Probabilistic Concurrent Reasoning in Outcome Logic:
Independence, Conditioning, and Invariants

NOAM ZILBERSTEIN, Cornell University, USA
ALEXANDRA SILVA, Cornell University, USA
JOSEPH TASSAROTTI, New York University, USA

Although randomization has long been used in distributed computing, formal methods for reasoning about
probabilistic concurrent programs have lagged behind. No existing program logics can express specifications
about the full distributions of outcomes resulting from programs that are both probabilistic and concurrent.
To address this, we introduce Probabilistic Concurrent Outcome Logic (PcOL), which incorporates ideas from
concurrent and probabilistic separation logics into Outcome Logic to introduce new compositional reasoning
principles. At its core, PcOL reinterprets the rules of Concurrent Separation Logic in a setting where separation
models probabilistic independence, so as to compositionally describe joint distributions over variables in
concurrent threads. Reasoning about outcomes also proves crucial, as case analysis is often necessary to derive
precise information about threads that rely on randomized shared state. We demonstrate pcOL on a variety of
examples, including to prove almost sure termination of unbounded loops.

CCS Concepts: « Theory of computation — Separation logic; Logic and verification; Program verifica-
tion; Concurrency; Probabilistic computation.

Additional Key Words and Phrases: Outcome Logic, Separation Logic, Concurrency, Probabilistic Programming

ACM Reference Format:

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2026. Probabilistic Concurrent Reasoning in Outcome
Logic: Independence, Conditioning, and Invariants. Proc. ACM Program. Lang. 10, POPL, Article 9 (January 2026),
72 pages. https://doi.org/10.1145/3776651

1 Introduction

Randomization is an important tool in concurrent and distributed computing. Concurrent algo-
rithms can be made more efficient using randomization [Morris 1978; Rabin 1980, 1982] and some
distributed synchronization problems have no deterministic solution [Fischer et al. 1985; Lehmann
and Rabin 1981]. But despite the prevalence of randomization in concurrent computing over the
last several decades, formal methods for such programs are limited. The mixture of computational
effects in probabilistic concurrent programs is a major source of difficulty in developing verification
techniques; random choice is introduced by sampling operations and nondeterminism arises from
scheduling the concurrent threads. These two computational effects do not compose in standard
ways [Varacca and Winskel 2006], so even just describing the semantics of such programs requires
specialized models [He et al. 1997; Mclver and Morgan 2005; Zilberstein et al. 2025a,b].

In this paper, we introduce Probabilistic Concurrent Outcome Logic (PcOL), a logic for reasoning
about programs that are both probabilistic and concurrent. In pcOL, preconditions and postcondi-
tions are not just assertions about a single program state. Instead, they describe the distribution of

Authors’ Contact Information: Noam Zilberstein, noamz@cs.cornell.edu, Cornell University, USA; Alexandra Silva, alexandra.
silva@cornell.edu, Cornell University, USA; Joseph Tassarotti, jt4767@nyu.edu, New York University, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).

ACM 2475-1421/2026/1-ART9

https://doi.org/10.1145/3776651

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://orcid.org/0000-0001-6388-063X
https://orcid.org/0000-0001-5014-9784
https://orcid.org/0000-0001-5692-3347
https://doi.org/10.1145/3776651
https://orcid.org/0000-0001-6388-063X
https://orcid.org/0000-0001-5014-9784
https://orcid.org/0000-0001-5692-3347
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776651

9:2 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

possible outcomes that can arise from executing the program. A key challenge is that, in the con-
current setting, different orderings of threads can give rise to different distributions over program
behaviors. To address this, pcOL takes inspiration from the recently introduced Demonic Outcome
Logic (DOL) [Zilberstein et al. 2025b], which supports reasoning about sequential probabilistic
programs that additionally have a nondeterministic choice operator resolved by an adversary.
Different nondeterministic choices can cause different distributions of behaviors in these programs,
just as different thread interleavings can cause different distributions in the concurrent setting.

However, while bOL’s approach to describing the space of possible distributions provides a
basis for pcOL, reasoning about the nondeterminism that arises from concurrent scheduling is
substantially more complicated than reasoning about a choice operator. With a choice operator,
nondeterminism is localized to the points where the operator is used, whereas in a concurrent
program, every step can potentially involve nondeterminism from thread interleaving. Reasoning
explicitly about nondeterminism at every step is intractable and non-compositional.

To recover compositional reasoning, pcOL incorporates ideas from various separation logics.
Concurrent Separation Logic (CSL) uses disjointness of resources to ensure that concurrent compu-
tations only interact in controlled ways, so that each thread can be analyzed on its own [Brookes
2004; O’'Hearn 2004]. Probabilistic Separation Logics (PSL) use the notions of independence and
conditioning to reason about the interaction between randomness and control flow [Bao et al. 2021,
2025, 2022; Barthe et al. 2020; Li et al. 2023; Yan et al. 2025]. CSL and PSL achieve compositional
reasoning in concurrent and probabilistic settings, respectively, so combining their reasoning
principles appears to be a natural way to derive a compositional logic for the combination of both
effects. However, as we will see in Section 2, such a combination is challenging to achieve because
the metatheories of the two logics are highly specialized to their respective domains, and a direct
combination of their rules would not be sound. This paper develops the metatheory in a more
complex semantic domain, where concurrency and probabilistic computation can coexist. As a
result, pcOL is the first logic to combine all of the following features:

Compositional Concurrency Reasoning. pcOL supports compositional concurrency reasoning, mean-
ing that each thread in a concurrent program can be analyzed in isolation, without considering all
the possible interleavings or behaviors of the scheduler. Similar to Concurrent Separation Logic
(CSL), compositionality stems from separation—as long as two threads operate on their own portions
of memory, they cannot interfere with each other. In addition, shared state is handled via resource
invariants, properties about shared state that remain true at every step.

Compositional Probabilistic Reasoning. In a probabilistic context, separation of memory footprints
is not sufficient; while it can tell us how the local variables of each thread are distributed, it does
not give us the joint distribution over the entire global memory. In response, we use a PSL-style
model where separation additionally models probabilistic independence [Barthe et al. 2020]. Going
beyond prior work, our parallel composition rule guarantees that the scheduler cannot introduce
any probabilistic correlation between the local states of each thread.

Compositional Outcome Reasoning. When concurrent threads depend on randomized shared state,
it is often necessary to do case analysis over the possible values of that shared state in order to
capture the probabilistic correlation between the threads (e.g., see Section 2.2). In the style of
Demonic Outcome Logic (DOL) [Zilberstein et al. 2025b], pcOL supports compositional reasoning
about the outcomes generated via both probabilistic branching and the nondeterministic behavior
of the scheduler. But unlike bOL—which does not support separation—case analysis must be done
with care, as it can invalidate the independence guarantees of the FRAME rule. Compared to prior
outcome logics, the outcome conjunction of pcOL has a new measure theoretic foundation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:3

Unbounded Looping and Almost Sure Termination. Our logic includes rules for establishing almost
sure termination—termination with probability 1—for unbounded loops. This goes beyond the
capabilities of all prior separation logics that model separation with probabilistic independence,
which either have only bounded looping constructs (e.g., for loops) or require loops to always
terminate (which must be established externally to the logic). Unbounded looping is important in
randomized concurrent programs, as such programs often only achieve the desired distribution of
outcomes in the limit, and not after a bounded number of steps (e.g., Section 6.4).

We begin in Section 2 with an overview of the technical challenges and design of pcOL. Next, in
Section 3 we outline the programming language and semantic model that we will use. The logic
and inference rules are defined in Sections 4 and 5. We demonstrate the capabilities of pcOL on
four case studies in Section 6. Finally, we conclude by discussing related work and future directions
in Sections 7 and 8. Omitted proofs and details are given in the appendix [Zilberstein et al. 2025c].

2 Overview: Familiar Reasoning Principles in a New Setting

In this paper, we develop a logic for verifying the correctness of randomized concurrent imperative
programs, written in a language that includes control flow operations (if statements and while loops),
parallel composition C; || C,, and random sampling x :~ d. A major hurdle in concurrency analysis
is that the semantics is non-compositional; two programs can have completely different behavior
when run in parallel than they do when run in isolation. Enumerating all possible interleavings of
the threads is not a viable strategy, so abstractions must be introduced for sound compositional
analysis. In this section, we explore the mechanisms that enable compositional reasoning about
probabilistic concurrent programs in pcOL, including the challenges that arise with shared state.

2.1 Concurrent Separation Logic meets Probabilistic Separation Logic

Concurrent Separation Logic (CSL) achieves compositionality via separation [Brookes 2004; O’Hearn
2004]—if two threads act on disjoint memory regions, then their behavior will not change when
run in parallel. This idea is encapsulated by the PAR rule, where the separating conjunction ¢ *
means that the machines’s memory cells can be divided to satisfy ¢ and ¢ individually. In addition,
the FRAME rule guarantees that threads cannot interfere with memory outside of their local state.

(@1) C1 (Y1) (@2) Cy <I//2>PAR {¢) C(¥) .
(@1 % @2) C1 || C2 (Y1 = 2) (p*3) C (Y =*3)

Now suppose that C; and C, in the PARr rule are probabilistic programs. For example, if we flip two
coins and store the results in the variables x and y, then the respective variables will be distributed
according to Bernoulli distributions with parameter %, as shown in the following specifications,
where [P] means that P holds with probability 1 (almost surely), x > — means that the current
thread has permission to read and write x, and x ~ d means that x is distributed according to d.

(Tx > =) x =~ Ber (1) (x ~Ber (1)) (Ty = =1) y:~Ber (3) (y ~Ber (3))

Composing these programs in parallel, we would ideally want to derive a specification that dictates
not only how x and y are distributed, but also their joint distribution. In this case, x and y are
probabilistically independent, meaning that each outcome (e.g., x and y are both 1) occurs with
probability % : % = i. Thus, it is natural to consider using the interpretation of separation proposed
in Probabilistic Separation Logic (PSL) [Barthe et al. 2020], in which ¢ * ¢ states that the events
described by ¢ and ¢ are probabilistically independent. By treating separation as both disjointness

of memory and probabilistic independence, one might hope to validate a probabilistic interpretation

AME

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:4 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

of the PARr rule, with which we could derive the following specification.
([x » =1# [y =]) x:=~Ber () || y:~Ber(3) (x ~Ber(3)*y ~Ber(}))

Intuitively, the probabilistic interpretation of PARr in this instance is justifiable because C; and C,
execute without interaction, so there is no correlation between their random behaviors. The lack
of correlation is due to the fact that there is no shared state, and therefore the nondeterminism
introduced by the interleaving behavior of the scheduler is not observable in any way.

Bigger challenges arise when the threads do share state, making the nondeterministic behavior
of the scheduler observable. CSL handles shared state with resource invariants—threads can interact
with shared state as long as the invariant I is preserved by every atomic step. More specifically, CSL
provides the following inference rules: a more general PAR rule allows the invariant resources to be
used in both threads; the ATom rule opens the invariant, as long as the program is a single atomic
command a; and SHARE allocates an invariant that is true before and after the program execution.

I+ {p1) C1 (Y1) Tk {g2) Ca (Y2) F (g [I1) a (¥ * [I1) I+{p) C)
PAr ATOM Su
Ik {1 * @2) C1 || Ca (Y * ¥2) I+ {p) a(y) F o+ [IT) C (y = [TT)
Under a probabilistic interpretation of *, this stronger PARr rule is valid when the shared state

described by the invariant I is deterministic, for example, in the following program, where z has a
fixed value, which is read from both threads.

ARE

2z 1k ([x— =] [y~ —]) x:=Ber (%) || y:=Ber (%) ((x ~ Ber(%)) * (y ~ Ber(%)))

However, with nondeterministic or randomized shared state, reasoning about programs becomes
more complicated because correlations can be introduced in very subtle ways. In the remainder of
this section, we will see a few such representative scenarios, and how they are handled in pcOL.

2.2 Handling Randomized Shared State with Outcome Logic

When shared state is randomized, compositional reasoning about outcomes becomes essential.
As an example, consider the following program, where x and y read from the shared randomized
variable z in different threads.

z:zBer(%)g(x:zzHy::l—z) (1)

Here, x and y are clearly not independently distributed, since both are derived from z. So it seems
dubious that PARr could be used to reason about this program. The key observation is that x and y
are conditionally independent on z, so we can compositionally reason about the threads by first
breaking down the outcomes of the sampling operation such that z is deterministic in each case.
We draw inspiration from the logics DIBI [Bao et al. 2021], Lilac [Li et al. 2023], and Bluebell [Bao
et al. 2025], which include constructs to reason about conditioning, but which are not sufficient
for the kind of analysis needed here. DIBI’s model of separation is too coarse (see Section 2.3),
Lilac has no rule for case analysis over conditioning modalities, and Bluebell’s case analysis rule
(c-wp-swap) has side conditions which would preclude adapting it for use in parallel composition.

To support both case analysis and parallel composition, in pcOL we introduce an outcome
conjunction EB -4 ¢> which binds a new logical variable X that can be referenced in ¢, and is
distributed according to d, e.g., z ~ Ber (%) is syntactic sugar for H Z~Ber(1) [z — Z]. Outcome
conjunctions feature in prior logics [Zhang et al. 2024; Zilberstein 2025; Zilberstein et al. 2023,
2025b, 2024], but in this paper we use a new measure theoretic foundation based on direct sums
[Fremlin 2001], which interacts well with separation, and represents conditional probabilities via
Bayes’ Law. As a result, the SpriT rule—shown below—is admissible in pcOL, which is critical for

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:5

concurrency reasoning.’

I'+(p) C(¥)
Iv (Dxa0) C{Dxa?

In the premise of Spr1T, X is unbound, and therefore it is implicitly universally quantified. So, the
rule allows us to partition the sample space according to d, reason about the program as if X is a
deterministic value, and then once again bind X under an outcome conjunction in the conclusion.

Returning to Example (1), by considering each possible outcome of the sampling operation, we
end up in a situation where z is deterministic, and therefore the Par rule can apply. Indeed, the SprLiT
rule is the missing piece that we need. After executing the sampling operation, we get the assertion
(z ~ Ber (%)) * [x — —*y — —|, which is equivalent to EBZNBH(%) [z Zxx > —xy—> —].So,

SpLIT

to analyze the parallel composition, all we have to do is apply SpLIT to make z deterministic, and
then allocate the invariant z — Z, stating that z has some fixed—but universally quantified—value.
The derivation is sketched below and shown fully in Appendix F.1.

2z Z (x> -Nx=z(x—Z]) z-Zr{ly -Ny=1-z(y—1-Z2])

Par
2z Zr (x> —sxy> -Nx=z|ly=1-z(x > Zxy—>1-27)
SHARE
F([z— Zsx— —xy> —)x=z|ly=1-z([z—»Zxx—> Zxy—>1-2]) .
PLIT

F(@[zi—)z*x!—)—*yH—])xI=z||yI=l—Z(@[zr—>Z*xHZ*y!—>l—Z])
Z~Ber(%) Z~Ber(%)

Ultimately, we conclude that x and y are independent inside the scope of the (5, 5 er(1)—Where
they are deterministic—while still recording exactly how they are probabilistically correlated. This
pattern arises frequently, e.g., in Section 6.2, where we prove the correctness of a concurrent
shuffling algorithm in pcOL.

2.3 Taming Nondeterminism with Precise Assertions

In the previous section, we saw a new form of compositional reasoning, but it was limited to
scenarios where the shared state could be made deterministic via case analysis. In other words,
the nondeterministic scheduling order could not affect the outcome of the program. The effects of
scheduling become observable when threads mutate shared state, because different interleavings
can cause the shared variables to take on different values throughout the program execution.

In fact, treating the scheduler adversarially, shared state provides opportunities for the scheduler
to introduce probabilistic correlations in unexpected ways. For example, in the following program,
the scheduler can force x and y to be equal by first executing the sampling operation; then, with the
value of x fixed, choosing an order for the writes to y so that y := 1 — x is first, and y := x is last.

(x:zBer(%);y:: 0) ” y:=1 (2)

In that case, x and y are both distributed according to Ber (%), but are certainly not independently
distributed. To ensure that the correlations between x and y do not invalidate the Par rule in pcOL,
we additionally require the postconditions of each thread to be precise (Definition 4.1), essentially
meaning that they exactly determine the probability of each event. Any pure assertion [P] is
precise—P occurs with probability exactly 1—as is x ~ d, since d dictates the probability of [x — o]
for all v. Given that, (x ~ Ber (%)) * [y € {0,1}] is a valid—and precise—postcondition for (2).

10ur approach of using direct sums has tradeoffs: the outcome conjunction (P is fundamentally discrete, whereas other
logics, notably Lilac [Li et al. 2023], have continuous conditioning modalities. Despite this restriction, our examples will
illustrate the expressive power of the logic, as many uses of randomization in concurrent and distributed programs only
require discrete distributions. See Section 7 for a deeper comparison with other logics.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:6 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

It may be surprising that (x ~ Ber (%)) * [y € {0,1}] holds; as we just saw, x and y are not
necessarily independently distributed. However, pcOL uses a probability-space-as-a-resource model
of separation, first explored by Li et al. [2023], to make separation more flexible. That is, we care
only about independence of measurable events and not samples. In the above case, we need only
measure the probability of [y € {0, 1}], which occurs with probability 1, and nothing finer such as
[y — 0] and [y +— 1]. Independence is therefore trivial, e.g., we get that x — 1 and y € {0, 1} with
probability % ‘1= % While it is difficult to compositionally determine the exact set of possible
joint distributions resulting from different scheduling behaviors, pcOL neatly abstracts away those
semantic considerations using simple syntactic checks on the postcondition.

2.4 Weak Separation and Case Analysis over Shared State

Examples (1) and (2) illustrate how pcOL combines both the disjointness and independence inter-
pretations of separation to obtain a probabilistic PAr rule. However, in some cases, the combination
of disjointness and independence is too strong and does not hold, because the scheduler can induce
correlations between concurrent threads through shared state. While we can sometimes coarsen
what is measurable to recover independence—as we did with y in (2)—it is not always possible.

In response, pcOL uses a second form of separating conjunction, which we call weak separation,
written ¢ *,, ¥, which only requires that ¢ and ¢ hold for disjoint state, and need not be probabilis-
tically independent. Weak separation allows us to still recover some of the benefits of separation
logic for reasoning about disjointness, even when we cannot expect independence to hold. To see
an example, consider a thread running the following command, in which control flow depends on
a variable x that is part of shared state and may be written by another thread:

1

C % x':=x3ifx thenz:xBer(;) elsez =1

To analyze the program above, we need to do case analysis on the value of x at the moment that it

is read. Then, we conclude that regardless of x’s value, z is distributed according to a Bernoulli
distribution with parameter at least 1, motivating the following triple.

x»—>0Vx|—>1|—([zn—>—>x<x’n—>—])C(3X2%.z~Ber(X)) (3)

Triple (3) is indeed valid on its own, but it is not compatible with the FRAME rule that we saw in
Section 2.1. To see why, consider the extended program below in a case where x is initially 0.

(y~Ber (4)50) || (x:=1)
In the left thread, after the y :~ Ber (3), if we apply FramE with § = y ~ Ber (3) and use the triple
for C in (3), we would get the postcondition (3X > 1.z ~ Ber (X)) * (y ~ Ber (3)). But that
postcondition is not valid because the scheduler can force y and z to be correlated by using the value
of y to influence the value of x.? As we show in Section 5.3, case analysis on nondeterministic state
causes triples to only be weakly frame preserving, meaning that only a variant of the FRAME rule

using weak separation ¢ #,, i can be used. Under the right conditions, strong frame preservation
can be restored, as shown in Sections 5.4, 6.1 and 6.4.

Having now given an overview of pcOL’s features, we begin the technical development in Section 3
by outlining a denotational model for probabilistic concurrent programs. We then give a measure
theoretic model of assertions—including the separating and outcome conjunctions— in Section 4. In
Section 5, we define pcOL triples and provide a proof system. Four examples are shown in Section 6
before we conclude by discussing related work in Section 7 and future directions in Section 8.

2For the interested reader: if the scheduler makes x equal to y, then x must also be uniformly distributed, and so z ~ Ber
with probability 1 and z +— 1 with probability §, which implies that z ~ Ber (2). But clearly, (z ~ Ber (2)) (y ~ Ber (
does not hold, since whenever y = 0, then z = 1, and so the probability of [y — 0%z — 1] is %, which is not equal to % . %

2)
)

S

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:7

Cmd>Cu=skip|C13C, | Cy || G | if b then C, else C, | whilebdo C | a
Actdar=x=¢|x:~d(e)

Dist > d == Ber (—) | geo (—) | unif (-)

Test > b == true | false | by Aby | by V by | 2b | e < ey
Expoeui=x|ov|b|ele]|[en....en] |e1+ex|er-ea] -

Fig. 1. Syntax of a probabilistic concurrent language, where x € Var,v € Val,and x € {= <, <,...}.

3 A Probabilistic and Concurrent Programming Language

We begin by describing the syntax and semantics of a probabilistic concurrent programming
language, shown in Figure 1. Program commands C € Cmd consist of no-ops (skip), sequential
composition (C; § Cy), parallel composition (C; || C,), if statements, while loops, and actions a € Act.

Actions can perform probabilistic sampling operations x := d(e), where d € Dist is a discrete
probability distribution with the expression e as a parameter. We include three types of distributions—
Bernoulli distributions Ber (p), assigning probability p to 1 and probability 1 — p to 0; geometric
distributions geo (p), assigning probability (1 — p)"p to each n € N; and uniform distributions
unif (e) where e evaluates to a finite set or list of values [vy, .. .,v,], each having probability 1/n.

Our restriction to discrete distributions was motivated by the applications that we are targeting,
including synchronization protocols, which only require fair coin flips [Ben-Or 1983; Lehmann
and Rabin 1981]; cryptography, where keys are uniformly sampled fixed length bit-strings; and
randomized sketching data structures, where hashes are modeled as uniform random samples
over a finite set [Flajolet 1985]. Semantic domains for combining nondeterminism with continuous
probability have been explored [Keimel and Plotkin 2017; Tix et al. 2009], but our approach would
need modifications to exploit that. See Section 7 for a discussion.

The language also has deterministic assignments x := e, where e is an expression. Expressions
consist of variables x, values v, tests b, list literals [ey, ..., e,], list accesses e[e’] (where e is a list
and e’ is an index), and standard arithmetic operations. Many more actions could be added to
this semantics, including nondeterministic assignment and atomic concurrency primitives such as
compare-and-swap, but we do not explore them in this paper.

We use the recently introduced Pomsets with Formulae model [Zilberstein et al. 2025a], which
augments typical denotational techniques for concurrency semantics [Gischer 1988; Pratt 1986] in
order to properly capture probabilistic behavior. We use a denotational model because pcOL de-
scribes distributions over program states, which differs from the usual CSL setting where assertions
are predicates on a single state. Thus, we cannot adapt the Vafeiadis [2011] style operational sound-
ness argument of quantifying over all finite executions. Instead, we must use domain-theoretic
techniques to construct the full set of distributions that can occur after an infinite amount of
time. While there are several Iris-based separation logics for randomized programs that use an
operational proof, all of those logics have predicates over single program states, which they then
lift to a probabilistic interpretation using either couplings (for relational proofs) [Gregersen et al.
2024b; Tassarotti and Harper 2019] or using resources to describe one property of the randomized
program (e.g., error bounds or expected costs) [Aguirre et al. 2024; Haselwarter et al. 2024b]. In
contrast, pcOL assertions allow for rich specifications over distributions of states.

3.1 Preliminaries: Memories and the Convex Powerset

Programs must be interpreted in a domain that supports both probabilistic and nondeterministic
computation. Although none of our actions are explicitly nondeterministic, nondeterminism arises

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:8 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

due to the interleaving of concurrent threads. The difficulty is that typical representations of
probabilistic computation (distributions) do not compose well with nondeterminism (powersets)
[Varacca and Winskel 2006; Zwart and Marsden 2019]. We instead use the convex powerset C in
our denotational semantics, which we describe in this section.

Memories, Expressions, and Tests. A memory o € Mem[S] = S — Val is a mapping from a finite
set of variables S Crin, Var to values, where Val consist of integers, rationals, and lists. The disjoint
union W: Mem[S] — Mem|[T] — Mem|[S U T] combines two memories as long as SN T = 0, and
a similar operation A * B is defined on sets of memories A C Mem[S] and B € Mem[T].

" .| olx) ifxeS P
(O’UT)(X)—{T(X) freT AxB={ocWr|oc€AreB}

The notation A * B is reminiscent of the separating conjunction [O’Hearn and Pym 1999], and
indeed we will use it in Section 5 to define the separating conjunction. We define projections
s: Mem[T] —» Mem[SNT] as ws(0)(x) = o(x) if x € S. Expressions are interpreted in the usual
way with [e] £xp © Mem[S] — Val as long as vars(e) C S, if not then [e] £xp (0) is undefined. The
same is true for tests and [b]1.q : Mem[S] — B (where B = {0, 1}) is defined if vars(b) C S.

Discrete Probability Distributions. A discrete probability distribution p € D(X) over a countable set
X is a mapping from elements of X to [0, 1] such that 3}, x pt(x) = 1. The support of a distribution
is the set of elements to which it assigns nonzero probability supp(y) = {x € X | p(x) # 0}.
The Dirac, or point-mass, distribution d, assigns probability 1 to x and 0 to everything else. The
previously defined projections extend to distributions zg: D(Mem[T]) — D(Mem[S N T]) by
marginalizing as follows 7s(1)(0) = X emem[r\s]#(0 W 7). Distributions p,v € D(X U {1})
are ordered as follows: p Cp v iff u(x) < v(x) for all x € X and p(L) > v(L). This makes
(D(X U{L}),CEp) a pointed poset with bottom Ly =7J,.

The Convex Powerset. A convex powerset is a set of all the possible distributions of outcomes
that could result from (nondeterministic) scheduling. For a more complete explanation, refer to
He et al. [1997] and Zilberstein et al. [2025b]. Distributions can be added and scaled pointwise:
(p+v)(x) = pu(x) +v(x) and (p - p)(x) = p - p(x). The convex combination of two distributions is
defined as p @, v =p - p+ (1 -p)-v. A set of distributions S C D(X U {L}) is convex if it is closed
under convex combinations: (y @, v) € S for every y,v € S and p € [0,1].

Additional requirements ensure that the domain is a DCPO, and therefore suitable for representing
iterated computations and fixed points. A set S is up-closed if for all ;v € D(XU{L}),if p € Sand
1 Ep vthen v € S. Finally, S is Cauchy closed if it is closed in the product of Euclidean topologies
[Mclver and Morgan 2005], i.e., it is a finite union of closed regions of X U {.L}-dimensional
Euclidean space. The convex powerset is now defined as follows:

C(X) 2{SCD(XU{L})|S is nonempty, up-closed, convex, and Cauchy closed}

We include L to represent nontermination and undefined behavior such as accessing a variable that
is not scope. Nonemptiness ensures that the semantics is not vacuous, since undefined behavior is
represented by {J, } rather than (. Up-closure ensures that C is a partial order in the Smyth [1978]
powerdomain, i.e., S Ce Tiff Vv € T. u € S. u Ty v. In fact, due to up-closure, SCe Tiff S2 T,
so suprema are given by set intersections. Cauchy closure ensures that the intersections of directed
sets are nonempty, and therefore (C(X), E¢) is a pointed DCPO with bottom L¢e = D(X U {L}).

Convexity ensures that C carries a monad structure [Jacobs 2008], making the sequencing
of actions compositional. More precisely, there is a unit 5: X — C(X) and Kleisli extension
(=) (X = C(Y)) = C(X) — C(Y), which obey the monad laws: 7 = id, fT o5 = f, and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:9

ffog" = (f"og)'. These operations are defined as follows:
nx) £ {8} TNOEEDYTEI RN

x€supp(p)

p € S,Vx € supp(p). vy € fJ_(x)}

where f (x) = f(x) for x € X and f, (1) = L¢. As an overloading of notation, we will occasionally
write T () to mean f7({u}) for any y € D(X). Convex combinations in C are defined as S ®,T=
{p@pv|peSveT} and convex unionis S & T = Uyepo1]S ®p T For some finite index set
I={i1,....in}, welet &;c; Si = Si, & --- & S;,,. Finally, we extend projections to convex sets as
ns(T) = {ns(p) | p € T} where weletoWw L = 1.

In the next section, we will see how ‘&’ will be used to represent the choices of the scheduler when
interleaving concurrent threads. The fact that S & T is represented as a set of convex combinations
operationally corresponds to the idea that the scheduler can use randomness to choose between S
and T, rather than making the choice deterministically [Varacca 2002, §6.5].

3.2 Actions and Invariants

We can now use the convex powerset to give semantics to actions. The basic action evaluation is
defined below [—] . : Act = Mem[S] — C(Mem[S]).

. { n(olx = el (0)]) ifvars(e) U{x} €S

lc otherwise

[x = €] act (o)

11>

[[x i~ d(e)]]A (G) { {ZUEsupp(y) ﬂ(U) . 60[x:=v]} ifvars(e) U {X} c 5»# = d([[e]]Exp (O-))
- ct

lc otherwise

As we alluded to in Section 2, we will reason about shared state via invariants—assertions about
shared state that must be preserved by every atomic action. To model the ways in which shared
state may be modified by other threads, we define an invariant sensitive semantics, in which the
scheduler may alter shared state before executing each atomic action. This is based on semantic
invariants, finite sets of memories 7 Cri, Mem|[T] that represent the legal values of shared state.

We limit invariants to be finite sets in order to avoid issues arising from unbounded nondeter-
minism. Stemming from the impossibility result of Apt and Plotkin [1986], the semantics of loops
cannot be constructed in standard ways using least fixed points in the presence of unbounded
nondeterminism. In C specifically, unbounded nondeterminism breaks Cauchy closure [Mclver and
Morgan 2005, Appendix B.4.2]. Finite invariants are sufficient for a wide variety of verification tasks,
such as the examples in Section 6. Looking forward, there are additional algorithms where shared
state only takes on finitely many values such as the randomized Dining Philosophers [Lehmann
and Rabin 1981] and other synchronization protocols [Rabin 1980, 1982].

The invariant-sensitive model is a family of semantic functions for actions, indexed by a semantic
invariant: [a]]ict : Mem[S] — C(Mem[S]), where I Ci, Mem|[T] and T C S.

[[a]]iCt £ (check?)T o [[a]]:;ct o (replace?)" o check?

if 7r(o) € I
heck? (o) = { 1(9) 1 lace” (o) = e
check” (o) : Lo ifrr(o) ¢l replace” (o) 8§ n(rs\r(0) W)

TE
In the invariant sensitive semantics, J is first checked to ensure that the current state satisfies the
invariant. Next, a new valid state (or distribution thereof) is chosen to replace the current one,
simulating a parallel thread which may alter the shared state at any step. The standard action
semantics is then executed, followed by another check to ensure that the invariant still holds. If

the invariant is ever violated, then L is returned to indicate that the execution is faulty. Letting

{emp}

emp € Mem[0] be the empty memory, we remark that [a] ., = [a]

, meaning that invariant

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:10 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

sensitive execution using the empty invariant is equal to normal execution. In Lemma C.2, we
prove that the invariant sensitive semantics is monotonic—i.e., [a] ,, (¢) C [a] %, (¢)—adding an
invariant can only add behaviors, making it an over-approximation of the program’s behavior. So,
safety properties about [[aﬂf;ct (o) immediately apply to [a] , (o) too.

3.3 Semantics of Randomized Concurrent Programs

To give semantics to commands, we use Partially Ordered Multisets (Pomsets) with Formulae [Zilber-

stein et al. 2025a], where a partial order represents the causality between actions in the program. We

write a; — dy to mean that the action a; must be scheduled before a;. Pomsets with formulae are

constructed using three composition operators, shown below, which mirror the program syntax.

a az

N 2
b

T F

az ai as
[a; ¢ az] = 2 a1 || a2] = K.z\ [if b then a; else a;] =
1

From left to right, the sequential composition a; § a, results in a totally ordered structure, where
a; must occur before a,. In a parallel composition a; || a;, the actions a; and a, are not ordered
with respect to each other, so they can be scheduled in any order. Finally, if statements result in a
guarded branch, where the two successors of the test b both must be scheduled after b, but also
will only be scheduled if the outcome of the test matches the label on the arrow.

For the purposes of our program logic, we are interested in the linearized version of the model,
L([-]): Cmd —» Mem[S] — C(Mem[S]), which maps input memories to convex sets of output
memories, representing the set of possible distributions that can arise due to different interleavings
of the parallel threads chosen by the scheduler. Linearization is defined in terms of the semantics
for actions and tests from Section 3.2. The semantics of actions [[—]}ict is indexed by an invariant 7,
and so linearization £7 is also indexed by an invariant, indicating which semantic function to use
for actions. We provide the definition of £—due to Zilberstein et al. [2025a]—in Appendix A. We
omit the indexing invariant 7 and just write £([-]) when I = {emp}.

When the invariant 7 is {emp} in L, the scheduler does not simulate any mutations performed

by other threads, since all actions are evaluated according to [[a]]iecrtnp} = [a]a> s0 LIC])(0)
can be viewed as the true semantics of the program. Similar to action evaluation, linearization is
also monotonic with respect to invariants (Lemma 5.3), meaning that £([C])(¢) € £ ([C])(0).
This guarantees that adding an invariant will only add new behaviors, so safety properties about
L ([C]) (o) will automatically carry over to £L([C]) (o).

The linearized state transformer is ideal for modeling a program logic, where programs are
specified in terms of preconditions and postconditions. As shown by Zilberstein et al. [2025a, Lemma
5.2], linearization of non-parallel programming constructs is well-behaved; it is compositional with
respect to sequencing, if statements, and while loops, as shown by the following equational rules:

L ([skip]) =1 L ([a]) = [a] e LI([C 5G] = LY () o L1 ([a])

. [LI (o) if [b]yeg (0) = true
LI ([if b then C; else G,])(0) = { .EI([[C;]])(G) " [[b]]Iest (o) = false

fT(—EI([[C]])(T)) if [[b]]Test (T) = true
n(r) if [b]qes (1) = false
In fact, the parallel-free fragment of the linearized model is equivalent to the model of Demonic

Outcome Logic [Zilberstein et al. 2025a, Theorem 5.3], and so some of the metatheory for standard
commands carries over from bOL to pcOL. However, there is no straightforward compositional

.EI([[while b do C]]) =Ifp (‘Ij(b,C,I>) W(b,C,I)(f)(T) = {

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:11

property for parallel programs, since the input-output behavior of two threads can completely
change if they are run in parallel. Building on the insights of Concurrent Separation Logic [O’Hearn
2004] and Probabilistic Separation Logics [Bao et al. 2025; Barthe et al. 2020; Li et al. 2023], we
develop compositional reasoning techniques for parallel programs in Sections 4 and 5.

4 The Model of Probabilistic Assertions

Preconditions and postconditions in Probabilistic Concurrent Outcome Logic (PcOL) are inspired
by both Demonic Outcome Logic [Zilberstein et al. 2025b] and also probabilistic separation logics
[Bao et al. 2021, 2025, 2022; Barthe et al. 2020; Li et al. 2023]. We begin by giving the syntax and
semantics for basic assertions about memories in Section 4.1. Next, we discuss background on
measure theory and probability spaces in Section 4.2. Like Lilac [Li et al. 2023] and Bluebell [Bao
et al. 2025], the model of resources uses probability spaces that only assign probabilities to certain
measurable sets of memories. Based on this, we define probabilistic assertions in Section 4.3.

4.1 Pure Assertions

We begin by describing pure (non-probabilistic) assertions, which are inspired by standard separa-
tion logic [O’'Hearn et al. 2001; Reynolds 2002], but where memories range over variables rather
than heap cells, as we discussed in Section 3.2. The syntax for these assertions are shown below.

P = true|false | PAQ|PVQ|PxQ|3X.Ple— E|E <E, (xe{=<<5...})
E:=X|v|E +E |E -Ep|---

In addition to expressions and variables from Section 3, assertions also depend on logical variables
X,Y,Z € LVar, which cannot be modified by programs. Logical expressions E € LExp mirror
standard ones, but operate over logical variables X € LVar rather than x € Var. Logical expression
evaluation under a context I': LVar — Val is written [E], ¢, (T) and is defined in a standard way.

Pure assertions are modelled by both a context I, and a memory o € Mem[S], the satisfaction
relation is shown in Figure 2. The meaning of true, false, conjunction, and disjunction are standard.
The separating conjunction P * Q means that the memory ¢ € Mem[S] can be divided into
two smaller memories o1 € Mem[S;] and o, € Mem[S;] to satisfy P and Q individually. By the
definition of W, S; and S, must be disjoint. Our logic is an intuitionistic [Docherty 2019] or affine
interpretation of separation logic, meaning that information about variables can be discarded; if
I, 0 k P, then P need not describe the entire memory o. As such, we only require that oy W 0, C o,
which we define as 0 C 7 iff 0 W ¢’ = 7 for some ¢’, so 7 could contain more variables than o.

We also include a points-to predicate e — E, although it has a slightly different meaning than
points-to predicates in the heap model. Here, e does not describe a pointer, but can rather be any
concrete expression, and e — E simply means that the e evaluates to the same value under o as E
does under T, allowing us to connect the concrete and logical state. Finally, E; < E; allows us to
make assertions about logical state, where < € {=, <, €, - - - } ranges over similar comparators to the
ones in Section 3. We define the following notation to obtain the set of all memories o € Mem[S]
that satisfy an assertion P, we omit the superscript when we wish to minimize S, so that the
memories contain only the free variables of P:

(P)3 £ {0 € Mem[S] | T, & P} (Pr & (P)=P

Finally, we provide syntactic sugar for restricting the domain of existential quantifiers, asserting
membership in a set, and asserting that the resources of e are owned by the current thread.

dX € E.P£3X.PxX €E ecE23dXeEe— X own(el,...,en)é*TllﬂXi.eil—)Xi
i=

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:12 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

T,o F true always

T, o E false never

ILcePAQ iff T,0eP and T,0rQ

ILoePVQ iff T,o0eP or TI,0rQ

ILoePxQ iff Joy,05. oWy Co and T,o0EP and T,02EQ
ILoe3dX.P iff T[X :=wv],0k P for some o € Val

Iorem E iff [e],, (o) = [E] g, (T)

T,oE <E, iff [E](T) = [E] ()

Fig. 2. Satisfaction relation for pure assertions.

4.2 Measure Theory and Probability Spaces

We now introduce basic definitions from measure theory needed to define probabilistic separation.
For a more thorough background, refer to Royden [1968] or Fremlin [2001]. A probability space
P =(Q,F, u) consists of a sample space Q, an event space ¥, and a probability measure y. For our
purposes, the sample space Q € Mem[S] will consist of memories over a particular set of variables S.
The event space ¥ C 29 gives the events—i.e., sets of memories—which are measurable. It must be a
o-algebra, meaning that it contains () and Q, and it is closed under complementation and countable
unions and intersections. The probability measure u: & — [0, 1] assigns probabilities to the events
in F, and must obey u(0) = 0, p(Q) = 1, and countable additivity: p(l#);c; A;) = X;er H(A;) where
I'is a countable index set and all the A; sets are pairwise disjoint. For a probability space $, we use
Qp, Fp, and pp to refer to its respective parts.

We require probability spaces to be complete, meaning that they contain all events of measure
zero. More formally, P is complete if for any A € Fp such that up(A) = 0, then B € Fp for all
B c A [Royden 1968]. We will often also require the sample space to be the full set of memories
Mem[S] for some S. A probability space P with Qp C Mem|[S] can be extended as follows:
ext(P) 2 (Mem|[S], F, u) where F £ {A C Mem[S] | AN Qp € Fp} and u(A) 2 pp (AN Qp).

We now define a preorder on probability spaces. As is typical in intuitionistic logic, this preorder
P < Q will indicate when Q contains more information than P. The information can be gained
across two dimensions: by expanding the memory footprint, or by making the event space more
granular. Formally, for £ and Q such that Qp C Mem[S], we define £ < Q as follows:

P=Q iff Qp C 715(Qq)
and Fp C {ns(A) | A€ Fq}

and VA € Fp. pp(A) = g (U{B € Fo | ns(B) = A})

So, P < Q iff P contains smaller sample and event spaces, but £ and Q agree on the probability
of events whose projections are measurable in . Any proper distribution p € D(Mem[U]), can
be used as a probability space where Q, = Mem[U], ¥, = aMemlUl is the greatest o-algebra
on Mem[U], and p,(A) = Y ;4 p(0). Projections of probability spaces are defined as 7y (P) =
(QF, p), where Q = 1y (Qp), F = {nu(A) | A € Fp}, and p(A) = pp (A * mvanv (2p)).

We define two more operations on probability spaces, which will help us to give semantics
to the separating conjunction and outcome conjunction in Section 4.3. The first operation is the
product space P ® Q, which is defined when Qp C Mem[S], Qq € Mem|[T],and SNT = (. The
sample space Qpgq = Qp * Qg is the set of all joined memories in the two spaces, the event space
Fpeq is the smallest o-algebra containing {A = B | A € Fp, B € g}, and the measure has the
property that upgqo(A * B) = up(A) - pa(B) for any A € Fp and B € Fg. The full construction
uses Carathéodory’s method, and is given in Chapter 25 of Fremlin [2001].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:13

ILLPeT always

IPEL never

ILPeoAy ifft T,Peo and T PEY
ILPeoVY ifft ,PEe or T,PEY

IPe3X. ¢ iff T[X:=0],PEq@ forsome ove Val

I,PE @X~d(E) ¢ iff Vo.T[X :=0],ext(Py) E¢ and @UN# Py <P forsome (Po)yesupp(p)
where p=d([[E]]LEXP ()

ILPE&xeE ¢ if T,PE GBXNH ¢ forsome p€ D([E] g, (T)

LLPE@*m Y iff P'<P and I,P1 k¢ and T,P2 k¢ for some Pi,Ps,and P’ € P1 op Po

Pk [P] iff (P)SeFp and pp ((|P|)§) -1

Fig. 3. The satisfaction relation, where I': LVar — Var is a logical context and £ = (Mem[S], Fp, up) is a
complete probability space. All the existentially quantified probability spaces are also complete.

Note that this definition is more similar to the initial formulation of PSL [Barthe et al. 2020]
(albeit, in a probability space), rather than Lilac and Bluebell, which rely on a theorem stating
that independent products are unique [Li et al. 2023, Lemma 2.3]. We use the explicit product
construction in order to guarantee that each variable can only occur on one side of the %, making
mutation rules simpler. Lilac does not allow mutable state, and so mutation is not a factor. On the
other hand, Bluebell handles mutation by explicitly tracking permissions, but we found the product
construction to be simpler to use than the permission approach.

The next operation is a direct sum for combining disjoint probability spaces [Fremlin 2001, 214L].
More precisely, for some countable index set I, discrete distribution v € D(I), and probability
spaces P; = (Q;, Fi, pi;) such that the Q; are pairwise disjoint, we define the direct sum as:

PrswaFry Fr{acQ|VieLAnQeF} p(A) =) v(i) m(ANQ)
i~y iel iel
The sample space is the union of all the individual sample spaces, the measurable events are those
events whose projections into each Q; are measurable according to 7;, and the probability measure
is given by a convex sum. The direct sum will be used to give semantics to our outcome conjunction.
Finally, we remark that independent products distribute over direct sums (Lemma B.3):

(@ivai) ®Q = @iwv(Pi ® Q)

4.3 Probabilistic Assertions

We now define probabilistic assertions, which will serve as pre- and postconditions in pcOL triples.
The syntax is shown below and the semantics is in Figure 3.

o=TILioAYlovy X ol Dol &eolosmy [Pl (me{sw)
X~d(E) XeE

The semantics for probabilistic assertions is based on a context I': LVar — Val, and a complete
probability space P = (Mem|[S], Fp, up). The T, L, conjunction, disjunction, and existential
quantification assertions have the usual semantics.

Next, we have two kinds of outcome conjunctions, adapted from Demonic OL (pOL) [Zilberstein
et al. 2025b], but with a new measure-theoretic semantics based on direct sums. The standard
outcome conjunction P, _ a() ¢ allocates a new logical variable X, which is distributed according

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:14 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

to u = d([E] Lexp (I')), and can be referenced in ¢. The probability space # must be a refinement of
the direct sum of (Py)yesupp(y)- For every v, we then also require that T'[X = o], ext(P,) F ¢, s0 ¢
holds in the sub-probability space P, with the value of X in I' updated accordingly. Essentially, the
outcome conjunction splits the sample space Mem[S] according to the support of d(E).

The nondeterministic outcome conjunction & x<r is similar, but here only the support of the
distribution is specified (as E). This connective is used when disjunctions or existential quantification
would be used in a purely nondeterministic logic. For example, as a result of running the concurrent
program x = 1 || x = 2, it is not correct to say that [x + 1] V [x + 2] since the probabilistic
scheduler could choose to make x equal to 1 with some probability 0 < p < 1. On the other hand
&xeq12y[x > X| means that x takes on value 1 with some (existentially quantified) probability,
matching the convex powerset interpretation of nondeterminism.

Next, we have two variations of the separating conjunction, parameterized by a mode m € {s, w}.
Strong separation (mode s) is the interpretation of separation that requires probabilistic independence
and separation of variables, whereas weak separation (mode w) does not require independence, and
only separates the variables. As we explained in Section 2, weak separation is needed when case
analysis over nondeterministic shared state leaves us in a scenario where strong frame preservation
does not hold. Semantically, the difference is captured by the combinator operation ¢,,, with strong
separation using an independent product and weak separation simply requiring that the marginal
probability spaces are correct.

Pr1os Po = {P1 @ P2} Prow P ={P | P1 = (P), P2 = v (P)}

where Qp, = Mem[U] and Qp, = Mem[V] and U NV = 0. Clearly, P; o5 P2 € P1 0w P2, which
immediately gives us that ¢ 5 ¥ = ¢ *,, 1. Strong separation will be used more commonly, so we
will drop the subscript there and write * to mean x,.

Finally, the almost sure assertion [P] states that the pure assertion P, as described in Section 4.1,
occurs with probability 1. We also define syntactic sugar below for a binary outcome conjunction
&g, a bounded binary outcome conjunction @5, and expressions distributed according to some
distribution e ~ d(E).

poryt P (X=11+9)V(X=0]+y) e~dE) = P e X]
X~Ber(E) X~d(E)

eO>p Y = AX. [X 2 E]*(p &x ¥)

4.4 Convex and Precise Assertions and Entailment Laws

As we mentioned in Section 2, the parallel composition rule of pcOL requires the postcondition
from each thread to be precise, so that any correlations introduced via concurrent scheduling are
not measurable. We now define precision formally in terms of probability spaces.

Definition 4.1 (Precision). An assertion ¢ is precise if for any I' under which ¢ is satisfiable there is
a unique smallest probability space P such that ', £ ¢ and if T, P’ £ ¢, then P < P’. We write
precise(¢s, . . ., ¢n) to mean precise(@1) A - - - A precise(¢p).

Below, we give a few rules to determine that assertions are precise.
precise(q,) precise(@) @ = e X]
precise([P]) precise(¢ * ¢) precise(@X~d(E) ®)

Almost sure assertions are always precise, since the smallest model is the one where (P)r occurs with
probability 1, and is the smallest measurable set with nonzero probability. Separating conjunctions
are precise if their subcomponents are, which follows from monotonicity of the independent product

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:15

PrQ ere’ yry
[P+ Q] ‘P*ml//"‘ﬂ,*mlp/

Py rerwy [P Q] 4 [P]#m [Q] @ * [P] 4 @ xw[P]

Dx~d(p) ¢ + &xesupp(d(E)) ¢ @[E/X] 4 &xe(E) @ [ECET*&xee¢+ &xer ¢
pry Y ¢ fv(e) X ¢ fv(y)
Dx-apy ¢t Pxear) ¥V Dx-ar) @+ Dy-ar e[Y/X] (Dx~ace) ® ¥+ Dxap (0 V)
X ¢ fv(y) precise(y) X ¢ fv(y) convex (1) X ¢ fv(p) convex(p)

Dx-apy @)+ (Dx-a @ ¥ Dxeae) (@) F (Dxeam) @) W Dx-a ot e

Fig. 4. Selected entailment laws, where ¢[E/X] denotes a syntactic substitution of E for X in ¢. Recall that
m € {s,w} and when m is omitted, * = ;.

(Lemma B.4). Outcome conjunctions are precise if the inner assertion is precise, and implies that
[e — X for some program expression e, which witnesses how to partition the sample space for
the direct sum. Without this partitioning side condition, the result is not necessarily precise. For
example, [x — 1] @ 1 [x € {0,1}] is not precise, since it is not possible to determine the probability
of the event x = 1, despite it being measurable in one of the sub-probability spaces. However,
[x > 1xy - 0] ®1 [x € {0,1} = y > 1] is precise, since y witnesses the partition.

Weak separating conjunctions *,, and nondeterministic outcome conjunctions & are not precise,
as there are generally many different minimal probability spaces that satisfy them, assigning differ-
ent probabilities to each event. However, those assertions do obey convexity, a weaker condition,
which intuitively means that ¢ ©, ¢ = ¢. We give the formal definition below.

Definition 4.2 (Convex Assertions). convex(g) iff for all ' under which ¢ is satisfiable, there exist Q,
¥, and a convex set S of probability measures on ¥ such that:

VP. ILP kg iff duesS. (QLF, =P

Clearly any precise assertion is convex, since the set of measures S is just a singleton in that
case. So, in addition to analogues of the precision rules above, we also have the following:

convex(g, V) convex(¢,¥) ://jz ﬁ:(ﬂ convex(¢@) @ = e X]
convex (¢ #y ¥) convex(¢ ®xp V) convex(&xer ¢)

Precision and convexity are useful for formulating entailment laws, which we provide in Figure 4.
The first row consists of rules for the interaction between separating conjunctions and pure asser-
tions. Weakening can be performed underneath both pure assertions and separating conjunctions. In
addition, strong separation implies weak separation, and weak and strong separation are equivalent
when one of the conjuncts is a pure assertion (since independence is trivial in that case).

In the second row, we give some rules pertaining to &. An outcome conjunction P, _ d(F) can
be weakened to a & over supp(d(E)), where supp(Ber (E)) = {0,1} and supp(unif (E)) £ E. A
&xek) ¢ over a singleton set is the same as substituting E for X in ¢. Finally, the bounds of a &
can always be expanded, similar to how P = P V Q in classical logic.

The final two rows pertain to outcome conjunctions, and each rule has a corresponding one (not
shown) with & instead of (). Weakening can be performed inside of an outcome conjunction, and
bound variables can be a-renamed as long as the new variable name is fresh. As in Bluebell, the
(strong) separating conjunction distributes over the outcome conjunction, so that assertions can be

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:16 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

moved inside of an outcome conjunction, but this rule is invalid if * is replaced by #,,, due to the
possibility of correlations between i and d(E).

Factoring assertions out of an outcome conjunction is only supported in Bluebell for almost-sure
assertions [P, whereas in pcOL, it can be performed for any precise assertion, due to our semantics
based on a direct sum. We saw at the end of Section 4.2 that independent products (which model
separating conjunctions) distribute over direct sums (which model outcome conjunctions), however
the corresponding entailment Py _y(z) (¢ * V) F (D x-g(g) ¢) * ¥ requires that ¢ is satisfied by
the same model in each case, which can be guaranteed by forcing ¢ to be precise. In fact, this exact
scenario also arose in the RConND and RCASE rules of PSL, where an analogous concept called
supported was used to ensure soundness [Barthe et al. 2020]. Replacing strong separation with weak
separation, we only need i to be convex—not precise—to factor it out of the outcome conjunction,
since independence is not implied. Finally, outcome conjunctions over convex assertions that do
not depend on the bound variable X can be collapsed.

5 Probabilistic Concurrent Outcome Logic

Probabilistic Concurrent Outcome Logic (pcOL) specifications are given as triples of the form
Ity (@) C (¥), where ¢ and ¢ are probabilistic assertions (Section 4.3), C € Cmd (Figure 1), I is a
basic assertion, and m € {s, w}. Roughly speaking, the meaning of these triples is that if the states
are initially distributed according to ¢, then any invariant sensitive execution of C with invariant I
will satisfy . The mode m dictates what kind of frame preservation property the triple has.

Recall from Section 3.3 that invariant sensitive execution requires the invariant states to be
drawn from a finite set. For this reason, I must be a finitary basic assertion; formally, finitary(I) iff
(I)r is a finite set for any context I'. The formal validity definition of pcOL triples is below.

Definition 5.1 (pcOL Triples). The pcOL triple I k,, (@) C (¢) is valid iff for all T': LVar — Val, g,
and probability spaces P, Pp, and P’ € P oy, Pr such that P’ < pand I, P k ¢ = [T], then:

vve LU ([e)T (1). 3Q.3Q" € QopmPr. Q' <v and T,QE ¢ *[I]

As in many separation logics, frame preservation is built into the semantics of the triples [Birkedal
and Yang 2007; Jung et al. 2018]; in addition to quantifying over a probability space P to satisfy ¢,
we also quantify over a probability space $r, which describes unused resources and is preserved
by the program execution. As with the separating conjunction, we will omit the m when m = s. In
addition, since we defined probability spaces to operate over memories Mem[S], without L, our
triples are fault avoiding, which is also a standard choice for separation logics [Yang and O’Hearn
2002]. That is, if I £ (@) C () is valid, then we know that C will not encounter a memory fault
starting from a distribution satisfying ¢.

These triples also imply almost sure termination, or total correctness. We chose to pursue total
correctness, as it aligns with probabilistic liveness properties that we are interested in (e.g., see
Section 6.4). In the probabilistic context, there is no single natural notion of partial correctness, and
nontermination breaks parallel composition; composing a thread with a nonterminating thread
alters the behavior of the first thread even without shared state.

In the remainder of this section, we will present inference rules for deriving pcOL triples. We
write I Fp, (@) C (¥) to mean that a triple is derivable using these rules. All of the rules are sound
with respect to Definition 5.1.

THEOREM 5.2 (SOUNDNESS). For all of the rules in Figures 5 to 8, if I v, {¢) C () thenI &, {¢) C ().

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:17

I'rm (@) C1 (9) T'rm (9) C2 (¥) .

——SKIpP
I'tm (@) skip (p) I'tm (@) C15C2 (¥)

@ = [b true] Itm (@) C1 (!//)I - ¢ = [bfalse] Itm (@) C; (t//)I .
I+m (@) if b then C; else C2 (¥) : It+m (@) if b then C; else C2 (¥) :
¢ = [e— E| A (Y= [own(x)]) ¢ = [e— E] A (Y= [own(x)])

SSIGN SAamp
Trm (@) x =e (Y =[x E]) I'tm (@) x = d(e) (¢ = (x ~ d(E))

Fig. 5. Rules for Sequential Commands

5.1 Rules for Sequential Commands

The rules for sequential commands are given in Figure 5. Although the rules appear like the standard
ones for Hoare-like logics [Hoare 1969] and separation logic [O’Hearn et al. 2001; Reynolds 2002],
they rely on the properties of linearization shown in Section 3.3. In Ski1p, the precondition is
preserved by a no-op, and SEQ is the standard rule for sequential composition.

The rules for if statements are split into two cases, for when the precondition implies that the
true or false branch will be taken, respectively, similar to standard Outcome Logic [Zilberstein
2025; Zilberstein et al. 2025b]. These rules can be combined into a single rule for analyzing both
branches using the various split rules, which we will introduce in Section 5.3.

Finally, we give rules for atomic actions. AsSIGN requires the precondition to determine that the
program expression e evaluates to the logical expression E, and that the variable x, which is being
assigned, is owned by the current thread and is disjoint from the assertion . This structure gives
the flexibility to apply the rule both when ¢ = ¢ * [x — E’] and ¢ = ¢ * [own(x)]. SAmP has a
similar requirement, but ultimately concludes that x is distributed according to d(E) rather than
having a deterministic value.

5.2 Concurrent Separation Logic Rules

Next, in Figure 6, we have a variety of rules inspired by Concurrent Separation Logic (CSL) [Brookes
2004; O'Hearn 2004; Vafeiadis 2011]. First is the Par rule for parallel composition. Although Par
looks like the analogous rule from CSL—aside from the condition about precision—the soundness of
the rule is substantially more complicated due to the probabilistic interpretation of the separating
conjunction. It is not hard to imagine situations where the scheduler can introduce correlation
between variables. For example, in the following program (which we previously saw in Section 2.3),
the scheduler could choose to schedule the y := 1 action after the sampling operation is resolved,
meaning that it could make x = y with probability 1, a clear correlation.

x:~Ber(3)5y:=0 | v=1

As such, the outcomes of the two threads will not be independent after being run concurrently, but
rather only observably independent in some restricted event space. By requiring the postconditions
of each thread to be precise, we know that the probability of each measurable event must be
specified exactly, so that the nondeterministic behavior of the scheduler will not be measurable
(Lemmas C.5 and C.6). In the case of the program above, the strongest precise assertion about y is
[y € {0,1}], that y is always either 0 or 1, and (x ~ Ber (%)) * [y € {0,1}] is a valid postcondition
for the program, since almost sure assertions [P] are trivially independent from all other assertions.

More formally, the soundness proof uses the fact that ¢; and ¢, are precise to obtain unique
minimal probability spaces Q; and Q; satisfying them. We then show that for any distribution v
resulting from running C; || C;, and for any events B; € ¥, and B, € Fq,, it must be the case that

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:18 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Ir{p1) C1 (Y1) I+ {p2) C2(Y2) PreCise(lﬁl,lﬁz)PAR
Ik {1 *@2) C1 || C2 (Y1 *)

Jtm @ = [I1) a (Y = [I1) I« Jtm (@) C(¢¥) finitary(I)
AtoM SHARE
I Jbm (@) a(§) JEm (o [I1) C (Y = [I1)
I'tm (p) C(¥) I+t{p)C W) I'tw {p) C (Y) precise(y)
FrAME ——— WEAKEN STRENGTHEN
Irm (@ #m 9) C (Y #m 9) I'rw () C¥) I+{p) CY)

Fig. 6. Concurrent Separation Logic Rules

v(B; * By) = pq, (B1) - uq,(Bz). Since C; and C; may not terminate in a bounded amount of time,
this probability only converges to the desired product in the limit.

The next two rules are for interacting with invariants. The ATom rule opens the invariant by
moving it into the triple as an almost sure assertion, as long as the program is a single atomic action
a. The fact that that the program executes atomically, and that I is true before and after execution,
means that I is true at every step. Next, the SHARE rule allows a finitary almost sure assertion I
to be moved into the invariant. The soundness of this rule relies on the invariant monotonicity
property that we discussed in Section 3.3.

LEMMA 5.3 (INVARIANT MoNoTONICITY). For any U,V,W C Var and 0 € Mem[W] such that
UNnV=0,7IcMem[U],J € Mem[V],andUUV C W:

L7 (@) (o) Ec LT (a)(0)

Recall that C¢ is equivalent to 2, so invariant monotonicity states that expanding the invariant
(via *) can only add new behaviors to the set of outcomes. Lemma 5.3 follows from the more general
monotonicity property of linearization [Zilberstein et al. 2025a].

The FraME rule allows a local specification to be lifted into a larger memory footprint [Yang and
O’Hearn 2002]. The type of separation used depends on the mode m of the triple. If m = s, then the
frame J not only represents a disjoint set of physical resources, but also that those resources are
distributed independently from the information about the present program. A strong triple can
always be weakened to a weak triple using the WEAKEN rule. A weak triple can be strengthened—via
STRENGTHEN—as long as the postcondition is precise. Just as with the Par rule, precision here
ensures that the scheduler cannot force any correlation between the postcondition and the frame.

5.3 Structural and Outcome Splitting Rules

Additional structural rules are given in Figure 7. The first four splitting rules enable pointwise
reasoning over outcome conjunctions, similar to those of Demonic Outcome Logic [Zilberstein
et al. 2025b]. All these rules require that the logical variable X, bound by the outcome conjunction,
does not appear free in the invariant I, since X is unbound in the premise of the rule. If X is free in
I, then the rule can be applied after a-renaming X in the outcome conjunction (see Figure 4).

The first rule, SpLIT1, requires that i dictates the partition of the probability spaces in order to
construct a final direct sum. This is done in a similar fashion to rules for establishing precision
that we saw in Section 4.3—by requiring that ¥ = [e + X| for some expression e. Since X takes
on distinct values in each case of the direct sum, then e — X witnesses that the sample space can
be partitioned. If i does not witness a partition, then the SpLT2 rule can instead be used, which
requires i to be convex and not dependent on X.

We now demonstrate these two modes of use. Below, x is initially distributed according to
some distribution d(E), and then it is incremented. The sample space is still partitioned after the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:19

Irm (@) C(Y) Yy=lem X X¢fv() . Tem (@) CY) Y= [e=X] Xgfv(l)

S
Tem (D oy (D W) o Tem (&0 (&)

X~d(E) X~d(E) XeE XeE

NSpLIT1

Ity (@) C(Y) convex(y) X & fv(Ly) Ity (@) C(Y) convex(y¥) X & fv(Ly)
SpLIT2

NSpLIT2
Lem (P o) € (9 Lrm (& 0 C ()
X~d(E) X€eE
IT'rw (&xeelPT) C () [P] = [er X] o'=0 Itm()CW) ¢y=9
ExisTs ; 5 CONSEQUENCE
I'tw ([3X € E.P]) C () ITrm (@") CY)

Fig. 7. Structural and Outcome Splitting Rules

increment, which is witnessed by [x — 1 — X7, so SprL1T1 can be used.
F{x XD)x=x+1{([x—>X+1]) [x—X+1] = [x-1 X]|
F <@[xHx1)x =x+1 <@[xHx+ﬂ>

X~d(E) X~d(E)

SpriTl

On the other hand, the next program samples y, and the resulting sample space is not partitioned
according to X. Instead, SpL1T2 is used since the postcondition is convex.

F([x—X=*Xe{0,1}]) y:=Ber(x/2) (Y. [Y < 1/2]*y ~ Ber(Y))

F(EPTx - X+ X € {0,1}]) y:~Ber (x/2) (3Y.[Y <1/2] +y ~ Ber (Y))
X~Ber(1/2)

SpLIT2

NSpLIT1 and NSpLIT2 are the nondeterministic analogues of the two aforementioned rules. They
operate in exactly the same way when the distribution over X is not known.

The Ex1sts rule allows for a more complex form of case analysis, where the logical variable
being scrutinized, X, is bound by an existential quantifier inside of a pure assertion. Since the
precondition is a pure assertion, it may be satisfied by a probability space that cannot measure
the probability that X takes on each value of E. Nonetheless, ExisTs allows us to use a stronger
precondition where X is instead bound by a &, allowing us to do case analysis using NSpLIT1 or
NSpriT2. The tradeoff is that this form of reasoning is incompatible with strong frame preservation
because turning a pure assertion into a nondeterministic outcome conjunction has a bad interaction
with the strong separating conjunction, as shown below.

[y (0] +(x~Ber(p) # (& Ty Y1)+ (x~Ber(p)) = & (Iy+> Y1+ (x ~ Ber (p)))

Ye{0,1} Ye{0,1}

On the left hand side, it is possible that x and y are always equal. However, the first implication—
which is unsound—implies that information about x’s distribution can be distributed into every
outcome of y, i.e., x is distributed according to Ber (p) for every value of y. So, EXIsTS is compatible
only with weak frame preservation, but it nevertheless provides an important capability to do case
analysis over shared state, which we will see more concretely in Sections 5.4, 6.1 and 6.4. As long as
the postcondition becomes precise at some later point, the STRENGTHEN rule can be used to regain
strong frame preservation. Finally, the rule of CoNSEQUENCE allows pre- and postconditions to be
manipulated in the standard way. The invariant can be neither strengthened nor weakened, since
doing so would break the assumptions of other threads.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:20 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

@=[¢<R<h] N1 b 0<p<1
#[R=t]= [bi-false] T F *[R=N>{])C - ® _ Né¢vars(p)
Z* |'R>{"\:]'b»—>tarje6'\ m (o] D ((&RJ ?) =P (&R_N o)) precise(¢[¢/R])

BoUNDEDRANK

Irm (&h_, @) while bdo C (p[¢/R])

Fig. 8. The BOUNDEDRANK rule for almost sure termination.

5.4 Loops and Almost Sure Termination

The final proof rule is for analyzing while loops, and proving that they almost surely terminate—that
is, they terminate with probability 1. The BOUNDEDRANK rule, shown in Figure 8, is based on rules
for sequential programs due to McIver and Morgan [2005] and Zilberstein et al. [2025b]. It revolves
around a loop invariant ¢ and a rank. The rank R must be integer-valued and bounded between ¢ and
h,ie,p = [£ < R < h]. Aslong as R > ¢, the loop continues to iterate (¢ * [R > €| = [b > true])
and once R reaches ¢, the loop must terminate (p * [R = £] = [b > false]).

The premise of BOUNDEDRANK guarantees that the rank strictly decreases each iteration with
probability at least p > 0. Since the rank is bounded between ¢ and h, this means that from any
start state, the loop is guaranteed to terminate with probability at least p"~¢ > 0, which allows us
to conclude that the program must almost surely terminate by the Zero-One law of Mclver and
Morgan [2005, Lemma 2.6.1]. Finally, since the terminating outcome ¢[£/R] is precise, there must
be a unique minimal probability space Q that satisfies it. Similar to the soundness proof of the PAr
rule, we complete the soundness proof of the BounDEDRANK rule by showing that for all B € Fq
and all v resulting from finite approximations of the loop, v(B) converges to pgq(B).

As an example of how to apply this rule, consider the example program below. The program
implements a sort of random walk where x moves towards the origin with probability £, otherwise
it is updated to y, which may be altered by a parallel thread.

RandWalk = whilex>0do b:~Ber(;)sifbthenx =x-1lelsex:=y

Cbody

As long as the value of y is bounded, this loop almost surely terminates, which we can prove using
BOUNDEDRANK, subject to the resource invariant I = y € {0,...,5}. We will sketch the proof of
almost sure termination here, the full derivation is shown in Appendix F.2. The loop invariant is
@ =[x R+0<R<5=xo0own(b)], essentially just stating that x is between 0 and 5. The rank R
is the value of x, and so R decreases each iteration with probability at least % However, x may also
be updated to y, which is nondeterministic, requiring a use of the ExisTs rule to conclude that
&Zzl [x — R] after the command x := y. Clearly &%:1 [x — R] is not precise, so the resulting
triple is not strongly frame preserving. Ultimately, we get the following weak triple for the loop
body, which states that the rank strictly decreases with probability at least %

y € {0,...,5} Fw ([x = NT) Chody (&N Tx > R1) @51 (&Sy[x = R1)) (4)

1
=2
At this stage, the weak triple signifies that we do not know exactly how likely the program is to
terminate; we can only bound the probability. Indeed, the scheduler can influence the likelihood
that x takes on particular values, and can force x to be correlated with other state. For example,
suppose we wanted to apply the FRaAME rule with z ~ unif ({0, ..., 5}). The scheduler could choose
to always make y and z equal, in which case z ~ unif ({0,...,5}) would not be independent of
the postcondition of (4). However, the point of BOUNDEDRANK is that the scheduler cannot affect
the probability of eventual termination. As such, the postcondition at the end of the execution is
¢[0/R], which is equivalent to the precise assertion [x — 07, allowing us to apply STRENGTHEN to

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:21

get the following strong triple for the entire program.
yeA{0,...,5}F ([x € {0,...,5}]) RandWalk ([x > 0])

One remarkable aspect of pcOL is that the triple above also implies that RandWalk almost surely
terminates when run in parallel with any other almost surely terminating program that obeys the
resource invariant I. We get this property for free from the PAr rule, which guarantees that the
probability of any infinite interleaving of both programs converges to 0.

This holds without any fairness assumption; our semantics guarantees that each thread almost
surely terminates regardless of interference from any other threads, therefore each enabled action
is almost surely scheduled within a finite amount of time. Of course, there are many programs
that only almost surely terminate subject to a fair scheduler, including probabilistic consensus and
synchronization protocols [Ben-Or 1983; Lehmann and Rabin 1981; Rabin 1980]. As we discuss in
Section 8, we plan to augment pcOL with capabilities to reason about fair termination in the future.

6 Examples

In this section, we present four examples to demonstrate how the proof rules of pcOL come together
into more complex derivations. Proofs are sketched here, and shown fully in Appendix F.

6.1 Entropy Mixer

There are many scenarios where several potential sources of entropy or randomness are available,
which must be mixed together with the guarantee that if at least one of the sources of entropy is
high quality, then the output will be at least that good. A simplified example of a such scenario is
modeled in the following program, where x; is a reliable source of entropy, but x; is unreliable,
because it is derived from y in a way that can be controlled adversarially by the scheduler. Despite
that, z, which is derived from x; and x; is a high quality source of randomness.

EntropyMixer 2 y:=0;3 (x1 =y §x, :~ Ber (3) § z := xor(x1, x2) ” y:=1)

We will analyze this program using the invariant I = (y € {0, 1}), and conclude in the end that
z ~ Ber (%) It is easy to see that the second thread satisfies the invariant, so we will focus on the
first thread. We first show how information about y can be extracted from the invariant in order to
give a specification for the assignment to x;. The use of the Ex1sTs rule results in a weak triple.

ASSIGN

bw ([y = Yxown(x) 1) x1 == y ([x1 » Yxy = Y1) NSpLITl

Fw (&yeqoay [y P Y xown(x) 1) x1 = y (&yepo1y [x1 = Yy Y1)
Fow (&yegoy [y = Yxown(x) 1) x1 = y ((&yeo1y [x1 = Y1) * [y € {0,1}T)
Fw (fown(x1)] * [y € {0,1}]) x1 = y ((&yeqo1y [x1 - Y1) * [y € {0,1}])
y € {0,1} by (Jown(x1) 1) x1 = y (&yefo1}[x1 — Y1)
These derivations are best read moving up from the lowermost precondition and then down from
the topmost postcondition. First, ATom is applied to open the invariant. Next, we use Ex1sts and
NSpLIT1 to gain access to the value of y, so that we can apply the AssiGN rule. After the assignment,
we use CONSEQUENCE to weaken the information about y and move it outside the scope of the & so
that we can close the invariant. Now, we move on to the derivation for the remainder of the thread.

CONSEQUENCE

ExisTs

I+y ([x1 = Y *own(xz,2)]) x2 = Ber (1/2) § z := xor(xy, x3) <®X~Ber(l/2) [z xor(Y,X)])

CONSEQUENCE

Ity ([x1 > Y*xown(xg,2)]) x2 := Ber (1/2) §z := xor(x1,x2) (z ~ Ber (1/2))
NSpLIT2

I'tw (&yefoy [x1 > Y xown(xz, 2) 1) x2 :~ Ber (1/2) § z := xor(x1,x2) (z ~ Ber (1/2))

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:22 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

ConcurrentShuffle : shuffley :
ap=[lsa=1[]5i=03 i = len(ay)
while i < len(a) do (while iy > 1do
b:~Ber ()3 i~ unif ([0, ..., ik]) §
if b then a; := a; ++ [a[i]] else a; = a; + [a[i]] § ax = swap(ag, i, jr) 3
i=i+1 ir =i —1
)

shuffle; || shuffle, ¢
a.=a +Ha

Fig. 9. A concurrent shuffling algorithm, where £; + £ concatenates two lists and swap(¥, i, j) returns ¢ with
the elements £[i] and ¢[j] swapped.

First, we must again do case analysis on the logical variable Y, but this time we use NSpL112, which
requires the postcondition to be convex and not depend on Y. In the premise of NSPLIT2, we we
show that z is distributed properly regardless of the value of Y. For any fixed Y, after executing the
writes to x, and z, we know that P X~Ber(1/2) [z — xor (Y, X)] (the proof is quite mechanical, and
shown in Appendix F.3). Since Y is constant, then xor (Y, X) is a bijection from {0, 1} to {0, 1}, and
we can therefore use the rule of CONSEQUENCE to conclude that z is uniformly distributed. Since
that postcondition is precise, we can strengthen the triple. After combining the two threads with
PAR, we get the following specification for the whole program.

F ([own(x1,x2,1,2)]) EntropyMixer (z ~ Ber (3))

6.2 Concurrent Shuffle

Bacher et al. [2015] showed that shuffling algorithms can be made up to seven times faster through
parallelization. They introduced a divide-and-conquer algorithm in which sub-arrays are shuffled
concurrently and then merged. In this example, we prove the correctness of a simple concurrent
shuffle algorithm using pcOL. The program is shown in Figure 9. First, the elements in the array
are randomly assigned to two buckets, a; and az, the buckets are then shuffled in parallel using the
standard Fisher and Yates [1938] algorithm, and then the two shuffled sub-lists are concatenated
together. For some list ¢, let II(£) be the set of all permutations of £. For the purposes of this example,
we will presume that all lists do not contain duplicate values. The specification of the Fisher-Yates
shuffle is shown below (and proven in Appendix F.4). That is, if a list A is stored in ag, then a; will
hold a uniformly chosen permutation of that list after execution of shuffley.

F ([ar — A % own(ig, jk)]) shuffleg (ar ~ unif (II(A)))

For some list £ and bit-string x, let £[x] be the list obtained by filtering ¢ to only contain the indices
i such that x[i] = 1, eg., [1,2,3,4][1001] = [1, 4]. After the execution of the bucketing loop, we get
the postcondition @Xwnif({o,l}le"w) [a; — A[X] *a; — A[—=X]], where X is a uniformly chosen
bit-string that dictates into which bucket each element of A is placed, and —X is bitwise logical
negation. Next, to analyze the concurrent calls to shuffley, we first use SpLiT1 so that we can
separate a; and a,. Using PAR with the triple for shuffley, we have that a; and a, are uniformly
and independently distributed permutations of the initial lists after the concurrent shuffles.
F ([a1 — A[X]]) shuffle; (a1 ~ unif (II(A[X]))) F ([az > A[-X]]) shuffle; (az ~ unif (II(A[-X])))

F ([a1 = A[X] * a3 — A[-X]]) shuffle; || shuffle, {(a; ~ unif (II(A[X]))) * (az ~ unif (II(A[-X])))

Reapplying the outcome conjunction over X, we can rewrite the postcondition to be:

EBX~unif({0,1}le"(A)) @Alwunif(H(A[X])) @Arunif(H(A[ﬁX])) [a1 — Ay * az — Az

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:23

PrivFetch: fetchy :
qi1 :~ unif ({0,1}") § ik =03r, =0¢
g2 = xor(qi,x) 3 while iy < len(qx) do
fetch, || fetch, ¢ if qx[ix] =1 then
r == xor(ry,ry) re = xor(ri, d[ir]) §
i =i +1

Fig. 10. A concurrent private information retrieval protocol.

Using SpriT1 three times and AssignN, we get the following postcondition after the assignment to a.

@X~unif({0,1}1e"(*“)) @A1~unif(n(A[x])) @Az~unif(H(A[—|X])) [a— A; + A

We now prove the assertion above implies that a is a uniform permutation. Take any ¢ € II(A) and
let n = 1en(A). For every 0 < k < n, there is exactly one split X such that X assigns the elements
¢[0],...,¢[k — 1] to a; and the rest to a,. This split occurs with probability 5. Further, given that

this correct split has occurred, a; and a; are shuffled so that a; + a; = ¢ with probability % ﬁ

Thus the probability of getting the permutation £is }};_; zl" % ﬁ = % Since there are exactly

[TI(A)| = n! permutations, this means that these permutations are produced uniformly, therefore:

F ([a— A=own(---)]) ConcurrentShuffle (a ~ unif (II(A)))

6.3 Private Information Retrieval

Private information retrieval allows a user to fetch data without the database operator learning
what data was requested [Chor et al. 1998]. A simple form of private information retrieval is
modeled in the program shown in Figure 10. The fetchy programs process a bit string query g,
indicating which entries of the database d to return. Those entries are then bitwise xor’ed together.
Private retrieval is implemented in PrivFetch. The input x is a one-hot bit string onehot(K), with
a 1 in position K—indicating the index of the data to retrieve—and zeros everywhere else. Two
queries are then made concurrently. The first one uses a randomly chosen bit string, and the second
uses the same random string xor’ed with onehot(K). The final data is an xor of the two responses,
which reveals the data at position K. Barthe et al. [2020] proved a similar example in PSL, but
their version was sequential; both fetches happened within a single for loop. Our version better
models a distributed system where the computation does not occur in lockstep. We first present a
specification for fetch (proven in Appendix F.5), which states that r is an xor of data entries i,
such that g [i] = 1, subject to the invariant that d — D.
d— D+ ([qx — QT * [own(ig, rr)]) fetchg ([ry — xor DJ[i]])
0<i<n:Q[i]=1
We now sketch the derivation of the main procedure, the full proof is shown in Appendix F.5. After
sampling into q;, we use SPLIT2 to make the outcome of that query deterministic. After assigning
q2, we get [q1 — Q] * [q2 — xor(Q, onehot(K))]. We can then apply the PAR rule to analyze the
concurrent fetches to get the following postcondition:
[r; — xor DJ[i]] * [ry xor DIi]]
0<i<n:Q[i]=1 0<i<n:xor(Q,onehot(K))[i]=1
The value of r is the xor of r; and r;, which differ only at index K, therefore we can conclude that
[r + D[K]]. Since this assertion is convex and does not depend on Q, we meet the side conditions
of the ConD2 rule, and therefore the final postcondition is simply [r +— D[K]].

F ([x +— onehot(K) = d — D * own(qy, q1, 71, 2, I i1, i2) |) PrivFetch ([r — D[K]])

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:24 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

6.4 The von Neumann Trick

The von Neumann [1951] trick is a protocol for simulating a fair coin given a coin with unknown
bias. The biased coin is flipped twice, if the outcome is 1-0 or 0-1, then the output is the first coin
flip, otherwise the experiment is repeated. Below, we have a variant of the von Neumann trick
where the coin’s bias is stored in shared memory, and its value is not remembered across rounds.

vonNeumann 2 x:=05y:=0% whilex=ydo p’ =psx:=Ber(p’) iy :=Ber(p’)

Every round, a concurrent thread could change the bias, altering the probability of terminating
in that round. Despite this, we show that the program almost surely terminates, and that x is
distributed according to a fair coin, subject to the invariant I = (p € [, 1 —¢]a) where 0 < ¢ < % is
an arbitrarily small probability and A is a nonzero step size, making the interval finite (if p could
be 0 or 1, then the program may not terminate). A variant of this example appeared in Zilberstein
et al. [2025b], where the bias was explicitly altered by an adversary. This concurrent version of the
program introduces new challenges from a program analysis perspective. The bulk of the derivation
involves analyzing the while loop. To do so, we need a loop invariant, which is shown below.

P=@oV o1 @ = @foX*yHﬂX*RﬂW @1 = [x =y > true xR =1%own(p’)]
X~Ber(1/2)

The rank R is either 0 or 1. When R = 0, x # y and x is uniformly distributed, so the loop terminates.
When R = 1, x = y, so the loop keeps iterating. Each iteration, the loop terminates with probability
at least 2¢(1 — ¢). Due to the reliance on shared state, this probability is not exact, but only a bound.
The structure of the proof is similar to that of Section 6.1. First, we use Arom and NSpLIT1 to open
the invariant and conclude that p” holds some probability in [&, 1 — €]a. Since the postcondition is
imprecise and based on shared state, we are only able to obtain a weak triple at this point.

Iy <|—0W”(p’)-|) Pl =p (&Xe[e,l—e],\ |—P/ = X-|>

We then sequence this with the two sampling operations, shown below:

Ity ([p' > X =own(x, y)]) x ~Ber (p') § y:~Ber (p’) ([p’ > X]*x ~Ber (X) =y ~Ber (X))
Iry ([p" = X xown(x,y)]) x :~Ber (p') § y = Ber (p’) (@0 ®s20(1-¢) 1)
IT'ry (&Xe[s,l—s],\ [p' = X xown(x,y)1) x :~Ber (p’) § y = Ber (p) (@0 D22e(1-¢) P1)

CONSEQUENCE
NSprIT2

We first use NSpLIT2 to show that for any fixed probability X, the loop terminates with probability
at least 2¢(1 — ¢). This is done using straightforward combinatorial reasoning. Given that p’ — X,
we know that x and y will be independently and identically distributed according to Ber (X). That
means that [x — 1*y +— 0] and [x +— 0 %y +— 1] both occur with probability X(1 — X), so
@o occurs with probability 2X(1 — X), and otherwise x = y, so ¢; holds. Since we know that
X € [e,1—¢], then clearly 2¢(1 —¢) < 2X(1—X), so the consequence above is valid. After applying
BouNDEDRANK, we get the postcondition ¢y = (x ~ Ber (%)) Since this postcondition is precise,
we can use STRENGTHEN to get the following strong triple for the whole program, indicating both
that the program almost surely terminates, and that x is distributed like a fair coin. In fact, it also
terminates when composed in parallel with other terminating threads that alter p in arbitrary ways!

p € le1—elar (fown(x,y,p’)]) vonNeumann (x ~ Ber (1))

7 Related Work

Logics for Probabilistic Concurrency. Polaris is a relational separation logic built on Iris [Jung
et al. 2018] for reasoning about concurrent probabilistic programs [Tassarotti 2018; Tassarotti and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:25

Harper 2019]. Compared to Polaris, pcOL has two main advantages: it supports unbounded looping
and it supports direct probabilistic reasoning about the distribution of outcomes. Polaris cannot
handle the von Neumann trick, which involves unbounded looping. Because it is a relational logic,
Polaris works by relating a randomized concurrent program to a specification program, which is
randomized and nondeterministic (but not concurrent). This requires the random choices between
the two programs to be coupled in lockstep.

In our concurrent shuffling example, we prove with pcOL that a sequence of many random
choices results in a completely different uniform distribution of outcomes. It would be impossible
to recreate this proof in Polaris, since the natural specification program for a randomized shuffle
would only make a single random choice (a uniform sample over permutations), whereas the actual
program makes a large sequence of random choices. It might be possible to do an alternate relational
proof in Polaris by instead picking a specification program that makes a similar sequence of random
choices, but then one would be left with the challenge of proving that such a specification program
actually generated a uniform shuffle, for which Polaris cannot help.

In pcOL, we combine the two steps, avoiding the need to write down a specification program
by building quantitative reasoning tools into the logic itself. However, the approaches do have
similarities—our invariant sensitive semantics implicitly captures the behavior of the specification
program by converting parallel manipulation of shared state into nondeterminism. This is slightly
easier, since the user must only write down an invariant rather than an entire specification program.
Then, rather than externally analyzing the specification program, we directly prove a quantitative
postcondition. While pcOL does not support all the capabilities of Polaris (e.g., ghost state, higher
order state, etc.), proofs are carried out in fewer steps using a single, self-contained logic. In the
future, it may be fruitful to combine the two approaches. Indeed, Bao et al. [2025] showed the
advantages of supporting both relational and unary reasoning in a single probabilistic logic.

Fesefeldt et al. [2022] pursued an alternative technique for reasoning about probabilistic con-
current programs, based on a quantitative interpretation of separation logic [Batz et al. 2019].
Their logic can be used to lower bound the probability of a single outcome, making all but the
private information retrieval example in this paper out of reach. While Fesefeldt et al. do support
unbounded looping, the probability of nontermination is always added to the final expected values,
and so it cannot be used to prove almost sure termination.

Fan et al. [2025] developed another logic based on Probabilistic Rely-Guarantee [Mclver et al.
2016]. While it supports outcome splitting, the program must be re-instrumented to explicitly
declare where splitting occurs, whereas in pcOL splitting is purely logical and can be used anywhere.
Fan et al. require postconditions after splitting to be convex; they have a rule similar to SprLT2, but
not SpLIT1. In addition, their parallel composition rules do not give independence guarantees, and
accordingly can only make conclusions about the local distributions of all threads, and not the joint
distributions of all the variables in global memory, and programs must be proven to almost surely
terminate externally to the logic. Their logic is based on an oblivious adversary model—a weaker
model than our unrestricted adversary. More programs are verifiable in this model, so it is often
preferred, however the logic of Fan et al. can only reason about obliviousness in limited ways, i.e.,
by treating coin flip actions as atomic, so many programs are still out of reach.

Probabilistic Separation Logics. Capturing probabilistic independence in separation logic was first
explored by Barthe et al. [2020], however the resulting Probabilistic Separation Logic (PSL) was
limited in its ability to reason about control flow, and the frame rule had stringent side conditions.
DIBI later extended the PSL model to include conditioning [Bao et al. 2021]. Lilac built on the
two aforementioned logics and used conditioning to improve on PSL’s handling of control flow,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:26 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

although without mutable state [Li et al. 2023]. Lilac also added support for continuous distributions,
and reformulated the notion of separation using probability spaces, making it more expressive.
Lilac’s lack of mutable state means that information about variables can be duplicated; for
example, x ~ Ber (%) x [x € {0, 1}] is satisfiable. Bluebell uses a similar model to Lilac, with the
ability to reason about mutable state, which requires the logic to track permissions too [Bao et al.
2025]. We chose to use a more restrictive form of separation where information about variables
cannot be shared, as it simplified the logical rules by eliminating the need for tracking permissions.
As we mentioned in Section 2, the direct sum semantics of @ differs from conditioning modalities
Cx~q¢, which are based on disintegration. However, we believe that in the future the two modalities
can work together to do discrete case analysis over continuous programs. For example, consider the
following program, which samples from a continuous distribution and then branches on the result.

:~ unif ([0,1]) §if x < § then C; else C,

Lilac’s rule for analyzing if statements is incompatible with mutable state, so we would instead need
to use SPLIT1 or SPLIT2 to do case analysis on the guard x < % in order to derive a specification
for this program. However, those rules require an outcome conjunction, which cannot express
the fact that x is distributed according to a continuous distribution. Instead, we can partition the
continuous distribution into two parts, joined with an outcome conjunction, which would then
allow us to analyze the two branches of the if statement.

Cx~uif(fo1[x = X] = (Cx~unif([o,1/2]) [* — X]) ®1 (Cx~unif((1/217) [x — X])

Although the direct sum’s partitioning of the sample space imposes some limitations on the splitting
rules, the benefit is that they are fully compositional; the use of splitting does not impede the
application of other rules later in the derivation. This is in contrast with Bluebell’s c-wp-swap [Bao
et al. 2025, §5.1], which requires ownership over all program variables (denoted owny), thereby
precluding most later applications of the frame rule. Although Bao et al. [2025] show fruitful uses
of c-wp-swap, the restriction is not acceptable for a concurrency logic, since it would preclude use
of the PARr rule.

This is similar to Ex1isTs disabling strong frame preservation, but Exists is used in specific
scenarios for case analysis on nondeterministic shared state, which only arises in the concurrency
setting. In any case, strong frame preservation can always be reenabled if the postcondition is
precise. Non-frame-preserving operations arise in non-probabilistic separation logics too [Spies
et al. 2025; Vindum et al. 2025]. The idea of having two types of probabilistic separation was also
explored in LINA, where weak separation corresponds to negative dependence [Bao et al. 2022].

The notion of precision has been previously studied in separation logics, in part to explain
when the separating conjunction distributes over other logical connectives, such as the regular
conjunction [Calcagno et al. 2007; Vafeiadis 2011]. In PSL, precision (under the name supported)
was used to ensure that the guard of an if statement remains independent of the postcondition
of the two branches. Conditioning a la Lilac and Bluebell provides a more flexible way to reason
about control flow without forcing the guard to be independent of the states in the two branches.

Another category of probabilistic separation logics build on Iris [Jung et al. 2018], from which they
inherit expressive features, including ghost state and impredicative invariant reasoning. In these
logics, separating conjunctions have the usual meaning from CSL, and do not capture probabilistic
independence. Lohse and Garg [2024] and Haselwarter et al. [2024b] develop logics for proving
bounds on the expected runtime of a randomized program. Aguirre et al. [2024] apply a similar
approach for upper bounding the probability that a postcondition will fail to hold in sequential
programs, and Li et al. [2025] extended this work to the concurrent setting. Additional logics have
also been developed for relational reasoning and refinement [Gregersen et al. 2024a,b; Haselwarter

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:27

et al. 2024a]. The tradeof is that they focus on a narrow property about programs’ probabilistic
behaviors, e.g., only capturing a bound on an expected cost or probability of a single event. Outcome
Separation Logic uses a more primitive form of heap separation, but is backed by a denotational
model that supports specifications about the distribution of outcomes [Zilberstein et al. 2024].

8 Conclusion

This paper brings together ideas from concurrent, probabilistic separation logics, and Demonic
Outcome Logic in developing pcOL, a new expressive logic for analysis of probabilistic concurrent
programs. Although pcOL represents a significant step in reasoning for randomized concurrent
programs, more work remains to be done. Fine-grained concurrency analysis is notoriously complex,
and we plan to augment pcOL in the following ways to support more expressive verification.

Fair Termination and Synchronization. Our BOUNDEDRANK rule makes no assumptions about fairness
(meaning that no thread can be indefinitely starved); indeed it applies only to programs for which the
probability of eventual termination does not depend on the scheduler. However, many probabilistic
synchronization protocols [Hart et al. 1983] such as the Dining Philosophers problem [Lehmann
and Rabin 1981] only terminate under a fair scheduler. We would like to extend pcOL to reason
about these programs, but it will present significant challenges. Fairness is not a compositional
property, so many of the properties of £([-]) that we rely on for soundness would not hold.

Dynamic Allocation and Resource Algebras. As with PSL and all logics that build on it, our resource
model uses variables rather than pointers. However, most concurrent programs use pointers.
Modern CSL implementations such as Iris [Jung et al. 2018, 2015] use resource algebras, so that
additional types of physical and logical state can be added to govern the ways in which concurrent
threads modify shared resources. Bluebell already includes permissions, which help to duplicate
knowledge about read-only variables [Bao et al. 2025], however many other resources are used in
practice and it is not yet understood how those resources interact with the independence model of
separation. We plan to augment the model of pcOL to support Iris style resource algebras.

Mechanization. As we saw in Section 6 and Appendix F, pcOL derivations are quite involved—even
for small programs—due to the handling of invariants, conditioning, and case analysis on shared
state. Verification of larger programs would be infeasible with pen-and-paper proofs, therefore we
plan to mechanize pcOL in the Lean proof assistant [de Moura et al. 2015]. Lean is the ideal choice
because much the underlying probability theory, domain theory, and topology needed to support
pcOL are already formalized in mathlib [mathlib Community 2020], although more work would
still be needed to formalize all the foundational theories of PcOL, such as the convex powerdomain.

Acknowledgements

This work was supported by the National Science Foundation under awards 2504142 and 2504143
and ARIA’s Safeguarded Al programme.

References

Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen, Joseph Tas-
sarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic
Programs. Proc. ACM Program. Lang. 8, ICFP, Article 246 (Aug. 2024), 33 pages. https://doi.org/10.1145/3674635

Krzysztof Apt and Gordon Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM 33, 4 (aug 1986),
724-767. https://doi.org/10.1145/6490.6494

Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie Lumbroso. 2015. MergeShuffle: A Very Fast, Parallel Random
Permutation Algorithm. arXiv:1508.03167 [cs.DS] https://arxiv.org/abs/1508.03167

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://doi.org/10.1145/3674635
https://doi.org/10.1145/6490.6494
https://arxiv.org/abs/1508.03167
https://arxiv.org/abs/1508.03167

9:28 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A Bunched Logic for Conditional Independence. In
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (Rome, Italy) (LICS "21). Association
for Computing Machinery, New York, NY, USA, Article 13, 14 pages. https://doi.org/10.1109/LICS52264.2021.9470712

Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An Alliance of Relational Lifting and Independence for
Probabilistic Reasoning. Proc. ACM Program. Lang. 9, POPL, Article 58 (Jan. 2025), 31 pages. https://doi.org/10.1145/
3704894

Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A Separation Logic for Negative Dependence. Proc.
ACM Program. Lang. 6, POPL, Article 57 (jan 2022), 29 pages. https://doi.org/10.1145/3498719

Gilles Barthe, Justin Hsu, and Kevin Liao. 2020. A Probabilistic Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article
55 (Jan. 2020), 30 pages. https://doi.org/10.1145/3371123

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative
Separation Logic: A Logic for Reasoning about Probabilistic Pointer Programs. Proc. ACM Program. Lang. 3, POPL, Article
34 (Jan 2019), 29 pages. https://doi.org/10.1145/3290347

Michael Ben-Or. 1983. Another advantage of free choice (Extended Abstract): Completely asynchronous agreement protocols.
In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing (Montreal, Quebec, Canada)
(PODC °83). Association for Computing Machinery, New York, NY, USA, 27-30. https://doi.org/10.1145/800221.806707

Lars Birkedal and Hongseok Yang. 2007. Relational Parametricity and Separation Logic. In Foundations of Software Science
and Computational Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, 93-107. https://doi.org/10.1007/978-3-
540-71389-0_8

Stephen Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency Theory, Philippa
Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16-34. https://doi.org/10.1007/978-
3-540-28644-8_2

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd
Annual IEEE Symposium on Logic in Computer Science (LICS 2007). 366-378. https://doi.org/10.1109/LICS.2007.30

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private information retrieval. 7. ACM 45, 6 (Nov.
1998), 965-981. https://doi.org/10.1145/293347.293350

Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem
Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer
International Publishing, Cham, 378-388. https://doi.org/10.1007/978-3-319-21401-6_26

Simon Docherty. 2019. Bunched logics: a uniform approach. Ph.D. Dissertation. University College London. https:
//discovery.ucl.ac.uk/id/eprint/10073115/

Weijie Fan, Hongjin Liang, Xinyu Feng, and Hanru Jiang. 2025. A Program Logic for Concurrent Randomized Programs
in the Oblivious Adversary Model. In Programming Languages and Systems, Viktor Vafeiadis (Ed.). Springer Nature
Switzerland, Cham, 322-348. https://doi.org/10.1007/978-3-031-91118-7_13

Ira Fesefeldt, Joost-Pieter Katoen, and Thomas Noll. 2022. Towards Concurrent Quantitative Separation Logic. In 33rd
International Conference on Concurrency Theory (CONCUR 2022) (Leibniz International Proceedings in Informatics (LIPlcs),
Vol. 243), Bartek Klin, Stawomir Lasota, and Anca Muscholl (Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 25:1-25:24. https://doi.org/10.4230/LIPIcs. CONCUR.2022.25

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus with one faulty
process. J. ACM 32, 2 (April 1985), 374-382. https://doi.org/10.1145/3149.214121

Ronald A. Fisher and Frank Yates. 1938. Statistical Tables: for biological , agricultural and medical research (4th ed. ed.). Oliver
and Boyd, Edinburgh.

Philippe Flajolet. 1985. Approximate counting: A detailed analysis. BIT 25, 1 (March 1985), 113-134. https://doi.org/10.
1007/BF01934993

David Fremlin. 2001. Measure Theory, Volume 2.

Jay L. Gischer. 1988. The equational theory of pomsets. Theoretical Computer Science 61, 2 (1988), 199-224. https:
//doi.org/10.1016/0304-3975(88)90124-7

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024a.
Almost-Sure Termination by Guarded Refinement. Proc. ACM Program. Lang. 8, ICFP, Article 243 (Aug. 2024), 31 pages.
https://doi.org/10.1145/3674632

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024b.
Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL, Article 26
(Jan. 2024), 32 pages. https://doi.org/10.1145/3632868

Sergiu Hart, Micha Sharir, and Amir Pnueli. 1983. Termination of Probabilistic Concurrent Program. ACM Trans. Program.
Lang. Syst. 5, 3 (July 1983), 356-380. https://doi.org/10.1145/2166.357214

Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars
Birkedal. 2024a. Approximate Relational Reasoning for Higher-Order Probabilistic Programs. arXiv:2407.14107 [cs.LO]

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3290347
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/978-3-540-71389-0_8
https://doi.org/10.1007/978-3-540-71389-0_8
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-319-21401-6_26
https://discovery.ucl.ac.uk/id/eprint/10073115/
https://discovery.ucl.ac.uk/id/eprint/10073115/
https://doi.org/10.1007/978-3-031-91118-7_13
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/BF01934993
https://doi.org/10.1007/BF01934993
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1145/3674632
https://doi.org/10.1145/3632868
https://doi.org/10.1145/2166.357214
https://arxiv.org/abs/2407.14107

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:29

https://arxiv.org/abs/2407.14107

Philipp G. Haselwarter, Kwing Hei Li, Markus de Medeiros, Simon Oddershede Gregersen, Alejandro Aguirre, Joseph
Tassarotti, and Lars Birkedal. 2024b. Tachis: Higher-Order Separation Logic with Credits for Expected Costs.
arXiv:2405.20083 [cs.LO] https://arxiv.org/abs/2405.20083

Jifeng He, Karen Seidel, and Annabelle Mclver. 1997. Probabilistic models for the guarded command language. Science of
Computer Programming 28, 2 (1997), 171-192. https://doi.org/10.1016/S0167-6423(96)00019-6 Formal Specifications:
Foundations, Methods, Tools and Applications.

Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969),
576-580. https://doi.org/10.1145/363235.363259

Bart Jacobs. 2008. Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems. Electronic Notes in
Theoretical Computer Science 203, 5 (2008), 131-152. https://doi.org/10.1016/]j.entcs.2008.05.023 Proceedings of the Ninth
Workshop on Coalgebraic Methods in Computer Science (CMCS 2008).

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground
up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018).
https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 637-650. https://doi.org/10.1145/2676726.2676980

Klaus Keimel and Gordon Plotkin. 2017. Mixed powerdomains for probability and nondeterminism. Logical Methods in
Computer Science Volume 13, Issue 1 (Jan. 2017). https://doi.org/10.23638/LMCS-13(1:2)2017

Daniel Lehmann and Michael O. Rabin. 1981. On the advantages of free choice: a symmetric and fully distributed solution to
the dining philosophers problem. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Williamsburg, Virginia) (POPL ’81). Association for Computing Machinery, New York, NY, USA, 133-138.
https://doi.org/10.1145/567532.567547

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. Proc. ACM
Program. Lang. 7, PLDI, Article 112 (jun 2023), 24 pages. https://doi.org/10.1145/3591226

Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal.
2025. Modular Reasoning about Error Bounds for Concurrent Probabilistic Programs. Proc. ACM Program. Lang. 9, ICFP,
Article 245 (Aug. 2025), 30 pages. https://doi.org/10.1145/3747514

Janine Lohse and Deepak Garg. 2024. An Iris for Expected Cost Analysis. arXiv:2406.00884 [cs.PL] https://arxiv.org/abs/
2406.00884

George Markowsky. 1976. Chain-complete posets and directed sets with applications. Algebra Universalis 6 (12 1976), 53-68.
https://doi.org/10.1007/BF02485815

The mathlib Community. 2020. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for Computing Machinery,
New York, NY, USA, 367-381. https://doi.org/10.1145/3372885.3373824

Annabelle Mclver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https:
//doi.org/10.1007/b138392

Annabelle Mclver, Tahiry Rabehaja, and Georg Struth. 2016. Probabilistic rely-guarantee calculus. Theoretical Computer
Science 655 (2016), 120-134. https://doi.org/10.1016/j.tcs.2016.01.016 Quantitative Aspects of Programming Languages
and Systems (2013-14).

Robert Morris. 1978. Counting large numbers of events in small registers. Commun. ACM 21, 10 (Oct. 1978), 840-842.
https://doi.org/10.1145/359619.359627

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory. Springer
Berlin Heidelberg, Berlin, Heidelberg, 49-67. https://doi.org/10.1016/].tcs.2006.12.035

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. The Bulletin of Symbolic Logic 5, 2 (1999),
215-244.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs That Alter Data Structures.
In Proceedings of the 15th International Workshop on Computer Science Logic (CSL ’01). Springer-Verlag, Berlin, Heidelberg,
1-19. https://doi.org/10.1007/3-540-44802-0_1

Vaughan R. Pratt. 1986. Modeling Concurrency with Partial Orders. Int. J. Parallel Program. 15, 1 (1986), 33-71. https:
//doi.org/10.1007/BF01379149

Michael O. Rabin. 1980. N-process synchronization by 4.log2N-valued shared variable. In 21st Annual Symposium on
Foundations of Computer Science (sfcs 1980). 407-410. https://doi.org/10.1109/SFCS.1980.26

Michael O. Rabin. 1982. The choice coordination problem. Acta Inf. 17, 2 (June 1982), 121-134. https://doi.org/10.1007/
BF00288965

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://arxiv.org/abs/2407.14107
https://arxiv.org/abs/2405.20083
https://arxiv.org/abs/2405.20083
https://doi.org/10.1016/S0167-6423(96)00019-6
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.entcs.2008.05.023
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.23638/LMCS-13(1:2)2017
https://doi.org/10.1145/567532.567547
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3747514
https://arxiv.org/abs/2406.00884
https://arxiv.org/abs/2406.00884
https://arxiv.org/abs/2406.00884
https://doi.org/10.1007/BF02485815
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1145/359619.359627
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/BF01379149
https://doi.org/10.1007/BF01379149
https://doi.org/10.1109/SFCS.1980.26
https://doi.org/10.1007/BF00288965
https://doi.org/10.1007/BF00288965

9:30 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium
on Logic in Computer Science. 55-74. https://doi.org/10.1109/LICS.2002.1029817

H. L. Royden. 1968. Real Analysis (2d ed. ed.). Macmillan, New York.

Michael Smyth. 1978. Power domains. J. Comput. System Sci. 16, 1 (1978), 23-36. https://doi.org/10.1016/0022-0000(78)90048-
X

Simon Spies, Niklas Miick, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Miiller, and Derek Dreyer. 2025. Destabi-
lizing Iris. Proc. ACM Program. Lang. 9, PLDI, Article 181 (June 2025), 26 pages. https://doi.org/10.1145/3729284

Joseph Tassarotti. 2018. Verifying Concurrent Randomized Algorithms. Ph.D. Dissertation. Carnegie Mellon University.
https://csd.cmu.edu/academics/doctoral/degrees-conferred/joseph-tassarotti

Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc. ACM Program.
Lang. 3, POPL, Article 64 (Jan 2019), 30 pages. https://doi.org/10.1145/3290377

Regina Tix, Klaus Keimel, and Gordon Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism.
Electronic Notes in Theoretical Computer Science 222 (2009), 3-99. https://doi.org/10.1016/j.entcs.2009.01.002

Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. Electronic Notes in Theoretical Computer
Science 276 (2011), 335-351. https://doi.org/10.1016/j.entcs.2011.09.029 Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVII).

Daniele Varacca. 2002. The powerdomain of indexed valuations. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science. 299-308. https://doi.org/10.1109/LICS.2002.1029838

Daniele Varacca and Glynn Winskel. 2006. Distributing probability over non-determinism. Mathematical Structures in
Computer Science 16, 1 (2006), 87-113. https://doi.org/10.1017/5S0960129505005074

Simon Friis Vindum, Aina Linn Georges, and Lars Birkedal. 2025. The Nextgen Modality: A Modality for Non-Frame-
Preserving Updates in Separation Logic. In Proceedings of the 14th ACM SIGPLAN International Conference on Certified
Programs and Proofs (Denver, CO, USA) (CPP ’25). Association for Computing Machinery, New York, NY, USA, 83-97.
https://doi.org/10.1145/3703595.3705876

John von Neumann. 1951. Various techniques used in connection with random digits. In Monte Carlo Method, A.S.
Householder, G.E. Forsythe, and H-H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series, 12,
Washington, D.C.: U.S. Government Printing Office, 36-38.

Pengbo Yan, Toby Murray, Olga Ohrimenko, Van-Thuan Pham, and Robert Sison. 2025. Combining Classical and Probabilistic
Independence Reasoning to Verify the Security of Oblivious Algorithms. In Formal Methods, André Platzer, Kristin Yvonne
Rozier, Matteo Pradella, and Matteo Rossi (Eds.). Springer Nature Switzerland, Cham, 188-205. https://doi.org/10.1007/
978-3-031-71162-6_10

Hongseok Yang and Peter O’Hearn. 2002. A Semantic Basis for Local Reasoning. In Foundations of Software Science and
Computation Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, 402-416. https://doi.org/10.1007/3-540-45931-
6_28

Linpeng Zhang, Noam Zilberstein, Benjamin Lucien Kaminski, and Alexandra Silva. 2024. Quantitative Weakest Hyper
Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers. Proc. ACM Program. Lang. 8,
OOPSLA2, Article 300 (oct 2024), 30 pages. https://doi.org/10.1145/3689740

Noam Zilberstein. 2025. Outcome Logic: A Unified Approach to the Metatheory of Program Logics with Branching Effects.
ACM Trans. Program. Lang. Syst. 47, 3, Article 14 (Sept. 2025), 71 pages. https://doi.org/10.1145/3743131

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and
Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (Apr 2023), 29 pages. https://doi.org/10.
1145/3586045

Noam Zilberstein, Daniele Gorla, and Alexandra Silva. 2025a. Denotational Semantics for Probabilistic and Concurrent
Programs. In 36th International Conference on Concurrency Theory (CONCUR 2025) (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 348), Patricia Bouyer and Jaco van de Pol (Eds.). Schloss Dagstuhl — Leibniz-Zentrum {"ur
Informatik, Dagstuhl, Germany, 39:1-39:24. https://doi.org/10.4230/LIPIcs. CONCUR.2025.39

Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. 2025b. A Demonic Outcome Logic for Randomized
Nondeterminism. Proc. ACM Program. Lang. 9, POPL, Article 19 (Jan 2025), 30 pages. https://doi.org/10.1145/3704855

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness
and Incorrectness with Computational Effects. Proc. ACM Program. Lang. 8, OOPSLA1 (Apr 2024). https://doi.org/10.
1145/3649821

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2025c. Probabilistic Concurrent Reasoning in Outcome Logic:
Independence, Conditioning, and Invariants (Full Version). arXiv:2411.11662 [cs.LO] https://arxiv.org/abs/2411.11662

Maaike Zwart and Dan Marsden. 2019. No-Go Theorems for Distributive Laws. In 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). 1-13. https://doi.org/10.1109/lics.2019.8785707

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1145/3729284
https://csd.cmu.edu/academics/doctoral/degrees-conferred/joseph-tassarotti
https://doi.org/10.1145/3290377
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1109/LICS.2002.1029838
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1007/978-3-031-71162-6_10
https://doi.org/10.1007/978-3-031-71162-6_10
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1145/3689740
https://doi.org/10.1145/3743131
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.4230/LIPIcs.CONCUR.2025.39
https://doi.org/10.1145/3704855
https://doi.org/10.1145/3649821
https://doi.org/10.1145/3649821
https://arxiv.org/abs/2411.11662
https://arxiv.org/abs/2411.11662
https://doi.org/10.1109/lics.2019.8785707

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:31

Appendix

A Definition of Program Semantics

In this section, we give details on the Pomsets with Formulae semantic model due to Zilberstein et al. [2025a].

A.1 Pomsets with Formulae

Whereas standard pomsets (partially ordered multisets) use a partial order to record the causality between atomic actions in
the program (elements of a multiset) [Gischer 1988; Pratt 1986], pomsets with formulae add a Boolean formula to each node,
which records which tests must succeed or fail to reach that point in the execution. This is necessary to capture probabilistic
concurrency, since tests may not always pass or fail, but rather they may only have some probability of passing, and so
both paths must be represented in a single semantic structure. We briefly introduce pomsets with formulae here, refer to
Zilberstein et al. [2025a] for a more complete treatment.

Let label = Act U Test U {e, L}, which can be either an action or test (from Figure 1), a no-op (e), or undetermined
(L). Although 1 labels will never appear in the denotation of a complete program, they are used to indicate that a finite
structure is an approximation of an infinite one, i.e., in the semantics of while loops. Also, let nodes be a countable universe
of identifiers and form be the set of Boolean formulae over nodes. For some € form, we write sat(y/) to indicate that ¢/
is satisfiable, and vars() C nodes is the set of variables referenced in). We now define the underlying structure.

Definition A.1 (Labelled Partial Order with Formulae (LPOFs)). An LPOF is a 4-tuple (N, <, A, ¢) € [po where:

(1) N C nodes is a countable set of nodes;

(2) (N, <) is a strict poset with a single minimal element such that finitely many nodes appear at every finite distance
from the root;

(3) A: N — label is a labelling function such that x has no successors whenever A(x) = L;

(4) ¢: N — form is a formula function such that: ¢ (y) = ¢(x), forall x < y and for all x € N, sat(¢(x)) and y < x
for all y € vars(¢(x)).

For some a € Ipo, we will often use Ny, <q, Ag, and ¢ to refer to its parts.

The first three components are standard in pomset semantics. The order denotes causality, so x < y means that the
action A(x) must be scheduled before A(y). The order is partial (not total) because actions that occur in parallel are not
related. Formulae are a new addition to this structure, allowing us to encode guarded branching in the structure too. For
any node x € N, ¢(x) is a satisfiable formula comprised of nodes appearing earlier in the trace, since the corresponding
tests must be resolved before executing later actions. In addition, formulae can only become stronger as the trace goes on,
since dependencies on more and more tests are accumulated over time.

Two LPOFs are isomorphic, denoted a = f iff there is a bijection f: Ny — Npg such that x <4 yiff f(x) <g f(y),
Aa =Ago f,and pq = flo @p o f, where £ () renames the variables of 1 in the obvious way. Given that, a pomset
with formulae is an equivalence class of LPOFs.

Definition A.2 (Pomsets with Formulae). We denote the isomorphism class of @ as [a] = {f € lpo | @ = f}. A pomset with
formulae (or, simply, a pomset) & € pom is an isomorphism class of LPOFs.

pom = {[a] | a € lpo}

Pomsets with formulae have many nice domain-theoretic properties. For example, they have a DCPO (directed complete
partial order) structure, meaning that Scott continuous operations over them have least fixed points. Roughly speaking
@ Cpom B iff B is obtained by replacing nodes labelled L in o with a new, larger structure. We will see a concrete example
of this shortly when we discuss the semantics of loops. Infinite pomsets with formulae can also be represented as the
supremum of their finite approximation, and monotone operations on those finite approximations can be extended to
continuous operations on infinite pomsets. This is useful, since it is not possible to define operations inductively on infinite
structures, as we will see in Appendix A.2.

The trace semantics [—] : Cmd — pom, shown in Figure 11, interprets every command as a pomset with formulae. We
use several operators to construct pomsets. First, { —): label — pom constructs a singleton pomset with the given label.
This is used for the semantics of skip and actions a € Act. Next, we have three combinators for combining pomsets, which
we demonstrate pictorially below. The first is sequential composition & § §, which constructs a pomset where all the actions
from & occur before those in f. In the diagram, a; — ay indicates causality (a; occurs before ay)

The second combinator is guarded choice guard (b, &,), where the test b becomes the new root and all formulae of
the nodes in o and f are updated to indicate that the new root must pass or fail, respectively, as indicated by the arrows
labelled T and F. Finally, parallel composition ¢ || B joins the two pomsets with a new no-op root, so that the actions of o

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:32 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

[skip] = (o)
[C138Ce] = [Ci] 5 [C2]
[l C] = [ai] I [C]
[if b then C; else C;] = guard(b, [C4], [C2])
[while b do C] £ Ifp (P(pcy) where @) (@) £ guard (b, [C] 5, (o))
[a] * (@)

1>

Fig. 11. Trace semantics for commands [-] : Cmd — pom.

and B can be interleaved without restriction.

as a as ai az
(a1} 3 (az) = T guard(b, {a1), (a2)) = N b 7 (a1} I {a2)= X ~
a]
The semantics of loops is given by a least fixed point of the characteristic function @4, ¢, which is Scott continuous since it
is defined using guard and §, both of which are Scott continuous [Zilberstein et al. 2025a]. This means that the least fixed
point is equal to the supremum of the finite unrollings of @, ¢y, as shown in the following diagram.

1 :
b .
X ‘oA’ 1
L Epom Z * Lpom TbF Epom Epom aK 7‘.
TKbZF ~ TpF
a 7(0 A
T “xoA°
T b F
(L) oL, (W) @2, (L)) SUp e ¥, (1))

In each unrolling, 1 appears further and further from the root until, in the supremum, it is pushed infinitely far away. That
infinite spine represents the execution in which the guard b never becomes false. In the context of probabilistic programs, it
is important to include the infinite spine, as the probability of continuing to execute may only converge to 0 in the limit.

A.2 Linearization

The benefit of the pomset model is that it is fully compositional; the parallel composition of two commands is interpreted
as a straightforward combination of their syntactic structures. However, for the purposes of designing a program logic,
we need a state transformer model, which maps each input state to a convex set of distributions over output states. For
this purpose, Zilberstein et al. [2025a] also define linearization £: pom — Mem[S] — C(Mem|[S]). The definition is
repeated below.

next(a, ¥,S) = {x e Ny \S |l x €S, ¥ = ¢a(x)}
next* (a, ¥, S) = {x € No \'S | sat(y A ¢ (%))}

L1 (@S U) (Ra@]ke () if A (%) € Act
LI (a,9,5,%)(0) = Ly, (@ A x = [Aa (O]t (0)).S U {x})(0) if Ag(x) € Test
node lc ian(x) —_—
Ly, (@ y.SU {x})(0) if A (x) = o
n(o) if next(a, ¢, S) = 0

I —
Llpo(a,w,s)(a)—{ & xenext(ap,s) LLogo (@ 1,5, x)(0) if next(a, 1, S) # 0

Ll ([a]) = L (atrue, 0)

lpo
LY (@) = sup .C;Tn (a”)
a'<a
The function next(a, ¢, S) gives the set of nodes that are ready to be scheduled, given a finite LPOF «, a path condition ¢,
and the set of nodes S that have already been processed. Linearizing a node £,,,4. does case analysis on the label of the
node to decide how to proceed. If the node is an action, then the action is evaluated and composed with the linearization of
the remainder of the LPOF. If the node is a test, then the result of the test is added to the path condition. If the node is L,
then the execution is halted. If it is a no-op, then the execution simply continues.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:33

To linearize an entire finite LPOF, we simply perform a nondeterministic choice over all the next nodes, linearize
those nodes, and then proceed processing the rest of the structure recursively. To make the recursion well-founded, the
structure must be finite, but we extend to the infinite case later. To linearize a finite pomset o, we simply linearize any
representative LPOF « € «. Finally, to linearize an infinite pomset, we take the supremum over the linearization of all the
finite approximations, where &’ < « indicates that & is a finite approximation of «.

Since most operations are continuous, we get, e.g., that the supremum of finite approximations of a sequential composition
is equal to the sequential composition over the supremum of finite approximations:

sup sup a';ﬁ'z(sup a'); sup B'l=asB
a'<a f'<p a'<a B <pB
The exception to this is for parallel composition, which is not continuous for technical reasons. However, if we define <;
as follows:
y <1y if y<y and root(y) =root(y’)=e or root(y’) #e

where root(y) is the label of the root node of the pomset ¥, then we get the following weaker pseudo-continuity property:

sup sup o [= sup o | sup B|=cllp
ad<ja f< 1B o<« B <18

B General Lemmas

B.1 Measure Theory Lemmas

We begin by proving some general properties for characterizing discrete product spaces. By Lemma C.1 and C.2 of Bao

et al. [2025], for any discrete probability space P, there exists a countable partition {A; | i € I} of Qp such that

Fp = {Wiep Ai | I' C I}. Let ev(P) denote this partition. It follows that for every A € Fp, up (A) = Y ges pp (B) for

some S C ev(P).

LEmMA B.1. For any probability spaces P1 and P

Fpep, = L—d AxB|S Cev(Py) xXev(Py)
(A,B)eS

ProoF. The forward inclusion follows immediately from Lemma C.5 of Bao et al. [2025], so it suffices to only show the reverse
inclusion. Take any S C ev(P;) X ev($P;). For each (A, B) € S C ev(P1) X ev(P3), clearly A € ev(P;) and B € ev(P2),
so A* B € Fp,gp, since by definition Fp, gp, is the smallest sigma algebra containing {A * B | A € Fp,, B € Fp, }. Since
Fp,ep, is closed under countable unions, then (4 gyes A * B € Fpep,- O

LEMMAB2. Q=P @ P, iff:
(1) Qq = Qp, * Qp,
2) Fa={JBjesA*B|S Cev(P1) xev(P2)}
(3) pq(Ax*B) = pp, (A) - pp, (B) forall A € ev(P) and B € ev(Ps)

ProoF. The forward direction follows immediately from the definition of product spaces and Lemma B.1. We now show
the reverse direction. By (1) and the definition of product spaces, Qq = Qp, * Qp, = Qp gp,. By (2) and Lemma B.1,
Fao = Fpep, Now, take any event A € Fg = Fp gp,. We already know that A =)4, a,)es A1 * Az for some
S Cev(Py) Xev(P), so:

Ha(A) = pq H Ay x Ay
(A1,A2)€S

= D, Ha(ArxAy)

(A1,Az)€S

= > e (A1) - iy (Az)
(A1,Az2)€S

= Z HPi1eP, (Al * AZ)
(A1,A2)€S
= Hpiep, Lﬂ A x Ay | = ppiep, (A)

(A1,Az)eS

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:34 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

LEmMA B.3. If both sides of the following equality are well-defined, then:
(@ Pi) 2Q=PHPie
i~v i~v
PrROOF. Let P; = (Q;, Fi, pi) for each i € I = supp(v). If the above are well defined, then there must be S and T such that
Q; € Mem|[S] and Qg € Mem|[T]. We first show that both probability spaces have the same sample space, since:

2@, rse = () + %

iesupp(v)
= {o‘k’da' o€ UQiU,O', € QQ}
iel
= U{Ukﬂa' |o€Qi0 €Qq}
iel

= U Qi * QQ = Q@hv(?i@Q)

iel

To show that the o-algebras are the same, it will suffice to show that they are generated from the same disjoint partitions
[Bao et al. 2025, Lemma C.1]. We start by using Lemma B.1 to conclude that:

ev ((@ soi) ® Q) =ev (E@ Pi) x ev(Q)

Since all the #; have disjoint sample spaces, their partitions must also be disjoint:

= (@ ev(P,-)) x ev(Q)

iel
= Hev(?i) Xev(Q)
iel
= L—dev(?i Q) :ev(@'Pi ®Q)
iel i~v

Finally, by Lemma B.2, it suffices to show that the product measures agree on events of the form A * B, where A € ‘F@ - Pi
and B € Fg:

@, Pne@A*B) = pgy. p,(A) pg(B)
= (ZI v(i) - (AN Qi)) “pq(B)
- z; v(i) - i (AN Q;) - pg(B)
= ZI v(i) - ppe@((AN Q) * B)
= ZI v(i) - pp,aq((A*B) N (Q * Qq))

= y@hv?i@Q (A * B)

LEMMA B.4 (MONOTONICITY OF ®). If P < P and Q < Q' thenP @ Q < P' @ Q'.

Proor. Let S, S, T, and T’ be sets such that Qp C S, Qpr € Mem[S’], Qq € Mem|[T], and Qg € Mem|[T’]. First we
show the condition on sample spaces:
Qpgq = Qp * Qq
={oWwr|oeQp,r€Qq}
C{owWr|oens(Qp),7enr(Qq)}
= {ns(0) Wrr(7) | 0 € Qpr, 7 € Q' }

={nsur(cW1) | 0 € Qpr, T € Qg } = msuT (Qpreq)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:35

Now we show the condition on o-algebras:
Freq=0({A*B| A€ Fp,B € Fq})

Since o-closure is monotonic:
Co({A*B| A € ns(Fpr).B € nr(Fa)))
=o({ns(A) »mr(B) | A € Fpr,B € T })
=o(msur({A*B| A€ Fpr,B € For}))
=nsur(c({AxB| A€ Fpr.B € For }))
= nsur (Fpreq)

Finally, by Lemma B.2, it suffices to show that the product measure is equal only for events of the form A * B where A € Fp
and B € Fg:

Hpeq (A * B) = pup (A) - po(B)
Since P < P’ and Q < Q":

= ppr (| J1A’ € T | 75(4) = A}) - ((J 1B € Ty | 71 (B) = B}

= pproa (1A € Fpr | ns () = A}) « (1B € Far | 21 (B) = B}))
Let A” = J{A" € Fpr | ns(A") = A} and B” = |J{B’ € Fg' | nr(B’) = B}. Clearly A” € Fps and B” € F¢ since both
sets are closed under countable unions. Therefore:

oy (A7 + B)
We show that the sets above and below are equal by showing the inclusion in both directions. The forward inclusion
is trivial; A” = B” is clearly an element of Fprgqs and has the property sy (A” * B”) = ns(A”) * nr(B”) = A * B.
For the reverse inclusion, take some element of the set below, which must have the form o W 7 where 0 € Qps and
7 € Qg and o0 W 7 € E for some E € Fprgq such that wsur (E) = A+ B. By Lemma B.1, E = ¥ (g, ,)es E1 * Ez for some
S Cev(P')xev(Q'),s00 € Eyand 7 € E; for some (Ey, Ez) € S. Since syt (E) = A* B, then 715 (E) = (g, —yes E1 = A
and 71 (E) = W(_ g,)es E2 = B, therefore o € E1 C n5(E) C A” and 7 € E; C wr(E) CB”,socWr € A” x B”.

= jipreQ (U{E € Fpreq | msur (E) = A= B})

LEmMA B.5 (MONOTONICITY OF @). If Py < P}, for eachv € supp(v), then P, _, Po < P, ., Po-

ProOF. Let P = @w«v P, and P’ = @w«v P, so we need to prove that £ < P’. Also, let S and S’ be sets such that
Qp, € Mem([S] and Qp; C Mem [S’] for all v. We first establish the required property on the sample space:

Qp = U Qp, C UHS(QP;,) = 75 (Qpr)
vesupp(v) vesupp(v)
Now, we establish the property on c-algebras.
Fp={A|ACQp,Vo.ANQp, € Tp,}

C{A| A Cns(Qpr),Yo. AN 75 (Qpy) € {ns(B) | B € Fpy }}

= {75(A) | A C Qpr, V0. AN Qpy € Fpr }

={ns(A) | A€ Fpr}
Finally, we establish the condition on probability measures:

pp(A) = 3 V(o) - pp, (AN Op,)
vesupp(v)

= 2@ -upy (B & Ty | 75(B) =40 Qp,)
vesupp(v)
Since A C Qp C 75(Qgp-), then, we can move the intersection out of the set limits:

= > v(@) - pp, (1B € T 1 25(B) = 4}) N 0py)

vesupp(v)
= (1B € T | 75(B) =)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:36 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

]

LEMMA B.6. For any complete probability spaces P, (P;)icr, and pp € D(I) such that Qp C Mem|[S], each Qp; € Mem|[T],
and U;er Qp; = Mem([T], if P < ext(P;) foralli € supp(p), then P < @i~ﬂ Pi

Proor. Let Q = @iw P;. Since P < P;, then it must be that S C T. The property on sample spaces is simple:

p = Jop €| J75(Qenir) = (s (Mem|T]) = ns(U Memm) = m5(Q0)
iesupp(p) icsupp(pu) iesupp(u) iesupp ()
Next, we verify the property on o-algebras.
Fp = m Fp
iel
c ﬂ{ﬂs(A) | A€ Fexe(p)
iel
={ns(A) | Vie . A€ Foxu(py}
Note that the completion adds information about events outside of Qp,, so if A is in all of the Fey((p;) sets, then its projection
into each Qp; must be in Fp,.

= {ns(A) | A CQp,Yi. AN Qp, € Fp, }
={ns(A) |A e Fq}
Finally, we show the property on probability measures.

pp(A) =) (i) - pp (A)

iesupp(p)
= Zﬂ(i) * Hext(P;) (U{B € Fext(p;) | 7s(B) =A})
iesupp(p)

The completion assigns zero probability to events outside of Qp,, so removing the completion and projecting into Qp, will
yield the same value.

= > (i) - pp, ((U{B € 7o | 7s(B) :A}) n Qpi)

iesupp(p)

= s (1B € 7 | m5(B) = 4})

LEmMMA B.7. If P < ext(P;) foralli € supp(p), then P < @iﬂi P;.

ProoF. Let S be the set such that Qp = Mem([S], T be such that Mem[T] = Ujcqupp(p) Qp;> and Q =< @i~p P;. The
condition on sample spaces is simple, since Qp = Mem[S] and Qg = Mem|[T], and clearly Mem[S] = 75 (Mem[T]). For
the condition on o-algebras, we have:
Fp = ﬂ Fp

i€supp(p)

< (Virs(A) | A € Foirp }

iesupp(p)

=({(zs(AUB) | A € Fp,, B C Mem[T]\ Qp,}

iesupp(p)
Since for each i in the intersection above, we can measure every sample outside of Qp,, then after taking the intersection

we are only able to measure samples from Qgp, according to the information provided by Fp,, which provides the least
information about those samples.

={ns(A) | A S Mem([T],Vi. AN Qgp,; € Fp,}
= {rs(A) | A € Fq}
Now, we show the condition on probability measures:

pp(A) = 3 (i) - pip (A)

iesupp(p)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:37

= Zﬂ(i) * Hext(P;) (U{B € Fext(p;) | 7s(B) =A})

iesupp(p)

= 20 - wp, (1B < 7 | ms(B) = A4}) n 0y,

iesupp(p)
= sa (1B € 7 | 75(B) = 4})

O
B.2 The Convex Powerset
LemMA B.8. For any finite index set I, f: X — C(Y), and (Si)ier € C(X)!:
(& sn=& s
iel iel
PrOOF. Let g: I — C(X) be defined as g(i) = S;. Now, observe that:
&si=1 D, lpeDW)Viviegl)=g(DD)
iel iesupp ()
So, we get:
(& sy =g (D))
iel
=(ffog' (D)
=1 Su) v) ue D), Vi. v € f1(g(0))
iesupp(p)
= & (s
iel
O

Forany S € C(Mem[V]) and A € Mem[V], let:
minProb(S, A) = inf p(A)
HES
Since S € C(Mem|[V]),itisa closed subset of D (Mem[V],),and so there mustbeau € S such that 1(A) = minProb(S, A),
therefore minProb(S, A) = minyes p(A).
LEMMA B.9 (MoNoTONICITY OF minProb). IfS E¢ T, then:

minProb (S, A) < minProb(T, A)

Proor. By definition S C¢ T iff S 2 T. So, we get:
minProb(S, A) = inf u(A) = min(inf pu(A), inf p(A)) < inf p(A) = minProb(T, A)
HES HET peS\T peT

LEmMMA B.10. For any directed set D € C(Mem[V]):

sup minProb(S, A) < minProb(sup D, A)
SeD

ProoF. Since S C¢ sup D for all S € D, then by Lemma B.9 we know that minProb(S, A) < minProb(sup D, A). Therefore,
since the supremum is the least upper bound, it must be that supg., minProb(S, A) < minProb(sup D, A). O
LEmMA B.11 (ScorT CONTINUITY OF minProb). For any directed set D C C(Mem[S]) such that p(A) = p forall yu € sup D:

sup minProb(S, A) = minProb(sup D, A)
SeD

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:38 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

ProoF. By ?, Corollary 3, we know that any chain-continuous function on a DCPO is Scott continuous, therefore it will
suffice to show that minProb is chain continuous. Let (Ss)s<¢ be a transfinite chain, so that Ss € C(Mem[V]) for all
8 < {,and S5 C¢ Ss for all § < §’. We will now prove that:

sup minProb(Ss, A) = minProb | sup Ss, A
5<¢ 5<¢

From Lemma B.10, we already know that supg., minProb(S,A) < minProb(sup D, A). We will now also show that
supgep mMinProb(S, A) < minProb(sup D, A) is a contradiction, and therefore the two quantities are equal. Let p =
minProb(sups_, Ss,A), and suppose for the sake of contradiction that:

sup minProb(Ss, A) < minProb(sup Ss, A)

5<¢ 5<¢
So, there is some ¢ > 0 such that SUPs ¢ minProb(Ss,A) =p —¢.

Let Ts = {u € Ss | p(A) < p — ¢} forall § < {.If there exists a § such that Ty = 0, then SUPs < minProb(Ss/, A) >
minProb(Ss, A) > p — ¢, which is a contradiction, therefore Ts # 0 for all § < . Further, by Lemma B.4.3 of Mclver and
Morgan [2005], the T sets are closed, therefore their intersection must be nonempty by the finite intersection property. That
means that there is some p1 € Ns<; Ts € (Ns<g Ss = supsy Ss such that p1(A) < p—e¢,but thisis a contradiction too since
we know that minProb(sup5<§ Ss,A) = p. Therefore, it cannot be that SUPs<; minProb(Ss, A) < minProb(sup5<§ Ss, A),
and instead SUPs< minProb(Ss, A) = minProb(sup5<év Ss,A).

m]

LEmma B.12.
minProb(S & T, A) = min(minProb(S, A), minProb(T, A))
Proor.
minProb(S & T, A) = minProb({z @, v |p € S,v e T,p € [0,1]},A)

=inf inf inf p-p(A)+(1-p) - v(A
inf inf inf.P p(A) +(1-p) - v(A)

= inf p- (inf y(A)) +(1-p)- (\1}2? V(A))

pelo1] HES
= inf p-minProb(S,A) + (1—p) - minProb(T, A)
pelo1]

Now, there are three cases, if minProb(S, A) < minProb(T, A), then the infimum occurs when p = 1.If instead minProb(S, A) >
minProb(T, A), then the infimum occurs when p = 0. If minProb(S, A) = minProb(T, A), then the expression is equal for
all p. So, the infimum always occurs at one of the extremes (p = 0 or p = 1), and therefore:

= min(minProb(S, A), minProb(T, A))

LemMMA B.13. Forany f: Mem[U] — C(Mem[U]), S € C(Mem[U]), and A C Mem[U]:

minProb(ff(S),A) = inf9 Z p(o) - minProb(f (o), A)
€ oesupp(p)NMem[U]

PRrOOF.

minProb(fT(S),A) = minProb Z p(o) - vg | p €S, Vo € supp(p). vo € fi(o) ¢, A
oesupp(p)

= inf inf D po) - v(A)

n:
HES voefl (o),Yoesupp(u) cesupp(n)

= inf Z u(a) - i}lfa) Vo (A)

€
oesupp(p) voefil

= inf Z () - minProb(f. (), A)

oesupp(u)

= inf Z 1(o) - minProb(fi (o), A) + (L) - minProb(£ (L), A)
HES
oesupp(p)NMem|[U |

= inf Z 1(o) - minProb(f (), A) +0

S
< oesupp(p)NMem|[U |

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:39

= inf Z p(o) - minProb(f (o), A)

€S
H oesupp(p)NMem|[U |

C Concurrency Lemmas
C.1 Invariant Sensitive Execution

LemMA C.1 (CHECK MONOTONICITY). For any U,V,W C Var suchthatUNV = 0,7 € Mem[U], J € Mem[V], and
Uuv cw:
check”*J i check?

Proor. Take any o0 € Mem[W . If gy (o) ¢ T or wy (o) ¢ 7, then we get:
check?™7 (o) = L¢ E¢ check? (o)

So, we are done. If not, then 77 (0) € I and 7y (o) € J, so we get:
check?*7 (o) = 5(o) = check? (o)

[m]

Lemma C.2 (AcTiOoN MoNoTONICITY). For any U,V,W C Var such thatUNV =0, 7 € Mem[U], J € Mem[V], and
Uuv cw:

[lps” ¢ [l
PrOOF. Let W =W \ (U U V). Take any 0 € Mem|[W . if ny (o) € J or ny (o) ¢ I, then:
lal5:7 () = e £¢ [a] (o)
So, we are done. If instead 7y (0) € J and 7y (o) € 7, then we get:
[[a]]i:tj (o) = (check”*T)* ([[a]]j\Ct ((replaceI*J)T(checkI*J(a))))
= (check™*J)T ([[a]]j;Ct (replace‘r*‘y(a)))

= (check”*J)T(& lalpe (1w (o) T))

TelxJ

Since 7y (o) € J and C¢ is 2.

Cc (check”™)t

& lalpce (wruv (o) W T))

Tel

By Lemma C.1 and monotonicity of Kleisli extension.

C¢ (check)f (& la]act (rwruy (o) W r))

rel
= (check?) ([[a]};ct (replaceI (a)))
Since iy (o) € T
= (check?)T ([[a]];Ct ((rep|acef)T(checkf(o))))
= [a 7t (o)
[m]

LemMa 5.3 (INVARIANT MoONOTONICITY). ForanyU,V,W C Var and o € Mem[W] such thatU NV =0, I € Mem[U],
J S Mem[V],andUUV C W:
L7 (@)(0) ¢ L7 (@)(0)

PRroOE. For any pomset &, let @ be the pomset obtained by replacing each action a with the tuple (a, I). The evaluation
function for these actions and order is as follows:

[a D)]aq (0) 2 [alhy (0) (@ I)Cax (@, T) iff a=d and 3J.T=T+7

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:40 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

So, clearly a?*J Epom !, and £ (@) = L(a?). Note that Ca is not pointed or finitely proceeded, but this doesn’t
matter; as we will see in the following proof, we only need this order for monotonicity, not for the extension lemma
[Zilberstein et al. 2025a, Lemma 3.8]. We now complete the proof as follows:
I
L5 (@) = sup LT (@)

o' <a

sup Lﬁn (a,]*J)
o’ <a
By Lemma H.3 of Zilberstein et al. [2025a] and Lemma C.2.
Ec sup Lin(a'l)
a'<a
= sup Lf (&) = L (@)

o' <a

C.2 Parallel Composition

LEmMA C.3. For any pairwise disjoint Uy, Uz, V' C Var, a and f§ such thatvarsact () € UpUV, varsest (o) € Uy, varsact (f) €
U, UV, and varstest(B) C Uz; I C Mem[V], S C Ng,.p, Y192 € form, o1 € Mem[U1], 02 € Mem[U:], 7 € T,
A C Mem|[U;], and B € Mem|[U,]:

minProb(Lgm(a llx By A2, S) (01 Wor W), Ax Bx T)

= minProb(L;;O (a, Y1, SN Ny) (o1 W), A% T) - minProb(L{po(ﬂ, Y2,SNNg) (o2 W1),BxTI)

Proor. The proof is by induction on the size of next* (a ||x B, ¥1 A 2, S). If the set is empty, then we have:
minProb(Ly, (@ llx Y1 A Y2, 5) (028, 67), A+ B+ T)
= minProb(n(oy Wo, Wr),A* B« I)

= Z Z Z Soywoyur (0] W oy W)

o1€AojeBT'el

Since we already know that 7 € 7:

DL Y S (0h) 8y (03) - 6:()

o'{ €A o'éEB 'el

D Sy || D) 80y (ah)
oleA oheB

D D Sour(a]) -(Z > Sayur(cy @)

o’eArel ’eBt'el
= minProb(n(oy W1),A* I) - minProb(n(c,Wr),Bx* 1)

= minprob(q;o(a, U1,SNNg) (o1 W), A% T) - minProb(L;;o(ﬁ, Y2, SN Ng) (o2 W, B* T)

Now suppose that the set of next elements is not empty. If next(a ||lx f, 1Ay, S) = {x}, then we know that A, g (x) = e,
and so:

minprob(%(a llx Botp1 A2, S) (01 Wor W), Ax Bx T)

= minProb(Ly (a llx B,y AY2,SU {x}) (01 W 0p W 1), Ax B I)

By the induction hypothesis:
= minProb(L;;o(a, Y1,SONg) (o1 W), A% T) - minProb(L;;o(ﬁ, Y2, SN Ng) (o2 ¥ 7),B*)
If not, then x has already been scheduled and so next(a ||x f,¥1 A ¢2,S) = next(a, ¥1,S N Ng) U next(f, Y2, S N Nﬁ).
Take any y € N, we will now show that:
minProb (Lﬁode(a lx Bt A, S, y) (o1 W o W), AxBx I)

= minProb (Livde(a, Y1,SN Ny, y) (01 W), A * I) - minProb (L{po (B, Y2, SN Ng) (o2 W1),B* I)

There are four cases:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:41

(1) Aaxp(y) = Aa(y) € Act. Let a = A4, g(y), so:
minProb(Ly, (@ llx f.Y1 AY2.5.y) (01 W0 W 1), Ax Bx I)

= minProb(L{;O(a lx B9 A, S U {y}) ([alky (01 W o2 w1), A% Bx T)
By Lemma B.13.

= inf > pp) - minProb(Lf, (@ llx By A 2.5 U {y}) (p). A B+ T)
pelaly (o190297) pesupp(p)NMem [U;UV]
Since vars(a) Ndom(oz) = 0.
= inf Z uip) 'minProb(-Cf;O(a llx B.¥1 A2, S U {y}) (v, (p) W o2 Wy (p)), A* B = I)

I
pelaly (o197) pesupp(g)NMem|[U;UV]

Note that by the definition of invariant sensitive execution, either 7y (p) C I, or [[a}]ict (o1 W 1) = Le. In the
former case, we can apply the induction hypothesis. In the latter case, the entire expression must be zero, and

therefore so is minProb(Liode(a, 1,S, y) (o1 W), A* I),so the claim holds trivially. So, we presume the former
is true and apply the induction hypothesis to get:

= wf 3T u(p) - minProb(£, (@ 1.5 N Na U (y})(p). A % T) - minProb(L, (5. 2.5 1 Np) (op + 7 (p). B +)
pelalp (0197) pesupp ()

Note that Léo (B, Y2, SN Ng) (029 1) = ‘C}[po (B, Y2, SN Ng) (02 @ 7’) for any 7 € I, since the invariant sensitive
execution reassigns the V variables at each step and tests only depend on local state.

| e >, Alp) - minProb(Lf (@ y1.S ' Na'U {y}) (p). A » I) |- minProb(Lf,, (B, Y.S " Np) (02 7. B+ T)
Helali (@197) pesipp () ’ p

= (minProb(L{po(a, ¥1,SN N U {y)T ([aly (019 1)), A J)) . minProb(L;;O(ﬁ, 2,5 N Np) (029 17),B* 1)

= minProb(L,,o4e (@, Y1, S N Na, y) (01 W 1), A% I) - minProb(L, (B, ¥, SN Ng) (02 W 1), B* I)

(2) Aaxp(y) = Aa(y) € Test. Let b = Ay, p(y), and we therefore have:
minProb(Ly . (@ llx B.y1 Ay, S, y) (01 W 02 @ 1), A% B+ T)
= minProb(Lf;o(a llx B 1 Az Ay = [D]est (01 W02 W D)), SU{y}) (01 Wor WT),Ax B I)

By the induction hypothesis, and the fact that vars(b) C varstest(«¢) € U (therefore it does not depend on
o2 € Mem[U;] and 7 € Mem[V].

= minProb(LL (e, Y1 A (y = [b] (61)).S N Nt U {y}) (019 7), A T)
- minProb(Ly, (B, 92, S N Np) (02 W 1), B = I)
= minProb(Lﬁode (,Y1,SN Ny, y) (01 Wor WT), A% T) - minProb(L;;O(ﬁ, Y2,SN Ng) (o1 W o WT),B* 1)
() Aalxp(y) = Aa(y) = L.
minProb(Ly . (a llx f.Y1 AY2.S.y) (01 W o2 W 1), A B+ 1)
= minProb(L¢, A * B)
=0
=0- minProb(.Cll;O(ﬁ, Y2,SN Ng) (029 1),B* 1)
= minPrOb(L‘;de(a, Y1, SN Ng, y) (o1 W1),AxT) - minProb(_C;;o(ﬁ, Y2,S N Ng) (02 W1),B*TI)
@) Aaxp(y) = Aa(y) = o.
minProb(Ly, . (@ llx B¥1 A Y2,S, y) (01 W oz W 7), A% B+ 1)
= minProb(Lf;o(Of llx B.yr A2, SU{y}) (o1 WorWr),Ax B+ T)
By the induction hypothesis.

= minProb(.E;;o(a, Y1,SN N U{y} (o1 W1),AxT) - minProb(,LZ;O (B, ¥2,SN Ng)(02W1),B* 1)

= minProb(Lf:Ode(a, Y1, SN Ny, y) (o1 Wr),A*T) - minProb(Lz;o(ﬁ, Y2,SN Npg)(o1W1),B*T)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:42 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

By a nearly identical argument, we also get that for any y € Ng:

minProb(LL (& ||lx B V1 A .S, y) (o1 W o W), Ax B+ I)

node
= minprob(%o(a, 1.5 N Ng) (01 € 7), A) - minProb(LL . (B.Y2.S N Np, y) (02 W), B+ I)

We now complete the proof as follows:

minProb(.[:f;m(a llx Bov1 A2, S) (01 Wor W), Ax Bx T)

—minkrob| & L@l A A S Y (9o, Ax BT
yenext(a|lxB.¥1AY2.S)
By Lemma B.12

= i inProb (££ U1 A, S, Wop Wr),AxBx T
yenext(aﬁ?f?!&l/\m,s)mm © (‘C"Od@(a llx B Y1 A Y2 S, y) (01 o2 O7), Ax B x)

minProb(LY (& llx B¥1 Ay, S, y) (01 W0, WT),Ax B+ I),

= min (node

min
yenext(a,y1,SNNg)

. . I
yEnext(g,l(lﬁrzl,SﬂN/;) minProb(L] .. (a |lx B, Y1 A Y2, S, y) (o1 W o2 WT),Ax B [))

minProb(LL . (. Y1.S N Ng, y) (019 1), A* I) - minProb(L] (B.42.S N Np)(cp ® 1), B+ I),

= mi I
=min (o

min
yenext(a,y1,SNNg)

minProb(ﬂi70 (a,Y1,SN Ng) (01 W), A% T) - minProb(Lﬁode (B, Y2, SN Ng, y) (02 W 1), B* I))

min
yenext(f,4.5NNg)

minProb(.E‘T:ode(a, Y1,S N Ng, y) (o1 W), A= I)) . minProb(.EI (B, Y2, SN Npg) (02 W1),B* 1),

lpo

= min (minProb & L (915N N, y) (o1 &Jr),A*I)) -minProb(.ng(ﬁ,lﬁz,SﬂNﬁ)(cfz Wr),BxT),
yenext(a,y1,SNNg)

= min (min
yenext(a,y1,SNNg)

minProb(pro(a, Y1, SN Ny) (o1 W), A% T) - minProb(.Ciode(ﬁ, Y2,SN N, y) (029 1),B* 1)

min
yenext(B,Y2,5NNg)

minProb(Ly (&, 1,5 N Ng) (61 ¥ 1), Ax I) - minProb & Ll By SNNg y) (o2 @), BxT)
yenext(f,12,.5NNg)

= min (minProb(.[leo(a, Y1.5 1 Na) (01 9 7), A% I) - minProb(LL (f.Y2.5 1 Np) (029 7), B+ T),

minProb(L;;o(a, Y1,SNNg) (o, W), A% I) - minProb(L;;O(ﬁ, ¥2,S N Np) (02 W 1), B =]))

= minProb(ng(a, Y1,SN Ng) (o1 W), A% T) - minprob(q;o (B.¥2.SNNp) (02 W1),BxI)
[m]

Lemma C.4. For any pairwise disjoint Uy, Uy, V' C Var and o, f € pomy;, such that varsaet () € Uy UV, varstest () C Uy,
varsact () C U, UV, and varstest (B) € Uz; I € Mem[V], 01 € Mem[Ui], 02 € Mem[Uz], 7 € I, A € Mem|[U;], and
B € Mem[U,]:

minProb (Lgn(a Il B) (o1 Wos 1), Ax B f) = minProb (Lgn(a)(al W), Ax I)-minProb (Lén(ﬁ)(crz W1),B* I)
Proor. Fixany a € a, f € B, and x ¢ Ng U Ng. This give us e || B = [||x B]. So, we get:

minProb (Lgn(a Il B) (o1 W0y 1), Ax B I)

= minProb (.Cén([a llx B]) (01 Wor W), Ax Bx I)

= minProb (L;;o(zx llx B, true, 0) (o1 W op W T), A% Bx])
By Lemma C.3.

— minProb (Léo(a,true, 0)(o1 W), A * I) - minProb (Lgm(ﬁ,true, 0)(o, w1),B+ _7)

= minProb (.CI ([a]) (o1 W), A I) - minProb (Lém([ﬁ])(cg W 1),Bx* I)

fin

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:43

= minProb (Lén(a) (o1 W1),Ax I) - minProb (Léa(ﬂ) (o2 WT),B* I)

]

LemMma C.5. For any pairwise disjoint Uy, Uz, V' C Var and o, B € pom such that varsact (@) € Uy UV, varstest () C Uy,
varsact () C U, UV, and varstest (B) € Uz; I € Mem([V], 01 € Mem[U;], 03 € Mem[Uz], 7 € I, A C Mem|[U;], and
B € Mem|[Us,], if there exists p and q such that:

Vi e LN (a)(o1Wr). u(Bi+I)=p and Vwe L1 (B)(0a¥r). w(Byx1)=q
Then:
vve LI (a || B)(c1Worwr). v(B #By+xI) 2 p-q
ProOF. Take any v € £ (a || B) (o1 W 03 W 7). We have:
v(By * By % I) > minProb(LY (a || B) (o1 W 05 W), By % By I)
= minProb(sup 'Cén (p)(c1Wor W1),By* By x I
B

y<«l|

By Lemma B.11.

= sup minProb (Lén (y) (o1 WorWr),By % By * I)
y<al|p

= sup sup minProb (Lgn(a’ | B) (o1 WorW1),By * By = I)
a'<ia <18

By Lemma C.4.

= sup sup minProb (L;Tn(a') (o1 W1),By * I) - minProb (L;irn(ﬁ')(az W 1), By * I)

a’<jax B < B

sup minProb (.EI (B) (02 W1),By % I)

)) fin
a<ja B'<1p

= (sup minProb ([én(a')(m 1), By * I)) .

By Lemma B.11.
= minProb (.CI(O:) (o1 W1),By * I) - minProb (.CI (B) (o2 W1),By * [)
=p-q
O
Lemma C.6. For any pairwise disjoint Uy, Uz, V. C Var and a1, @2 € pom such that varspee(ag) € Ux UV and

varstest (k) C Ug; I € Mem([V], let Pr be the trivial probability space where pp, (I) = 1. For allk € {1,2}, Py,
Q. and p € D(Mem|[Uy U U, U V) such that Py @ P2 @ Pr < u, if:

Vi Pe ® Pr < e = Ve € LT (ar) (). Qe © Pr < we
Then: .
vve LI(ar o) (). Qo ePr <v

ProoF. Let (Ay;)ier, and (Ag;)ier, be the most precise, disjoint measurable events from ev(%#;) and ev(%), respectively.
Since P; ® P2 ® Pr =< p, we know that for any (i, j) € I; X I:

DD D lme18 08 T) = pup, (Avy) - e, (As) = ppiepy (Avi x T) - pipjer (Azj + 1) ®)
01€A],; 02€A j T€T
Also, for any yii. such that P ® P < g, we know that any v € £Z (ax)T (ut) has the form:
=) () Ve
oesupp (pi)

Where each v, € £7 (ay)(0). Since Q¢ ® Pr < v, we know that for any B € Fay:

DL (@ = o) Y (D)

HqpePr (B*1T)

TEB+I oesupp(pg) T€B*T
Let PBo = ZTEB*] VJ(T)~
= > (o) pBo
oesupp(py)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:44 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

We will now show that }’ .cg.; £(7) = pp o forany o’ € supp(p)and € € L7 () (0”). Take any such . By construction,
1 (07) - E+ Toesupp(u\(o7) Hk () - Vo € LT (ax)T (ug), therefore:

Hager, B I) = Y | ue(0) &+) (o) - vo | (D) = Y i (0) - pio

T€B*I UESUPP(uk)\{c’} oesupp(ug)

() - Y E@) +W— () - ppo +W
t€B+I oesupptmy) \{o’} oesupptry) \{o’}
kT Y E(D) = ko' pio

T€B*T

> D) =ppo

T€B*]

Now, let yi; be constructed by fixing a single state o; € Ay ; * I for each i € Iy and setting px (0;) = HpoPr (Ag.i), so
clearly P ® Pr < pg. Now let ppr; = PB,o;- Based on what we have just showed, this gives us:

Hoepy (B 1) = Z Hk(0) " pBo = Z bk (0i) - PBo; = Zﬂ?—’k(@?’[(Aki* 1) - pBKi
oesupp(pg) iely i€ly

We will now show that pg 5+ = pp j for any j € I and o’ € A ; * 1. Take any such o, then we get:
HQroPr (BxTI)=

pperr (Akj* 1) - ppo + Z ppep; (Aki* I) - pBo; = Z#Pk@)’P[(Aki*T) - pBk,i
i) ie

ppop; (Akj* I) - ppo + Zmﬂk@?{ (Ag: “PBki = Ppep; (Akj* 1) Pk + ZquWI (Ag: “PBk.i
i#j itj

Hppe A=) P = Hpep AT 1) Pk

PB,c’ = PBk,j

We have therefore shown that 3 g v (7) = pp ik for any v € L](ak)(cr) where B € Fg, ,i € I, and o € Ag;
Now take any v € £ (a1 || e2)t (1), which must have the form v = Yoesupp(u) H(0) - Vo where v € LI (aq ||

a3) (o) for each 0. Since Q; and Q; operate over different address spaces, clearly Q; ® Q; exists. It just remains to show

that Q; ® Q; ® Pr < v, which we do as follows. By Lemma B.2, it suffices to show that the probability measures agree on

the product of disjoint partitions. Let {By; | j € Ji} = ev(Qy) for k € {1,2}. Forany i € J; and j € J;, we have:

v(Bii*Byj+ 1) = Y (o) vo(Bui*ByjxI)
oesupp(u)
Instead of summing over the support of o, we can alternatively sum over the elements of the A; ;7 and A, ;- sets.

:ZZ Z Z ZP(OHWCTZ@T)-VU(BM*BZJ*])

'ely j'ely 01€A yp 02€A, i T€]

We previously showed that v (Bg ¢ * I) = pp, .k, (a constant) for any v € L1 (ay) (o) where o € Ag. i So, we can

use Lemma C.5 to conclude that:
Z Z Z Z Z H(o1W o2 W1) - pp, ,1ir * PBy ;2.7

i'ely j'ely o1€A i 02€A, g7 Tel

Z Z p(Ayy * Ag jr % 7) *PByiLi’ " PByj2j

i’ely j'ely

v

By Equation (5).

Z Z ppiopy (ArLy * 1) - ppyep; (A i+ 1) - Py s 1i - PBy j2.57
i’ely j'ely

Z ppyepr; (Avy = I) - pp i |- Z Hpyepy (A % 1) - pB, ;2
i’ely j'elp

= p@ep; (Bri* I) - po,ep; (Bzj+ I)
= piq, (B1,i) - pa, (Bz,j) - ppy (1)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:45

Now, we have shown that v(By,;%Bz,j*1) 2 pQ,eq,ep; (B1,i*Bs,j* 1) foralli € Jiand j € Jp.Since Xjcy X jey, HQ @, (Bii*
Bzj) = 1, then v(By; * By j * I') cannot be strictly greater then g, (By,i) - g, (Bz,;) for any i or j, and therefore the
quantities must be equal.

O
D Almost Sure Termination

For any S € C(Mem[V]), let minterm(S) = minProb(S, Mem[V]), i.e., it is the minimum probability that the program
terminates. Also, let ¥ c 7y: (Mem[V] — C(Mem[V])) — Mem[V] — C(Mem[V]) be defined as follows:

FILIED () if [Blregt (0) = true

Y1y (f)(0) = { (o) if [b] 1oy (0) = false

By Zilberstein et al. [2025a, Lemma 5.2]:
L7 ([while b do C]) = Ifp (¥pc.1)) = sup ¥ oy (1)
ne

Now, for any test b and distribution y we define a conditioning operator as follows:

(b2p) (o) £ { % if [b]test (0) = true

0 if HbﬂTest (O-) = false where H(b) = Z”(U)

oesupp(p) |[b]1est () =true

Note that if p(b) = 0, then b?u is not well-defined. In that case, we just let b?u = Lgp. It is also clearly true that
p = (b)) ®,p) (=b?p) for any b and p. In addition, we call (¢, ¢} an loop invariant pair for while b do C under the
resource invariant I iff:

(1) ¢ = [b > true]
(2) ¢ = [b > false]
Q) Irw (@) Cp &Y)
(4) precise(y)

Given these new definitions, we prove some partial correctness results, which show that the ¢ (as defined above) holds on
the terminating portion of the result of a while loop.

LemMA D.1. Take anyT, let I = (I)r, (@,) be an invariant pair for while b do C under I, and Q be the unique smallest
probability space satisfying (which exists since precise(y/)). For any y,n € N, and A € Fq such thatT, & ¢ * [I]:

1 t
minProb (\PZZ,C,I) (J_E.) (p), A = I) = minterm (\PZZ,C,I) (_J_E,) (y)) - g (A)
Proor. The proof is by induction on n. Suppose that n = 0, and so we have:
minProb (\I’?b,c,J) (J_E»)I (1), A= I) = minProb (L¢,A* I)
=0
= minterm (L¢) - pig (A)
B 0 . ¥
= minterm \F(b,C,I) (J_C) (| - pa(A)
Now suppose that n = 1, and so we have:
. 1 o\f . N\ (1 +
minProb (¥, - 7y (J‘C) (1), A = I | = minProb (J‘C) (L (Ich (,u)) VAT
= minProb (L¢g, A 1)
=0
= minterm (L¢) - pq (A)
i
= minterm (\P(lb,C,I) (J.&) (p)) - pig (A)
Now suppose that n > 1. Then, we have:

i
minProb (‘I’&,CJ> (J_E) (p), A = I)

= minProb (‘P?bjé’n (J.Z;)T (LE([ICD (), A= I)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:46 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

;
= inf minProb (‘P" ! 12 (v),A*I)
veZ ([() <”CI>(C)

Since (@, ¥/) is an invariant pair and T, pt £ ¢ * [I], then every such v above can be split into v = b?v @) ~b?v such that
Lb?ve@x* [I]and T, -b2vE = [I].

(b?v Dy (b) —b?v), A = I)

inf mmProb((bC[)()

veLL ([CDT ()

§
inf mmProb((b2v) &) Y3 (‘!b?V),A*I)
veLd ([Ch () <bCI> () Y <bCI> ()

Since n > 1, then ‘I’z’éD(J_E.)T(—'b?V) = {=b?v}.

= inf minProb (‘I’ b?v) ®y(py {-b2V}, Ax I)
ve LT (I () o [+) @

T
inf v(b) - minProb (‘P" ! (b?v),A*I) +(1=v(b)) - (=b?v)(AxT)
ve £ (ICD) () e (+2)

Since I', =b?v E ¢ = [I], then (=b?v) (A * I) = ug(A). Also using the induction hypothesis, we get:

_ o\ T
B ve.cf<ifcf1]>+<u> () - minterm (\P?b,é,n (lC) (b?v)) “HQ(A) + (1= v(D)) - po(A)

¥
inf minterm (‘I’"’1 15) (B?2) @) {—|b7v})) - piq (A)
(VELI([[C]])%(;!) e (C) !

(inf mmterm((bCI) ()T (V))) “pa(4)

veLT ([cD ()

5
= minterm (‘I’&’C’D (J_E,) (y)) - g (A)

[m]

Lemma D.2. Take anyT, let T = (I)r, (¢, ¢) be an invariant pair for while b do C under I, and Q be the unique smallest
probability space satisfying y (which exists since precise()). For any p such that T, pp & ¢ * [I] and A € Fgq:

minProb (Lf ([while b do C])' (1), A I) = minterm (Lf ([while b do C]) (y)) g (A)

Proor. The proof proceeds as follows:

& T
minProb (LI ([while bdo C])" (p), A = I) = minProb (ilég‘l’z,,an (J-E») (1), A =])

:supminProb(<bCI>() (y)A*I)

neN

By Lemma D.1.

1
= sup minterm (\P(’Z,C,I) (J_E,) (p)) - g (A)
neN

¥
= minterm (sup \I](’Z,C,I) (J_E,) (/1)) - g (A)
neN

= minterm (LI([[while bdo C]])T(y)) pg(A)
o
COROLLARY D.3 (ALMOST SURE TERMINATION). Take anyT and0 < p < 1, let I = (I)r, and (@, {) be an invariant pair

forwhile b do C under I. If additionally minterm(£? ([while b do C])T (1)) > p for all u such that T,y & @ * [I, then
minterm(£ ([while b do C])" (1)) = 1.

Proor. Follows by an identical argument to Lemma D.3 of Zilberstein et al. [2025b]. o

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:47

E Logic and Rules
LemMma E.1 (MonoToniIcITY). IfT, P E @ and P < Q, thenT, Q E ¢.

Proor. By induction on the structure of ¢.

@ =T.Since T, Q k T for all Q, the claim holds trivially.

@ = L. The premise is false, therefore this case is vacuous.

@ = @1 A @2. By the induction hypothesis, we know that I', Q £ ¢; and T, Q E @2, therefore I', Q £ @1 A ;.

@ = @1V @2. Without loss of generality, suppose that T, £ ¢;. By the induction hypothesis, we know that T, Q £ ¢,

therefore by weakening I', Q £ @1 V ¢3.

e ¢ = 3X.iy. We know that there is some v € Val such that T'[X := 0], # k ¢. By the induction hypothesis, we get
that T'[X := o], Q £ ¢. This implies that T, Q £ 3X.¢.

e p=Px. d(g) ¥- Immediate, since the semantics stipulates that # is greater than the direct sum, therefore Qis
also greater than the direct sum.

o ¢ = &xer Y. We know that T, P E @qu for some pi € D([E]g,, (T)). By the previous case, we get that
Qe @Xﬂu . This implies that T, Q £ & xcf V-

® ¢ = @1 *m @2. Immediate, since we know that P; ¢, P2 < P such that I', P; £ ¢; for each i, and therefore
P1om P2 < Q as well.
the semantics stipulates that % is greater than the independent product, therefore Q is also greater than the
independent product.

o ¢ = [P]. Let Qp = Mem|[S] and Qg = Mem|[T], and note that S C T since £ < Q. We know that (]Pl)fg €

Fp and ,u;o((]P[)?) = 1. We also know that ,urp((]P[)fq) = ,UQ(UB‘” (B)=(P)S B) = 1. Note that by definition

S r

U Blrs (B)=(P)S B C (]PDIT . Since that set has probability 1 and Q is a complete probability space, then (]PI)FT € Taq,
=Py
and also has probability 1.
o

E.1 Precise and Convex Assertions
LemmA E.2. precise([P])

Proor. Take any I. If (P)r = 0, then P is unsatisfiable under T, so we are done. If not, then let Q = Mem[fv(P)],
F={ACQ|(P)r CAYU{ACQ|AN(P)r =0} and:

1 if(P)rcA
0 otherwise

p(A) = {

It is relatively easy to see that y is a probability measure since (P)r is the smallest measurable set with nonzero probability,
and it has probability 1, so the countable additivity property holds. By definition, I, (Q, ¥, u) £ [P]. Clearly it is also
minimal, since any other # such that I, # £ [P] must also include ¥ as measurable sets by definition, and must assign
probability 1 to the event (P)r. o

LemMmA E.3. If precise(¢, 1), then precise (¢ * /).

Proor. Take any T, if either ¢ or 1/ is not satisfiable under T', then neither is ¢ * 1/, and then the claim holds vacuously. If
both are satisfiable, then there are unique smallest ; and P, such that T, ; £ ¢ and I, P, k . Clearly, this means that
I, P1 ® P2 k@ =). We now argue that P; ® P, is minimal. Take any Q such that ', Q £ ¢ * ¢/. This means that there are
Q; ® Q; < QsuchthatT, Q k ¢ and T, Q; F . By precision of ¢ and i, we know that £; < Q; and P, < Qz. Using
Lemma B.4, we get:

PP QiR <Q

Lemma E4. Ifprecise() and ¢ = [e — X, then precise(@de(E) Q).

ProoF. Take any I' and let v = d([[E]]]_F_XID (T), if ¢ is unsatisfiable under any I'[X := o], then so is @X~d(E) @, so the
claim holds vacuously. If not, then there is a unique smallest $;, such that I'[X := v], P, F ¢ for each v € supp(v). Since
¢ = [e — X, we can create new disjoint probability spaces P, where each Qpr = {0 € Qp, | lel Exp (o) = v}. Note
that this does not remove any samples that have positive probability, and clearly P, = ext(#;). Let # = P, _, Py, then
IPE @X~d(}5) @. It only remains to show that # is minimal.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:48 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Take any Q such that T, Q F @X~d(£) . That means that I[X = v],ext(Qy) E ¢, where H,_, Q, < Q. Since
@ is precise, then P, = ext(P;) < ext(Qy) for each v. Since the completion only expands the sample space with zero
probability events, this must mean that £, < Q, as well. Therefore, by Lemma B.5:

r=Pr,<Pa =

LEmmA E.5. If convex(¢1, ¢2), then convex(@1 *w @2).

Proor. Take any T, if ¢y *, @ is satisfiable under I', then so are each ¢y. Since each @ is convex, we know that there exist
Qk, Tk, and Sk such that T, P k ¢ iff (Qg, F, u) < P for some p € Sk. Let U and V be sets such that Q; = Mem[U] and
Qg = Mem[V], let Q = Qq * Qy, F be the smallest o-algebra containing {A*B | A € F1,B € F3},and S = {u | ny (p) €
S1, 7wy (p) € S2} (S is clearly convex since S; and S; are convex).

We complete the proof by showing that ', k @y *y ¢ iff (Q, F,) < P for some u € S. For the forward direction,
suppose that I', P £ @1 *y @2, so T, 7y (P) E @1 and T, vy (P) E 2. Due to convexity of ¢; and ¢, there must be yy € Sy
and p € Sy such that (Qq, F1, 1) < 7y (P) and (Qa, F2, p2) =< 7y (P). Now, let:

1) 2 pip (| B € 7 | moov (B) = 4}
This gives us:
70 (10(4) = p(AsMem[V]) = pip (| (B € T | movw (B) = A= Mem[V1}) = pup (| (B & T | 70 (B) = A}) = i (4)

And similarly, 7y (p) (B) = p2(B), therefore € S by construction, and so also by construction (Q, F, y) < P.

For the reverse direction, suppose that (Q, ¥,) < P for some p € S. That means that 7yy (¢r) € S; and y (p) € Sy, and
therefore T, (Qy, F1, 7y (1)) £ @1 and T, (Qa, F2, v (1)) E @2. Since (Q, F, 1) € (Qu, F1, mu (1)) ow (Q2, T2, 1v (1)),
thenT, P E @1 *w @2. O

LEmMA E.6. If convex(@1, ¢2), 91 = [e = 1], and 92 = [e = 0], then convex(¢1 ®>E ¢2).

Proor. Take any T, if ¢; @ ¢ is satisfiable under T, then so are ¢; and ;. Let p = [E] LExp (T) and let X be the
variable that is bound by @5 . Since the ¢ are convex, then for each k € {1,2} there exist Qg, Fx, and S such that
I'[X =2-k], P E @ iff (Qk, Fi,) < P for some p € Sg.. Now, let:

Q20,UQ ffé{Agm{aeA|[[e]]Exp(a)=1}e¢1,{aeA|[[e]]EXp(a):o}eﬁ}
S2{u@gv|peS,veS,p<qgsl}

where (4 &g v)(A) =q p({oc € A|[e]g, (0) =1} +(1-q) - v({o € A | [e]g, (o) =0})

We complete the proof by showing that T, P £ ¢1 ®>f @2 iff (Q, F, u) < P for some u € S. For the forward direction,
suppose that T, P £ @1 ®>F @2, so there exists a ¢ > p such that I'[X = 1], ext(P;) £ ¢1 and T[X := 0], ext(P2) E @3 for
some P; and P, such that P; ©¢ P2 < P. This means that (Qi, Fi., px) < ext(Py) for some pp € Sy for each k € {1,2}.
So, letting p1 = j11 ®q p2, clearly p € S by construction. Finally, we get:

(Q, Fo 1) = (Q1, F1, 1) ©g (Qa, Fo, p2) < P1 &g P2 = P

For the reverse direction, suppose that (Q, F,) < P for some u € S. Since u € S, then there exist i1 € Sy, 2 € So, and
q > p such that p = py ®q 2. We know by construction that I'[X = 2 — k], (Qg, Tk, ik) F @« for each k, therefore clearly
T(Q,F, 1) E @ ®q @2 Therefore, by Lemma E.1, we know that I, £ ¢; ®q 2. Finally, we weaken this assertion to get
I,P k@1 &E @a. o

LEmMA E.7. Ifconvex(¢) and ¢ = [e +— X, then convex(& xcE ¢)-

Proor. Take any I, if @Dy ¢ is satisfiable under T, then so is ¢. Let S = [E] LExp (T'), so for each v € S, there must be
Qu, Fo, and Sy, such that ' [X = 0], P k ¢ iff (Qq, Fo, pt) < P for some p € Sy. Now let:

Qx| o, ffé{AgQ|vDes.{aeA|[[e]]Exp(a):u}e7;}

veS

r= {Z £(0) o | £ € D(S), Yo esﬂ}

veS

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:49

Clearly T is convex, since it is constructed as countable convex combinations of convex sets [Zilberstein et al. 2025b,
Lemma B.1]. We now show that T', P £ & xeg ¢ iff (Q, F,) < P for some p1 € T. For the forward direction, suppose that
L, P E &xcg ¢, s0 T [X = 0], ext(Py) E ¢ for each v € supp(v) where v € D(S) and @), _,, P» < P. This means that
for each v, there is a 1, such that (Qq, Fo, f1o) < ext(Py). So, letting 1 = 3 ,cs v(0) - pto, we get that (Q, F,) < P by
construction.

For the reverse direction, suppose that (Q, 7, ;1) < P for some p € T. Since p € T, then there exists a & € D(S) and
po € Sy for all v € S such that yp =)¢5 £(0) pp. By definition, I'[X = 0], (Qq, Fo, flo) F @. Let Py, be the restriction
of (Qq, Fo, tio) to the states where [e] Exp (0) = v, then in order to show that T, P £ & xcf ¢. it will suffice to show that
PD,- ¢ Py < (Q, F, p), and then we can conclude that 5, ¢ Py < P by transitivity and complete the proof by Lemma E.1.

The conditions on Q and ¥ hold by construction. For the probability measure, we have:
Py, p(A) = Z; E(v) - pp, (AN Q)
0

= D E©) (AN Q)

veS
Since each 1, assigns 0 probability outside of Q,, we can remove the intersection.

= D &) - p(A)

veS

= p(A)

E.2 Entailment Rules

LemMmA E.8. The entailment rules in Figure 4 are valid.

ProOF.
PrQ
[P1+ Q]
Suppose that T, # £ [P], where Qp = Mem[S]. That means that (]PDI*? € Fp and y((]Pl)f) =1.Since P + Q, then it
must be that (P)2 C (Q)3, therefore (Q)2 € Fp because P is a complete probability space and all samples outside of

1

(]P[)IS must have measure 0. By the additivity property of probability measures p((]Q[)l@) =1

pre yry

Crm Y@ wm

Suppose that I, P £ @ #p, ¥/, 50 I, P1 £ @ and I, Py £ ¢y and P’ < P for some Py, P2, and P’ € Py op, Pa. Since
or@ andy + ¢/, thenT, Py £ ¢’ and T, P, £ ¢/, therefore we immediately conclude that T, P £ ¢’ #,,, /.

B)exyrory
Suppose that I, P £ ¢ * ¢, so I, P1 £ ¢ and I, P, E ¢ for some P; and P, such that P; ® P, < P. Clearly,
P1 @ Py € Py oy P, therefore this immediately implies that I', P & ¢ =, .

[P+ QT 4 [P] #m Q]

We first show that [P« Q] + [P] #,, [Q]. Suppose that I, # £ [P * Q], where Qp = Mem[S]. That means that
(P = Q[)fq € Fp and pp ((P * QD?) = 1. Now let P; and P be the smallest probability spaces such that I', P; £ [P]
and I, P; £ [Q], so clearly Py oy Py = Py 05 P2 = {P1 @ P2} and therefore I', P; ® P E [P #,, [Q]. It is also
clearly the case that #; ® P, < P since the smallest event with nonzero measure in P; ® P, is (P)r * (Q)r, which
has probability 1, therefore everything larger also has probability 1, and it suffices to show that:

@

“

et

/l7>1®732(QPDF * GQDF) =1=pp ((]P * QD?) = Hp (UB|7TF\/(P,Q) (B)=GP*QD? B)

Therefore, by Lemma E.1, I, P & [P] %, [Q].

Now we show that [P] #,, [Q]F [P Q], suppose thatI', P £ [P] #,, [Q]. That means that #’ < £ and T, P; E [P]
and T, P; £ [Q] for some Py, P;, and P’ € Py op, Po. This also means that pp, ((]P[)l‘?) = 1and pp, ((]Q[)%-) =1
(where Qp, = Mem[S] and Qp, = Mem|[T]). Therefore, we know that 75 (up-) (QPDI‘?) =1and n7 (/JPI)(QQDI—T) =1,
and therefore we know that anything outside of P and Q has measure zero, and therefore it must be the case that
s (P QD?UT) =1.50,T,P" E (P * Q), and since P’ < P, then by Lemma E.1,T, P E (P = Q).

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:50 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

() @ * [P 4F @ [P]
The forward direction follows immediately from Item 3, so we prove only the reverse direction. Suppose that I, P £
@ *w [P]. This means that T, P £ ¢ and T, P, & [P] for some Py, P2, and P’ € Py oy, P2. Now let P; be the smallest
probability space such that T, P £ [P]. Since P; contains events only of measure 0 or 1, then P; oy, P = {P1 ® P;},
therefore it must be that P; ® P < P’ < P. Therefore, by definition, I, P £ ¢ * [P].

(6) Dx-ar) ?+ &xesupp(d(E)) ¢
Suppose that T, P @X~d(E) @, therefore T [X := v], ext(Py) F ¢ for each v € supp(§) where & = d([E] LExp (T)).
Obviously & € D (supp(¢)), so this immediately implies that T, P £ &supp(a(E)) @-
(7) olE/X] 4 &xeir) ¢
For the forward direction, suppose that T, P £ ¢[E/X]. Let v = [E] LExp (T'). We therefore have that I'[X = o] F ¢.
Obviously, 8, € D ({v}), therefore we get that T', P F &xe(k) ¢-
For the reverse direction, suppose that T', £ & xe (g} ¢- Since the only distribution over a singleton support is the
point-mass distribution, this immediately gives us I'[X := v] £ ¢, where again v = [[E]]LExp (T). Finally, we conclude
that T, P £ ¢ [E/X].
(8) [ECE'*&xep @ F &xerr @
Suppose that T, P & [E C E'] * &xeg ¢- Let S = [E] gy, (T) and §” = [E'] g, (T). We therefore know that § C &’
and I'[X = v],ext(Py) E ¢ for all v € supp(&) and some & € D(S) such that @v~§ Py < P. Obviously, it is also the
case that & € D(S'), since S C &, therefore we immediately have that I', P £ & xepr ¢-
pry
D or D v
X~d(E) X~d(E)
Suppose that T, P E @X~d(£) ¢ andlet v = d(ﬂEﬂLEXp (T).So, B,., Po < P such that T[X = v],ext(Py) E ¢ for
each . Since ¢ + ¢, we get that T'[X = o], ext(P,) F ¢ for each v. Therefore, I', P E EBX%«E) . Note that ¢ may
not witness a partition of the sample space, but the Pys are still disjoint.

Y ¢ fv(e)
P or P olv/x
X~d(E) Y~d(E)
Suppose that I, P £ P x4 ¢ and let v = d([E] g, (T)). This means that (P, Po < P such that T[X =
v], ext(Py) F ¢ for each v € supp(v). Since Y ¢ fv(¢), then clearly I'[Y = 0], ext(Py) E ¢ [Y/X]. Therefore, we get
thatT,&H, ., Po E Dy-ak) ©lY/X], and since @D,., Po < P, thenT,PE @Y~d(E) ¢[Y/X] by Lemma E.1.

(a1 X ¢ fv(y)
EBeovrPen
X~d(E) X~d(E)
Suppose that T, P (@de(E) @) = ¢ and let v = d([E] gy, (T))- So, (PB,., Po) ® P < P such that T[X :=
v],ext(Py) E ¢ for each v and I, P’ £ ¢f. Since X ¢ fv(¢), then T[X := o], P’ £ ¢ for each v. Also note that
ext(Py) ® P’ = ext(P, ® P’) since P’ is already a complete probability space. This gives us T [X = v], ext(P, @ P’) E
@ * . Now, by Lemma B.3, we have:

Pr.er) =

o~V

©)

(10)

P <P

D

o~V

Therefore, T, P E @XNd(E) (@ =9).
X ¢ fv(y) precise (1)

P wnr P oy
X~d(E) X~d(E)
Suppose that T, P @X~d(£) (¢ =), and let v = d([E] g, (T)). This means that @D, (Po ® Q) < P such that
I[X :=ov],ext(Py) E @ and '[X = v],ext(Qy) F ¢. Since X ¢ fv(y), we also know that T, ext(Q,) F ¢, and since ¢
is precise, there is a unique Q such that T, Q £ i and Q < ext(Q,) for all v. Therefore, by recombining the components,

we get that I, P & (@X~d(E) @)+ .
X ¢ fv(y) convex ()

P ek (P oy

X~d(E) X~d(E)

(12)

(13)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:51

(14)

Suppose that I', P E @X~d(£) (¢ *w ¢), which means that I'[X := v],ext(Py) F @ *y ¢ for each v € supp(&)
where ¢ = d([E] Lexp () and EBU~§ P, =< P.Let S be the set such that Qp = Mem[S] and T = vars(¢), so
T'[X = o], ms\7 (ext(Py)) F ¢, and therefore I', ws\7 (P) F ¢. In addition, we know that I'[X = o], =y (ext(Pyp)) F ¥/
for each v, and since ¥ is convex, then T, 77 (P) E ¢ (see Item 14 for more details). Combining these two facts, we get
that T, P £ (Dx~a(p) @) *w V-

X ¢ fv(ep) convex(¢)
@ ¢re
X~d(E)

Suppose thatT, P £ @X~d(£) @,andlet v = d([E] Lexp (T))- This means that D,y Po < PandT[X = 0], ext(Py) E
@. Since X ¢ fv(¢),this also means that T, ext($,) F ¢. Since ¢ is convex, there exist Q, F, and S and for each v 1, € S
such that T, (Q, F, pto) F ¢ and (Q, F, po) < ext(Po). Now, let = 3ycqupp(v) V(0) - Ho, so clearly p € S sinceitisa
convex combination of elements of S, and therefore, I, (Q, F,) E ¢. It remains only to show that (Q, ¥, z) < P.The
conditions on Q and ¥ hold trivially since (Q, 7, p1,) < ext(Py) for all v. Now, we show the condition on pp:

pA) = Y (o) - p(A)
vesupp(v)
Let U be the set such that Q = Mem[U]. Since (Q, 7, 1) < ext(Pyp).
= 2 v e, (1B e Fr, | mu(B) = A})

vesupp(v)

Since (Q, F, i) < ext(Py), then p, gives measure 0 to all events outside of Qgp,, therefore we can add the following
intersection.

= 2 v@ e, (J{BeTp, 1 mu(B) = A} n0op,)

vesupp(v)
= by, 7o (U (B € 7 | nu(B) = 4})
Since (P,,.,, Po = P.

= (1B € 7 | nu(B) = 4))

E.3 Soundness of Inference Rules

We start by providing a lemma stating that weak triples can be stated without the frame preservation property.

LEmMMA E.9 (ALTERNATIVE CHARACTERIZATION OF WEAK TRIPLES).

Iey (@) C Yy iff VLoLuTpurex[Il = Vve LUr(C)T(w). T, vy« (1]

Proor. We show both directions:

(=) Suppose that T, 1 £ ¢ * [I]. Let PF be the trivial probability space on Mem[0], so clearly p oy, Pr = {p}. Now
take any v € LU ([C])T(p). Since I £y, (@) C (), we get that there exists a Q and Q' € Q o, Pr such that
Q <vandTl,QE ¢ [I].Since Q oy, Pr = {Q}, then Q" = Q, therefore ', Q" £ ¢ * [I]. In addition, since Q" < v,
then by Lemma E.1, T, v E ¢ * [I].

(&) Suppose that P’ € P o, Pr such that P’ < pand I, P k ¢ = [I]. Let U C Var be the variables of ¥ and I
and V be the variables of PF. Clearly I', myy (1) £ ¢ * [I. Since mryy () < p, then by Lemma E.1, T, pt & ¢ * [I] too.
So, by the premise, I', v £ ¢ * [I] for any v € L£W0r (ICD T (u). But and I only depend on the variables U, so
T, 7y (v) E ¢ = [I] too. In addition, it must be the case that Pr < 7y (v) since C does not alter any variables in V.
Now, let Q = 7y (v) and construct Q’ as follows:

Qqr £ Qpr Fo 2 0({A1x Az | Ay € F@, A2 € Fpp }) e (A) = v(A)
So clearly by construction, Q" € Q ¢y, Pr and Q < vandT, Q k ¢ * [I]. Therefore, we are done.

THEOREM 5.2 (SOUNDNESS). For all of the rules in Figures 5t0 8, if I+, (@) C () thenI £,y (@) C ().

Proor. The proof is by induction on the derivation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:52 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

ITrm {p1) C (Y1) Irm (p2) C (l//z)DIs Trm (@) C(¥) X ¢vars(y.])

J ExisTs2
I'tm {@1V @2) C (Y1 V2) I'tm (3X. 9) C(Y)

ITrm (@) C(¥)
I[E/X] bm (@[E/X]) C (Y [E/X])

SuBSsT

Fig. 12. Additional Inference Rules

e SKIP.

——— X SKkIp
T'tm () skip (@)
Suppose that P’ € P ¢, Pp, P’ < p,and T, P k ¢ * [I]. By Zilberstein et al. [2025a, Lemma 5.2], we have:

L ([skip])" (1) = 1" (1) = {u}

So, letting Q = P and Q = P’, clearly Q' € Q ¢, Prand Q' < pandT,Qk ¢ = [I].
SEQ.

Itm (@) C1(9) Itm (9)C1 (II/)SEQ
Itm (@) C13C2 (¥)
Suppose that P’ € P o, Pp, P’ < p,and T, P k ¢ * [I]. By Zilberstein et al. [2025a, Lemma 5.2], we have:

LU ([c 56D () = LO ([a] 3 [C:D T (0
= LUr (DT (LW (] ()

=LY (e ()
welr ([cf ()

So, for every v € LI ([Cy 5C])T (w), thereis a i/ € LU ([C])T (p) such that v € £Ur ([C,])T (). By the
induction hypotheses, we know there exist Q; and Q] € Q; ¢, Pr such that Q] < y/ and T, Q; & * [I]. By the
induction hypothesis again, we get that there exist Q and Q" € Q ¢,,; Pr suchthat Q' < vandT,QF ¢ = [I].

IrT.

@ = [b > true] It (@) Cq (1//)I
Ity (@) if b then C; else C; ()

Suppose that P’ € P o, Pr, P’ < p,and T, P E @ * [I]. We therefore know that [b]1.; (o) = true for all o € supp(p).
So, by Zilberstein et al. [2025a, Lemma 5.2], we get that:

LD ([if b then C; else Co]) (1) = LT (guard (b, [C1], [C2])T (1)
_ ({ LU ([C1])(0) i [blyeg (0) = true
= |4 (Ir i =
LWr([C]) (o) if [b]qess (0) = false
= LU (el ()
Soany v € LD ([if b then C; else Cy]))" (1) must also be in £ ([C1])T (1), and therefore we can use the induction
hypothesis to conclude that there isa Q and Q" € Q ¢,,, Pr suchthat Q' < vandT,Qk ¢ * [I].

IFF. Symmetric to the I¥T case.
ASSIGN.

i
(1)

0= [em E] A (§+ fown(x)])

Irm (@) x = e (Y= [x— ET)
We prove only the m = s case, as the m = w case follows from the soundness of the WEAKENING rule. Suppose that
POPr = pandT, P E ¢ [x — E]=[I].LetS be the set of variables such that y € D (Mem|[S]). Since ¢ = [e — E],
we know that [[e]]EXp (o) = [[E]]]_F_XP (T) for all o € supp(u). Now take any v € LI ([x := e])¥(1). We know from
Zilberstein et al. [2025a, Lemma 5.2] that:

L ([x = e])" () = LI ((x =)T (p)
;
= (v = eIl))

ASSIGN

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:53

From the premise of the rule, we know that x := e does not depend on vars(I), so the invariant sensitive semantics is the
same as the regular semantics.

[x = el (1)

= Zp(o‘) Vg) Vo. Vo € [x = e] s (0)

oesupp(u)

= ZH(G) O x=[elpyp (o)
oesupp(u)

=1 Duo o= [E] e (D)]
oesupp(p)

Now, since ¢ = ¢ = [own(x)], we get that I, P £ ¢ = [own(x)] = [I], so there exist P, P,, and P53 such that
P1®P,®P3 <= PandT, Py k yand T, P, £ [own(x)] and T, Ps k [I]. Since [own(x)] is precise, let P, be the
unique smallest probability space such that T, #; £ [own(x)], and note that ; < #; and Q'Pé = Mem[{x}]. So, by
Lemma B.4, we have:
PP, @P30Pr<P1@P@P30Pr <POPF=p

From above, we know that v = 3 ;esupp(u)#(0) - 50_[x::[[E/]]LExp(F)], so it is easy to see that 7s\ (x} (V) = 7s\(x} (1),
therefore:

P1®P3® Pr < TS\ {x} (/,1) = ns\{x}(v)
Let Q be the trivial probability space that satisfies [x > E7], so that Qg = Mem[{x}] all events in ¥ have probability
Oor1,and Q < 7y (v).So,clearly I, P1 ® Q ® P3 £/ + [x = E] = [[] and: (P1 ® Q ® P3) ® Pr < v.

e SAMP.
¢ = [e— E]A (¢ = [own(x)]
AMP

I'rm (@) x:=d(e) (Y * (x ~d(E))
We prove only the m = s case, as the m = w case follows from the soundness of the WEAKENING rule. Suppose that
P®Pr <pandT,P E ¢ * [I],where u € D(Mem|[S]). Since ¢ = [e — E7, we know that [[e]]EXp (o) = [[E]]LEXP ()
for all o € supp(u). Now take any v € LI ([x :~ d(e)])t (1). We know that:

& i
L0 ([x~d(@D' (0 = (Ix =~ d(@TT) (o

From the premise of the rule, we know that x :~ e does not depend on vars(I), so the invariant sensitive semantics is the
same as the regular semantics.

[x=~d(e)]}, (1

= Zy(a) Vg) Vo. vy € [x = d(e)]pq (0)

oesupp(u)

=1 D u(0) - Y d([eley, (0))(0) - Soixo)

oesupp(p) veVal

={ > d([El gy @) (@) Y 1(0) Soxima)

veVal oesupp ()

Let vy = Y gesupp() #(0) * Og[xi=o], therefore v = 3 jevay d([E] Lexp (1)) (9) - vo. Note also that s\ (x} (1) = 7s\(x} (V).
Since ¢ = ¢ * [own(x)], we know that ', # £ ¢ = [own(x)] * [I], so there exist Py, P,, and P53 such that T, P; ¢,
T, P2 E [own(x)], and T, P53 £ [I]. This gives us:

P1® P3 ® Pr = 75\ (x) (1) = 7s\(x} (V) = 75\ (x} (Vo)

Now, let Q, be the trivial probability space such that Qg = {c € Mem[{x}] | o(x) = v} andT'[X = 0], Qy F [x > X.
By Construction:

P @ ext(Qo) ® P3 ® Pr = (P1 ® Ps ® Pr) ®ext(Qy) = 7\ (x} (Vo) ® 7(x) (W) = 1

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:54 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti
Let £ = d([E] Lixp (1) and Q =P ® (@v~§ Q,) ® Ps, then using Lemmas B.3 and B.5 we get:

Q®Pp=P ®(@QU)®P3®PF:@P1 ®QeP®Pr< . Ev) w=v
o~& o~E vesupp(&)
By construction, we also have I, Q £ ¢ = (x ~ d(E)) = [I].

e PAR.
It {p1) C1 (Y1) I+ {p2) C2 (Y2) PreCise(l//l,l//z)PAR

It {p1%@2) C1 || C2 (Y1 * ¢2)
Since we are using a strong triple, suppose that £; ® P2 ® Pr ® Pr < psuchthat, P; £ ¢; and I, P, £ ¢ and
T, Pr £ [I1. Without loss of generality, suppose that £ is minimal. To complete the proof, we need to establish the
premise of Lemma C.6. Since /1 and 1/, are precise, let Q; and Q; be the unique smallest probability spaces that satisfy
them under I (note that if /; or ¥ is unsatisfiable, then the premise of the rule is false, so the claim holds vacuously).
Take any pi; such that P; ® P; < py and any v € LU ([C1])T (111). By the premise of the Par rule, we know that
there is a Q] < v such that T, Q] F ¢y * [I], therefore Q; * P; < Q], and therefore we have shown that:

V[ll. P11 Pr < H = Yy € LqIDr ([[Cl]])"' (Hl)~ Ql ®Pr<wm
We now perform a nearly identical argument for Cy, but we also handle the frame. Take any yi such that P, @ Pr®Pr < 2
and any 1 € LU ([C,])7 (u2). By the second premise of the PAR rule, we get that there is a Q) such that @, ® Pr < w
and T, Q) k y» * [I. Due to precision, we know that Q; * P; < Q} and so by Lemma B.4, Q; ® P ® Pr < Q@ Pr = w,
so we have shown that:

Vi Py @ Pr @ Pr < s = Y. LI ([T (12). @ @ Pr @ Pr < 1

Now, by Lemma C.6, @ ® Q; ® P; @ Pr =< viorall v e LUr([cy] || [C:DT(p). Let Q = Q; ® Q2 ® Pr. So
Q® Pr < vandsince I, Q; F ¢; and I, Q; E Y, we get that ', Q £ ¢1 * i), * [I], so we are done.
o ATOM.
Jtm (@ *[I1)a (Y= [IT)
I« Jbm (@) aly)

Suppose that P € P o, Pr, P’ < p,and I, P E ¢ = [I % J|. This means that there exist $; and P, such that
PP, ®P; <Pandl,P1E@andl, P, E [I*]]. Let Pr and Py be the trivial probability spaces that satisfy [I]
and [J1], respectively, so clearly Pr ® Pj < P2. Now, take any v € LUIr ([a])T (1) and note that:

LU ([a]) () = ([a]77) ()

= ((checkqp‘][)r)+ o [[a]]:;a o (rePIacqu*]Dr)T o (checkql*j[)r))+ (1)
- (CheCkQIDr*d]Dr)T ([[aﬂlct ((repbceQIDr*ﬂJDr)T ((Checqubr*wr)* (ﬂ))))

= (checquDr)T (L(UDF ([[a]])T ((replacquDr)T ((checquDr)T (P))))

Since we already assumed that p satisfies I * J, the first check does nothing.
i n il
= (checquDr) (L(]]DF([[a]])‘ ((replaceqlbr) (y)))

Therefore, we know that v = (check1)¥ (1) for some v/ € L£UIr ([e])T (1) and i’ € (replaceMDF)T (1)). We know
that P1 @ Pr @ Py < P1 ® P2 < P, so there mustbe a P’ € (P1 ® Pr ® Pj) om Pr such that P < P’ and therefore
P” < p.Since P” only contains trivial information about I, and y and z/’ differ only in the states that satisfy I, then
P” < ' too. Therefore, by the induction hypothesis, there must be Q and @ € Q ¢, Pr such that Q' < v/ and
T, QE ¢« [I*[]]. This implies that T, v/ £ [I], and therefore v = v/, since the check operation does nothing. Therefore,
we get that Q" < v/ = v, and so we are done.

e SHARE.

I#]JvFm (@) C(Y) finitary(I)s
Jtm (@ = [I1) C (Y [T1)

Suppose that P’ € P oy, P, P’ <y, and T, P £ @ * [I] * [J]. Now, take any v € LU ([C])T (1). By Lemma 5.3, we
know that:

HARE

L[] () = LD ([c]) T (w) ce LY (] (p)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:55

And since C¢ is equivalent to D, then v € L0 ([C])T (1) as well. Therefore, by the induction hypothesis, we know
that there exist Q and Q" € Q ¢, Pr such that @ < vandT,QE ¢ = [I* J].Since [I*J]| & [I] = []], we are done.
o FRAME.

Itm (@) C(Y)
ITtm (@ *m 3) C(f +m F)

Suppose that P’ € P o,, Prand P’ < pand T, P E (¢ *m;m 9) = [I]. That means that there exist P; and P such
that P; ® Pr < P and T, P; E ¢ *,, §, and I, Pr & [I1], and without loss of generality, suppose that Pj is the trivial
probability space that satisfies I. We also know that P; € P; o, P3 where I, P2 £ ¢ and I, P53 £ §. Since Py is a
trivial probability space, then P2 ¢, Pr = {P2 ® Pr}, so by associativity of projections, we get that there must be a
Pr € Pr om P3 such that P’ € (P2 ® Pr) om Prp.

Now, take any v € £ ([C])T (1). By the induction hypothesis, there exist Q and Q' € Q oy, P such that Q" < v
and Q k i * [I]. So, there mustbe a Q” € Q ¢, P3 and Q' € Q" o, Pr, and by constructions T, Q" £ (¢ * [I]) #,, J.
Since [I is a pure assertion, this also means that T, Q" £ (¢ #p, 3) * [I].

o WEAKEN.

FrRAME

IF{p) C(Y)
Iry (@) C ()

Immediate from the induction hypothesis, letting $r be the trivial probability space on Mem[0], and Lemma E.9.
® STRENGTHEN.

WEAKEN

Ity (@) C(y) precise(y)
Ik {p) C(Y)

Suppose that P ® Pr < p,and I, P £ ¢ = [I]. This means that there exists a P’ such that T, #’ £ ¢ and T, Py F [I]
where %y is the trivial probability space satisfying [I] and £’ ® Pr < P. Since ¥ is precise, let Q be the unique smallest
probability space such that T, Q £ . From the premise of the rule, we know that:

STRENGTHEN

Vi P e Pr < = Yy € LU (D). Qe P <y
In addition, since £ 0T ([skip]) = # [Zilberstein et al. 2025a, Lemma 5.2] it is obvious that:
Vg PE® Pr < iy = Y € LI ([skip])T(12). Pr ® Pr < w

So, by Lemma C.6, we get that Q ® Pr ® P; < vfor any v € LIV ([C] || [skip])T(u). But clearly £Ur ([C] |
[skip]) = £Ur ([C]), so we are done.
e SpLITI.

Itm{p)C(Y) y=>lemX] Xé¢fv()

Itm (Perc(Pw

X~d(E) X~d(E)

SpLiTl

We first prove the claim for the case where m = s. Suppose that » ® Pr < pand T, P E (®X~d(E) @) * [I'. This means
that (@z}~f Py) @ Pr < P such that T'[X := v],ext(P,) F ¢ for each v and & = d(uEﬂLExp (T')) and % is the trivial
probability space satisfying [I7. By Lemmas B.3 and B.4 we have:

@(PU®P,®PF)—(@PU)®P,®PFsmasop <u
o~& o~&

Now, for each v € supp (&), let p, (o) = ﬁ -p(o) if o € Qp, * Qp, = Qp,, which clearly gives us P, ® Pr ® Pr < iy
and g1 = Ypesupp(é) £(0) * Ho- Now, take any v € LUz ([C])T (1). We know that:

L[] (w = LY ([T Q] v(0) - po)

vesupp(&)

=1 DE® - w

vesupp(£)

Vo. vy € LI ([C])T (o)

S0 v = Yoesupp(&) £(v) - vp where v, € LDt ([C])T (o) for each v. Note that X ¢ fv(I), so (I)r = (IDrix:=o0]> and
therefore by the induction hypothesis, we get that there exists Q, such that Q, ® Pr < v, and T'[X = 0], Qu F ¢ = [I].
Since ¥ = [e = X'], we can restrict the Qys to disjoint probability spaces Q;, such that ext(Q}) ® Pr < Q,.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:56 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Therefore B, _, Q,, exists and T, @v~§ QL E @md(};‘) . So, we get that:

(@Q;)®P1®PF:@(Q;®P[®¢)F) < D EO) w=v

o~E o~& ovesupp(&)
The case where m = w follows immediately from Lemma E.9 using the proof above with Pr being the trivial probability
space on empty memories.

e NSpLITI.
Itm (@) C (¥) Y= e X]| X ¢ fv(I)

Irm (& o) (&

XeE XeE
Suppose that P’ € P o, Prand P’ < pandT, P £ (&xcg @) * [I]. This means that there is some & € Z)([[E]]LEXP ()
such thatT, P & (P g @) * [I1. Now take any v € LWOr ([c])T (u). Using the SpriT1 rule, we get that there exists a Q
and @ € Qo Prsuchthat Q' < vandT, Q & (@X~§) * [I. This immediately implies that T, Q k (&xer ¥) * [1].
e SPLIT2.

NSpLIT1

I'tm (@) C (¥) convex (1) X ¢ vars(I,¢)
Irm (Do) @)
X~d(E)
We start with the case where m = s. Suppose that P ® Pr < pandT, P k£ (®X~d(E) @)+ [Iandlet & = d([E] LExp ().
Since X ¢ vars(I), then T, P E @X~d(E) @ * [I' and so there exists a family of #, such that EBU~§ Py <= P and
T'[X = v],ext(Py) E ¢ = [I] for all v € supp(&). By Lemmas B.3 and B.5, we also have that:

@(PU®PF)=(@PU)®PF<P®PF <p
o~&

o~&
Now, for each v € supp(¢), let yu, (o) = % - p(o) if o € Qp,, which clearly gives us ext($,) ® Pr =< p, and
H = Zoesupp(é) §(0) * po. Now, take any v € LUr ([c])T (). We know that:

L[] (w = LY ([T Q] v(o) - po)

vesupp (&)

=1 D@ w

vesupp(£)

So v = Yoesupp(e) §(0) - Vo Where v, € L1 ([C])T (o) for each o. Note that X ¢ vars(I), so (I)r = (IDrix=o],
and therefore by the induction hypothesis, we get that there exist a family of Q, such Q, ® Pr < v, and T'[X =
v],Qy E ¢ * [I]. Since X ¢ vars(y/), we can remove the update of X to conclude that I, Q, & i = [I]. Since ¢ is
convex, then we can presume that there exists U, ¥, and S such that Q, = (Mem[U], ¥, &) for some &, € S. Now,
let Q = (Mem[U], F, Zpesupp(&) £(0) - &o)- Since Ypequpp(s) £(0) - £o is a convex combinations of elements of S, then
Zoesupp(£) §(0) + & € S and therefore by construction T, Q k ¢ * [I]. We now complete the proof by showing that
Q ® Pr < v.Take any A € Fg and B € Fp, and let V be the set such that Qp, = Mem[V]:

SpLIT2

Vo. v, € LI ([(o)

HQepp (A*B) = uq(A) - ppp (B)

(>, £ -§U<A>) - iy, (B)

vesupp(£)

D,) E(A) - ppp(B)

vesupp(&)

D, &) pa, (A) - iy (B)

vesupp ()

Since Qy ® Pr =< vt

> &) muov (W) (AxB)
vesupp(§)
= myuv (v) (A)
The case where m = w follows from Lemma E.9 using the same reasoning as above, but where Pr is the trivial probability
space on Mem[0].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:57

NSpLIT2.
Ity (@) C (¥) convex(y) X ¢ fv(L,y)
Irm (&0 C @)
X€eE
Suppose that P’ € P ¢, Prand P’ < pand T, Pk (&xeg @) * [I]. This means that there is some ¢ € Z)([[E]]LEXP ()
such that T, P & (@X~§ @) = [I']. Now take any v € £Ur ([[C]])T (). Using the SpLIT2 rule, we get that there exists a
Qand Q € Q o), Prsuchthat @ < vandT,Qk ¢ = [I].
ExisTs.

NSpLIT2

I'rw (&xeelP1) C(¥) [P]= [e— X]
Iv+y ([AX € E.P]) C (¥)
By Lemma E.9, it suffices to show that the claim holds without frame preservation. Suppose that I', p £ [3X € E.P]| = [I].
Without loss of generality, suppose that X is not free in I (if not, then we could a-rename X in P to obtain an equivalent
assertion, ie, [3X € E. P| & [3Y € E. P[Y/X]] where Y is some fresh variable). So, we get that I', p £ [3X €
E. P = I'], which means that for every o € supp(u) there exists v5 € [E] LExp (T) such that T'[X := v5],0 E P =1 Let
&= Yoesupp(p) H(0) * Sy, s0 &(0) is the probability that T'[X := o] is the context that satisfies P. Also, let:

ExisTs

. 1 u(o) ifo=uos

Holo) = 205 { 0 ifo#o,
Clearly, by construction I'[X = 0], iy E [P]* [I] for all v € supp(£). Also, since [P] = [e +> X, then [[e]]Exp (0)=w0
for each o € supp (i), and so each p,, = ext(y,) where 2, has a restricted sample space to only be over states where
e evaluates to v. Thus, we clearly have @v~ £ py, =< p, and therefore T, p £ (& xecg[P1) * [I]. So, by the induction
hypothesis and Lemma E.9, T, vE ¢/ * [I] forall v € L£r (Ich ™ ().
CONSEQUENCE.

=0 Irm(e)CY) ¢=>¢
Trm (") C(Y')

Suppose that P’ € (P ® P(r).) om Pr. P’ < p,andT, P k ¢’.Since ¢’ = ¢, thenT, P F ¢. By the induction hypothesis,
there exists Q and Q" € (Q ® Py).) om Pr suchthat @ < vandT,Q F ¢y forany v € L£Ur (IS (). Since y = v,
thenT, Q F ¢/, so we are done.
BouNDEDRANK. Subject to the following conditions:

CONSEQUENCE

(1) 9 => [t <R <h] (2) % [R=1¢] = [b > false] (3) ¢ * [R>t] = [b > true]
(4) precise(¢[¢/R]) (5) N ¢ vars(¢) (6)0<p<1
The following inference is valid:
Lrm (p* [R=N > 1) C (&Rs) @) ®=p (&ipn)
Itm (&_, @) while b do C (¢[¢/R])

We prove the rule without frame preservation, as frame preservation follows from Lemma E.9 if m = w and the
STRENGTHEN rule if m = s (since the postcondition is precise). Suppose that T, u F &’}’?:‘, @ [I].Let g’ = &}é:HI ¢ and
¥ = @[t/R]. We first show that (¢’, /) is an invariant pair for while b do C under I

1) ¢ = &h#,+1 0= &$=e+1 [b+> true] = [b > true]

(2) ¥ =¢@[t/R] = [b > false]

(3) We can weaken the postcondition of the premise of rule as follows:

BouNDEDRANK

N-1 h N-1 h h
(& o (&e) = (&oe (& = &e = &y
R=¢ R=N R=¢ R=N R=t
So, after an application of NSpL1T2, we get that I £, (¢’) C (¢’ &). If m = s, WEAKEN can be used to obtain
ITry (¢") C (o' &Y).
(4) By assumption, we have precise(¢).
In addition, the premise of the rule implies that each iteration, the rank decreases by at least 1 with probability at least p,
so starting in any state satisfying ¢, the loop will terminate with probability at least p”~¢ > 0. Therefore by Corollary D.3,
minterm (LT ([while b do C)T (1)) = 1, i.e, the loop almost surely terminates.
Since @ [£/R] is precise, let Q be the unique smallest probability space such that T, Q £ ¢ [¢/R]. Take any event B € ¥q.
By Lemma D.2, we get:

minProb (LGIDF ([while b do C])" (u), B * (]I[)r) = minterm (LGIDF ([while b do c]])T(y)) - uq(B) = pq (B)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:58 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

So, pq(B) < v(Bx(I)r) forany v € LUr ([while b do C]) (1). However, we already established that the loop almost
surely terminates, so v(L) = 0, therefore v(Bx (I)r) = 1— v(Mem[V]\ (B (I)r)) (where V is the domain of v), which
gives us:

Ha(B) < v(B (I)r)
=1-v(Mem[V]\ (B (I)r))
< 1- pig(Mem[V]\ (B« (1)r))
=1-(1-pa(B=(Ir))
= nq(B)
Therefore pig (B) = v(B# (I)r), and since this is true for any B € g, then Q ® P < v where Py is the trivial probability
space satisfying I. By definition, I, Q k ¢[¢/R], so we are done.
e Disj.
Irm (1) C (Y1) Irm (92) C (¥2)
Irm (@1 V2) C (Y1 Vi)
Suppose that P’ € P o Ppand P’ < pand I, P E (¢1 V ¢2) * [I]. This means that P; ® P2 < P such that
T,P1 E @1V @yand T, P, E [I]. Without loss of generality, suppose that I, P; £ ¢, therefore I', P £ ¢; * [I]. Now
take any v € L1 ([C])T (1). By the induction hypothesis, we know that there exists Q and @ € Q o,, Pr such that

Q' < vandT, Qk y; = [I]. We can weaken this to conclude that T, Q £ (1 V) = [I].
ExisTs2.

Disy

Itm (@) C(¥) X ¢ vars(y,I)
I'rm (3X.) C (¥)
Suppose that P’ € P o Ppand P’ < pand T, P £ (3X.¢) = [I]. This means that P; ® P, < P such that T, P;
3X.p and I, P, E [I]. Therefore, I'[X = v],P; £ ¢ for some v € Val. Since X ¢ vars(I), then we also have
that T[X = v],P £ ¢ * [I]. Now take any v € .E(]IDF([[C]])T(/J). Since I ¢ vars(I), then (I)r[x:=o] = (I)r. so
v e £LUrix=o] (ICD T () as well. By the induction hypothesis, we know that there exists Q and Q' € Q ¢, PF such
that Q' < vand I'[X = 0], Q £ ¢ * [I]. Since X ¢ vars(y/,I), then this implies that T, Q £ = [I].
e SUBST

ExisTs2

Itm (@) C(¥)
SUBST
I[E/X] tm (@[E/X]) C (Y[E/X])
Suppose that P’ € P o, Pr such that P’ < pand T, P k @[E/X] = [I[E/X]].Let " =T[X = [[E]]LEXP ()], so by
construction I, P £ ¢ * [I1, and (I[E/X])r = (I)1+. Now, take any v/ € LUEXDr ([c])t (u) = LD ([C])T (u). By
the induction hypothesis, we know that there exist Q" and Q' € Q o, Pr such that Q" < vand I, Q ¢ ¢. This means
that T, Q k Y [E/X].

O
E.4 Derived Rules
Lemma E.10. The following inference rule is derivable:
Ity (= [X =truel) C1 (¥) Ity (@ [X =false]) Cs (Y) o= [b- X] lﬁz[bHX]IF
Itm (@X~Ber(p) @) if b then C; else C; <@X~Ber(p))
Proor. Note in the proof below that true = 1 and false = 0.
Thm (@ [X=01) C (V) F
Ity (@*[X =0])if b then Cy else C; ()
Trm (@ [X=11) C (V) T
Ity (@* [X =17) if b then Cy else C, (V) Drsy
Ity ((px[X=1]) V(¢ [X =07)) if b then C; else C; (Y V /) Sprrrl
It <®X~Ber(p) (p*[X=1])V (p=*[X=0])) if b then C; else C, (®X~Ber(p) yVy) T
It (D xper(p) ¢) if b then Cy else Co (D xper(p) ¥)]
O

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:59

LemMA E.11. The following inference rule is derivable:
It ([PAD—1]) C1([QT1) IFm ([PAbH0]) G ([Q]) (P1=>fb€{0,1}WIFPURE
I+, ([P]) if b then Cy else C; ([Q])

Proor. We only show the derivation of the weak version. The strong version can be easily derived using STRENGTHEN,
since the postcondition is precise (e.g., see Lemma E.12). Let X be some fresh logical variable such that X ¢ vars(P,I).

Ity {([PAbH0]) C ([QT)
Ity ([PAb— 0])if b then C; else C; ([Q1)

Ity ([PAL - 17) C1 ([Q])
Ity ([PAb 17)if b then C; else C; ([Q])

Dis
Ity ([PAbH XA(X=0VX=1)])if bthenC else C, ([Q]) NSJ)
PLIT

Ity (&xeqo3[PAD = XA (X=0VX=1)])if b then C, else C; ([Q]) .
XISTS

Ity ([AX.PALbH— XA (X=0VX=1)])if bthenC; else C; ([Q])
Ity ([P]) if b then C; else C; ([Q])

CONSEQUENCE

LEmMmA E.12. The following inference rule is derivable:
I'+ (&xcelP1) C(Y) [P]= [er X] precise ()
I+([3aX € E.P])C (y)

EXISTSSTRONG

Proor.
I'+ (&xeelP1) C (¥)
WEAKEN
I'rw (&xeelP1) C(¥) [P]= [e X]
ExisTs
Ity ([3X € E.P]) C (¢) precise (1)
I+ ([3X € E.P]) C (¢¥)

STRENGTHEN

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

9:60

fi=xosTal—x=xuayyq3ré(¢)rog~:qopo<xarrym

"7'G uondag woiy werdoxd yrem wopuel SUIMOT[0] 3} B0

djJeA\ Wopuey e JO UoNjBUIWIS] diNng Jsow]y Z'4

(lze—z]s|lz-1ahi]x|zx] @RIy 21 = fi || 2= x ((z/1) 19g ~ 2 * (A “X)umo)

FONINOISNOD)
(lzez]slz-1h)x|zax] @RIy 21 = fi || 2z = x (|7 < 2] * (A x)umo @Dy
aNo
! = (lzz]lx|z-1f]x|Zzeax|)yz—1=h| 2= x (|7 < z]* (Ax)umo)
HUVHS
- (lz-1—h]x|zax])z—1=hA| z=x((Ax)umo) 47 «— 2
d (lz-1h])yz-—1="hA ((A)umo) 4 7 1z (lZz—x])yz=x((x)umo) 47 2z
WOLY WOLY
(lz—z]*|z-1—h])yz—1=A (|7 2]« (i)umo) (lZzz]*|z—ax])z=x (|7« z]=*(x)umo)
NOISSY NOISSY

‘premiojydrens st jooxd 9y jo 3sa1 Ay, "o[nI
FUVHS 9U} Y}IM JUBLIEAUT UE 9JEIO[[E UED 9M 0S 9)B)S 21} JO 3591 Y} woxj Juapuadopur A[[BIALL} 9I0JRI9T[} PUE DNSIUIULIDAP Z Saxewr SUTUOTIpU0)) *3[n1 [aAN0)) a3 A[dde ued am
JeT]} 0S ‘9PISINO 3} 0} UOTIUN[UOI SW0IINO A1} SuLIq 0] F 2INJT] UIOI] Sme| Justulrejus 2y} Sursn uonrpuodaid oy aSueirear oy st days 111y YT, "WOTIBALISP () I MOT[S MOU I\

(lzez]v|z-1af] x|z x| @RIy (21 = fi || z = x) § (¢/1) 310g ~ z ((z *fi “x)umo)
(%) ((g/1)19g ~ z % (i ‘x)umo) (g/1) Idg ~: z ((z ‘A ‘x)umo)
ANV,
((2/1)13g ~ 2) (2/1)19g ~: 2 ((2)umo)

[ok:(N

dNVS

‘steadde () a3 axoym A[310ys UT Py 2q [[IM pue notygrp axow st wrerdoxd oy jo 11ed puodas a1} 10 UOTIRALISP
31} TOAIMOY "SI[NI dWVS PUB ‘TWVY,] ‘Ddg a1} Sursn aduurs st styy], ‘uorjerado urdures a1y 10J uoryeoyroads & aarIap pue ‘uonisodwod erjuanbas a3 dn yeaiq o3 st dogs 3s11y Ay,

Aulﬁuum | z = wiﬁfamnnn

:mo7aq pareadar st wrerdoxd o], "z WOTOAS UT PadNpoIIUT sem Jery) werdoxd oy} I0J UOTIALISP 3} MOT[S dM ‘WOTIIIS ST} U]

sjdwex3 souspuadepu] [euonipuo) |°4

*o8ed 21} Jo yIpIM [[NJ 23 Jo dFeJUBAPE) E] 0] P2JEIOI ST JUSIUO0D Y], *JX) UTET [} UT PIJIIWO 2I9M JBY[} SUOTJEALIIP apTa0xd om ‘UOTI2s ST} U]

sojdwexy 4

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:61

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants

(lo—x|)fi=xostar—x= xusyrqy1¢(¢)1eg~:qopo<xarrym ([(q)umox{s "0} 3 x]) 4{s" "0} 3 A

NTHIONTILS Z
crsixg (lo— x|y i=xoasToaT—x=xusay3 q31¢(%)10g~:qopo < xartym ([(q)umox{g* "0} 3 x]) ™ {g"" "0} >
ONTESNOD ([0 x]) fi=txosTar—x=xusysq3r%(%)10g~:qopo<xarrym(|(q)umosy « x|7P) my{g 0} 3 A
AN oG ([(@Q)umo 0 i x]) i =t xasTaT—x = xuays q 415 (%) rog~iqopo < xarrym ([(qJumoxy < x|°9) myfge-5} 5 A
= _
s (L@ UR0 o XN (o [(qumo sy i x) (9) f = ¥ 9510 1~ x = X uoya 4414 (£) 908~ (15 5 N =a > 0+ (@m0 1x)) ™4 (s 0} 26
&
: UMO %G S S 0% Y < X| = & SIANVYJaZaNnog ur pasn juerreaur doof 9y} Jeyy [[d9Y "MO[oq UOTJBALIP 3y 93o[dwod am ‘A[[eur,
q 7 3 [o431 I T °q P 943 919] [[eUL]
®
N=d . 0= Amvummlx
A:@c\so*mlﬁw% wAmw:ScBo*mT.x_u%vmH”xmmﬁwﬁlknux:mfaﬁQmeHNVO*%T_x*XT.i @ Yy M{g 0} oA
FONAADISNOD) s N
2)rog~
b:%_&lfmlﬁﬁm% fo ?::IfTZIxcmuxwﬂflxuxSﬁfiEIx*inCsm XDy m{s 0y o h
(2) oty ([N A @+« T - N —X|)T-X=X ([N Xxxan)«iq|]) {0} >A
“JUSWIDTEIS JT [[NF oY) 9AIS om (8) Uf
(03} oty (Losrey e q s — x| 0Q) i = x ([N — xx0s8y = q]) ®4{c 0} > A
ONTMSNOS +SLSIXY (L{s "0} 2 A] = (|osey e gy x| 09)) A = x ([{5* "0} 3] x [N e+ x 35} = q]) ™
Lrtasn (L — fixosiey gy —x]79) = x (| < fix N xxosiey e« q] 7)) my
worssy (| fixose e qsy—x|)A="x(|d—hsxN xxas[e)q|) ™
“JUSUIDJE}S JI 3} JO YOURI] 3STeJ, Y} MOYS M (L) UL JXIN
©) - (¢)oa-x 1y (2 - -
Ny ST N> 0xd XX gl B) () wa~q(ls5 N=4>0x(Qumoxy —x|) ™ {s 0} 34
2)1ag~
oy (53N =2 0 ey 1) (DG (G (165 w2 0s @uno i) 415702

(lsSN=4>0xy = x|+ (4)og~q) () g~ q([s5 N=4>0%d — x| [(qumo]) 4{s*"""0} 3 A
((§) 100 ~q) () g =~:q ([(9)umo]) 4 {0} 3 A

ANVY]

dNVS

‘uonjerado Furdures ay) 10 uonBOYI0ads © 9ALISp am (9) Ul mo[aq "weidold STy} 10] UOTJRALISP [[NJ 9} JAIS MOU I

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

9:62

(z1) (%) 109 ~ z) (BxTx)aox =z ¢ (&) g~ 2§ i = Tx (| (2“2 “Tx)umo]) 4 {1°0} > fi
NTHLONTYLS

[

(&) 10g ~ 2) (ax“Ix)aox = 2§ () og ~ W § A = Tx (| (2% Tx)umo]) ™4 {1°0} > fi

. (11) (LA o] {F0}2A29 4 | (z“@x)umo]) Ai = Ix (| (z ex“Tx)umo]) *4 {10} 3 fi
NVY] ©

*(1) UI peaIy) ISIY SITIUD A} J0J UOTJEIYIIdS B ALIIP ULD dM ‘MON] "SI[NI dINVS PUB WV,] oY) [IIM
Jooxd a3 a191dwrod am ‘ofduts st uorjerado Surdures sy ‘spuewrurod renprarpur ay3 10y soads aarap pue 0ag A[dde am XN "X I0J an[ea paxy Aue UsAId panqriisIp A[uIojrun
ST 2X ey} 9INSUD 0] Paau am douts ‘uonerado urdures sy} a.10faq sty op 03 Jureroduur ST 3] *Ix JO anJeA JNSTUTULI}OPUOU Y} 0] SSIIJ. UTeS 0] IopIo ul ZLITdSN Sutd[dde Aq 11e3s op

(11) ((2/1)I9g ~ 2) (Zx“Ix)dox =: 2§ (z/1) dog ~: ox (| £ «i x| (1012429 4 | (zex)umo|) M4 {10} 3 A
ZLITdSN ‘ZONINOESNOD)
oug ((z/1) 19 ~ 2) (%xTx)dox = 2§ (z/1) 3¢ ~: &x (| (z“@x)umo] « | X «i Tx]) ™4 {1°0} 5 A
O g (LE00 (@/1) 298 ~) v [1x]) (@/1) o8~ (L= x)umo) » [X o 1x)) ™4 {10} 3

(((2/1) 19g ~ ?x) (z/1) Ig ~: 2x ([(2x)umo]) ™4 {170} > fi
dWVS

'210J2q A[2yerpaurtur uorjerado Surjdures oy} YIIm UOIJRWLIOJUT ST} 950dUI0d MOU Ued A\ "PAINGILISIP A[ULIOJIUN ST Z JeL[} 9PN[OU0D 0} TONTNOTSNO))
JO 3N 313 3sn 310Ja131]) Ued am pue {10} 01 {1 ‘0} WoIy uor3a(iq e st (,X ‘X)J0X UY) JUBISUOD ST X JUIS “(,X ‘X)JOX «i 2 Jey} IpN[oU0d 0] NOISSY asn am jurod yorym je
‘uorjerado Jurpdures 9y} Jo J[NSAI 3} UO SISA[EUE JSBD Op 0} [LITdS dSN I\ "UOTINGLNSIP I[[NOUISg € 0} SUIPIOIOE PAINLISIP ST ZX PUE JTISTUTIUIAIAP ST Lx Jety} aaey am qurod s1y3 1y
(o1) ((2/1) 39 ~ 2) (%x“1x)a0x = z (| (z)umo| « ((g/1) 12 ~ @X) * | X i Ix])
FONINOISNOD)
(L(X X)H0x i 2] @/DPE~X(y)y (ax Lx)aox =: 2 (| (2)umo | * | X i 2] » [x 1 Tx| @/DPE-XJy)

(L(X"X)40x 4 2]) (1) d0x = 2 ([(2)umo] « [X « 2] « [X e 1x])

T1I1dS

NOISSY

*(0T) UT MO[oq 2 03 ALIM 3T} J0J UOTILOYIIAdS B SALIDP 0] UO SAOWT MOU I 9[dII} Yeam © asn 03

Pao10y o1 am ‘as1oa1d jou st aFe)s ST} e UonIpuod)sod d) SIUIS "PASO[d 3 Ued JUBLIBAUT 21} Jey]} 0s 29 a1} Jo 2dods J1f} JO JNO JT 2AOW PUE A JNOJE UOTJRULIOJUT [} UNLIM 0] Pasn
ST ZONTNOTSNOD) JO NI Y], "d[NI NOISSY a3 A[dde ued am Jerp} os ‘A Jo anfea atf} 0} $s909€ UTeS 03 [LITAGN PUL SISIXT 2SN aM ‘IXaN Juerreaur a3 uado o3 parjdde st wory 4sIry

(6 oy (L& = x] (P02A29) fi = 1x ([(x)umo]) ™4 {170} > A
({10} 3 A] * (L& = x| 1F02A29)) A =t 1 ([{170} 3 fi * [(1x)umo]) "
(L{1°0} 3] * (L& < 'x] (1012439)) i = L (| (x)umo x & =] (1012429) my
(LX e his g x| {F032X29) A = 1x (| (Tx)umo x f i A | (1012429) m
(LA is g alx])y i =Tx([("X)umox f « A|) ™

SISIXH

AONINOIASNOD)

TLITdSN

NOISSY

*(6) UT MO[2q UIATS ST UOIJRALIDP
S L, "PBAIY] 1SI1J S} UT 18]S PaIeys wolj peal oy} SurzAreue Aq urdaq ap Amv I9g ~ 2 1Y) puL Yy} ur apnpuod pue {19} 3 A juerreaut oy} Sursn wrerdord STy} SZATRUR [[IM I

A 1= A __ ANx.cQLoxn”NmAmv.—omn&xwmH“ Ix onH“m

*1°9 uondag woiy urerdoxd raxt Adorjus Surmor[oy 3y [[eoayg

1x1W Adosjuz ¢4

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:63

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants

(((v)1) grun ~ ¥p) s« | (A)umo x 0 — A1) = [4/0]d (v ¥)sdems) yrun ~ o) » [(H)umo + [~ (V)UIT S ¥ 5 0¥ i 11| 5 &
'SMO[[0] S©
payrdurts aq ose ued [y/0] ¢ uonipuosisod reuy oy, '1 — ()UST PUEB (U29M}2q PapUNoq ST Yorym “¥1 £q UaAI3 st y yuer ayJ, ‘sdems Sursn ur ¢ juerreaur dooy oy} sugap Mou Ip

I-(Quet>uson {{1+u0}>‘@GT+u)sdems> 7| ([T+u°z)dems}

I—(pusr=ug ! v = (3 ‘u)sdems

(SUTeWaI UMD U0 A[UO JIUTS ‘UISOYD 3q 0] Paau AP1d1[dxa J0u sa0p uonisod [eury atj}) I0J PIJUNOIIE dIE IST[ITIUS AN} JO suorjeInuLIad [[e ‘) SIYILAI 7 IOUO 0S “I0J PIJUNOIIE
a1e u uonjisod aA0qe sjuaWAd A1) Jo suoreInuLIad [[e ‘U SIYIBIT 1 0U0 0UIS ‘(7)[I = (7 ‘0)sdems Jey) 235 01 ASed ST] ‘U «i 7 Uaym paurejqo sisyf a[qissod Jo 13s Y} SIAIS
yorym (7 ‘u)sdems auyop A[PAISINISI 151y am ‘Juerreaur dooy oy} sugep of, ‘wrerdoxd Ya1jnys oY) YIm urdaq s\ ‘Jooid ssaujdaIrod ot Jo UOHBALISP 9)9[dwod 9y} 9AIS mou ap

W+ v=p

I-f="1 § 2a144nys || TaT43nys

§ (I 1 “Ip)dems =: Ip ¢ (
§([A1e--"0]) yrun ~: I T+1=1
op () < 19TTIym ¢[[1]p] + %0 = v asTo [[1]P] + 0 = b UaYl q 41
§1— (Iv)uar = N1 § (%) g~ 9

: Aa144nys) op (P)uaT > 1 9TTYM

fo=18[] =wé[] ==p
‘speaty} [arered om] Sursn 3s1] & Surgnys JUSLINOUOD I0J Z°9 WOI30dS woxy urerdord Surmoroy ay [[eday

Suiynys jusunduo) 4

"JUBLIBAUT 9} SA2qO pue dTuIo}e A[Ies[d ST [=: i 90urs ‘UorjeALap o[duils © sey| peary) puodas Y], '9A0qe Peary) sy oy} Jo Jooid Y} U2as Apeaie dABY oA\ 'SPEAIY) 0M] [}
szATeue Areuorjisodurod 03 ¥vJ 9N am ‘IXaN “JUBLIEAUT J1[} OJUT /i SAOUI 0} HUVHS JSN PUE UOTJRULIOJUT STY} Udyeam UBd M ‘PUBIITUOD JSIT 3} I9jJe (< A Jet]} Surpn[ouod 1013y

((2)rg ~2) (1= fi| (AxIx)aox = 2§ (E)raga: 2x s = 1x) g0 = fi (| (2 @x Tx)umo])

(L (zexIx)umox 0« i) 0= A (| (zA exIx)umo]) 4

0ds

NOISSY

((E)rg ~2) 1= A || (PxIx)dox = 2 ¢ Amvuvmnm W $hA = Ix (| (ZexTX)uUmO % (0 1 fi]) 4

ZONINOISNOD)
({10} > fi] = () 10g@ ~ 2))y 1=t fi || (BxTx)aox = 2§ (&) sog~: 2x §fi = Tx ([{10} 3 fi] » | (2%x Tx)umo]) -

TS ((B)rdg~2) 1= A | (PxTx)aox = 2§ (¢) g~ ax ¢ i = Ix (| (2% Ix)umo]) 4 {10} 3 A
AV,
¢ (lona)) L= A (lonn) 4 {10} 5 A (z1)
WOLY
) ({ro} o Ay 1= A ({10} 2 AJ)
HONIAOISNOD)
(lre=f]yr=Aa({10} 3 4])
NOISSY

‘urex3oxd a[foym oy} 10J uoTRALISP 9y} 93a[dwod am ‘A[reur] -ostoaxd
MOU ST UonIpu023sod Y} 90UTS ‘NTHLONHULS 2SN OSTe 2M ‘PUd) 1y "paALIap A[snoraaid am jerpy sardin a3 asodwod o3 awvy] pue dag Sursn saajoaur jsnl Arerjuassa dags sty

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

9:64

(y-p{ro}) yrum~xc
Ux-lv s (xly =) P sl@umoxy s wsysosd-W et =4

*(p)uat = 1 dours 2jeuruId) Jsnwt dooy AY) (= Y UM PUE ‘7 pue (Usamiaq
Ppapunoq st ¥ yuel oy} ‘A[Tea) (V) UsT = ¥ a1oym querreaur doo Surmorjoy ay3 asn am ‘dooy ay} azATeue o, ‘urerdoxd urewr oy} 103 UorjedyIoads ST} SUIALIOP 0] SAOWU MOU I

(49] o (((V)I1) Jrun ~ Ip) (---)0p 0 < M1 a[Tyms [— (Iw)usy = I ([(U A)umo =y = Iv|) 4
° (((V)11) Jrun ~ ¥p) (---) 0p 0 < Y1 ATTYM (| (Y)umo x T — (V)UdT i Y1+ i Ip]) o
FONINOISNOD) —
(LONUMO 0 = 1] 5 (((V)ID) Jrun ~ ¥v)) (---) 0p o < Y aTTym (6 FHQ)
ANVYAZaANNOg

(e1)

(L(ANumo %1 — (Y)udT <= M1y = Iv|) T — (Ap)usy == N1 A:«.\&C:BO*.M\T. o) 4

NOISSY

:an0qe Apoq dooy 2y} Jo uoreALIap d1j} USAIS [edTueydaW b ST YoTyM
1314 4NYS JO UOTIRALIOP SUTUTEWIDI S} SAIS aM ‘MON] "A[ULIOJIUN UISOYD OS[e ST N7 UoTjIsod Je JUSWA[d 3} pue ‘panqrijstp ATULIOJIUN ST dOUIS ‘PAINLISIP A[ULIOJIUN UTRUIST SA[YNT[S
oy} ‘A[res[) ‘uontsod auo Aq [re} pafgnys Y} puaixa am Y[pue 1 yo dems a3 Surnroyrad 1033y "payynys Apeaife ST v Jo [re} 3} Jey} mowy am ‘Apoq doof a3 Surrojus usyp

(& T?%_uhu%v Hmw@ﬁ@umu%vvmuzmaammzoo
((((v 1 — N)sdems) jrun ~ ¥) « | (I)umo T — (Y)UST S N > 0% I — N « ¥1])
I-n="n NOISSY
(V1 — N)sdems) jrun ~ ¥) « | (W)umo s T — (Y)UST > N > 0% N < ¥1]) ~ 4ONINOISNOD
(LA U % (XN X)dems i 4« [— (Y)UsT S N > 0% N i 1 (INT7ODIun~L Oy ((v'N)sdens)jun~x Ty
(1) $ (A 1 <Ip)dems =: Ip NOISSY ‘TLITdS
(LA AW x XX M1 — (VIUST S N > 0% N et ¥z| (INTODFU~L Dy (VN sdews) Xy y o aoasno))
([N f0]) Jrun ~ A0) « (((V ‘N)sdems) Jrun ~ I) = [T — (V)UIT S N > 0 N « T1])
§([Are--v0]) yrum~: AL dNVG
((((V'N =1 - (v)uat)sdems) yiun ~ ¥p) x | (A)umo [— (Y)udT > N > 0* N <= ¥1]) HONIAOASNOD
{(lo< N=Y] =)

:wrerdoxd pajerooap e se Apoq dooj 9y} I0J UOTJRALIDP Y} MOS MOU I

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:65

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants

(/1 - FONINOISNOD
TTZTE?.&YE?X
¢§L<I€*§?Ti£ b 13?§%<Iei<v2vic|5|§T£v
I+1=11 NOISSY
TTZTE:.SVE.TX
A:XF:\ING*HX?IIZE @ # [(QQUMO Y D« WS N >0%N— W <« 1] v HONANOASNOD)
(n-piT0}) run~x smi
?E|23¢:Ef¢5L<I€*F:¢§<I§_ b *ZlaiFé*szvizlslg v
(n-plr0}) run~x
A:2|§<¢:ET+5L<I§*F:¢5<I§_ b *€n>ffii<Té*szvizlEI:v
¢[[1]p] + 2 = 2 NOISSY
(- (10)) grum~x
(1) A:xL<TL?Lﬁ<Tt& b *Sn>*>la*<1a*sw2v0*2|2¢:;
asTo
(n-wlro}) grum~x
A:?:¢5L<I§*F:¢§<I§_ P *:uuffif<T§*§w2v§2|§I;v
[[2]7] + 10 =T NOISSY
AZIE?,OVV.«E:ZX
A:XL«\ING*HXE\T.:: @ *:H\ﬂ*\ﬂT.Q*«\T.@*EVZVo*ZIET.:V
usys q 41 af
(n-p{r0}) run~x
¢§L<I§15<I€_ 4 *ﬁfézs*?T§*2w2v§2|EI:v
§(¢)pg~q dWVS
(N-piT0}) Jrun~x
A:Xr:wT_Nm*Cﬁ«\IﬁE @ *:Qv:\so*«wlc*gwZVO*ZIEIQV AONTNOISNOD

(lo< N=¥]=*7p)

"UOI1RIaII YoBa Uo JuLns-11q
a3 Jo yiSua] Y3 puaixs 03 X 19a0 € 3y our q Jo anfea pajdures Ajmau oy 9819w 03 st vIPT 43y Ay, ‘wrerdoxd pare1odsp e se Apoq doo] S JO UOIBALISP Y} MOYS MOU A

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

o
b
=N

(((v)11) yrun ~)

AE\ 1y e (XTIt gy (vm -ty ?%z:,avﬁ?x@v

i+ v=p

A:E:\so £ Ty e @0 x Ty e Tp] (XTI~ (IXTW)Ign~ Ty AQVE:,SVE?X@V

A:ssé « (IX=1¥)11) Jrun ~ @ « ([x]¥)1) Jrun ~ s?\;ﬂ:%_::&@v

(- yumo s (([x-]v)ID) Jrun ~ 2o+ (([X]V)1I) Jrun ~ 'v)
((([x=]v)1) yrun ~ @) ((Ix]v)1) yrun ~ 1p)
§ a134nys laT34nys
(LEeumo s [x-]y i o)) || (LS M)umo = [X]y < 1p])
(LC- -)umo s [X-]v <1 2 [X]y < 1p])

A_.A cumo x [XV — o x [XV «— v A?\vcﬂr,ivrcszvmm@v

l[x=]v « @« [X]V « Ip] TS:&:.&VE?X@ #[(---)UMO % |/ i D % (Y)UST .:v
§(--+)op (Y)uat > 19TTym
([d/ (v)uat])

(LT qQumos 1] —x[] sy «ip])

0 =1
(LE U maqumo s [] @[] < sy <ip))
¢l =7

(L2190 g)umo x [] e 0y i)
¢[]=T1

(L@ T a s wiq)umo s v i v))

AONANOISNOD)

NOISSY ‘T.LITdS

FONINOIASNOD)

(1) Uvq awvag
TLITdS

FONINOISNOD)

(S1) “INVYagaNnog

AONANOISNOD)

NOISSY

NOISSY

NOISSY

*2’9 UoT30ag ur pauredxa

ST YOTYM “SUTUOSEIT [BLIOJRUIQUUOD SWIOS UO SIT[2I 30uanbasuod reuy ay], ‘Teorueydaw)b osye st yorym ‘wrerdord urewr oy} Jo UOTIBALIIP 3t} Surmoys £q apn[ouod am ‘Afreury

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:67

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants

(L1) 1=[1]Du>150
(Llzlg dox 2]y (---)op (Mb)udat > Y1 oTIYm ([0 — W% 0 — M1+ — YD) 4q —p

FONINOISNOD) =T
([4/0]®) (---) op (Ib)usl > M1 arTym (d Q) 1q — p
MNVJAIaANnog
(81)
“INvyazannog Sutdjdde jo royjewr e Ajduns st dooy oy SurzATeuy
1=[1]0u>150
L1l 40X Alxy—u— 1O —Ab| =[y/o]d [0 ax0e—M1xO —Ib| =[y/u]d

:m0[2q umoys ‘dooy a[oym a3y Jo
suonrpuooisod pue -a1d at) urejqo 0y & Jzieroads Os[e UBD I\ U PUE () U9IM]I] PIPUNOQ A[TRI[D JT PUB ‘UOTJBUTULID) [[IUN SUOTIRIDT JO Ioqunu SUTUTRWAT Y} SIJBIIPUT ¥ URI oY T,

1=[1]O:y-u>150
L1l hox AMUxUS YS0xy-UuU— M) Ib| =

'O pue (7 Jo syuawd[a ¥1 3511y Y Jo 3onpoid jop e sp[oy Y./ ‘SUOIIRIANN Y1 I2)Jk Jer]} saje)s
UOTYM ‘JUBLTEAUT SUTMOT[O 9y} 3sn am ‘0s op 0J, "doo] a1y} azATeure 0} sT dajs JXoU Y], "UOTRZI[ETJIUT 3Y) SZATEUE 0] NOISSY pue 0dg Jursn jsnf ‘Tesrueydaw a3mb st aaoqe Jooxd sy,

(91) 1=[1]Ju>150
5 (Llzla dox) (---)op (Ab)ual > Y1 aTTymé 0 =: L §0 = M1 ([(U A)umo O« ¥b|) 4G 1 p

s

: (L) umo x 0 e~ Y15 = ¥b]) 0 = M1 ([(L A)umox J «— Ib|) 4G i p

NOISSY
=[1]0u>150

5 (L[l dox) (- -)op (Wb)ust > Fragrymé o = i (| (T)umo 0 — M1+ D) 1q 1 p

!

S (1) (0 20 15D« Ab]) 0= Lu (| Cli)umox 0~ M1+ J by 4q 1 p
NOISSY

*(91) ut mofaq umoys st jooid asoym
mpaooid fYys31a4 oY1 YIm ursaq ap 9seqelep dy) Wolj x Aq PajedIpur AIjUs Blep 9yl $aY19] A[1991100 Y2394ATdd e} Surmoys Jooid ssaujoar1od 939[dwod Iy} 9A1S mou ap

I+ ="
& ([A1]p “la)aox =: “u (Ga“Ta)aox =: 4
uayl 1 = [¥1]¥b 41 § 2yo39y || Tyozay
op (¥b)ust > ¥19TTYM § (x“Ih)aox =: ¢b
fo=ufo= N § (u{1°0}) Jrun ~: 1h
1 IYyolay 1 Yd394ATId

"€'9 uo1dag wolj wrerdord [eASLIIaI UOTRULIOUT 9)eALId SUIMO][O]) [[BIaY

JeAall}ay uoljewiojuj ajealld ¢G4

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

9:68

(L)@ < 4]) (2aTa)aox =: 4§ (2ya31ay || T'yo3ay) § (xTh)dox =: 2b§ (,{1°0}) Jrun ~: b (| (- -)umo s (J < p * (3)I0Ydu0 « Xx|) -

6D e (10 gun ~B) < [umo s @ i pr (1)304900 1 x) ({10} gpun~ b (L(+)umo+ @ i p (N)30u0u0 i x])

ogs

"aseqe)ep 9} WOIJ Bjep 1991100 3] PI1I3[as am Jef} “a'1 ‘| [] « 4] 1ey) sajels uonrpuodisod oy ‘Aprewny ‘wrerdold urewr sy} 10 w0T1edy1dads 91} SUTALIOP 0] UO SAOUT IM MON

(6 N7U9) 1 (& 029)) aonandasno)
([4/1 - N]®) =oNandasno)

A::Q 1=[2]0:(1=N)=U>15040X e~ At 5 (T — N) — U 4 11 %) V\EV
T+71 =1 NOISSY

(L[1]@ =IO 0-N)-u>150410X 4 Yt s N — U ¥ « ¥b])

(L[1]1q =0 0=N)=u>15040% e~ Lt s N — U = 115§ i 4B HONAAOASNO))
(lo=[N - u]0 = [1]q =IHON-4>15000x e~ a5 N = u i M1 % § i b))
diys anig
(l0=[N - uld * [1]q =IHON-4>15010x i L s N —u s 41 O i 4b])
(81) asT?
(L[1]q =IO (=N)=u>15040% e~ Li s N — u = 15§ i 4b]) FONANOTSNOD)

A: =[N-u]D* :Z|EQnEQﬁuEQNZ\szwP_oxv JOX ot Atk N — U e~ M1 «Ev
AﬁQ I%_ * _.ﬁ = :/NIEH@* A_HZIEHQHH:QﬁHTg@_Z\:VNWoLOXV JOX «— AL N — U 1 A1 *@ “ kw_v

([Y1]p “La)dox = A4 NOISSY

(la < p)«L1=[N-ul0x[1]q =ION-U>15000x 4 Yus N =t = M5 i b))
(1= [N -u]0 = [1]q =IHON-4>15000% 1t Lis N —u = 215 i 4b]) WOLY
uayy [Y1] b 41 2N Jd]

(L[1]@ W=IHON=>15040% e~ Ad s N =t = M1 % O i ¥b|) GONAGASNOD

(lo< N=¥] =)

‘1onpoid jop a1 puslxa 03 sn smofe [N — u] () JO anyea 2A1)0adsaI ST} ‘JUSTUSIE]S JT 9] JO 3SBDI [IBa U] 'O1307] SIBOF] UT SJUSDIR)S JT 10] NI
39U} 0} Je[TUIS ST YOTYM JUITWAIL)S JT Y} 9ZATRUR 0] S[NI TUNJA] PIALISP Y] 95N I ‘urer3oxd pajerooap e se STy} mOYs I\ JueLIeAut ayj spjoydn £poq doof a3 ey} moys am ‘MoN

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:69

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants

ISTMIIY]0 0

[1]1((>r)20yduo ‘D) dox — = [1]O J [1la Loww = AEQHuErio,_w%mg._oxﬁvmo"EQFEL@%vNWO 40X
1= [11(C)30ueuo O)aox = (1103 (@ Ta)ox |
(L[] « (24 Ta)aox]| Aym moys am ‘morag
1=[2] ((>1)30y3u0‘D) 40x:U>150 1=[1]Ou>150
(12) ONABESNO (LDl < 4]y (Gacta)aox = a4 ([(4)umo s (7 < p = EQﬁ I Jox k - Lt [1la ﬁ _Loxv T T]) A
D 1=[2] ((>1)30y3u0‘Q) Jox:u>150 1=[1]O:u>150
(LMl <= 4]y (2ata)aox = 4 (| (4)umo = [1]q Jox —x[1]q dox L) 4
NOISSY
‘Juowu3Isse [eulj 9y} I0J UOTJBALISP B 9AIS am ‘A[[eur]
0 (L[] i 4]) (24710 a0x =2 4§ (242394 || 149334) ([(- - -)umo (()3043U0 ‘) 40X i b % & i b+ 0 i p]) 4
(12)
1=[7] ((31)30ydu0‘') Jox:u>150 1=[1]Ou>150
_— (L()umo =g «— p=[1]1d 40X A= [1]q a0x L) 2ysgay || 'yo1ay ([(---)umo x ((3r)30yauo ‘(G)IoxX «i th x) — thx q i p])
S 1=[2] ((37)30Y2u0°’D) JoX:U>15(1=[1]0:u>150
v ([(4)umo % [1]q J0X =11 40X i L) 2yoyay || 'yo1a ([(- - -)umo x ((37)30Yyauo ‘G)IoxX < b x J «— h|) A g —p
d 1=[2] ((>7)30y3u0‘Q) Jox:u>150 1=[1]0u>150
" (Ll1la 40X] x| [1]g d0x i L) 2yd38y || Tyo3as (| (% C)umo x ((3)20Yyduo ‘() JoxX «i Zh| x [(L Iumo () « b|) 1 g —p
Vi
d =[] (1) 1042u0'3) Joxi =150] . (1)
Lsang (L1l 40X i 2]y 2ys3as (| (% Cr)umo x ((3)20Yauo ‘Q)Jox « ¢b|) 4 g — p
(o1)

"uorssaxdxa Teor3or xapdurod arow e 1ayIer Inq ‘() Jou ST A190b 9} 0UTS DTNI LSANG AN} 2SN JSNUW M ‘PeAIY} PUOIIS 1Y} U] “A[snoraard pamoys am ey} ¥ysiay
10 UOTJEALIDP U} PUE UV 2SN 9M ‘UYL, "TUVHS 1M JUBLIEAUT 31} 9)BOO[[E 0} ASED ST JT OTISTUILLIAIRP ST P 2)BJS PAIBYS Y} 2OUIS "SPUBLILIOD [[0J9f JUSLINIUOD Y} dZA[eu. om JXoN

60 omosono (LG S 40) (270 10x = 15 (2304 || 149325) £ (x°16)40x = b ((,(1°0)) Jun ~ 1)+ (-~)0+ T P+ (3)304000 = x]) <
{ <
(LI = 4]) (24 Ta)aox = 4§ (Y234 || Tyo3ay) § (x1h)aox =: b (| (- --)umo x Q) <= b x (7 <4 p * (3])30Y3U0 i X | ?:S:_::z@@v 4
FARGE:
N (LIXIQ 1 4]) (4°La)a0% = 1% (40304 || 4o303) & (x 1) 10X =: b (| (-)um0 = & 1 1b] 1 p + (3304200 1 x]) 4
EN

(02)

(L(-+-)umo = ((5r)20Yauo ‘) doxX «i 2b x) « b (7 < p x (3)210Yyduo «i x|) Ax.Sv“._ox =2 ([(+--)umox) « b g < p = ())I0Yduo i x|)

NOISSY

*(6T) UT MO[2q UMOUS SE ‘O[NI
21114 a) Sursn Jurrs-11q pajdures ay) Uo SISA[eUR 2sBD Op jsnui am ‘0s op 0J, ‘wrerdord 9y Jo IopuUTRLUAI I} 9ZATRUE 0] UO JAOW M ‘puetuuod Surjdures 3511) Suryojedsip 1017y

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

9:70

paInqInsip A[[earjusapr pue Ajuapuadapur are i pue X ‘pua) U] ‘A PUB X 0] SIILIM dY] IO IIM] PIST 9 UBD dIWVS JeT[} OS ‘OT)STUILLIANP ST ,¢ JO danTeA 3y NI Jey) jo astwaid
1]} U] "SSW02INO JT)STUTILIAIPUOU Y} JNOJe Uoseal A[reuorjisodurod o pasn st a[nI ZLITASN Y3 ISIL] (F2) ur suonjerado Surpdures om) ot} 10J UOTIIYIOAdS © SATIIP am IXIN

(z2) (LA x)umo x X 1 @|7PXQ) d = d([(d)umox1=N=y=*onj—hA=x|)"3>5d
WOL
v ([73d] « (L(Ax)yumox x 1 d|72X2Q))y d = d (|35 d]«[(d)umoxT=y=*ani}h=x]|) "
HONANOISNOD +SLSIXH
(LA x)umo s X e~ dxx — d|72XQ) d = ,d (| (&6 x)umo = X « d| X2) My
TLITdGN

(LAx)umox x —dx x — d]) d = d([(dhx)umoxx i d]) ™

NOISSY

‘pea1 3y jo jutod ay) 1e ,d Jo anfea dyroads 3t} 198 03 A[NI SLSIXF Sy} pue JURLIBAUI 3} Uado 0] S[NI WOLY 3y} Sulsn
£q 5p29001d UOPATIOP SIY 9323S PAILYS WO} IN[BA & SPEII YoTYM (77) Ul ,d =: ¢ PURWILIOD T3 JO UOHBALIDP U3 UIM J1e}s ap 9s1091d ST 31 pue | o i fi x x i x| (&/1DPEX P
= [¥/0]® ‘uonippe uj ‘T pue (USIM]IQ PIPUNO] ST Y 1By} sar[dwr osfe 1y} ‘A[1e3]) djeurIa) [im doof 9yl ¢ = ¥ UIYM 0S ‘| Y «+ i = X| < & sn s9A13 STy} Jey]) 91o0N

(¢/1)12g~X
[(dumoxT=yxony—h=x| 3T roHM*XrT_m*XIﬁ@mos b A 0D = b

:mo[2q @ juerreaur dooy a3 asn [im am ‘doof oy a1y} SurzATeue jo sasodind
oyt 104 ‘¢ 5 3> 0 (IM 3 — [PUB 3 UIIMIDG SIN[BA JO IST[IIUY © ST J 9I9UM (7 3 ¢) 5] JUBLIRAUT 90IM0531 9y} asn 03 SuroS ore o ‘wonndsxs wrexdoxd ayy jo pua oy e diyy
UT0d ITRJ B 9YI] PAINLIISTP ST X JT[} OS[e PUE ‘S9]eUILId} A[9Ins JSowe I1 1Y) Yjoq Surmoys ‘werdord STy} Jo sSaUI0II00 9y} 10J UOTIRATISP 9391durod oY) apraoid am ‘UOTII9s STy} UT

(d)pg=~:h
$(,d)10g ~: x
s¢d=,d
opfi = X aTTym
to=2A
0 =:x
“peart]) [97rered & Aq paIalfe 9q UeD SBIq 9SOYM U0 B USALS UT0D ITBJ B SIJR[NUIS YOIYM F’'9 U0T)09S wolj wrerdord Surmorio] ayy [[eoayg

PLI] UUBWINAN UOA YL 9

[¥la =
"SULId} 019 Ay} [T doIp Ued 9m UdY) X = (0 X)JOX IUIS
ISIMIIY}O 0 w .www _
=1 [1]lg J1-u
") = 1 uaym AJuo sidoo [7]((3)20ysuo ‘G)aox— = [1]0
ISIMIIYJO 0 Loww _
[11(0n3oyauo ‘Bydox— = [1]ox [1]g [T-u "~

"S9SBD 1B PUE JSIY YY) dUIqUI0d Ued am ‘0 = ([1] [1])40x 2ourS

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:71

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants

(/1) g ~x) (d)pgrhs(d) g xsd= doph=xarmyméo=As0 = x ([(,dhAx)umo]) 4]

ok
(L(@Fyumo g x]) 0= x ([(&6 x)umo]) 41

NOISSY

5 (/1) g~ x) (d)g~hs(d)pgrxsd= \NOtm =xaTIymé o = A ([([FA)umo 0« x|) 4]
a5

(s2) (L(dumo s e Aixgex])o=hA([(dh)umox0 e x]) 4]
NOISSY

-Jooad a1} 9397dwod 03 fi pue X 03 SYUSWIUIISSE [RIIUT AU} SPN[OUT dM ‘A[euT]

(s2) ((2/1) g ~ x) (d) g~ A (d)Iogr:xsd= dopfi=xariym ([(,d)umo=0 A x0 i x|) 4]
ZONAAOIASNOD :
(0b) (d)reg~:fi§(d)reg~xtd= doph=xarrym(d (F}2AQ) 4

NAHLONTULS :

(V) (d)reg~:ifis(d)eg~:xéd = doph =xortym (o (101349 m

MNVYAIANAOg _
5 (1o (3-1)32=g) 0gh) () g~ s (d)pgrxsd= d([1=N]*1d) "]
as

o) (@)
"MO[oq UMOYS ST UOTJRALISP STY], *d 1sea] 18 AfIqeqoid yitm s1mdoo 06 Jey) moys 0 sn saxmbar MNvyagannog jo asturaxd ayy
‘59582109 Yuel 3] ey} Aiqeqord wnwrum oy} oq (3 — 1)3z = d Sumd moN [T = N| *'d = [T = N = = (,d)umo xani) « fi = x| oy juareamnba st [g < N = | xdos‘T =y
s1 0 < ¥ I03 Lpiqissod ATuo a3 ‘Apoq doof 9y} Jo UOTIRALIOP Y} 10] Jey} 90N *(GZ) UT U29S St ‘I9Je] NIHLONTULS SN Ued dM 0S pue as10a1d s1 wonrpuodysod oy ‘sajeururra) doog
39U} 19Je TOAIMOY "3[NI 3Y) JO UOISIAA Juox)s € asn 0] d[qissod jou st 31 ‘9s1oa1d J0u ST () Jo uonipuodlsod ay) Jey) uaard pue 9[dLr) Yeam e UI S)NSAI ZLITASN JO SN 3y} 18y} 910N

(¥2) LIS (1 G-D3=g HMSV (@) g~ At (d) g~ x ([(Ax)umox x «i d|9>XQ) "4
(£2) ONIMOISNOD (10 0-D7g 0d) (d)1og~:hi s (,d)1ag~ix ([(Ax)umox x 4 d]) "™
(((x) g ~ A) * ((X) G ~ X) * | X 1 d]) (d)10g~: A& (,d)10g~x ([(Ax)umox x — d]) ™[
(((x) 12 ~ X) * [(A)umo s x d]) (,d)1pg~: x ([(A x)umo s x e d|) ™4

0dg

dWVS

(((xX) g ~ i) = ((X) g ~ x) * | X — d]) (,d) g~ fi (((x) 39g ~ X) # | (f)umo x X A1) M

dNVS
"MOTq UMOYS ST UOTJBALIDP [} ‘MON

I G-1)323gy 0p —

I (X-D)XCq 0

(€2) L(,d)umo % onuy i fi = x| (X~ Xeg C&r s f e xx X ,d] @\:uem;@v —

|z hsxsf—xxx e« d) C&bmzmmw ﬁxvsmi@ —
CNIE AxvhemzN@v*A:Ix_ Axvamim_wvivml\& = ((x)39g ~ i) % ((X) 319G ~ x) * | X — d]

“(¢z) woryearydur yirm ‘IONINOASNOD Jo ani 3y} Sursn jooxd 3y 939[dwod I () 19g 03 Surpiodde

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:72 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Received 2025-07-02; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

	Abstract
	1 Introduction
	2 Overview: Familiar Reasoning Principles in a New Setting
	2.1 Concurrent Separation Logic meets Probabilistic Separation Logic
	2.2 Handling Randomized Shared State with Outcome Logic
	2.3 Taming Nondeterminism with Precise Assertions
	2.4 Weak Separation and Case Analysis over Shared State

	3 A Probabilistic and Concurrent Programming Language
	3.1 Preliminaries: Memories and the Convex Powerset
	3.2 Actions and Invariants
	3.3 Semantics of Randomized Concurrent Programs

	4 The Model of Probabilistic Assertions
	4.1 Pure Assertions
	4.2 Measure Theory and Probability Spaces
	4.3 Probabilistic Assertions
	4.4 Convex and Precise Assertions and Entailment Laws

	5 Probabilistic Concurrent Outcome Logic
	5.1 Rules for Sequential Commands
	5.2 Concurrent Separation Logic Rules
	5.3 Structural and Outcome Splitting Rules
	5.4 Loops and Almost Sure Termination

	6 Examples
	6.1 Entropy Mixer
	6.2 Concurrent Shuffle
	6.3 Private Information Retrieval
	6.4 The von Neumann Trick

	7 Related Work
	8 Conclusion
	References
	A Definition of Program Semantics
	A.1 Pomsets with Formulae
	A.2 Linearization

	B General Lemmas
	B.1 Measure Theory Lemmas
	B.2 The Convex Powerset

	C Concurrency Lemmas
	C.1 Invariant Sensitive Execution
	C.2 Parallel Composition

	D Almost Sure Termination
	E Logic and Rules
	E.1 Precise and Convex Assertions
	E.2 Entailment Rules
	E.3 Soundness of Inference Rules
	E.4 Derived Rules

	F Examples
	F.1 Conditional Independence Example
	F.2 Almost Sure Termination of a Random Walk
	F.3 Entropy Mixer
	F.4 Concurrent Shuffling
	F.5 Private Information Retrieval
	F.6 The von Neumann Trick

