can be semantically encoded by assigning

weights to a collection of final states. However, there remains room for future development of

Outcome Logic in order to support additional kinds of effects and other capabilities. In this section,

we describe the limitations of the present formalization, and how those limitations could be

addressed in future work.

Total Correctness and Nontermination. Although Outcome Logic provides some ability to reason

about nontermination—i.e., it can be used to prove that a program sometimes or never terminates—

it cannot be used for total correctness [Manna and Pnueli 1974], as the semantics only tracks

terminating traces, not the existence of infinite ones. Given some specification ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, it is

therefore impossible to know whether additional nonterminating behavior outside of𝜓 is possible.

The challenge in tracking infinite traces is that the semantics can easily become non-continuous,

making it more difficult to prove the existence of fixed points used to define the semantics of loops.

More precisely, Apt and Plotkin [1986] showed that no continuous semantics is possible that both
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distinguishes nontermination and also supports unbounded nondeterminism. That means that, at

least in the nondeterministic interpretation (Example 3.7), a primitive action of the following form,

which assigns 𝑥 to a nondeterministically chosen natural number, must be precluded.

J𝑥 B ⋆K (𝑠) ≜
∑︁
𝑛∈N

𝜂 (𝑠 [𝑥 B 𝑛]) � {𝑠 [𝑥 B 𝑛] | 𝑛 ∈ N}

Note that in the present formulation, we could define the above construct as syntactic sugar, as we

did in Section 6.2. The program below has the exact same semantics as above, since our model in

Section 3 does not record the fact that it also has an infinite (nonterminating) execution.

𝑥 B ⋆ ≜ 𝑥 B 0 # (𝑥 B 𝑥 + 1)★

However, in a total correctness version, the semantics of those programs would not be the same;

the version defined with the Kleene star has an additional nonterminating trace. This corresponds

to Dijkstra’s [1976] observation that a program cannot make infinitely many choices in a finite

amount of time, giving an operational argument for why unbounded nondeterminism should not be

allowed. However, the story is more murky when generalizing to the semiring weighted model that

we have presented in this paper. Although unbounded choice is not valid in the nondeterministic

model, it is valid in the probabilistic model (Example 3.10). For example, the following probabilistic

program makes infinitely many choices, but it also almost surely terminates (there is an infinite

trace, but it occurs with probability 0, so we do not consider it a possible outcome).

𝑥 B 0 # (𝑥 B 𝑥 + 1) ⟨ 12 ⟩

So, in the total correctness setting, the continuity of program operators depends on the semiring in

a non-obvious way, which cannot be explained by existing work on powerdomains [Plotkin 1976;

Smyth 1978; Søndergaard and Sestoft 1992]. Some work in this area has already been done by Li

et al. [2024], who develop a semantic model for Total Outcome Logic that explains this discrepancy

in terms of properties of the semirings.

Mixing Effects. While Outcome Logic, as described in this article, can be used to analyze programs

that have various types of branching, it cannot handle programs that display multiple kinds of

branching in tandem. Of particular interest is the combination of probabilistic choice and nondeter-

minism, which would be useful to analyze randomized distributed systems (where nondeterminism

arises due to concurrent scheduling). Unfortunately, the typical powerset monad representation of

nondeterminism (Example 3.7) does not compose well with probability distributions (Example 3.10)

[Varacca and Winskel 2006], and similar restrictions apply to other combinations of semirings

[Parlant 2020; Zwart 2020; Zwart and Marsden 2019].

Demonic Outcome Logic (DOL) [Zilberstein et al. 2025b] was recently introduced for reasoning

about programs that are both probabilistic and nondeterministic, with semantics based on the

convex powerset monad [He et al. 1997; Morgan et al. 1996b], a specialized computational domain,

which does not generalize like the semiring model that we use in this paper does. DOL supports

reasoning about probabilistic outcomes with ⊕, whereas nondeterminism is treated demonically

(the postcondition applies to all nondeterministic paths). This makes DOL a correctness logic only,

it cannot witness the existence of bad distributions of outcomes. It would be interesting to develop a

dual Angelic Outcome Logic for reasoning about incorrectness, or even a logic that unifies the two.

Alternatively, it was recently shown that probabilistic monads do compose with multisets [Jacobs

2021; Kozen and Silva 2023]. In Section 8.1, we showed how the Outcome Logic instance based

on multisets (Example 3.9) can be used for quantitative analysis, however that example did not

correspond to a canonical model of computation. By contrast, a logic using that same multiset

instance for probabilistic nondeterminism would model a very pertinent combination of effects,
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motivating the study of these more exotic forms of nondeterminism in this paper. The powerdomain

of indexed valuations [Varacca 2002; Varacca and Winskel 2006] is a similar computational domain

that is also constructed via a distributive law between two weighting functions. Given these many

different models, it would be interesting to investigate a variant of Outcome Logic where multiple

weighting functions can be composed together.

Mutable State, Separation Logic, and Concurrency. As an extension to our Outcome Logic formulation

in this article, it would be possible to add atomic commands for dynamically allocating and mutating

heap pointers, and separation logic [O’Hearn et al. 2001; Reynolds 2002] style inference rules to

reason about mutation. Separation logic introduces new logical primitives such as the points-to

predicate 𝑥 ↦→ 𝐸—stating that the 𝑥 is a pointer whose address maps to the value of 𝐸 on the

heap—and the separating conjunction 𝑃 ∗𝑄—stating that 𝑃 and 𝑄 hold in disjoint regions of the

heap, guaranteeing that if 𝑥 ↦→ 𝐸1 ∗ 𝑦 ↦→ 𝐸2 holds, then 𝑥 and 𝑦 do not alias each other.

This idea was already explored in Outcome Separation Logic (OSL) [Zilberstein et al. 2024a],

but questions relating to unbounded looping and completeness were not addressed in that work.

In separation logic, it is typical to provide small axioms [O’Hearn et al. 2001], which specify the

behavior of mutation locally. For example, the following Write rule specifies the behavior of

mutation in a singleton heap. Global reasoning is then done via the Frame rule [Yang and O’Hearn

2002], which states that a proof done in a local footprint is also valid in a larger heap.

{𝑥 ↦→ −} [𝑥] ← 𝐸 {𝑥 ↦→ 𝐸}
Write

{𝑃 } 𝐶 {𝑄}

{𝑃 ∗ 𝐹 } 𝐶 {𝑄 ∗ 𝐹 }
Frame

Yang [2001] showed that the small axioms along with the Frame rule are complete for standard

separation logic; any specification can be derived using them. By contrast, Zilberstein et al. [2024a]

showed that the small axioms and Frame rule are sound in OSL, but it is not known whether they

are complete. In fact, there is some evidence to the contrary, since the resources specified outside

the footprint of the local mutation may take on many different values, and therefore the Frame

rule would need to be applied for each branch of the computation. OSL could be obtained as an

instantiation of the Outcome Logic model in this article, although the Frame rule would need to be

added (and as such, this article does not fully subsume OSL). It would be interesting to add such a

frame rule, and explore the notion of completeness in that setting.

Zilberstein et al. [2024a] also developed an algorithm to mechanically derive triples of the form

⟨⌈𝑃⌉⟩ 𝐶 ⟨⌈𝑄1⌉ ⊕ · · · ⊕ ⌈𝑄𝑛⌉⟩, using the Seq and Choice rules to compositionally reason about

sequential compositions via the following derived rule.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨
⊕

𝑖∈𝐼 ⌈𝑄𝑖⌉⟩ ∀𝑖 ∈ 𝐼 . ⟨⌈𝑄𝑖⌉⟩ 𝐶2 ⟨
⊕

𝑗 ∈𝐽𝑖 ⌈𝑅 𝑗 ⌉⟩
⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨

⊕
𝑖∈𝐼 , 𝑗 ∈𝐽𝑖 ⌈𝑅 𝑗 ⌉⟩

The Frame rule is a crucial part of the algorithm too; it is used to lift axioms about actions—such as

the Write rule above—into the current program context. The particular frames are inferred using

biabduction [Calcagno et al. 2009], a heuristic procedure for inferring the missing antiframe𝑀 and

leftover frame 𝐹 in the following entailment 𝑃 ∗𝑀 ⊢ 𝑄 ∗ 𝐹 . So, for any precondition ⌈𝑃⌉, a write
action can be analyzed as follows:

𝑃 ∗𝑀 ⊢ (𝑥 ↦→ −) ∗ 𝐹
⟨⌈𝑥 ↦→ −⌉⟩ [𝑥] ← 𝐸 ⟨⌈𝑥 ↦→ 𝐸⌉⟩

Write

⟨⌈(𝑥 ↦→ −) ∗ 𝐹 ⌉⟩ [𝑥] ← 𝐸 ⟨⌈(𝑥 ↦→ 𝐸) ∗ 𝐹 ⌉⟩
Frame

⟨⌈𝑃 ∗𝑀⌉⟩ [𝑥] ← 𝐸 ⟨⌈(𝑥 ↦→ 𝐸) ∗ 𝐹 ⌉⟩
Conseqence



36 Noam Zilberstein

One weakness of the algorithm is that it only has the ability to reason about loops via bounded

unrolling. It would be interesting to extend the algorithm to use some of loop rules that we presented

in this article. In particular, an algorithm could be developed for approximating loop behavior in

Lisbon Logic using abstract domains [Cousot and Cousot 1977], something that cannot be done in

Incorrectness Logic [Ascari et al. 2022].

Going further, it would also be interesting to explore a concurrent variant of OSL. Along with

the aforementioned challenges of reasoning about weighted branching in tandem with the nonde-

terministic behavior of the concurrent scheduler, this would also require a more powerful version

of separation than that offered by OSL. The OSL separating conjunction 𝜑 ⊛ 𝑃 is asymmetric; 𝜑 is

an unrestricted outcome assertion, whereas 𝑃 can only be a basic assertion, like those described

in Section 4.1. However, concurrent separation logic [O’Hearn 2004] typically requires the entire

state space to be separated in order to compositionally analyze concurrent threads, so a symmetric

separating conjunction 𝜑 ⊛𝜓 would be needed. Preliminary work has already been done to this

effect [Zilberstein et al. 2025a, 2024b] based on Probabilistic Separation Logic [Barthe et al. 2019].

Computational effects have traditionally beckoned disjoint program logics across two dimensions:

different kinds of effects (e.g., nondeterminism vs randomization) and different assertions about

those effects (e.g., angelic vs demonic nondeterminism). Outcome Logic [Zilberstein et al. 2023,

2024a] captures those properties in a unified way, but until now the proof theory and connections

to other logics have not been thoroughly explored.

This article expands on the prior Outcome Logic work and provides a comprehensive account

of the OL metatheory by presenting a relatively complete proof system for Outcome Logic and

a significant number of derived rules. This shows that programs with branching effects are not

only semantically similar, but also share common reasoning principles. Specialized techniques (i.e.,

analyzing loops with variants or invariants) are particular modes of use of our more general logic,

and are compatible with each other rather than requiring distinct semantics.
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Appendix
A Totality of Language Semantics
A.1 Semantics of Tests and Expressions
Given some semiring ⟨𝑈 , +, ·, 0, 1⟩, the definition of the semantics of tests J𝑏KTest : Σ → {0, 1} is
below.

JtrueKTest (𝜎) ≜ 1

JfalseKTest (𝜎) ≜ 0

J𝑏1 ∨ 𝑏2KTest (𝜎) ≜
{
1 if J𝑏1KTest (𝜎) = 1 or J𝑏2KTest (𝜎) = 1

0 otherwise

J𝑏1 ∧ 𝑏2KTest (𝜎) ≜
{
1 if J𝑏1KTest (𝜎) = 1 and J𝑏2KTest (𝜎) = 1

0 otherwise

J¬𝑏KTest (𝜎) ≜
{
1 if J𝑏KTest (𝜎) = 0

0 if J𝑏KTest (𝜎) = 1

J𝑡KTest (𝜎) ≜
{
1 if 𝜎 ∈ 𝑡
0 if 𝜎 ∉ 𝑡

Based on that, we define the semantics of expressions J𝑒K : Σ→ 𝑈 .

J𝑏K (𝜎) ≜ J𝑏KTest (𝜎)
J𝑢K (𝜎) ≜ 𝑢

A.2 Fixed Point Existence
For all the proofs in this section, we assume that the operations +, ·, and ∑

belong to a Scott

continuous, naturally ordered, partial semiring with a top element (as described in Section 3.3).

Lemma A.1. Let ⟨𝑈 , +, ·, 0, 1⟩ be a continuous, naturally ordered, partial semiring. For any family

of Scott continuous functions (𝑓𝑖 : 𝑋 →W(𝑌 ))𝑖∈𝐼 and directed set 𝐷 ⊆ 𝑋 :

sup

𝑥 ∈𝐷

∑︁
𝑖∈𝐼

𝑓𝑖 (𝑥) =
∑︁
𝑖∈𝐼

𝑓𝑖 (sup𝐷)

Proof. The proof proceeds by transfinite induction on the size of 𝐼 .

• Base case: 𝐼 = ∅, so clearly:

sup

𝑥 ∈𝐷

∑︁
𝑖∈∅

𝑓𝑖 (𝑥) = sup

𝑥 ∈𝐷
0 = 0 =

∑︁
𝑖∈∅

sup

𝑥 ∈𝐷
𝑓𝑖 (𝑥)

• Successor Case: Suppose the claim holds for sets of size 𝛼 , and let |𝐼 | = 𝛼 + 1. We can

partition 𝐼 into 𝐼 ′ ∪ {𝑖} where 𝑖 ∈ 𝐼 is an arbitrary element and 𝐼 ′ = 𝐼 \ {𝑖} so that |𝐼 ′ | = 𝛼 .

Now, we have that:

sup

𝑥 ∈𝐷

∑︁
𝑗 ∈𝐼

𝑓𝑗 (𝑥) = sup

𝑥 ∈𝐷
(
∑︁
𝑗 ∈𝐼 ′

𝑓𝑗 (𝑥)) + 𝑓𝑖 (𝑥)

Now, note that since all the 𝑓𝑗 functions are Scott continuous, they must also be monotone,

and addition is also monotone. Therefore the following equality holds [Abramsky and Jung

1995, Proposition 2.1.12].

= sup

𝑥 ∈𝐷
sup

𝑦∈𝐷
(
∑︁
𝑗 ∈𝐼 ′

𝑓𝑗 (𝑥)) + 𝑓𝑖 (𝑦)
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By continuity of the semiring:

= (sup
𝑥 ∈𝐷

∑︁
𝑗 ∈𝐼 ′

𝑓𝑗 (𝑥)) + (sup
𝑦∈𝐷

𝑓𝑖 (𝑦))

By continuity of 𝑓𝑖 and the induction hypothesis:

=
∑︁
𝑗 ∈𝐼 ′

𝑓𝑗 (sup𝐷) + 𝑓𝑖 (sup𝐷)

=
∑︁
𝑖∈𝐼

𝑓𝑖 (sup𝐷)

• Limit case: suppose that the claim holds for all finite index sets. Now, given the definition

of the sum operator:

sup

𝑥 ∈𝐷

∑︁
𝑖∈𝐼

𝑓𝑖 (𝑥) = sup

𝑥 ∈𝐷
sup

𝐽 ⊆fin𝐼

∑︁
𝑗 ∈𝐽

𝑓𝑗 (𝑥)

The finite subsets of 𝐼 are a directed set and clearly the inner sum is monotone in 𝑥 and 𝐽 ,

so we can rearrange the suprema [Abramsky and Jung 1995, Proposition 2.1.12].

= sup

𝐽 ⊆fin𝐼
sup

𝑥 ∈𝐷

∑︁
𝑗 ∈𝐽

𝑓𝑗 (𝑥)

By the induction hypothesis:

= sup

𝐽 ⊆fin𝐼

∑︁
𝑗 ∈𝐽

𝑓𝑗 (sup𝐷)

=
∑︁
𝑖∈𝐼

𝑓𝑖 (sup𝐷)

□

Lemma A.2. If

∑
𝑖∈𝐼 𝑢𝑖 is defined, then for any (𝑣𝑖 )𝑖∈𝐼 ,

∑
𝑖∈𝐼 𝑢𝑖 · 𝑣𝑖 is defined.

Proof. Let 𝑣 be the top element of𝑈 , so 𝑣 ≥ 𝑣𝑖 for all 𝑖 ∈ 𝐼 . That means that for each 𝑖 ∈ 𝐼 , there
is a 𝑣 ′𝑖 such that 𝑣𝑖 + 𝑣 ′𝑖 = 𝑣 . Now, since multiplication is total, then we know that (∑𝑖∈𝐼 𝑢𝑖 ) · 𝑣 is
defined. This gives us:

(
∑︁
𝑖∈𝐼

𝑢𝑖 ) · 𝑣 =
∑︁
𝑖∈𝐼

𝑢𝑖 · (𝑣𝑖 + 𝑣 ′𝑖 ) =
∑︁
𝑖∈𝐼

𝑢𝑖 · 𝑣𝑖 +
∑︁
𝑖∈𝐼

𝑢𝑖 · 𝑣 ′𝑖

And since

∑
𝑖∈𝐼 𝑢𝑖 · 𝑣𝑖 is a subexpression of the above well-defined term, then it must be well-

defined. □

Lemma A.3. For any𝑚 ∈ W(𝑋 ) and 𝑓 : 𝑋 →W(𝑌 ), we get that 𝑓 † :W(𝑋 ) →W(𝑌 ) is a total
function.

Proof. First, recall the definition of (−)†:

𝑓 † (𝑚) (𝑦) =
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

To show that this is well-defined, we need to show both that the sum exists, and that the resulting

weighting function has a well-defined mass. First, we remark that since𝑚 ∈ W(𝐴), then |𝑚 | =
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𝑥 ∈supp(𝑚)𝑚(𝑥) must be defined. By Lemma A.2, the sum in the definition of (−)† is therefore

defined. Now, we need to show that |𝑓 † (𝑚) | is defined:

|𝑓 † (𝑚) | =
∑︁

𝑦∈supp(𝑓 † (𝑚))
𝑓 † (𝑚) (𝑦)

=
∑︁

𝑦∈⋃𝑎∈supp(𝑚) supp(𝑓 (𝑎))

∑︁
𝑥 ∈supp(𝑚)

𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

By commutativity and associativity:

=
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) ·

∑︁
𝑦∈supp(𝑓 (𝑥))

𝑓 (𝑥) (𝑦) =
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) · |𝑓 (𝑥) |

Now, since 𝑓 (𝑥) ∈ W(𝑌 ) for all 𝑥 ∈ 𝑋 , we know that |𝑓 (𝑥) | must be defined. The outer sum also

must be defined by Lemma A.2. □

In the following, when comparing functions 𝑓 , 𝑔 : 𝑋 →W(𝑌 ), we will use the pointwise order.
That is, 𝑓 ⊑• 𝑔 iff 𝑓 (𝑥) ⊑ 𝑔(𝑥) for all 𝑥 ∈ 𝑋 .

Lemma A.4. (−)† : (𝑋 →W(𝑌 )) → (W(𝑋 ) →W(𝑌 )) is Scott continuous.
Proof. Let 𝐷 ⊆ (𝑋 →W(𝑌 )) be a directed set. First, we show that for any 𝑥 ∈ 𝑋 , the function

𝑔(𝑓 ) =𝑚(𝑥) · 𝑓 (𝑥) (𝑦) is Scott continuous:
sup

𝑓 ∈𝐷
𝑔(𝑓 ) = sup

𝑓 ∈𝐷
𝑚(𝑥) · 𝑓 (𝑥) (𝑦)

By Scott continuity of the · operator:
=𝑚(𝑥) · sup

𝑓 ∈𝐷
𝑓 (𝑥) (𝑦)

Since we are using the pointwise ordering:

=𝑚(𝑥) · (sup𝐷) (𝑥) (𝑦) = 𝑔(sup𝐷)

Now, we show that (−)† is Scott continuous. For any𝑚, we have:

(sup
𝑓 ∈𝐷

𝑓 †) (𝑚) = sup

𝑓 ∈𝐷
𝑓 † (𝑚)

= sup

𝑓 ∈𝐷

∑︁
𝑥 ∈supp(𝑚)

𝑚(𝑥) · 𝑓 (𝑥)

By Lemma A.1, using the property we just proved.

=
∑︁

𝑥 ∈supp(𝑚)
𝑚(𝑥) · (sup𝐷) (𝑥) = (sup𝐷)† (𝑚)

□

Lemma A.5. Let Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎) and suppose that it is

a total function, then Φ⟨𝐶,𝑒,𝑒′⟩ is Scott continuous with respect to the pointwise order: 𝑓1 ⊑• 𝑓2 iff

𝑓1 (𝜎) ⊑ 𝑓2 (𝜎) for all 𝜎 ∈ Σ.
Proof. For all directed sets 𝐷 ⊆ (Σ→W(Σ)) and 𝜎 ∈ Σ, we have:

sup

𝑓 ∈𝐷
Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎)

= sup

𝑓 ∈𝐷

(
J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

)
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By the continuity of + and ·, we can move the supremum up to the (−)†, which is the only term

that depends on 𝑓 .

= J𝑒K (𝜎) · (sup
𝑓 ∈𝐷

𝑓 † (J𝐶K (𝜎))) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

By Lemma A.4.

= J𝑒K (𝜎) · (sup𝐷)† (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
= Φ⟨𝐶,𝑒,𝑒′⟩ (sup𝐷) (𝜎)

Since this is true for all 𝜎 ∈ Σ, Φ⟨𝐶,𝑒,𝑒′⟩ is Scott continuous. □

Now, given Lemma A.5 and the Kleene fixed point theorem, we know that the least fixed point is

defined and is equal to:

lfp
(
Φ⟨𝐶,𝑒,𝑒′⟩

)
= sup

𝑛∈N
Φ𝑛⟨𝐶,𝑒,𝑒′⟩ (𝜆𝜏 .0)

Therefore the semantics of iteration loops is well-defined, assuming that Φ⟨𝐶,𝑒,𝑒′⟩ is total. In the

next section, we will see simple syntactic conditions to ensure this.

A.3 Syntactic Sugar
If a partial semiring is used to interpret the language semantics, then unrestricted use of the𝐶1 +𝐶2

and𝐶 ⟨𝑒, 𝑒
′⟩
constructs may be undefined. In this section, we give some sufficient conditions to ensure

that program semantics is well-defined. This is based on the notion of compatible expressions,

introduced below.

Definition A.6 (Compatibility). The expressions 𝑒1 and 𝑒2 are compatible in semiring A =

⟨𝑈 , +, ·, 0, 1⟩ if J𝑒1K (𝜎) + J𝑒2K (𝜎) is defined for any 𝜎 ∈ Σ.

The nondeterministic (Examples 3.7 and 3.9) and tropical (Example 3.11) instances use total

semirings, so any program has well-defined semantics. In other interpretations, we must ensure

that programs are well-defined by ensuring that all uses of choice and iteration use compatible

expressions. We begin by showing that any two collections can be combined if they are scaled by

compatible expressions.

Lemma A.7. If 𝑒1 and 𝑒2 are compatible, then J𝑒1K (𝜎) ·𝑚1 + J𝑒2K (𝜎) ·𝑚2 is defined for any𝑚1 and

𝑚2.

Proof. Since 𝑒1 and 𝑒2 are compatible, then J𝑒1K (𝜎) + J𝑒2K (𝜎) is defined. By Lemma A.2, that

also means that J𝑒1K (𝜎) · |𝑚1 | + J𝑒2K (𝜎) · |𝑚2 | is defined too. Now, we have:

J𝑒1K (𝜎) · |𝑚1 | + J𝑒2K (𝜎) · |𝑚2 |

= J𝑒1K (𝜎) ·
∑︁

𝜏 ∈supp(𝑚1)
𝑚1 (𝜏) + J𝑒2K (𝜎) ·

∑︁
𝜏 ∈supp(𝑚2)

𝑚2 (𝜏)

=
∑︁

𝜏 ∈supp(𝑚1)
J𝑒1K (𝜎) ·𝑚1 (𝜏) +

∑︁
𝜏 ∈supp(𝑚2)

J𝑒2K (𝜎) ·𝑚2 (𝜏)

=
∑︁

𝜏 ∈supp(𝑚1)∪supp(𝑚2)
J𝑒1K (𝜎) ·𝑚1 (𝜏) + J𝑒2K (𝜎) ·𝑚2 (𝜏)

= | J𝑒1K (𝜎) ·𝑚1 + J𝑒2K (𝜎) ·𝑚2 |

Therefore J𝑒1K (𝜎) ·𝑚1 + J𝑒2K (𝜎) ·𝑚2 must be well-defined. □
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Now, we show how this result relates to program semantics. We begin with branching, by

showing that guarding the two branches using compatible expressions yields a program that is

well-defined.

Lemma A.8. If 𝑒1 and 𝑒2 are compatible and J𝐶1K and J𝐶2K are total functions, then:

J(assume 𝑒1 #𝐶1) + (assume 𝑒2 #𝐶2)K

is a total function.

Proof. Take any 𝜎 ∈ Σ, then we have:

J(assume 𝑒1 #𝐶1) + (assume 𝑒2 #𝐶2)K (𝜎) = J𝐶1K† (Jassume 𝑒1K (𝜎)) + J𝐶2K† (Jassume 𝑒2K (𝜎))

= J𝐶1K† (J𝑒1K (𝜎) · 𝜂 (𝜎)) + J𝐶2K† (J𝑒2K (𝜎) · 𝜂 (𝜎))

= J𝑒1K (𝜎) · J𝐶1K† (𝜂 (𝜎)) + J𝑒2K (𝜎) · J𝐶2K† (𝜂 (𝜎))
= J𝑒1K (𝜎) · J𝐶1K (𝜎) + J𝑒2K (𝜎) · J𝐶2K (𝜎)

By Lemma A.7, we know that this sum is defined, therefore the semantics is valid. □

For iteration, we can similarly use compatibility to ensure well-definedness.

Lemma A.9. If 𝑒 and 𝑒 ′ are compatible and J𝐶K is a total function, then
q
𝐶 ⟨𝑒, 𝑒

′⟩y
is a total function.

Proof. Let Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) ·𝜂 (𝜎). Since 𝑒 and 𝑒 ′ are compatible,

it follows from Lemma A.7 that Φ⟨𝐶,𝑒,𝑒′⟩ is a total function. By Lemma A.5, we therefore also know

that

q
𝐶 ⟨𝑒, 𝑒

′⟩y
is total. □

To conclude, we will provide a few examples of compatible expressions. For any test 𝑏, it is easy

to see that 𝑏 and ¬𝑏 are compatible. This is because at any state 𝜎 , one of J𝑏K (𝜎) or J¬𝑏K (𝜎) must

be 0, and given the semiring laws, 0 + 𝑢 is defined for any 𝑢 ∈ 𝑈 . Given this, our encodings of if

statements and while loops from Section 3.4 are well-defined in all interpretations.

In the probabilistic interpretation (Example 3.10), the weights 𝑝 and 1 − 𝑝 are compatible for any

𝑝 ∈ [0, 1]. That means that our encoding of probabilistic choice 𝐶1 +𝑝 𝐶2 and probabilistic iteration

𝐶 ⟨𝑝 ⟩ are both well-defined too.

B Soundness and Completeness of Outcome Logic
We provide a formal definition of assertion entailment 𝜑 ⊨ 𝑒 = 𝑢, which informally means that 𝜑

has enough information to determine that the expression 𝑒 evaluates to the value 𝑢.

Definition B.1 (Assertion Entailment). Given an outcome assertion 𝜑 , an expression 𝑒 , and a

weight 𝑢 ∈ 𝑈 , we define the following:

𝜑 ⊨ 𝑒 = 𝑢 iff ∀𝑚 ∈ 𝜑, 𝜎 ∈ supp(𝑚). J𝑒K (𝜎) = 𝑢

Note that this can generally be considered equivalent to 𝜑 ⇒ □(𝑒 = 𝑢), however we did not

assume that equality is in the set of primitive tests. Occasionally we will also write 𝜑 ⊨ 𝑏 for some

test 𝑏, which is shorthand for 𝜑 ⊨ 𝑏 = 1. It is relatively easy to see that the following statements
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hold given this definition:

⊤ ⊨ 𝑒 = 𝑢 iff ∀𝜎 ∈ Σ. J𝑒K (𝜎) = 𝑢

⊥ ⊨ 𝑒 = 𝑢 always

𝜑 ∨𝜓 ⊨ 𝑒 = 𝑢 iff 𝜑 ⊨ 𝑒 = 𝑢 and 𝜓 ⊨ 𝑒 = 𝑢

𝜑 ∧𝜓 ⊨ 𝑒 = 𝑢 iff 𝜑 ⊨ 𝑒 = 𝑢 or 𝜓 ⊨ 𝑒 = 𝑢

𝜑 ⊕𝜓 ⊨ 𝑒 = 𝑢 iff 𝜑 ⊨ 𝑒 = 𝑢 and 𝜓 ⊨ 𝑒 = 𝑢

𝜑 ⊙ 𝑣 ⊨ 𝑒 = 𝑢 iff 𝑣 = 0 or 𝜑 ⊨ 𝑒 = 𝑢

𝑣 ⊙ 𝜑 ⊨ 𝑒 = 𝑢 iff 𝑣 = 0 or 𝜑 ⊨ 𝑒 = 𝑢

1𝑚 ⊨ 𝑒 = 𝑢 iff ∀𝜎 ∈ supp(𝑚). J𝑒K (𝜎) = 𝑢

⌈𝑃⌉ (𝑣) ⊨ 𝑒 = 𝑢 iff 𝑣 = 0 or ∀𝜎 ∈ 𝑃 . J𝑒K (𝜎) = 𝑢

□𝑃 ⊨ 𝑒 = 𝑢 iff 𝑃 ⊨ 𝑒 = 𝑢

We now present the soundness proof, following the sketch from Section 4.4. The first results pertain

to the semantics of iteration. We start by recalling the characteristic function:

Φ⟨𝐶,𝑒,𝑒′⟩ (𝑓 ) (𝜎) = J𝑒K (𝜎) · 𝑓 † (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
Note that, as defined in Figure 1,

q
𝐶 ⟨𝑒, 𝑒

′⟩y (𝜎) = lfp
(
Φ⟨𝐶,𝑒,𝑒′⟩

)
(𝜎). The first lemma relates Φ⟨𝐶,𝑒,𝑒 ⟩

to a sequence of unrolled commands.

Lemma B.2. For all 𝑛 ∈ N:

Φ𝑛+1⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥.0) =
𝑛∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z

Proof. By mathematical induction on 𝑛.

• 𝑛 = 0. Unfolding the definition of Φ⟨𝐶,𝑒1,𝑒2 ⟩ , for all 𝜎 ∈ Σ we get:

Φ⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥.0) (𝜎) = J𝑒K (𝜎) · (𝜆𝑥.0)† (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
= 0 + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
= Jassume 𝑒 ′K (𝜎)
=
q
(assume 𝑒 #𝐶)0 # assume 𝑒 ′

y
(𝜎)

• Inductive step, suppose the claim holds for 𝑛. Now, for all 𝜎 ∈ Σ:
Φ𝑛+2⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥.0) (𝜎) = J𝑒K (𝜎) · Φ

𝑛+1
( ⟨𝑏,𝐶 ⟩) (𝜆𝑥.0)

† (J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)
By the induction hypothesis

= J𝑒K (𝜎) ·
(
𝑛∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z)†
(J𝐶K (𝜎)) + J𝑒 ′K (𝜎) · 𝜂 (𝜎)

=

𝑛+1∑︁
𝑘=1

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎) + Jassume 𝑒 ′K (𝜎)

=

𝑛+1∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎)

□

Lemma 4.4. The following equation holds:

r
𝐶 ⟨𝑒, 𝑒

′⟩
z
(𝜎) =

∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K (𝜎)
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Proof. First, by the Kleene fixed point theorem and the program semantics (Figure 1), we get:

r
𝐶 ⟨𝑒, 𝑒

′⟩
z
(𝜎) = sup

𝑛∈N
Φ𝑛⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎)

Now, since Φ0

⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎) = 0 and 0 is the bottom of the order ⊑, we can rewrite the supremum

as follows.

= sup

𝑛∈N
Φ𝑛+1⟨𝐶,𝑒,𝑒′⟩ (𝜆𝑥 .0) (𝜎)

By Lemma B.2:

= sup

𝑛∈N

𝑛∑︁
𝑘=0

r
(assume 𝑒 #𝐶)𝑘 # assume 𝑒 ′

z
(𝜎)

By the definition of infinite sums:

=
∑︁
𝑛∈N

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K (𝜎)

□

Theorem 4.3 (Soundness).

Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ =⇒ ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

Proof. The triple ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ is proven using inference rules from Figure 3, or by applying an

axiom in Ω. If the last step is using an axiom, then the proof is trivial since we assumed that all

the axioms in Ω are semantically valid. If not, then the proof is by induction on the derivation

Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩.

• Skip. We need to show that ⊨ ⟨𝜑⟩ skip ⟨𝜑⟩. Suppose that𝑚 ⊨ 𝜑 . Since JskipK† (𝑚) = 𝑚,

then clearly JskipK† (𝑚) ⊨ 𝜑 .
• Seq. Given that Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ and Ω ⊢ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩, we need to show that ⊨ ⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓⟩.

Note that since Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ and Ω ⊢ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩, those triples must be derived either

using inference rules (in which case the induction hypothesis applies), or by applying an

axiom in Ω. In either case, we can conclude that ⊨ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ and ⊨ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩. Suppose

that𝑚 ⊨ 𝜑 . Since ⊨ ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩, we get that J𝐶1K† (𝑚) ⊨ 𝜗 and using ⊨ ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩, we get

that J𝐶2K† (J𝐶1K† (𝑚)) ⊨ 𝜓 . Since J𝐶2K† (J𝐶1K† (𝑚)) = (J𝐶2K† ◦ J𝐶1K)† (𝑚) = J𝐶1 #𝐶2K† (𝑚),
we are done.

• Plus. Given Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨𝜓1⟩ and Ω ⊢ ⟨𝜑⟩ 𝐶2 ⟨𝜓2⟩, we need to show ⊨ ⟨𝜑⟩ 𝐶1 +𝐶2 ⟨𝜓1 ⊕𝜓2⟩.

Suppose that 𝑚 ⊨ 𝜑 , so by the induction hypotheses, J𝐶1K† (𝑚) ⊨ 𝜓1 and J𝐶2K† (𝑚) ⊨ 𝜓2.

Recall from the remark at the end of Section 3.4 that we are assuming that programs are

well-formed, and therefore J𝐶1 +𝐶2K† (𝑚) is defined and it is equal to J𝐶1K† (𝑚) + J𝐶2K† (𝑚).
Therefore by the semantics of ⊕, J𝐶1 +𝐶2K† (𝑚) ⊨ 𝜓1 ⊕𝜓2.

• Assume. Given 𝜑 ⊨ 𝑒 = 𝑢, we must show ⊨ ⟨𝜑⟩ assume 𝑒 ⟨𝜑 ⊙ 𝑢⟩. Suppose𝑚 ⊨ 𝜑 . Since
𝜑 ⊨ 𝑒 = 𝑢, then J𝑒K (𝜎) = 𝑢 for all 𝜎 ∈ supp(𝑚). This means that:

Jassume 𝑒K† (𝑚) =
∑︁

𝜎 ∈supp(𝑚)
𝑚(𝜎) · Jassume 𝑒K (𝜎)

=
∑︁

𝜎 ∈supp(𝑚)
𝑚(𝜎) · J𝑒K (𝜎) · 𝜂 (𝜎)

=
∑︁

𝜎 ∈supp(𝑚)
𝑚(𝜎) · 𝑢 · 𝜂 (𝜎)
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= (
∑︁

𝜎 ∈supp(𝑚)
𝑚(𝜎) · 𝜂 (𝜎)) · 𝑢

=𝑚 · 𝑢
And by definition,𝑚 · 𝑢 ⊨ 𝜑 ⊙ 𝑢, so we are done.

• Iter. We know that ⊨ ⟨𝜑𝑛⟩ assume 𝑒 #𝐶 ⟨𝜑𝑛+1⟩ and that ⊨ ⟨𝜑𝑛⟩ assume 𝑒 ′ ⟨𝜓𝑛⟩ for all 𝑛 ∈ N
by the induction hypotheses. Now, we need to show that ⊨ ⟨𝜑0⟩ 𝐶

⟨𝑒, 𝑒′⟩ ⟨𝜓∞⟩. Suppose
𝑚 ⊨ 𝜑0. It is easy to see that for all 𝑛 ∈ N:

J(assume 𝑒 #𝐶)𝑛K† (𝑚) ⊨ 𝜑𝑛
and

J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K† (𝑚) ⊨ 𝜓𝑛
by mathematical induction on 𝑛, and the two induction hypotheses. Now, since (𝜓𝑛)𝑛∈N ⇝
𝜓∞, we also know that:∑︁

𝑛∈N
J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K† (𝑚) ⊨ 𝜓∞

Finally, by Lemma 4.4 we get that

q
𝐶 ⟨𝑒, 𝑒

′⟩y† (𝑚) ⊨ 𝜓∞.
• False. We must show that ⊨ ⟨⊥⟩ 𝐶 ⟨𝜑⟩. Suppose that𝑚 ⊨ ⊥. This is impossible, so the claim

follows vacuously.

• True. We must show that ⊨ ⟨𝜑⟩ 𝐶 ⟨⊤⟩. Suppose𝑚 ⊨ 𝜑 . It is trivial that J𝐶K† (𝑚) ⊨ ⊤, so the

triple is valid.

• Scale. By the induction hypothesis, we get that ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ and we must show that

⊨ ⟨𝑢 ⊙𝜑⟩ 𝐶 ⟨𝑢 ⊙𝜓⟩. Suppose𝑚 ⊨ 𝑢 ⊙𝜑 . So there is some𝑚′ such that𝑚′ ⊨ 𝜑 and𝑚 = 𝑢 ·𝑚′.
We therefore get that J𝐶K† (𝑚′) ⊨ 𝜓 . Now, observe that J𝐶K† (𝑚) = J𝐶K† (𝑢 ·𝑚′) = 𝑢 ·J𝐶K† (𝑚).
Finally, by the definition of ⊙, we get that 𝑢 · J𝐶K† (𝑚) ⊨ 𝑢 ⊙𝜓 .
• Disj. By the induction hypothesis, we know that ⊨ ⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ and ⊨ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩ and we

need to show ⊨ ⟨𝜑1 ∨ 𝜑2⟩ 𝐶 ⟨𝜓1 ∨ 𝜓2⟩. Suppose𝑚 ⊨ 𝜑1 ∨ 𝜑2. Without loss of generality,

suppose𝑚 ⊨ 𝜑1. By the induction hypothesis, we get J𝐶K† (𝑚) ⊨ 𝜓1. We can weaken this to

conclude that J𝐶K† (𝑚) ⊨ 𝜓1 ∨𝜓2. The case where instead𝑚 ⊨ 𝜑2 is symmteric.

• Conj. By the induction hypothesis, we get that ⊨ ⟨𝜑1⟩ 𝐶 ⟨𝜓1⟩ and ⊨ ⟨𝜑2⟩ 𝐶 ⟨𝜓2⟩ and we

need to show ⊨ ⟨𝜑1 ∧ 𝜑2⟩ 𝐶 ⟨𝜓1 ∧𝜓2⟩. Suppose𝑚 ⊨ 𝜑1 ∧ 𝜑2, so𝑚 ⊨ 𝜑1 and𝑚 ⊨ 𝜑2. By the

induction hypotheses, J𝐶K† (𝑚) ⊨ 𝜓1 and J𝐶K† (𝑚) ⊨ 𝜓2, so J𝐶K† (𝑚) ⊨ 𝜓1 ∧𝜓2.

• Choice. By the induction hypothesis, ⊨ ⟨𝜙 (𝑡)⟩ 𝐶 ⟨𝜙 ′(𝑡)⟩ for all 𝑡 ∈ 𝑇 , and we need to show

that ⊨ ⟨
⊕

𝑥 ∈𝑇 𝜙 (𝑥)⟩ 𝐶 ⟨
⊕

𝑥 ∈𝑇 𝜙
′(𝑥)⟩. Suppose𝑚 ⊨

⊕
𝑥 ∈𝑇 𝜙 (𝑥), so for each 𝑡 ∈ 𝑇 there

is an𝑚𝑡 such that𝑚𝑡 ∈ 𝜙 (𝑡) and𝑚 =
∑
𝑡 ∈𝑇 𝑚𝑡 . By the induction hypothesis, we get that

J𝐶K† (𝑚𝑡 ) ∈ 𝜙 ′(𝑡) for all 𝑡 ∈ 𝑇 . Now, we have:∑︁
𝑡 ∈𝑇

J𝐶K† (𝑚𝑡 ) =
∑︁
𝑡 ∈𝑇

∑︁
𝜎 ∈supp(𝑚𝑡 )

𝑚𝑡 (𝜎) · J𝐶K (𝜎)

=
∑︁

𝜎 ∈supp(𝑚)
(
∑︁
𝑡 ∈𝑇

𝑚𝑡 (𝜎)) · J𝐶K (𝜎)

=
∑︁

𝜎 ∈supp(𝑚)
𝑚(𝜎) · J𝐶K (𝜎)

= J𝐶K† (𝑚)

Therefore, we get that J𝐶K† (𝑚) ∈
⊕

𝑥 ∈𝑇 𝜙
′(𝑥).
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• Exists. By the induction hypothesis, ⊨ ⟨𝜙 (𝑡)⟩ 𝐶 ⟨𝜙 ′(𝑡)⟩ for all 𝑡 ∈ 𝑇 and we need to show

⊨ ⟨∃𝑥 : 𝑇 .𝜙 (𝑥)⟩ 𝐶 ⟨∃𝑥 : 𝑇 .𝜙 ′(𝑥)⟩. Now suppose𝑚 ∈ ∃𝑥 : 𝑇 .𝜙 (𝑥) = ⋃
𝑡 ∈𝑇 𝜙 (𝑡). This means

that there is some 𝑡 ∈ 𝑇 such that𝑚 ∈ 𝜙 (𝑡). By the induction hypothesis, this means that

J𝐶K† (𝑚) ⊨ 𝜙 ′(𝑡), so we get that J𝐶K† (𝑚) ⊨ ∃𝑥 : 𝑇 .𝜙 ′(𝑥).
• Conseqence. We know that 𝜑 ′ ⇒ 𝜑 and 𝜓 ⇒ 𝜓 ′ and by the induction hypothesis

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, and we need to show that ⊨ ⟨𝜑 ′⟩ 𝐶 ⟨𝜓 ′⟩. Suppose that𝑚 ⊨ 𝜑 ′, then it also must

be the case that𝑚 ⊨ 𝜑 . By the induction hypothesis, J𝐶K† (𝑚) ⊨ 𝜓 . Now, using the second
consequence J𝐶K† (𝑚) ⊨ 𝜓 ′.

□

Now, moving to completeness, we prove the following lemma.

Lemma 4.6 (Derivability of the Strongest Postcondition).

Ω ⊢ ⟨𝜑⟩ 𝐶 ⟨post(𝐶,𝜑)⟩

Proof. By induction on the structure of the program 𝐶 .

• 𝐶 = skip. Since JskipK† (𝑚) = 𝑚 for all𝑚, then clearly post(skip, 𝜑) = 𝜑 . We complete

the proof by applying the Skip rule.

⟨𝜑⟩ skip ⟨𝜑⟩
Skip

• 𝐶 = 𝐶1 #𝐶2. First, observe that:

post(𝐶1 #𝐶2, 𝜑) = {J𝐶1 #𝐶2K† (𝑚) | 𝑚 ∈ 𝜑}

= {J𝐶2K† (J𝐶1K† (𝑚)) | 𝑚 ∈ 𝜑}

= {J𝐶2K† (𝑚′) | 𝑚′ ∈ {J𝐶1K† (𝑚) | 𝑚 ∈ 𝜑}}
= post(𝐶2, post(𝐶1, 𝜑))

Now, by the induction hypothesis, we know that:

Ω ⊢ ⟨𝜑⟩ 𝐶1 ⟨post(𝐶1, 𝜑)⟩
Ω ⊢ ⟨post(𝐶1, 𝜑)⟩ 𝐶2 ⟨post(𝐶1 #𝐶2, 𝜑)⟩

Now, we complete the derivation as follows:

Ω

⟨𝜑⟩ 𝐶1 ⟨post(𝐶1, 𝜑)⟩
Ω

⟨post(𝐶1, 𝜑)⟩ 𝐶2 ⟨post(𝐶1 #𝐶2, 𝜑)⟩
⟨𝜑⟩ 𝐶1 #𝐶2 ⟨post(𝐶1 #𝐶2, 𝜑)⟩

Seq

• 𝐶 = 𝐶1 +𝐶2. So, we have that:

post(𝐶1 +𝐶2, 𝜑) = {J𝐶1 +𝐶2K† (𝑚) | 𝑚 ∈ 𝜑}

= {J𝐶1K† (𝑚) + J𝐶2K† (𝑚) | 𝑚 ∈ 𝜑}

=
⋃
𝑚∈𝜑
{J𝐶1K† (𝑚) + J𝐶2K† (𝑚) | 𝑚 ∈ 1𝑚}

= ∃𝑚 : 𝜑. post(𝐶1, 1𝑚) ⊕ post(𝐶2, 1𝑚)
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We now complete the derivation as follows:

Ω

⟨1𝑚⟩ 𝐶1 ⟨post(𝐶1, 1𝑚)⟩
Ω

⟨1𝑚⟩ 𝐶2 ⟨post(𝐶2, 1𝑚)⟩
⟨1𝑚⟩ 𝐶1 +𝐶2 ⟨post(𝐶1, 1𝑚) ⊕ post(𝐶2, 1𝑚)⟩

Plus

⟨𝜑⟩ 𝐶1 +𝐶2 ⟨post(𝐶1 +𝐶2, 𝜑)⟩
Exists

• 𝐶 = assume 𝑒 , and 𝑒 must either be a test 𝑏 or a weight 𝑢 ∈ 𝑈 . Suppose that 𝑒 is a test 𝑏.

Now, for any𝑚 define the operator 𝑏?𝑚 as follows:

𝑏?𝑚(𝜎) =
{
0 if J𝑏K (𝜎) = 0

𝑚(𝜎) if J𝑏K (𝜎) = 1

Therefore𝑚 = 𝑏?𝑚 + ¬𝑏?𝑚 and 1𝑚 = 1𝑏?𝑚 ⊕ 1¬𝑏?𝑚 . We also have:

post(assume 𝑏, 𝜑) = {Jassume 𝑏K† (𝑚) | 𝑚 ∈ 𝜑}

= {Jassume 𝑏K† (𝑏?𝑚 + ¬𝑏?𝑚) | 𝑚 ∈ 𝜑}
= {𝑏?𝑚 | 𝑚 ∈ 𝜑}
= ∃𝑚 : 𝜑. 1𝑏?𝑚

Clearly also 1𝑏?𝑚 ⊨ 𝑏 and 1¬𝑏?𝑚 ⊨ ¬𝑏. We now complete the derivation:

1𝑏?𝑚 ⊨ 𝑏 = 1

⟨1𝑏?𝑚⟩ assume 𝑏 ⟨1𝑏?𝑚 ⊙ 1⟩
Assume

1¬𝑏?𝑚 ⊨ 𝑏 = 0

⟨1¬𝑏?𝑚⟩ assume 𝑏 ⟨1¬𝑏?𝑚 ⊙ 0⟩
Assume

⟨1𝑏?𝑚 ⊕ 1¬𝑏?𝑚⟩ assume 𝑏 ⟨1𝑏?𝑚⟩
Split

⟨𝜑⟩ assume 𝑏 ⟨post(assume 𝑏, 𝜑)⟩
Exists

Now, suppose 𝑒 = 𝑢, so 𝜑 ⊨ 𝑢 = 𝑢 and Jassume 𝑢K† (𝑚) =𝑚 · 𝑢 for all𝑚 ∈ 𝜑 and therefore

post(assume 𝑢, 𝜑) = 𝜑 ⊙ 𝑢. We can complete the proof as follows:

𝜑 ⊨ 𝑢 = 𝑢

⟨𝜑⟩ assume 𝑢 ⟨𝜑 ⊙ 𝑢⟩
Assume

• 𝐶 = 𝐶 ⟨𝑒, 𝑒
′⟩
. For all 𝑛 ∈ N, let 𝜑𝑛 (𝑚) and𝜓𝑛 (𝑚) be defined as follows:

𝜑𝑛 (𝑚) ≜ post((assume 𝑒 #𝐶)𝑛, 1𝑚) = 1J(assume 𝑒#𝐶)𝑛K†(𝑚)

𝜓𝑛 (𝑚) ≜ post(assume 𝑒 ′, 𝜑𝑛 (𝑚)) = 1J(assume 𝑒#𝐶)𝑛#assume 𝑒′K†(𝑚)

𝜓∞ (𝑚) ≜ post(𝐶 ⟨𝑒, 𝑒′⟩, 1𝑚) = 1J𝐶 ⟨𝑒, 𝑒′⟩K†(𝑚)

Note that by definition, 𝜑0 (𝑚) = 1𝑚 , 𝜑 = ∃𝑚 : 𝜑.𝜑0 (𝑚), and post(𝐶 ⟨𝑒, 𝑒′⟩, 𝜑) = ∃𝑚 :

𝜑.𝜓∞ (𝑚).
We now show that (𝜓𝑛)𝑛∈N∞ converges ((𝜓𝑛)𝑛∈N ⇝ 𝜓∞). Take any (𝑚𝑛)𝑛∈N such that

𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛. That means that𝑚𝑛 = J(assume 𝑒 #𝐶)𝑛 # assume 𝑒 ′K† (𝑚). Therefore
by Lemma 4.4 we get that

∑
𝑛∈N𝑚𝑛 =

q
𝐶 ⟨𝑒, 𝑒

′⟩y† (𝑚), and therefore

∑
𝑛∈N𝑚𝑛 ⊨ 𝜓∞ (𝑚). We

now complete the derivation as follows:

Ω

⟨𝜑𝑛 (𝑚)⟩ assume 𝑒 #𝐶 ⟨𝜑𝑛+1 (𝑚)⟩
Ω

⟨𝜑𝑛 (𝑚)⟩ assume 𝑒 ′ ⟨𝜓𝑛 (𝑚)⟩
⟨𝜑0 (𝑚)⟩ 𝐶 ⟨𝑒, 𝑒

′⟩
⟨𝜓∞ (𝑚)⟩

Iter

⟨𝜑⟩ 𝐶 ⟨𝑒, 𝑒
′⟩
⟨post(𝐶 ⟨𝑒, 𝑒′⟩, 𝜑)⟩

Exists
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• 𝐶 = 𝑎. We assumed that Ω contains all the valid triples pertaining to atomic actions 𝑎 ∈ Act,
so Ω ⊢ ⟨𝜑⟩ 𝑎 ⟨post(𝑎, 𝜑)⟩ since ⊨ ⟨𝜑⟩ 𝑎 ⟨post(𝑎, 𝜑)⟩.

□

C Variables and State
We now give additional definitions and proofs from Section 5. First, we give the interpretation of

expressions J𝐸KExp : S → Val where 𝑥 ∈ Var, 𝑣 ∈ Val, and 𝑏 is a test.

J𝑥KExp (𝑠) ≜ 𝑠 (𝑥)
J𝑣KExp (𝑠) ≜ 𝑣

J𝑏KExp (𝑠) ≜ J𝑏KTest (𝑠)
J𝐸1 + 𝐸2KExp (𝑠) ≜ J𝐸1KExp (𝑠) + J𝐸2KExp (𝑠)
J𝐸1 − 𝐸2KExp (𝑠) ≜ J𝐸1KExp (𝑠) − J𝐸2KExp (𝑠)
J𝐸1 × 𝐸2KExp (𝑠) ≜ J𝐸1KExp (𝑠) · J𝐸2KExp (𝑠)

Informally, the free variables of an assertion 𝑃 are the variables that are used in 𝑃 . Given that

assertions are semantic, we define free(𝑃) to be those variables that 𝑃 constrains in some way.

Formally, 𝑥 is free in 𝑃 iff reassigning 𝑥 to some value 𝑣 would not satisfy 𝑃 .

free(𝑃) ≜ {𝑥 ∈ Var | ∃𝑠 ∈ 𝑃, 𝑣 ∈ Val. 𝑠 [𝑥 ↦→ 𝑣] ∉ 𝑃}

The modified variables of a program 𝐶 are the variables that are assigned to in the program,

determined inductively on the structure of the program.

mod(skip) ≜ ∅
mod(𝐶1 #𝐶2) ≜ mod(𝐶1) ∪mod(𝐶2)
mod(𝐶1 +𝐶2) ≜ mod(𝐶1) ∪mod(𝐶2)

mod(assume 𝑒) ≜ ∅

mod
(
𝐶 ⟨𝑒, 𝑒

′⟩
)
≜ mod(𝐶)

mod(𝑥 B 𝐸) ≜ {𝑥}

Now, before themain soundness and completeness result, we prove a lemma stating that ⟨□𝑃⟩𝐶 ⟨□𝑃⟩
is valid as long as 𝑃 does not contain information about variables modified by 𝐶 .

Lemma C.1. If free(𝑃) ∩mod(𝐶) = ∅, then:

⊨ ⟨□𝑃⟩ 𝐶 ⟨□𝑃⟩

Proof. By induction on the program 𝐶:

• 𝐶 = skip. Clearly the claim holds using Skip.

• 𝐶 = 𝐶1 #𝐶2. By the induction hypotheses, ⊨ ⟨□𝑃⟩ 𝐶𝑖 ⟨□𝑃⟩ for 𝑖 ∈ {1, 2}. We complete the

proof using Seq.

• 𝐶 = 𝐶1 +𝐶2. By the induction hypotheses, ⊨ ⟨□𝑃⟩ 𝐶𝑖 ⟨□𝑃⟩ for 𝑖 ∈ {1, 2}. We complete the

proof using Plus and the fact that □𝑃 ⊕ □𝑃 ⇔ □𝑃 .
• 𝐶 = assume 𝑒 . Since assume 𝑒 can only remove states, it is clear that □𝑃 must still hold after

running the program.

• 𝐶 = 𝐶 ⟨𝑒, 𝑒
′⟩
. The argument is similar to that of the soundness of Invariant. Let 𝜑𝑛 = 𝜓𝑛 =

𝜓∞ = □𝑃 . It is obvious that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. We also know that ⊨ ⟨□𝑃⟩ 𝐶 ⟨□𝑃⟩ by the
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induction hypothesis. The rest is a straightforward application of the Iter rule, also using

the argument about assume from the previous case.

• 𝐶 = 𝑥 B 𝐸. We know that 𝑥 ∉ free(𝑃), so for all 𝑠 ∈ 𝑃 and 𝑣 ∈ Val, we know that

𝑠 [𝑥 ↦→ 𝑣] ∈ 𝑃 . We will now show that 𝑃 [𝐸/𝑥] = 𝑃 . Suppose 𝑠 ∈ 𝑃 [𝐸/𝑥], this means that

𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)] ∈ 𝑃 , which also means that:

(𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)]) [𝑥 ↦→ 𝑠 (𝑥)] = 𝑠 ∈ 𝑃
Now suppose that 𝑠 ∈ 𝑃 , then clearly 𝑠 [𝑥 ↦→ J𝐸KExp (𝑠)] ∈ 𝑃 , so 𝑠 ∈ 𝑃 [𝐸/𝑥]. Since
𝑃 [𝐸/𝑥] = 𝑃 , then (□𝑃) [𝐸/𝑥] = □𝑃 , so the proof follows from the Assign rule.

□

We now prove the main result. Recall that this result pertains specifically to the OL instance

where variable assignment is the only atomic action.

Theorem 5.1 (Soundness and Completeness).

⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ ⇐⇒ ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

Proof.

(⇒) Suppose ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩. By Theorem 4.7, we already know that this triple is derivable for

all commands other than assignment so it suffices to show the case where 𝐶 = 𝑥 B 𝐸.

Now suppose ⊨ ⟨𝜑⟩ 𝑥 B 𝐸 ⟨𝜓⟩. For any𝑚 ∈ 𝜑 , we know that (𝜆𝑠.𝜂 (𝑠 [𝑥 ↦→ J𝐸K (𝑠)]))† (𝑚) ∈
𝜓 . By definition, this means that𝑚 ∈ 𝜓 [𝐸/𝑥], so we have shown that 𝜑 ⇒ 𝜓 [𝐸/𝑥]. Finally,
we complete the derivation as follows:

𝜑 ⇒ 𝜓 [𝐸/𝑥] ⟨𝜓 [𝐸/𝑥]⟩ 𝑥 B 𝐸 ⟨𝜓⟩
Assign

⟨𝜑⟩ 𝑥 B 𝐸 ⟨𝜓⟩
Conseqence

(⇐) The proof is by induction on the derivation ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩. All the cases except for the

two below follow from Theorem 4.3.

– Assign. Suppose that𝑚 ⊨ 𝜑 [𝐸/𝑥]. By the definition of substitution, we immediately

know that

(𝜆𝑠.𝜂 (𝑠 [𝑥 ↦→ J𝐸K (𝑠)]))† (𝑚) ∈ 𝜑
Since J𝑥 B 𝐸K (𝑠) = 𝜂 (𝑠 [𝑥 ↦→ J𝐸K (𝑠)]), we are done.

– Constancy. Follows immediately from Lemma C.1 and the soundness of the Conj rule.

□

D Subsumption of Program Logics
In this section, we provide proofs for the theorems in Section 6.1. Note that the following two

theorems assume a nondeterministic interpretation of Outcome Logic, using the semiring defined

in Example 3.7.

Theorem 6.1 (Subsumption of Hoare Logic).

⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ iff 𝑃 ⊆ [𝐶]𝑄 iff ⊨ {𝑃 } 𝐶 {𝑄}

Proof. We only prove that ⊨ ⟨𝑃⟩ 𝐶 ⟨□𝑄⟩ iff 𝑃 ⊆ [𝐶]𝑄 , since 𝑃 ⊆ [𝐶]𝑄 iff ⊨ {𝑃 } 𝐶 {𝑄} is a

well-known result [Pratt 1976].

(⇒) Suppose 𝜎 ∈ 𝑃 , then 𝜂 (𝜎) ⊨ ⌈𝑃⌉ and since ⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩ we get that J𝐶K† (𝜂 (𝜎)) ⊨ □𝑄 ,

which is equivalent to J𝐶K (𝜎) ⊨ ∃𝑢 : 𝑈 .⌈𝑄⌉ (𝑢) . This means that supp(J𝐶K (𝜎)) ⊆ 𝑄 ,

therefore by definition 𝜎 ∈ [𝐶]𝑄 . Therefore, we have shown that 𝑃 ⊆ [𝐶]𝑄 .
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(⇐) Suppose that 𝑃 ⊆ [𝐶]𝑄 and𝑚 ⊨ 𝑃 , so |𝑚 | = 1 and supp(𝑚) ⊆ 𝑃 ⊆ [𝐶]𝑄 . This means

that supp(J𝐶K (𝜎)) ⊆ 𝑄 for all 𝜎 ∈ supp(𝑚), so we also get that:

supp(J𝐶K† (𝑚)) =
⋃

𝜎 ∈supp(𝑚)
supp(J𝐶K (𝜎)) ⊆ 𝑄

This means that J𝐶K† (𝑚) ⊨ □𝑄 , therefore ⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩.

□

Theorem 6.2 (Subsumption of Lisbon Logic).

⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩ iff 𝑃 ⊆ ⟨𝐶⟩𝑄 iff ⊨ {|𝑃 |} 𝐶 {|𝑄 |}

Proof. We only prove that ⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩ iff 𝑃 ⊆ ⟨𝐶⟩𝑄 , since 𝑃 ⊆ ⟨𝐶⟩𝑄 iff ⊨ {|𝑃 |} 𝐶 {|𝑄 |}
follows by definition [Möller et al. 2021; Zilberstein et al. 2023].

(⇒) Suppose 𝜎 ∈ 𝑃 , then 𝜂 (𝜎) ⊨ ⌈𝑃⌉ and since ⊨ ⟨⌈𝑃⌉⟩𝐶 ⟨^𝑄⟩ we get that J𝐶K† (𝜂 (𝜎)) ⊨ ^𝑄 ,

which is equivalent to saying that there exists a 𝜏 ∈ supp(J𝐶K (𝜎)) such that 𝜏 ∈ 𝑄 , therefore

by definition 𝜎 ∈ ⟨𝐶⟩𝑄 . So, we have shown that 𝑃 ⊆ ⟨𝐶⟩𝑄 .

(⇐) Suppose that 𝑃 ⊆ ⟨𝐶⟩𝑄 and 𝑚 ⊨ ⌈𝑃⌉, so |𝑚 | = 1 and supp(𝑚) ⊆ 𝑃 ⊆ ⟨𝐶⟩𝑄 .

This means that supp(J𝐶K (𝜎)) ∩ 𝑄 ≠ ∅ for all 𝜎 ∈ supp(𝑚). In other words, for each

𝜎 ∈ supp(𝑚), there exists a 𝜏 ∈ supp(J𝐶K (𝜎)) such that 𝜏 ∈ 𝑄 . Since supp(J𝐶K† (𝑚)) =⋃
𝜎 ∈supp(𝑚) supp(J𝐶K (𝜎)), then there is also a 𝜏 ∈ supp(J𝐶K† (𝑚)) such that 𝜏 ∈ 𝑄 , so

J𝐶K† (𝑚) ⊨ ^𝑄 , therefore ⊨ ⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩.

□

E Derived Rules
E.1 Sequencing in Hoare and Lisbon Logic
We first prove the results about sequencing Hoare Logic encodings.

Lemma E.1. The following inference is derivable.

⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩

⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩

Proof. We first establish two logical consequences. First, we have:

□𝑃 =⇒ ∃𝑚 : □𝑃 . 1𝑚
=⇒ ∃𝑚 : □𝑃 .

⊕
𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ 1𝜂 (𝜎)

=⇒ ∃𝑚 : □𝑃 .
⊕

𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ ⌈𝑃⌉

And also:

∃𝑚 : □𝑃 .
⊕

𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ □𝑄 =⇒ ∃𝑚 : □𝑃 .
⊕

𝜎 ∈supp(𝑚) □𝑄

=⇒ ∃𝑚 : □𝑃 . □𝑄

=⇒ □𝑄
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We now complete the derivation.

∀𝑚 ∈ □𝑃 .
∀𝜎 ∈ supp(𝑚).

⟨⌈𝑃⌉⟩ 𝐶 ⟨□𝑄⟩

⟨𝑚(𝜎) ⊙ ⌈𝑃⌉⟩ 𝐶 ⟨𝑚(𝜎) ⊙ □𝑄⟩
Scale

⟨
⊕

𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ ⌈𝑃⌉⟩ 𝐶 ⟨
⊕

𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ □𝑄⟩
Choice

⟨∃𝑚 : □𝑃 .
⊕

𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ ⌈𝑃⌉⟩ 𝐶 ⟨∃𝑚 : □𝑃 .
⊕

𝜎 ∈supp(𝑚)𝑚(𝜎) ⊙ □𝑄⟩
Exists

⟨□𝑃⟩ 𝐶 ⟨□𝑄⟩
Conseqence

□

Lemma E.2. The following inference is derivable.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨□𝑄⟩ ⟨⌈𝑄⌉⟩ 𝐶2 ⟨□𝑅⟩

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨□𝑅⟩

Proof.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨□𝑄⟩

⟨⌈𝑄⌉⟩ 𝐶2 ⟨□𝑅⟩

⟨□𝑄⟩ 𝐶2 ⟨□𝑅⟩
Lemma E.1

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨□𝑅⟩
Seq

□

Now, we turn to Lisbon Logic

Lemma E.3. The following inference is derivable.

⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩

⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩

Proof. First, for each𝑚 ∈ ^𝑃 , let 𝜎𝑚 be an arbitrary state such that 𝜎𝑚 ∈ supp(𝑚) and 𝜎𝑚 ∈ 𝑃 .
This state must exists given that 𝑚 ∈ ^𝑃 . We also let 𝑢𝑚 = 𝑚(𝜎𝑚) and note that 𝑢𝑚 ≠ 0. We

therefore have the following consequences:

^𝑃 =⇒ ∃𝑚 : ^𝑃 . 1𝑚
=⇒ ∃𝑚 : ^𝑃 . (𝑢𝑚 ⊙ 1𝜂 (𝜎𝑚) ) ⊕ ⊤
=⇒ ∃𝑚 : ^𝑃 . (𝑢𝑚 ⊙ ⌈𝑃⌉) ⊕ ⊤

∃𝑚 : ^𝑃 . (𝑢𝑚 ⊙ ^𝑄) ⊕ ⊤ =⇒ ∃𝑚 : ^𝑃 . ^𝑄 ⊕ ⊤
=⇒ ∃𝑚 : ^𝑃 . ^𝑄

=⇒ ^𝑄

We now complete the derivation as follows:

∀𝑚 ∈ ^𝑃 .

⟨⌈𝑃⌉⟩ 𝐶 ⟨^𝑄⟩

⟨𝑢𝑚 ⊙ ⌈𝑃⌉⟩ 𝐶 ⟨𝑢𝑚 ⊙ ^𝑄⟩
Scale

⟨⊤⟩ 𝐶 ⟨⊤⟩
True

⟨(𝑢𝑚 ⊙ ⌈𝑃⌉) ⊕ ⊤⟩ 𝐶 ⟨(𝑢𝑚 ⊙ ^𝑄) ⊕ ⊤⟩
Choice

⟨∃𝑚 : ^𝑃 . (𝑢𝑚 ⊙ ⌈𝑃⌉) ⊕ ⊤⟩ 𝐶 ⟨∃𝑚 : ^𝑃 . (𝑢𝑚 ⊙ ^𝑄) ⊕ ⊤⟩
Exists

⟨^𝑃⟩ 𝐶 ⟨^𝑄⟩
Conseqence

□
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Lemma E.4. The following inference is derivable.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨^𝑄⟩ ⟨⌈𝑄⌉⟩ 𝐶2 ⟨^𝑅⟩

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨^𝑅⟩

Proof.

⟨⌈𝑃⌉⟩ 𝐶1 ⟨^𝑄⟩

⟨⌈𝑄⌉⟩ 𝐶2 ⟨^𝑅⟩

⟨^𝑄⟩ 𝐶2 ⟨^𝑅⟩
Lemma E.3

⟨⌈𝑃⌉⟩ 𝐶1 #𝐶2 ⟨^𝑅⟩
Seq

□

E.2 If Statements and While Loops
Lemma E.5. The following inference is derivable.

𝜑1 ⊨ 𝑏 ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ 𝜑2 ⊨ ¬𝑏 ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑1 ⊕ 𝜑2⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓2 ⊕𝜓2⟩
If

Proof. First note that 𝜑 ⊨ 𝑏 is syntactic sugar for 𝜑 ⊨ 𝑏 = 1, and so from the assumptions that

𝜑1 ⊨ 𝑏 and 𝜑2 ⊨ ¬𝑏, we get 𝜑1 ⊨ 𝑏 = 1, 𝜑2 ⊨ 𝑏 = 0, 𝜑1 ⊨ ¬𝑏 = 0, and 𝜑2 ⊨ ¬𝑏 = 1. We split the

derivation into two parts. Part (1) is shown below:

𝜑1 ⊨ 𝑏 = 1

⟨𝜑1⟩ assume 𝑏 ⟨𝜑1 ⊙ 1⟩
Assume

𝜑2 ⊨ 𝑏 = 0

⟨𝜑2⟩ assume 𝑏 ⟨𝜑2 ⊙ 0⟩
Assume

⟨𝜑1 ⊕ 𝜑2⟩ assume 𝑏 ⟨𝜑1⟩
Split

⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩

⟨𝜑1 ⊕ 𝜑2⟩ assume 𝑏 #𝐶1 ⟨𝜓1⟩
Seq

We omit the proof with part (2), since it is nearly identical. Now, we combine (1) and (2):

(1)
⟨𝜑1 ⊕ 𝜑2⟩ assume 𝑏 #𝐶1 ⟨𝜓1⟩

(2)
⟨𝜑1 ⊕ 𝜑2⟩ assume ¬𝑏 #𝐶2 ⟨𝜓2⟩

⟨𝜑1 ⊕ 𝜑2⟩ (assume 𝑏 #𝐶1) + (assume ¬𝑏 #𝐶2) ⟨𝜓1 ⊕𝜓2⟩
Plus

⟨𝜑1 ⊕ 𝜑2⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓1 ⊕𝜓2⟩

□

Lemma E.6. The following inference is derivable:

𝜑 ⊨ 𝑏 ⟨𝜑⟩ 𝐶1 ⟨𝜓⟩

⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
If1

Proof.

𝜑 ⊨ 𝑏 ⟨𝜑⟩ 𝐶1 ⟨𝜓⟩ 0 ⊙ ⊤ ⊨ ¬𝑏
⟨⊤⟩ 𝐶2 ⟨⊤⟩

True

⟨0 ⊙ ⊤⟩ 𝐶2 ⟨0 ⊙ ⊤⟩
Scale

⟨𝜑 ⊕ (0 ⊙ ⊤)⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓 ⊕ (0 ⊙ ⊤)⟩
If

⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
Conseqence

□
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Lemma E.7. The following inference is derivable:

𝜑 ⊨ ¬𝑏 ⟨𝜑⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
If2

Proof.

0 ⊙ ⊤ ⊨ 𝑏
⟨⊤⟩ 𝐶1 ⟨⊤⟩

True

⟨0 ⊙ ⊤⟩ 𝐶1 ⟨0 ⊙ ⊤⟩
Scale

𝜑 ⊨ ¬𝑏 ⟨𝜑⟩ 𝐶2 ⟨𝜓⟩

⟨𝜑 ⊕ (0 ⊙ ⊤)⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓 ⊕ (0 ⊙ ⊤)⟩
If

⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
Conseqence

□

Lemma E.8 (Hoare Logic If Rule). The following inference is derivable.

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶1 ⟨□𝑄⟩ ⟨⌈𝑃 ∧ ¬𝑏⌉⟩ 𝐶2 ⟨□𝑄⟩

⟨⌈𝑃⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄⟩
If (Hoare)

Proof. The derivation is shown below:

□(𝑃 ∧ 𝑏) ⊨ 𝑏

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶1 ⟨□𝑄⟩

⟨□(𝑃 ∧ 𝑏)⟩ 𝐶1 ⟨□𝑄⟩
Lemma E.1

·········· □(𝑃 ∧ ¬𝑏) ⊨ ¬𝑏
⟨⌈𝑃 ∧ ¬𝑏⌉⟩ 𝐶1 ⟨□𝑄⟩

⟨□(𝑃 ∧ ¬𝑏)⟩ 𝐶2 ⟨□𝑄⟩
Lemma E.1

⟨□(𝑃 ∧ 𝑏) ⊕ □(𝑃 ∧ ¬𝑏)⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄 ⊕ □𝑄⟩
If

⟨⌈𝑃⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨□𝑄⟩
Conseqence

□

Lemma E.9 (Lisbon Logic If Rule). The following inference is derivable.

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶1 ⟨^𝑄⟩ ⟨⌈𝑃 ∧ ¬𝑏⌉⟩ 𝐶2 ⟨^𝑄⟩

⟨⌈𝑃⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
If (Lisbon)

Proof. The derivation is shown below:

⌈𝑃 ∧ 𝑏⌉ ⊨ 𝑏 ⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶1 ⟨^𝑄⟩

⟨⌈𝑃 ∧ 𝑏⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
If1

⟨^(𝑃 ∧ 𝑏)⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
Lemma E.3

⌈𝑃 ∧ ¬𝑏⌉ ⊨ ¬𝑏 ⟨⌈𝑃 ∧ ¬𝑏⌉⟩ 𝐶2 ⟨^𝑄⟩

⟨⌈𝑃 ∧ ¬𝑏⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
If2

⟨^(𝑃 ∧ ¬𝑏)⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
Lemma E.3

················
⟨^(𝑃 ∧ 𝑏) ∨ ^(𝑃 ∧ ¬𝑏)⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄 ∨ ^𝑄⟩

Disj

⟨⌈𝑃⌉⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨^𝑄⟩
Conseqence

□
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Lemma E.10 (While Rule). The following inference is derivable.

(𝜓𝑛)𝑛∈N ⇝ 𝜓∞ ⟨𝜑𝑛⟩ 𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩ 𝜑𝑛 ⊨ 𝑏 𝜓𝑛 ⊨ ¬𝑏
⟨𝜑0 ⊕𝜓0⟩ while 𝑏 do 𝐶 ⟨𝜓∞⟩

While

Proof. First, let 𝜑 ′𝑛 = 𝜑𝑛 ⊕𝜓𝑛 . The derivation has two parts. First, part (1):

𝜑𝑛 ⊨ 𝑏

⟨𝜑𝑛⟩ assume 𝑏 ⟨𝜑𝑛⟩
Assume

𝜓𝑛 ⊨ ¬𝑏
⟨𝜓𝑛⟩ assume 𝑏 ⟨𝜓𝑛 ⊙ 0⟩

Assume

⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume 𝑏 ⟨𝜑𝑛⟩
Split

⟨𝜑𝑛⟩ 𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩
⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩

Seq

Now part (2):

𝜑𝑛 ⊨ 𝑏

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜑𝑛 ⊙ 0⟩
Assume

𝜓𝑛 ⊨ ¬𝑏
⟨𝜓𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

Assume

⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩
Split

Finally, we complete the derivation as follows:

∀𝑛 ∈ N.
(1)

⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩
(2)

⟨𝜑𝑛 ⊕𝜓𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

⟨𝜑0 ⊕𝜓0⟩ while 𝑏 do 𝐶 ⟨𝜓∞⟩
Iter

□

E.3 Loop Invariants
Lemma E.11 (Loop Invariant Rule). The following inference is derivable.

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶 ⟨□𝑃⟩

⟨⌈𝑃⌉⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩
Invariant

Proof. We will derive this rule using the While rule. For all 𝑛, let 𝜑𝑛 = □(𝑃 ∧𝑏) and𝜓𝑛 = □(𝑃 ∧
¬𝑏). We will now show that (𝜓𝑛)𝑛∈N∞ converges. Suppose that𝑚𝑛 ⊨ □(𝑃 ∧¬𝑏) for each 𝑛 ∈ N. That
means that supp(𝑚𝑛) ⊆ 𝑃 ∧ ¬𝑏. We also have that supp(∑𝑛∈N𝑚𝑛) =

⋃
𝑛∈N supp(𝑚𝑛), and since

for each 𝑛 ∈ N, supp(𝑚𝑛) ⊆ 𝑃 ∧¬𝑏, then⋃
𝑛∈N supp(𝑚𝑛) ⊆ 𝑃 ∧¬𝑏, and thus∑𝑛∈N𝑚𝑛 ⊨ □(𝑃 ∧¬𝑏).

We remark that □(𝑃 ∧ 𝑏) ⊨ 𝑏 and □(𝑃 ∧ ¬𝑏) ⊨ ¬𝑏 trivially. We complete the derivation as follows:

⟨⌈𝑃 ∧ 𝑏⌉⟩ 𝐶 ⟨□𝑃⟩

⟨□(𝑃 ∧ 𝑏)⟩ 𝐶 ⟨□𝑃⟩
Lemma E.1

⟨□(𝑃 ∧ 𝑏)⟩ 𝐶 ⟨□(𝑃 ∧ 𝑏) ⊕ □(𝑃 ∧ ¬𝑏)⟩
Conseqence

⟨□(𝑃 ∧ 𝑏) ⊕ □(𝑃 ∧ ¬𝑏)⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩
While

⟨⌈𝑃⌉⟩ while 𝑏 do 𝐶 ⟨□(𝑃 ∧ ¬𝑏)⟩
Conseqence

□

E.4 Loop Variants
Lemma E.12. The following inference is derivable.

∀𝑛 < 𝑁 . 𝜑0 ⊨ ¬𝑏 𝜑𝑛+1 ⊨ 𝑏 ⟨𝜑𝑛+1⟩ 𝐶 ⟨𝜑𝑛⟩

⟨∃𝑛 : N.𝜑𝑛⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩
Variant
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Proof. For the purpose of applying the While rule, we define the following for all 𝑛 and 𝑁 :

𝜑 ′𝑛 =

{
𝜑𝑁−𝑛 if 𝑛 < 𝑁

0 ⊙ ⊤ if 𝑛 ≥ 𝑁
𝜓𝑛 =

{
𝜑0 if 𝑛 ∈ {𝑁,∞}
0 ⊙ ⊤ otherwise

It is easy to see that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. Each𝜓𝑛 except for𝜓𝑁 and𝜓∞ is only satisfied by 0, so taking

(𝑚𝑛)𝑛∈N such that𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛 ∈ N, it must be the case that

∑
𝑛∈N𝑚𝑛 =𝑚𝑁 . By assumption,

we know that 𝑚𝑁 ⊨ 𝜓∞ since 𝜓∞ = 𝜓𝑁 = 𝜑0. We also know that 𝜑 ′𝑛 ⊨ 𝑏 and 𝜓𝑛 ⊨ ¬𝑏 by our

assumptions and the fact that 0 ⊙ ⊤ ⊨ 𝑒 = 𝑢 for any 𝑒 and 𝑢. There are two cases for the premise of

the While rule (1) where 𝑛 < 𝑁 (left) and 𝑛 ≥ 𝑁 (right).

∀𝑚 < 𝑁 . ⟨𝜑𝑚+1⟩ 𝐶 ⟨𝜑𝑚⟩

∀𝑛 < 𝑁 . ⟨𝜑𝑁−𝑛⟩ 𝐶 ⟨𝜑𝑁−(𝑛+1)⟩

∀𝑛 < 𝑁 . ⟨𝜑 ′𝑛⟩ 𝐶 ⟨𝜑 ′𝑛+1 ⊕𝜓𝑛+1⟩

⟨⊤⟩ 𝐶 ⟨⊤⟩
True

⟨0 ⊙ ⊤⟩ 𝐶 ⟨0 ⊙ ⊤⟩
Scale

∀𝑛 ≥ 𝑁 . ⟨𝜑 ′𝑛⟩ 𝐶 ⟨𝜑 ′𝑛+1 ⊕𝜓𝑛+1⟩

Finally, we complete the derivation.

∀𝑁 ∈ N.

(1)
⟨𝜑 ′𝑛⟩ 𝐶 ⟨𝜑 ′𝑛+1 ⊕𝜓𝑛+1⟩
⟨𝜑𝑁 ⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩

While

⟨∃𝑛 : N.𝜑𝑛⟩ while 𝑏 do 𝐶 ⟨𝜑0⟩
Exists

□

Lemma E.13 (Lisbon Logic Loop Variants). The following inference is derivable.

∀𝑛 ∈ N. ⌈𝑃0⌉ ⊨ ¬𝑏 ⌈𝑃𝑛+1⌉ ⊨ 𝑏 ⟨⌈𝑃𝑛+1⌉⟩ 𝐶 ⟨^𝑃𝑛⟩

⟨∃𝑛 : N.⌈𝑃𝑛⌉⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩
Lisbon Variant

Proof. First, for all 𝑁 ∈ N, let 𝜑𝑛 and𝜓𝑛 be defined as follows:

𝜑𝑛 =

{
^𝑃𝑁−𝑛 if 𝑛 ≤ 𝑁

⊤ if 𝑛 > 𝑁
𝜓𝑛 =

{
^𝑃0 if 𝑛 ∈ {𝑁,∞}
⊤ otherwise

Now, we prove that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. Take any (𝑚𝑛)𝑛∈N such that𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛 ∈ N. Since
𝑚𝑁 ⊨ ^𝑃0, then there is some 𝜎 ∈ supp(𝑚𝑁 ) such that 𝜎 ∈ 𝑃0. By definition (∑𝑛∈N𝑚𝑛) (𝜎) ≥
𝑚𝑁 (𝜎) > 0, so

∑
𝑛∈N𝑚𝑛 ⊨ ^𝑃0 as well. We opt to derive this rule with the Iter rule rather than

While since it is inconvenient to split the assertion into components where 𝑏 is true and false. We

complete the derivation in two parts, and each part is broken into two cases. We start with (1),

and the case where 𝑛 < 𝑁 . In this case, we know that 𝜑𝑛 = ^𝑃𝑁−𝑛 and 𝜑𝑛+1 = ^𝑃𝑁−𝑛−1 (even if

𝑛 = 𝑁 − 1, then we get 𝜑𝑁 = ^𝑃0 = ^𝑃𝑁−(𝑁−1)−1).

⌈𝑃𝑁−𝑛⌉ ⊨ 𝑏
⟨⌈𝑃𝑁−𝑛⌉⟩ assume 𝑏 ⟨⌈𝑃𝑁−𝑛⌉⟩

Assume

⟨⌈𝑃𝑁−𝑛⌉⟩ 𝐶 ⟨^𝑃𝑁−𝑛−1⟩

⟨⌈𝑃𝑁−𝑛⌉⟩ assume 𝑏 #𝐶 ⟨^𝑃𝑁−𝑛−1⟩
Seq

⟨^𝑃𝑁−𝑛⟩ assume 𝑏 #𝐶 ⟨^𝑃𝑁−𝑛−1⟩
Lemma E.3

⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1⟩
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Now, we prove (1) where 𝑛 ≥ 𝑁 , 𝜑𝑛+1 = ⊤.

⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨⊤⟩
True

⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1⟩

We now move on to (2) below. On the left, 𝑛 = 𝑁 , and so 𝜑𝑛 = ^𝑃0 and 𝜓𝑛 = ^𝑃0. On the right,

𝑛 ≠ 𝑁 , so𝜓𝑛 = ⊤.
⌈𝑃0⌉ ⊨ ¬𝑏

⟨⌈𝑃0⌉⟩ assume ¬𝑏 ⟨⌈𝑃0⌉⟩
Assume

⟨⌈𝑃0⌉⟩ assume ¬𝑏 ⟨^𝑃0⟩
Conseqence

⟨^𝑃0⟩ assume ¬𝑏 ⟨^𝑃0⟩
Lemma E.3

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨⊤⟩
True

⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

Finally, we complete the derivation using the Iter rule.

∀𝑁 ∈ N.

(1)
⟨𝜑𝑛⟩ assume 𝑏 #𝐶 ⟨𝜑𝑛+1⟩

(2)
⟨𝜑𝑛⟩ assume ¬𝑏 ⟨𝜓𝑛⟩

⟨𝜑0⟩ 𝐶
⟨𝑏, ¬𝑏 ⟩

⟨𝜓∞⟩
Iter

⟨^𝑃𝑁 ⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩

⟨⌈𝑃𝑁 ⌉⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩
Conseqence

⟨∃𝑛 : N.⌈𝑃𝑛⌉⟩ while 𝑏 do 𝐶 ⟨^𝑃0⟩
Exists

□

F Hyper Hoare Logic
In this section, we present the omitted proof related the derived rules in Hyper Hoare Logic from

Section 6.2. First, we give the inductive definition of negation for syntactic assertions below:

¬(𝜑 ∧𝜓 ) ≜ ¬𝜑 ∨ ¬𝜓
¬(𝜑 ∨𝜓 ) ≜ ¬𝜑 ∧ ¬𝜓

¬(∀𝑥 : Val.𝜑) ≜ ∃𝑥 : Val.¬𝜑
¬(∃⟨𝜎⟩.𝜑) ≜ ∀𝑥 : Val.¬𝜑
¬(∀⟨𝜎⟩.𝜑) ≜ ∃⟨𝜎⟩.¬𝜑
¬(∃⟨𝜎⟩.𝜑) ≜ ∀⟨𝜎⟩.¬𝜑

¬(𝐵) ≜ ¬𝐵

F.1 Variable Assignment
For convenience, we repeat the definition of the syntactic variable assignment transformation.

A𝐸
𝑥 [𝜑 ∧𝜓 ] ≜ A𝐸

𝑥 [𝜑] ∧ A𝐸
𝑥 [𝜓 ]

A𝐸
𝑥 [𝜑 ∨𝜓 ] ≜ A𝐸

𝑥 [𝜑] ∨ A𝐸
𝑥 [𝜓 ]

A𝐸
𝑥 [∀𝑦 : 𝑇 .𝜑] ≜ ∀𝑦 : 𝑇 .A𝐸

𝑥 [𝜑]
A𝐸
𝑥 [∃𝑦 : 𝑇 .𝜑] ≜ ∃𝑦 : 𝑇 .A𝐸

𝑥 [𝜑]
A𝐸
𝑥 [∀⟨𝜎⟩.𝜑] ≜ ∀⟨𝜎⟩.A𝐸

𝑥 [𝜑 [𝐸 [𝜎]/𝜎 (𝑥)]]
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A𝐸
𝑥 [∃⟨𝜎⟩.𝜑] ≜ ∃⟨𝜎⟩.A𝐸

𝑥 [𝜑 [𝐸 [𝜎]/𝜎 (𝑥)]]
A𝐸
𝑥 [𝐵] ≜ 𝐵

Lemma F.1.

A𝐸
𝑥 [𝜑] = {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑}

Proof. By induction on the structure of 𝜑 .

• 𝜑 = 𝜑1 ∧ 𝜑2.

A𝐸
𝑥 [𝜑1 ∧ 𝜑2] = A𝐸

𝑥 [𝜑1] ∧ A𝐸
𝑥 [𝜑2]

By the induction hypothesis

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑1} ∧ {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑2}

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑1 ∧ 𝜑2}

• 𝜑 = 𝜑1 ∨ 𝜑2.

A𝐸
𝑥 [𝜑1 ∨ 𝜑2] = A𝐸

𝑥 [𝜑1] ∨ A𝐸
𝑥 [𝜑2]

By the induction hypothesis

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑1} ∨ {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑2}

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑1 ∨ 𝜑2}

• 𝜑 = ∀𝑦 : 𝑇 . 𝜓 .

A𝐸
𝑥 [∀𝑦 : 𝑇 . 𝜓 ] = ∀𝑦 : 𝑇 . A𝐸

𝑥 [𝜓 ]

=
⋃
𝑣∈𝑇
{𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜓 [𝑣/𝑦]}

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈
⋃
𝑣∈𝑇

𝜓 [𝑣/𝑦]}

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ ∀𝑦 : 𝑇 . 𝜓 }

• 𝜑 = ∃𝑦 : 𝑇 . 𝜓 .

A𝐸
𝑥 [∃𝑦 : 𝑇 . 𝜓 ] = ∃𝑦 : 𝑇 . A𝐸

𝑥 [𝜓 ]

=
⋂
𝑣∈𝑇
{𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ 𝜓 [𝑣/𝑦]}

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈
⋂
𝑣∈𝑇

𝜓 [𝑣/𝑦]}

= {𝑚 ∈ W(S) | J𝑥 B 𝐸K† (𝑚) ∈ ∃𝑦 : 𝑇 . 𝜓 }

• ∀⟨𝜎⟩.𝜑 .

A𝐸
𝑥 [∀⟨𝜎⟩.𝜑] = ∀⟨𝜎⟩.A𝐸

𝑥 [𝜑 [𝐸 [𝜎]/𝜎 (𝑥)]]

By the induction hypothesis.

= ∀⟨𝜎⟩.{𝑚 | J𝑥 B 𝐸K† (𝑚) ∈ 𝜑 [𝐸 [𝜎]/𝜎 (𝑥)]}

= {𝑚 | ∀𝑡 ∈ supp(𝑚). J𝑥 B 𝐸K† (𝑚) ∈ 𝜑 [𝐸 [𝑡]/𝜎 (𝑥)] [𝑡/𝜎]}
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Since𝑚 and J𝑥 B 𝐸K† (𝑚) differ only in the values of 𝑥 , we can instead quantify over the

post-states, which are updated such that 𝑡 (𝑥) = 𝐸 [𝑡].

= {𝑚 | J𝑥 B 𝐸K† (𝑚) ∈ {𝑚′ | ∀𝑡 ∈ supp(𝑚′). 𝑚′ ∈ 𝜑 [𝑡/𝜎]}

= {𝑚 | J𝑥 B 𝐸K† (𝑚) ∈ ∀⟨𝜎⟩.𝜑}
□

F.2 Nondeterministic Assignment

H𝑆
𝑥 [𝜑 ∧𝜓 ] ≜ H𝑆

𝑥 [𝜑] ∧ H𝑆
𝑥 [𝜓 ]

H𝑆
𝑥 [𝜑 ∨𝜓 ] ≜ H𝑆

𝑥 [𝜑] ∨ H𝑆
𝑥 [𝜓 ]

H𝑆
𝑥 [∀𝑦 : 𝑇 .𝜑] ≜ ∀𝑦 : 𝑇 .H𝑆

𝑥 [𝜑]
H𝑆
𝑥 [∃𝑦 : 𝑇 .𝜑] ≜ ∃𝑦 : 𝑇 .H𝑆

𝑥 [𝜑]
H𝑆
𝑥 [∀⟨𝜎⟩.𝜑] ≜ ∀⟨𝜎⟩. ∀𝑣 : 𝑆. H𝑆

𝑥 [𝜑 [𝑣/𝜎 (𝑥)]]
H𝑆
𝑥 [∃⟨𝜎⟩.𝜑] ≜ ∃⟨𝜎⟩. ∃𝑣 : 𝑆. H𝑆

𝑥 [𝜑 [𝑣/𝜎 (𝑥)]]
H𝑆
𝑥 [𝐵] ≜ 𝐵

Lemma F.2. If𝑚 ∈ H𝑆
𝑥 [𝜑], then

⊕
𝑣∈𝑆 1J𝑥B𝑣K†(𝑚) ⇒ 𝜑

Proof. Suppose that𝑚′ ⊨
⊕

𝑣∈𝑆 1J𝑥B𝑣K†(𝑚) . The proof proceeds by induction on the structure

of 𝜑 .

• 𝜑 = 𝜑1 ∧ 𝜑2. We know that𝑚 ∈ H𝑆
𝑥 [𝜑𝑖 ] for each 𝑖 ∈ {1, 2}, so by the induction hypothesis

𝑚′ ⊨ 𝜑𝑖 and therefore𝑚′ ⊨ 𝜑1 ∧ 𝜑2.

• 𝜑 = 𝜑1 ∨ 𝜑2. Without loss of generality, suppose that𝑚 ∈ H𝑆
𝑥 [𝜑1], so by the induction

hypothesis𝑚′ ⊨ 𝜑1 and therefore we can weaken the assertion to conclude that𝑚′ ⊨ 𝜑1∨𝜑2.

• 𝜑 = ∀𝑦 : 𝑇 . 𝜓 . We know that𝑚 ∈ H𝑆
𝑥 [𝜓 [𝑣/𝑦]] for all 𝑣 ∈ 𝑇 , therefore by the induction

hypothesis,𝑚′ ⊨ 𝜑 [𝑣/𝑦] for all 𝑣 ∈ 𝑇 . This means that𝑚′ ⊨ ∀𝑦 : 𝑇 . 𝜑 .
• 𝜑 = ∃𝑦 : 𝑇 . 𝜓 . We know that𝑚 ∈ H𝑆

𝑥 [𝜓 [𝑣/𝑦]] for some 𝑣 ∈ 𝑇 , therefore by the induction

hypothesis,𝑚′ ⊨ 𝜑 [𝑣/𝑦]. This means that𝑚′ ⊨ ∃𝑦 : 𝑇 . 𝜑 .
• 𝜑 = ∀⟨𝜎⟩. 𝜓 . We know that𝑚 ∈ H𝑆

𝑥 [𝜓 [𝑣/𝜎 (𝑥)] [𝑠/𝜎]] for all 𝑠 ∈ supp(𝑚) and 𝑣 ∈ 𝑆 . There-
fore, by the induction hypothesis,𝑚′ ⊨ 𝜓 [𝑣/𝜎 (𝑥)] [𝑠/𝜎]. Now, note that𝜓 [𝑣/𝜎 (𝑥)] [𝑠/𝜎] =
𝜓 [𝑠 [𝑥 B 𝑣]/𝜎], so clearly𝑚′ ⊨ 𝜓 [𝑠 [𝑥 B 𝑣]/𝜎] for each 𝑠 ∈ supp(𝑚) and 𝑣 ∈ 𝑆 . In addition,

supp(𝑚′) = {𝑠 [𝑥 B 𝑣] | 𝑠 ∈ supp(𝑚), 𝑣 ∈ 𝑆}, and so𝑚′ ⊨ 𝜓 [𝑡/𝜎] for each 𝑡 ∈ supp(𝑚′),
therefore𝑚′ ⊨ ∀⟨𝜎⟩. 𝜓 .
• 𝜑 = ∃⟨𝜎⟩. 𝜓 . We know that𝑚 ∈ H𝑆

𝑥 [𝜓 [𝑣/𝜎 (𝑥)] [𝑠/𝜎]] for some 𝑠 ∈ supp(𝑚) and 𝑣 ∈ 𝑆 .

Therefore, by the induction hypothesis,𝑚′ ⊨ 𝜓 [𝑣/𝜎 (𝑥)] [𝑠/𝜎]. Now, note that𝜓 [𝑣/𝜎 (𝑥)] [𝑠/𝜎] =
𝜓 [𝑠 [𝑥 B 𝑣]/𝜎], so clearly𝑚′ ⊨ 𝜓 [𝑠 [𝑥 B 𝑣]/𝜎] for some 𝑠 ∈ supp(𝑚) and 𝑣 ∈ 𝑆 . In addition,

supp(𝑚′) = {𝑠 [𝑥 B 𝑣] | 𝑠 ∈ supp(𝑚), 𝑣 ∈ 𝑆}, and so𝑚′ ⊨ 𝜓 [𝑡/𝜎] for some 𝑡 ∈ supp(𝑚′),
therefore𝑚′ ⊨ ∃⟨𝜎⟩. 𝜓 .
• 𝜑 = 𝐵. If𝑚 ∈ H𝑆

𝑥 [𝐵] = 𝐵, then 𝐵 must be a tautology, so it must be the case that𝑚′ ⊨ 𝐵.

□

Lemma F.3. The following rule is derivable

⟨H {𝑎,𝑏 }𝑥 [𝜑]⟩ (𝑥 B 𝑎) + (𝑥 B 𝑏) ⟨𝜑⟩
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Proof.

∀𝑚 ∈ H {𝑎,𝑏 }𝑥 [𝜑] .

⟨1𝑚⟩ 𝑥 B 𝑎 ⟨1J𝑥=𝑎K†(𝑚)⟩
Assign

⟨1𝑚⟩ 𝑥 B 𝑏 ⟨1J𝑥=𝑏K†(𝑚)⟩
Assign

⟨1𝑚⟩ (𝑥 B 𝑎) + (𝑥 B 𝑏) ⟨
⊕

𝑣∈{𝑎,𝑏 } 1J𝑥=𝑣K†(𝑚)⟩
Plus

⟨1𝑚⟩ (𝑥 B 𝑎) + (𝑥 B 𝑏) ⟨𝜑⟩
Conseqence

⟨H {𝑎,𝑏 }𝑥 [𝜑]⟩ (𝑥 B 𝑎) + (𝑥 B 𝑏) ⟨𝜑⟩
Exists

□

Lemma F.4. The following rule is derivable

⟨HN𝑥 [𝜑]⟩ 𝑥 B ⋆ ⟨𝜑⟩

Proof. Recall that 𝑥 B ⋆ is syntactic sugar for 𝑥 B 0 # (𝑥 B 𝑥 + 1)★ and (𝑥 B 𝑥 + 1)★ is

syntactic sugar for (𝑥 B 𝑥 + 1) ⟨1, 1⟩ . We will derive this rule using the Iter rule. The first step is to

select the assertion families:

𝜑𝑛 ≜ 𝜓𝑛 ≜ 1J𝑥B𝑛K†(𝑚) 𝜓∞ ≜
⊕
𝑘∈N

1J𝑥B𝑘K†(𝑚)

So clearly (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. We now complete derivation (1) below:
1J𝑥B𝑛K†(𝑚) ⊨ 1 = 1

⟨1J𝑥B𝑛K†(𝑚)⟩ assume 1 ⟨1J𝑥B𝑛K†(𝑚)⟩
Assume

⟨1J𝑥B𝑛K†(𝑚)⟩ 𝑥 B 𝑥 + 1 ⟨1J𝑥B𝑛+1K†(𝑚)⟩
Assign

⟨1J𝑥B𝑛K†(𝑚)⟩ assume 1 # 𝑥 B 𝑥 + 1 ⟨1J𝑥B𝑛+1K†(𝑚)⟩
Seq

⟨1J𝑥B𝑛K†(𝑚)⟩ (𝑥 B 𝑥 + 1)★ ⟨
⊕

𝑘∈N 1J𝑥B𝑘K†(𝑚)⟩
Iter

Using (1) above, we complete the derivation as follows:

∀𝑚 ∈ HN𝑥 [𝜑] .

⟨1𝑚⟩ 𝑥 B 0 ⟨1J𝑥B0K†(𝑚)⟩
Assign

(1)
⟨1𝑚⟩ 𝑥 B ⋆ ⟨

⊕
𝑣∈N 1J𝑥=𝑣K†(𝑚)⟩

Seq

⟨1𝑚⟩ 𝑥 B ⋆ ⟨𝜑⟩
Conseqence

⟨HN𝑥 [𝜑]⟩ 𝑥 B ⋆ ⟨𝜑⟩
Exists

□

F.3 Assume

Π𝑏 [𝜑 ∧𝜓 ] ≜ Π𝑏 [𝜑] ∧ Π𝑏 [𝜓 ]
Π𝑏 [𝜑 ∨𝜓 ] ≜ Π𝑏 [𝜑] ∨ Π𝑏 [𝜓 ]

Π𝑏 [∀𝑥 : 𝑇 .𝜑] ≜ ∀𝑥 : 𝑇 .Π𝑏 [𝜑]
Π𝑏 [∃𝑥 : 𝑇 .𝜑] ≜ ∃𝑥 : 𝑇 .Π𝑏 [𝜑]
Π𝑏 [∀⟨𝜎⟩.𝜑] ≜ ∀⟨𝜎⟩. ¬𝑏 [𝜎] ∨ Π𝑏 [𝜑]
Π𝑏 [∃⟨𝜎⟩.𝜑] ≜ ∃⟨𝜎⟩. 𝑏 [𝜎] ∧ Π𝑏 [𝜑]

Π𝑏 [𝐵] ≜ 𝐵
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Lemma F.5. For any assertion 𝜑 (from the syntax in Section 6.2) and test 𝑏, ⊢ ⟨Π𝑏 [𝜑]⟩ assume 𝑏 ⟨𝜑⟩

Proof. We first establish that for any𝑚, if𝑚 ⊨ Π𝑏 [𝜑], then𝑚 ⊨ (𝜑 ∧ □𝑏) ⊕ □(¬𝑏) by induction

on the structure of 𝜑 .

• 𝜑 = 𝜑1 ∧ 𝜑2. We know that𝑚 ⊨ Π𝑏 [𝜑𝑖 ] for each 𝑖 ∈ {1, 2}. By the induction hypothesis, we

get that𝑚 ⊨ (𝜑𝑖 ∧ □𝑏) ⊕ □(¬𝑏), so𝑚 ⊨ ((𝜑1 ∧ □𝑏) ⊕ □(¬𝑏)) ∧ ((𝜑2 ∧ □𝑏) ⊕ □(¬𝑏)). Given
that 𝑏 and ¬𝑏 are disjoint, we can simplify this to𝑚 ⊨ (𝜑1 ∧ 𝜑2 ∧ □𝑏) ⊕ □(¬𝑏).
• 𝜑 = 𝜑1 ∨ 𝜑2. Without loss of generality, suppose𝑚 ⊨ Π𝑏 [𝜑1]. By the induction hypothesis,

we get that𝑚 ⊨ (𝜑1 ∧ □𝑏) ⊕ □(¬𝑏). We can weaken this to𝑚 ⊨ ((𝜑1 ∨ 𝜑2) ∧ □𝑏) ⊕ □(¬𝑏).
• 𝜑 = ∀𝑥 : 𝑇 .𝜑 . Similar to the case for conjunctions above.

• 𝜑 = ∃𝑥 : 𝑇 .𝜑 . Similar to the case for disjunctions above.

• 𝜑 = ∀⟨𝜎⟩.𝜑 . We know that𝑚 ⊨ ¬𝑏 [𝑠] ∨ Π𝑏 [𝜑 [𝑠/𝜎]] for all 𝑠 ∈ supp(𝑚). So, for each 𝑠 , we

know that either J𝑏KTest (𝑠) = false, of𝑚 ⊨ Π𝑏 [𝜑 [𝑠/𝜎]], in which case𝑚 ⊨ (𝜑 [𝑠/𝜎] ∧ □𝑏) ⊕
(□(¬𝑏)) by the induction hypothesis. Since this is true for all 𝑠 , we get𝑚 ⊨ ((∀⟨𝜎⟩.𝜑) ∧
□𝑏) ⊕ (□(¬𝑏)).
• 𝜑 = ∃⟨𝜎⟩.𝜑 . We know that𝑚 ⊨ 𝑏 [𝑠]∧Π𝑏 [𝜑 [𝑠/𝜎]] for some 𝑠 ∈ supp(𝑚). So, by the induction

hypothesis𝑚 ⊨ (𝜑 [𝑠/𝜎]∧□𝑏)⊕□(¬𝑏), whichwe canweaken to𝑚 ⊨ ((∃⟨𝜎⟩.𝜑)∧□𝑏)⊕□(¬𝑏)
• 𝜑 = 𝐵. Since𝑚 ⊨ 𝐵, then 𝐵 must not contain any free variables, and therefore 𝐵 is a tautology.

So we have:

𝑚 ⊨ ⊤ ⇔ 𝑚 ⊨ □𝑏 ⊕ □(¬𝑏) ⇔ 𝑚 ⊨ (𝐵 ∧ □𝑏) ⊕ □(¬𝑏)
We complete the derivation as follows:

𝜑 ∧ □𝑏 ⊨ 𝑏
⟨𝜑 ∧ □𝑏⟩ assume 𝑏 ⟨𝜑 ∧ □𝑏⟩

Assume

□(¬𝑏) ⊨ 𝑏 = 0

⟨□(¬𝑏)⟩ assume 𝑏 ⟨(□(¬𝑏)) ⊙ 0⟩
Assume

⟨(𝜑 ∧ □𝑏) ⊕ □(¬𝑏)⟩ assume 𝑏 ⟨(𝜑 ∧ □𝑏) ⊕ (□(¬𝑏)) ⊙ 0⟩
Choice

⟨Π𝑏 [𝜑]⟩ assume 𝑏 ⟨𝜑⟩
Conseqence

□

G Reusing Proof Fragments
G.1 Integer Division
Recall the definition of the program below that divides two integers.

Div ≜


𝑞 B 0 # 𝑟 B 𝑎 #
while 𝑟 ≥ 𝑏 do
𝑟 B 𝑟 − 𝑏 #
𝑞 B 𝑞 + 1

To analyze this program with the Variant rule, we need a family of variants (𝜑𝑛)𝑛∈N, defined as

follows.

𝜑𝑛 ≜

{
⌈𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏⌉ if 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋
⊥ if 𝑛 > ⌊𝑎 ÷ 𝑏⌋

Additionally, it must be the case that 𝜑𝑛 ⊨ 𝑟 ≥ 𝑏 for all 𝑛 ≥ 1 and 𝜑0 ⊨ 𝑟 < 𝑏. For 𝑛 > ⌊𝑎 ÷ 𝑏⌋,
𝜑𝑛 = ⊥ and ⊥ ⊨ 𝑟 ≥ 𝑏 vacuously. If 1 ≤ 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋, then we know that 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏, and
since 𝑛 ≥ 1, then 𝑟 ≥ 𝑏. When 𝑛 = 0, we know that 𝑟 = 𝑎 mod 𝑏, and so by the definition of mod,

it must be that 𝑟 < 𝑏.

The derivation is given in Figure 5. Most of the steps are obtained by straightforward applications

of the inference rules, with consequences denoted by =⇒ . In the application of the Variant rule,
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⟨⌈𝑎 ≥ 0 ∧ 𝑏 > 0⌉⟩
𝑞 B 0 #
⟨⌈𝑎 ≥ 0 ∧ 𝑏 > 0 ∧ 𝑞 = 0⌉⟩
𝑟 B 𝑎 #
⟨⌈𝑎 ≥ 0 ∧ 𝑏 > 0 ∧ 𝑞 = 0 ∧ 𝑟 = 𝑎⌉⟩ =⇒
⟨⌈𝑞 + ⌊𝑎 ÷ 𝑏⌋ = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + ⌊𝑎 ÷ 𝑏⌋ × 𝑏⌉⟩ =⇒
⟨𝜑 ⌊𝑎÷𝑏 ⌋⟩ =⇒
⟨∃𝑛 : N.𝜑𝑛⟩

while 𝑟 ≥ 𝑏 do

⟨𝜑𝑛⟩ =⇒
⟨⌈𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 𝑛 × 𝑏⌉⟩
𝑟 B 𝑟 − 𝑏 #
⟨⌈𝑞 + 𝑛 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + (𝑛 − 1) × 𝑏⌉⟩
𝑞 B 𝑞 + 1
⟨⌈𝑞 + (𝑛 − 1) = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + (𝑛 − 1) × 𝑏⌉⟩ =⇒
⟨𝜑𝑛−1⟩

⟨𝜑0⟩ =⇒
⟨⌈𝑞 + 0 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏) + 0 × 𝑏⌉⟩ =⇒
⟨⌈𝑞 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏)⌉⟩

Fig. 5. Derivation for the DIV program.

we only show the case where 𝑛 ≤ ⌊𝑎 ÷ 𝑏⌋. The case where 𝑛 > ⌊𝑎 ÷ 𝑏⌋ is vacuous by applying the

False rule from Figure 3.

G.2 The Collatz Conjecture
Recall the definition of the program below that finds the stopping time of some positive number 𝑛.

Collatz ≜


𝑖 B 0 #
while 𝑎 ≠ 1 do
𝑏 B 2 # Div #
if 𝑟 = 0 then 𝑎 B 𝑞 else 𝑎 B 3 × 𝑎 + 1 #
𝑖 B 𝑖 + 1

The derivation is shown in Figure 6. Since we do not know if the program will terminate, we use

the Invariant rule to obtain a partial correctness specification. We choose the loop invariant:

𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 . 𝑓 𝑘 (𝑛) ≠ 1

So, on each iteration of the loop, 𝑎 holds the value of applying 𝑓 repeatedly 𝑖 times to 𝑛, and 1 has

not yet appeared in this sequence.

Immediately upon entering the while loop, we see that 𝑎 = 𝑓 𝑖 (𝑛) ≠ 1, and so from that and the

fact that ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1, we can conclude that ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1.
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⟨⌈𝑎 = 𝑛 ∧ 𝑛 > 0⌉⟩
𝑖 B 0 #
⟨⌈𝑎 = 𝑛 ∧ 𝑛 > 0 ∧ 𝑖 = 0⌉⟩ =⇒
⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1⌉⟩
while 𝑎 ≠ 1 do

⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑎 ≠ 1⌉⟩ =⇒
⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1⌉⟩
𝑏 B 2 #
⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑏 = 2⌉⟩
Div #

⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑏 = 2 ∧ 𝑞 = ⌊𝑎 ÷ 𝑏⌋ ∧ 𝑟 = (𝑎 mod 𝑏)⌉⟩ =⇒
⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ 𝑟 = (𝑓 𝑖 (𝑛) mod 2)⌉⟩
if 𝑟 = 0 then

⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ 𝑟 = (𝑓 𝑖 (𝑛) mod 2) ∧ 𝑟 = 0⌉⟩ =⇒
⟨⌈∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ (𝑓 𝑖 (𝑛) mod 2) = 0⌉⟩
𝑎 B 𝑞

⟨⌈∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑎 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ (𝑓 𝑖 (𝑛) mod 2) = 0⌉⟩ =⇒
⟨□(𝑎 = 𝑓 𝑖+1 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1)⟩
else

⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑞 = ⌊𝑓 𝑖 (𝑛) ÷ 2⌋ ∧ 𝑟 = (𝑓 𝑖 (𝑛) mod 2) ∧ 𝑟 ≠ 0⌉⟩ =⇒
⟨⌈𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ (𝑓 𝑖 (𝑛) mod 2) = 1⌉⟩
𝑎 B 3 × 𝑎 + 1 #
⟨⌈𝑎 = 3 × 𝑓 𝑖 (𝑛) + 1 ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1 ∧ (𝑓 𝑖 (𝑛) mod 2) = 1⌉⟩ =⇒
⟨□(𝑎 = 𝑓 𝑖+1 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1)⟩

⟨□(𝑎 = 𝑓 𝑖+1 (𝑛) ∧ ∀𝑘 < 𝑖 + 1.𝑓 𝑘 (𝑛) ≠ 1)⟩
𝑖 B 𝑖 + 1
⟨□(𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1)⟩

⟨□(𝑎 = 𝑓 𝑖 (𝑛) ∧ ∀𝑘 < 𝑖 .𝑓 𝑘 (𝑛) ≠ 1 ∧ 𝑎 = 1)⟩ =⇒
⟨□(𝑖 = 𝑆𝑛)⟩

Fig. 6. Derivation for the COLLATZ program.

The DIV program is analyzed by inserting the proof from Figure 5, along with an application of

the rule of Constancy to add information about the other variables. We can omit the □ modality

from rule of Constancy, since ⌈𝑃⌉ ∧ □𝑄 ⇔ ⌈𝑃 ∧𝑄⌉.
When it comes time to analyze the if statement, we use the If (Hoare) rule (Lemma E.8) to get a

partial correctness specification. The structure of the if statement mirrors the definition of 𝑓 (𝑛), so
the effect is the same as applying 𝑓 to 𝑎 one more time, therefore we get that 𝑎 = 𝑓 𝑖+1 (𝑛).
After exiting the while loop, we know that 𝑓 𝑖 (𝑛) = 1 and 𝑓 𝑘 (𝑛) ≠ 1 for all 𝑘 < 𝑖 , therefore 𝑖 is

(by definition) the stopping time, 𝑆𝑛 .
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⟨⌈true⌉⟩
𝑎 := 0 #
⟨⌈𝑎 = 0⌉⟩
𝑟 := 0 #
⟨⌈𝑎 = 0 ∧ 𝑟 = 0⌉⟩ =⇒
⟨⌈𝑎 = 0 ∧ 𝑟 = 0 mod 2⌉ (1)⟩ =⇒
⟨𝜑0⟩©­«
𝑎 := 𝑎 + 1 #
𝑏 := 2 #
Div

ª®¬
⟨ 1
2
⟩

⟨𝜓∞⟩ =⇒
⟨⌈𝑟 = 0⌉ ⊕ 2

3

⌈𝑟 = 1⌉⟩

⟨𝜑𝑛⟩ =⇒
⟨⌈𝑎 = 𝑛⌉ ( 1

2
𝑛 )⟩

assume 1

2
#

⟨⌈𝑎 = 𝑛⌉ (
1

2
𝑛+1 )⟩

𝑎 := 𝑎 + 1 #
⟨⌈𝑎 = 𝑛 + 1⌉ (

1

2
𝑛+1 )⟩

𝑏 := 2 #
⟨⌈𝑎 = 𝑛 + 1 ∧ 𝑏 = 2⌉ (

1

2
𝑛+1 )⟩

Div

⟨⌈𝑎 = 𝑛 + 1 ∧ 𝑟 = 𝑎 mod 2⌉ (
1

2
𝑛+1 )⟩ =⇒

⟨𝜑𝑛+1⟩

Fig. 7. Left: derivation for the main body of the probabilistic looping program. Right: derivation of the
probabilistic loop.

G.3 Embedding Division in a Probabilistic Program
Recall the program that loops an even number of iterations with probability

2

3
and an odd number

of iterations with probability
1

3
.

𝑎 := 0 # 𝑟 := 0 # (𝑎 := 𝑎 + 1 # 𝑏 := 2 # Div) ⟨
1

2
⟩

To analyze this program with the Iter rule, we define the two families of assertions below for

𝑛 ∈ N.

𝜑𝑛 ≜ ⌈𝑎 = 𝑛 ∧ 𝑟 = 𝑎 mod 2⌉ ( 1

2
𝑛 ) 𝜓𝑛 ≜ ⌈𝑎 = 𝑛 ∧ 𝑟 = 𝑎 mod 2⌉ (

1

2
𝑛+1 )

Additionally, let 𝜓∞ = ⌈𝑟 = 0⌉ ⊕ 2

3

⌈𝑟 = 1⌉. We now show that (𝜓𝑛)𝑛∈N∞ converges. Suppose that

𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛 ∈ N. So𝑚𝑛 ⊨ ⌈𝑟 = 0⌉ (
1

2
𝑛+1 )

for all even 𝑛 and𝑚𝑛 ⊨ ⌈𝑟 = 1⌉ (
1

2
𝑛+1 )

for all odd 𝑛. In

other words, the cummulative probability mass for each𝑚𝑛 where 𝑛 is even is:∑︁
𝑘∈N

1

2
2𝑘+1 =

1

2

·
∑︁
𝑘∈N

(
1

4

)𝑘
=
1

2

· 1

1 − 1

4

=
2

3

Where the second-to-last step is obtained using the standard formula for geometric series. Similarly,

the total probability mass for 𝑛 being odd is:∑︁
𝑘∈N

1

2
2𝑘+2 =

1

4

·
∑︁
𝑘∈N

(
1

4

)𝑘
=
1

4

· 1

1 − 1

4

=
1

3

We therefore get that

∑
𝑛∈N𝑚𝑛 ⊨ ⌈𝑟 = 0⌉ ⊕ 2

3

⌈𝑟 = 1⌉. Having shown that, we complete the derivation,

shown in Figure 7. Two proof obligations are generated by applying the Iter rule, the first is proven

in Figure 7. Note that in order to apply our previous proof for the DIV program, it is necessary to

use the Scale rule. The second proof obligation of the Iter rule is to show ⟨𝜑𝑛⟩ assume
1

2
⟨𝜓𝑛⟩,

which is easily dispatched using the Assume rule.
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⟨⌈𝑥 = 0 ∧ 𝑦 = 0⌉⟩ =⇒
⟨𝜑𝑁+𝑀⟩ =⇒
⟨∃𝑛 : N. 𝜑𝑛⟩
while 𝑥 < 𝑁 ∨ 𝑦 < 𝑀 do

⟨𝜑𝑛+1⟩
if 𝑥 < 𝑁 ∧ 𝑦 < 𝑀 then

⟨

min(𝑁,𝑛)⊕
𝑘=max(1,𝑛+1−𝑀)

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))⟩

(𝑥 B 𝑥 + 1) + (𝑦 B 𝑦 + 1)

⟨

min(𝑁,𝑛)⊕
𝑘=max(1,𝑛+1−𝑀)

⌈𝑥 = 𝑁 − 𝑘 + 1 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⊕ ⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))⟩

else if 𝑥 ≥ 𝑁 then

⟨

0⊕
𝑘=max(0,𝑛+1−𝑀)

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))⟩

𝑦 B 𝑦 + 1

⟨

0⊕
𝑘=max(0,𝑛+1−𝑀)

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))⟩

else

⟨

min(𝑁,𝑛+1)⊕
𝑘=𝑛+1
⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))⟩

𝑥 B 𝑥 + 1

⟨

min(𝑁,𝑛+1)⊕
𝑘=𝑛+1
⌈𝑥 = 𝑁 − 𝑘 + 1 ∧ 𝑦 = 𝑀 − (𝑛 + 1 − 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))⟩

⟨𝜑𝑛⟩

⟨⌈𝑥 = 𝑁 ∧ 𝑦 = 𝑀⌉ ((𝑁 +𝑀𝑁 ))⟩

Fig. 8. Random walk proof

H Graph Problems andQuantitative Analysis
H.1 Counting RandomWalks
Recall the following program that performs a random walk on a two dimensional grid in order to

discover how many paths exist between the origin (0, 0) and the point (𝑁,𝑀).

Walk ≜



while 𝑥 < 𝑁 ∨ 𝑦 < 𝑀 do
if 𝑥 < 𝑁 ∧ 𝑦 < 𝑀 then
(𝑥 B 𝑥 + 1) + (𝑦 B 𝑦 + 1)

else if 𝑥 ≥ 𝑁 then
𝑦 B 𝑦 + 1

else
𝑥 B 𝑥 + 1
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The derivation is provided in Figure 8. Since this program is guaranteed to terminate after exactly

𝑁 +𝑀 steps, we use the following loop Variant, where the bounds for 𝑘 are described in Section 8.1.

𝜑𝑛 ≜

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

⌈𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)⌉ ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

Recall that 𝑛 indicates how many steps (𝑥,𝑦) is from (𝑁,𝑀), so 𝜑𝑁+𝑀 is the precondition and 𝜑0

is the postcondition. Upon entering the while loop, we encounter nested if statements, which

we analyze with the If rule. This requires us to split 𝜑𝑛+1 into three components, satisfying

𝑛 < 𝑁 ∧ 𝑦 < 𝑀 , 𝑛 ≥ 𝑁 , and 𝑦 ≥ 𝑀 , respectively. The assertion 𝑥 ≥ 𝑁 is only possible if

we have already taken at least 𝑁 steps, or in other words, if 𝑛 + 1 ≤ (𝑁 +𝑀) − 𝑁 = 𝑀 . Letting 𝑘

range from max(0, 𝑛 + 1 −𝑀) to 0 therefore gives us a single term 𝑘 = 0 when 𝑛 + 1 ≤ 𝑀 and an

empty conjunction otherwise. A similar argument holds when 𝑦 ≥ 𝑀 . All the other outcomes go

into the first branch, where we preclude the 𝑘 = 0 and 𝑘 = 𝑛 + 1 cases since it must be true that

𝑥 ≠ 𝑁 and 𝑦 ≠ 𝑀 .

Let 𝑃 (𝑛, 𝑘) = (𝑥 = 𝑁 − 𝑘 ∧ 𝑦 = 𝑀 − (𝑛 − 𝑘)). Using this shorthand, the postcondition at the

end of the if statement is obtained by taking an outcome conjunction of the results from the three

branches.

min(𝑁,𝑛)⊕
𝑘=max(1,𝑛+1−𝑀)

⌈𝑃 (𝑛, 𝑘 − 1)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⊕
min(𝑁,𝑛)⊕

𝑘=max(1,𝑛+1−𝑀)
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))

⊕
0⊕

𝑘=max(0,𝑛+1−𝑀)
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 )) ⊕

min(𝑁,𝑛+1)⊕
𝑘=𝑛+1
⌈𝑃 (𝑛, 𝑘 − 1)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))

Now, we can combine the conjunctions with like terms.

min(𝑁,𝑛+1)⊕
𝑘=max(1,𝑛+1−𝑀)

⌈𝑃 (𝑛, 𝑘 − 1)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 )) ⊕
min(𝑁,𝑛)⊕

𝑘=max(0,𝑛+1−𝑀)
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−𝑘 ))

And adjust the bounds on the first conjunction by subtracting 1 from the lower and upper bounds

of 𝑘 :
min(𝑁−1,𝑛)⊕

𝑘=max(0,𝑛−𝑀)
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−(𝑘+1) )) ⊕

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛+1−𝑀)

⌈𝑃 (𝑛, 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))

Now, we examine when the bounds of these two conjunctions differ. If 𝑛 ≥ 𝑀 , then the first

conjunction has an extra 𝑘 = 𝑛 −𝑀 term. Similarly, the second conjunction has an extra 𝑘 = 𝑁

term when 𝑛 ≥ 𝑁 . Based on that observation, we split them as follows:⊕
𝑘∈{𝑛−𝑀 |𝑛≥𝑀 }

⌈𝑃 (𝑛, 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)
𝑁−(𝑘+1) )) ⊕

⊕
𝑘∈{𝑁 |𝑛≥𝑁 }

⌈𝑃 (𝑛, 𝑘)⌉ ((
𝑁 +𝑀−(𝑛+1)

𝑁−𝑘 ))

⊕
min(𝑁−1,𝑛)⊕

𝑘=max(0,𝑛+1−𝑀)
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−(𝑛+1)
𝑁−(𝑘+1) )+(𝑁 +𝑀−(𝑛+1)𝑁−𝑘 ))

Knowing that 𝑘 = 𝑛 −𝑀 in the first conjunction, we get that:(
𝑁 +𝑀 − (𝑛 + 1)
𝑁 − (𝑘 + 1)

)
=

(
𝑁 +𝑀 − (𝑛 + 1)
𝑁 − (𝑛 −𝑀 + 1)

)
= 1 =

(
𝑁 +𝑀 − 𝑛
𝑁 − 𝑘

)
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Similarly, for the second conjunction we get the same weight. Also, observe that for any 𝑎 and 𝑏:(
𝑎

𝑏

)
+

(
𝑎

𝑏 + 1

)
=

𝑎!

𝑏!(𝑎 − 𝑏)! +
𝑎!

(𝑏 + 1)!(𝑎 − 𝑏 − 1)!

=
𝑎!

𝑏!(𝑎 − 𝑏) (𝑎 − 𝑏 − 1)! +
𝑎!

(𝑏 + 1)𝑏!(𝑎 − 𝑏 − 1)!

=
𝑎!(𝑏 + 1) + 𝑎!(𝑎 − 𝑏)

(𝑏 + 1)𝑏!(𝑎 − 𝑏) (𝑎 − 𝑏 − 1)!

=
𝑎!(𝑏 + 1 + 𝑎 − 𝑏)
(𝑏 + 1)!(𝑎 − 𝑏)!

=
(𝑎 + 1)!

(𝑏 + 1)!((𝑎 + 1) − (𝑏 + 1))!

=

(
𝑎 + 1
𝑏 + 1

)
So, letting 𝑎 = 𝑁 +𝑀 − (𝑛 + 1) and 𝑏 = 𝑁 − (𝑘 + 1), it follows that:(

𝑁 +𝑀 − (𝑛 + 1)
𝑁 − (𝑘 + 1)

)
+

(
𝑁 +𝑀 − (𝑛 + 1)

𝑁 − 𝑘

)
=

(
𝑁 +𝑀 − 𝑛
𝑁 − 𝑘

)
We can therefore rewrite the assertion as follows:⊕

𝑘∈{𝑛−𝑀 |𝑛≥𝑀 }
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−𝑛
𝑁−𝑘 )) ⊕

⊕
𝑘∈{𝑁 |𝑛≥𝑁 }

⌈𝑃 (𝑛, 𝑘)⌉ ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

⊕
min(𝑁−1,𝑛)⊕

𝑘=max(0,𝑛+1−𝑀)
⌈𝑃 (𝑛, 𝑘)⌉ ((

𝑁 +𝑀−𝑛
𝑁−𝑘 ))

And by recombining the terms, we get:

min(𝑁,𝑛)⊕
𝑘=max(0,𝑛−𝑀)

⌈𝑃 (𝑛, 𝑘)⌉ ((
𝑁 +𝑀−𝑛
𝑁−𝑘 ))

Which is precisely 𝜑𝑛 . According to the Variant rule, the final postcondition is just 𝜑0.

H.2 Shortest Paths
Recall the following program that nondeterministically finds the shortest path from 𝑠 to 𝑡 using a

model of computation based on the tropical semiring (Example 3.11).

SP ≜


while 𝑝𝑜𝑠 ≠ 𝑡 do
𝑛𝑒𝑥𝑡 B 1 #
(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #
𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 #
assume 1

The derivation is shown in Figure 9. We use the While rule to analyze the outer loop. This requires

the following families of assertions, where 𝜑𝑛 represents the outcomes where the guard remains

true after exactly 𝑛 iterations and𝜓𝑛 represents the outcomes where the loop guard is false after 𝑛

iterations. Let 𝐼 = {1, . . . , 𝑁 } \ {𝑡}.

𝜑𝑛 ≜
⊕
𝑖∈𝐼
⌈𝑝𝑜𝑠 = 𝑖⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)
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⟨⌈𝑝𝑜𝑠 = 𝑠⌉⟩ =⇒

⟨
⊕𝑁

𝑖=1⌈𝑝𝑜𝑠 = 𝑖⌉ (sp𝑡0 (𝐺,𝑠,𝑖))⟩ =⇒

⟨𝜑0 ⊕𝜓0⟩

while 𝑝𝑜𝑠 ≠ 𝑡 do

⟨𝜑𝑛⟩ =⇒

⟨
⊕
𝑖∈𝐼
⌈𝑝𝑜𝑠 = 𝑖⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)⟩

𝑛𝑒𝑥𝑡 B 1 #

⟨
⊕

𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 1⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)⟩

(𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1) ⟨𝑛𝑒𝑥𝑡<𝑁, 𝐺 [𝑝𝑜𝑠 ] [𝑛𝑒𝑥𝑡 ] ⟩ #

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)⟩ =⇒

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 ⌈𝑛𝑒𝑥𝑡 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)⟩

𝑝𝑜𝑠 B 𝑛𝑒𝑥𝑡 #

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)⟩

assume 1

⟨
⊕𝑁

𝑗=1

⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛+1)⟩ =⇒

⟨
⊕𝑁

𝑗=1⌈𝑝𝑜𝑠 = 𝑗⌉ (sp𝑡𝑛+1 (𝐺,𝑠,𝑗)+𝑛+1)⟩ =⇒

⟨𝜑𝑛+1 ⊕𝜓𝑛+1⟩

⟨𝜓∞⟩ =⇒

⟨⌈𝑝𝑜𝑠 = 𝑡⌉ (sp(𝐺,𝑠,𝑡 ))⟩

Fig. 9. Shortest path proof

𝜓𝑛 ≜ ⌈𝑝𝑜𝑠 = 𝑡⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑡 )+𝑛) 𝜓∞ ≜ ⌈𝑝𝑜𝑠 = 𝑡⌉ (sp(𝐺,𝑠,𝑡 ))

We now argue that (𝜓𝑛)𝑛∈N ⇝ 𝜓∞. Take any (𝑚𝑛)𝑛∈N such that𝑚𝑛 ⊨ 𝜓𝑛 for each 𝑛, which means

that |𝑚𝑛 | = sp𝑡𝑛 (𝐺, 𝑠, 𝑡) + 𝑛 and supp(𝑚𝑛) ⊆ (𝑝𝑜𝑠 = 𝑡). In the tropical semiring, |𝑚𝑛 | corresponds
to the minimum weight of any element in supp(𝑚𝑛), so we know there is some 𝜎 ∈ supp(𝑚𝑛) such
that𝑚𝑛 (𝜎) = sp𝑡𝑛 (𝐺, 𝑠, 𝑡) + 𝑛, and since sp𝑡𝑛 (𝐺, 𝑠, 𝑡) is Boolean valued and true = 0 and false = ∞,
then𝑚𝑛 (𝜎) is either 𝑛 or∞.

By definition, the minimum 𝑛 for which sp𝑡𝑛 (𝐺, 𝑠, 𝑡) = true is sp(𝐺, 𝑠, 𝑡), so for all 𝑛 < sp𝑡𝑛 (𝐺, 𝑠, 𝑡),
it must be the case that |𝑚𝑛 | = ∞ and for all 𝑛 ≥ sp𝑡𝑛 (𝐺, 𝑠, 𝑡), it must be the case that |𝑚𝑛 | = 𝑛. Now,

|∑𝑛∈N𝑚𝑛 | = min𝑛∈N |𝑚𝑛 | = sp𝑡𝑛 (𝐺, 𝑠, 𝑡), and since all elements of each𝑚𝑛 satisfies 𝑝𝑜𝑠 = 𝑡 , then

we get that

∑
𝑛∈N𝑚𝑛 ⊨ 𝜓∞.

Now, we will analyze the inner iteration using the Iter rule and the following two families of

assertions, which we will assume are 1-indexed for simplicity of the proof.

𝜗 𝑗 ≜


⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛) if 𝑗 < 𝑁

⊤ ⊙ 0 if 𝑗 ≥ 𝑁
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𝜉 𝑗 ≜


⊕
𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛) if 𝑗 < 𝑁

⊤ ⊙ 0 if 𝑗 ≥ 𝑁

𝜉∞ ≜
𝑁⊕
𝑗=1

⊕
𝑖∈𝐼
⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛)

It is easy to see that (𝜉𝑛)𝑛∈N ⇝ 𝜉∞ since 𝜉∞ is by definition an outcome conjunction of all the

non-empty terms 𝜉 𝑗 . When 𝑗 < 𝑁 , then we get 𝜗 𝑗 ⊨ 𝑛𝑒𝑥𝑡 < 𝑁 , so we dispatch the first proof

obligation of the Iter rule as follows:

⟨𝜗 𝑗 ⟩ =⇒
⟨
⊕

𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)⟩
assume 𝑛𝑒𝑥𝑡 < 𝑁 #
⟨
⊕

𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)⟩
𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1
⟨
⊕

𝑖∈𝐼 ⌈𝑝𝑜𝑠 = 𝑖 ∧ 𝑛𝑒𝑥𝑡 = 𝑗 + 1⌉ (sp𝑡𝑛 (𝐺,𝑠,𝑖)+𝑛)⟩ =⇒
⟨𝜗 𝑗+1⟩

When instead 𝑗 ≥ 𝑁 , then we know that 𝜗 𝑗 ⊨ ¬(𝑛𝑒𝑥𝑡 < 𝑁 ) and so it is easy to see that:

⟨𝜗 𝑗 ⟩ assume 𝑛𝑒𝑥𝑡 < 𝑁 # 𝑛𝑒𝑥𝑡 B 𝑛𝑒𝑥𝑡 + 1 ⟨⊤ ⊙ 0⟩

For the second proof obligation, we must show that:

⟨𝜗 𝑗 ⟩ assume 𝐺 [𝑝𝑜𝑠] [𝑛𝑒𝑥𝑡] ⟨𝜉 𝑗 ⟩
For each outcome, we know that 𝑝𝑜𝑠 = 𝑖 and 𝑛𝑒𝑥𝑡 = 𝑗 . If 𝐺 [𝑖] [ 𝑗] = true = 0, then (sp𝑡𝑛 (𝐺, 𝑠, 𝑖) ∧
𝐺 [𝑖] [ 𝑗]) + 𝑛 = sp𝑡𝑛 (𝐺, 𝑠, 𝑖) + 𝑛, so the postcondition is unchanged. If 𝐺 [𝑖] [ 𝑗] = false = ∞, then
(sp𝑡𝑛 (𝐺, 𝑠, 𝑖) ∧𝐺 [𝑖] [ 𝑗]) + 𝑛 = ∞ and the outcome is eliminated as expected. We now justify the

consequence after assume 1. Consider the term:⊕
𝑖∈𝐼
⌈𝑝𝑜𝑠 = 𝑗⌉ ( (sp𝑡𝑛 (𝐺,𝑠,𝑖)∧𝐺 [𝑖 ] [ 𝑗 ])+𝑛+1)

This corresponds to just taking the outcome of minimum weight, which will be 𝑛 + 1 if sp𝑛 (𝐺, 𝑠, 𝑖) ∧
𝐺 [𝑖] [ 𝑗] is true for some 𝑖 ∈ 𝐼 and ∞ otherwise. By definition, this corresponds exactly to

sp𝑡𝑛+1 (𝐺, 𝑠, 𝑗) + 𝑛 + 1.
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