
Probabilistic Concurrent Reasoning in Outcome Logic:
Independence, Conditioning, and Invariants

NOAM ZILBERSTEIN, Cornell University, USA
ALEXANDRA SILVA, Cornell University, USA
JOSEPH TASSAROTTI, New York University, USA

Although randomization has long been used in distributed computing, formal methods for reasoning about
probabilistic concurrent programs have lagged behind. No existing program logics can express specifications
about the full distributions of outcomes resulting from programs that are both probabilistic and concurrent.
To address this, we introduce Probabilistic Concurrent Outcome Logic (pcOL), which incorporates ideas from
concurrent and probabilistic separation logics into Outcome Logic to introduce new compositional reasoning
principles. At its core, pcOL reinterprets the rules of Concurrent Separation Logic in a setting where separation
models probabilistic independence, so as to compositionally describe joint distributions over variables in
concurrent threads. Reasoning about outcomes also proves crucial, as case analysis is often necessary to derive
precise information about threads that rely on randomized shared state. We demonstrate pcOL on a variety of
examples, including to prove almost sure termination of unbounded loops.

CCS Concepts: • Theory of computation → Separation logic; Logic and verification; Program verifica-
tion; Concurrency; Probabilistic computation.

Additional KeyWords and Phrases: Outcome Logic, Separation Logic, Concurrency, Probabilistic Programming

ACM Reference Format:
Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2026. Probabilistic Concurrent Reasoning in Outcome
Logic: Independence, Conditioning, and Invariants. Proc. ACMProgram. Lang. 10, POPL, Article 9 (January 2026),
72 pages. https://doi.org/10.1145/3776651

1 Introduction
Randomization is an important tool in concurrent and distributed computing. Concurrent algo-
rithms can be made more efficient using randomization [Morris 1978; Rabin 1980, 1982] and some
distributed synchronization problems have no deterministic solution [Fischer et al. 1985; Lehmann
and Rabin 1981]. But despite the prevalence of randomization in concurrent computing over the
last several decades, formal methods for such programs are limited. The mixture of computational

effects in probabilistic concurrent programs is a major source of difficulty in developing verification
techniques; random choice is introduced by sampling operations and nondeterminism arises from
scheduling the concurrent threads. These two computational effects do not compose in standard
ways [Varacca and Winskel 2006], so even just describing the semantics of such programs requires
specialized models [He et al. 1997; McIver and Morgan 2005; Zilberstein et al. 2025a,b].

In this paper, we introduce Probabilistic Concurrent Outcome Logic (pcOL), a logic for reasoning
about programs that are both probabilistic and concurrent. In pcOL, preconditions and postcondi-
tions are not just assertions about a single program state. Instead, they describe the distribution of

Authors’ Contact Information: NoamZilberstein, noamz@cs.cornell.edu, Cornell University, USA; Alexandra Silva, alexandra.
silva@cornell.edu, Cornell University, USA; Joseph Tassarotti, jt4767@nyu.edu, New York University, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2026 Copyright held by the owner/author(s).
ACM 2475-1421/2026/1-ART9
https://doi.org/10.1145/3776651

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://orcid.org/0000-0001-6388-063X
https://orcid.org/0000-0001-5014-9784
https://orcid.org/0000-0001-5692-3347
https://doi.org/10.1145/3776651
https://orcid.org/0000-0001-6388-063X
https://orcid.org/0000-0001-5014-9784
https://orcid.org/0000-0001-5692-3347
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3776651

9:2 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

possible outcomes that can arise from executing the program. A key challenge is that, in the con-
current setting, different orderings of threads can give rise to different distributions over program
behaviors. To address this, pcOL takes inspiration from the recently introduced Demonic Outcome
Logic (dOL) [Zilberstein et al. 2025b], which supports reasoning about sequential probabilistic
programs that additionally have a nondeterministic choice operator resolved by an adversary.
Different nondeterministic choices can cause different distributions of behaviors in these programs,
just as different thread interleavings can cause different distributions in the concurrent setting.
However, while dOL’s approach to describing the space of possible distributions provides a

basis for pcOL, reasoning about the nondeterminism that arises from concurrent scheduling is
substantially more complicated than reasoning about a choice operator. With a choice operator,
nondeterminism is localized to the points where the operator is used, whereas in a concurrent
program, every step can potentially involve nondeterminism from thread interleaving. Reasoning
explicitly about nondeterminism at every step is intractable and non-compositional.
To recover compositional reasoning, pcOL incorporates ideas from various separation logics.

Concurrent Separation Logic (CSL) uses disjointness of resources to ensure that concurrent compu-
tations only interact in controlled ways, so that each thread can be analyzed on its own [Brookes
2004; O’Hearn 2004]. Probabilistic Separation Logics (PSL) use the notions of independence and
conditioning to reason about the interaction between randomness and control flow [Bao et al. 2021,
2025, 2022; Barthe et al. 2020; Li et al. 2023; Yan et al. 2025]. CSL and PSL achieve compositional
reasoning in concurrent and probabilistic settings, respectively, so combining their reasoning
principles appears to be a natural way to derive a compositional logic for the combination of both
effects. However, as we will see in Section 2, such a combination is challenging to achieve because
the metatheories of the two logics are highly specialized to their respective domains, and a direct
combination of their rules would not be sound. This paper develops the metatheory in a more
complex semantic domain, where concurrency and probabilistic computation can coexist. As a
result, pcOL is the first logic to combine all of the following features:

Compositional Concurrency Reasoning. pcOL supports compositional concurrency reasoning, mean-
ing that each thread in a concurrent program can be analyzed in isolation, without considering all
the possible interleavings or behaviors of the scheduler. Similar to Concurrent Separation Logic
(CSL), compositionality stems from separation—as long as two threads operate on their own portions
of memory, they cannot interfere with each other. In addition, shared state is handled via resource
invariants, properties about shared state that remain true at every step.

Compositional Probabilistic Reasoning. In a probabilistic context, separation of memory footprints
is not sufficient; while it can tell us how the local variables of each thread are distributed, it does
not give us the joint distribution over the entire global memory. In response, we use a PSL-style
model where separation additionally models probabilistic independence [Barthe et al. 2020]. Going
beyond prior work, our parallel composition rule guarantees that the scheduler cannot introduce
any probabilistic correlation between the local states of each thread.

Compositional Outcome Reasoning. When concurrent threads depend on randomized shared state,
it is often necessary to do case analysis over the possible values of that shared state in order to
capture the probabilistic correlation between the threads (e.g., see Section 2.2). In the style of
Demonic Outcome Logic (dOL) [Zilberstein et al. 2025b], pcOL supports compositional reasoning
about the outcomes generated via both probabilistic branching and the nondeterministic behavior
of the scheduler. But unlike dOL—which does not support separation—case analysis must be done
with care, as it can invalidate the independence guarantees of the Frame rule. Compared to prior
outcome logics, the outcome conjunction of pcOL has a new measure theoretic foundation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:3

Unbounded Looping and Almost Sure Termination. Our logic includes rules for establishing almost

sure termination—termination with probability 1—for unbounded loops. This goes beyond the
capabilities of all prior separation logics that model separation with probabilistic independence,
which either have only bounded looping constructs (e.g., for loops) or require loops to always
terminate (which must be established externally to the logic). Unbounded looping is important in
randomized concurrent programs, as such programs often only achieve the desired distribution of
outcomes in the limit, and not after a bounded number of steps (e.g., Section 6.4).

We begin in Section 2 with an overview of the technical challenges and design of pcOL. Next, in
Section 3 we outline the programming language and semantic model that we will use. The logic
and inference rules are defined in Sections 4 and 5. We demonstrate the capabilities of pcOL on
four case studies in Section 6. Finally, we conclude by discussing related work and future directions
in Sections 7 and 8. Omitted proofs and details are given in the appendix [Zilberstein et al. 2025c].

2 Overview: Familiar Reasoning Principles in a New Setting
In this paper, we develop a logic for verifying the correctness of randomized concurrent imperative
programs, written in a language that includes control flow operations (if statements andwhile loops),
parallel composition 𝐶1 ∥ 𝐶2, and random sampling 𝑥 :≈ 𝑑 . A major hurdle in concurrency analysis
is that the semantics is non-compositional; two programs can have completely different behavior
when run in parallel than they do when run in isolation. Enumerating all possible interleavings of
the threads is not a viable strategy, so abstractions must be introduced for sound compositional
analysis. In this section, we explore the mechanisms that enable compositional reasoning about
probabilistic concurrent programs in pcOL, including the challenges that arise with shared state.

2.1 Concurrent Separation Logic meets Probabilistic Separation Logic
Concurrent Separation Logic (CSL) achieves compositionality via separation [Brookes 2004; O’Hearn
2004]—if two threads act on disjoint memory regions, then their behavior will not change when
run in parallel. This idea is encapsulated by the Par rule, where the separating conjunction 𝜑 ∗𝜓
means that the machines’s memory cells can be divided to satisfy 𝜑 and𝜓 individually. In addition,
the Frame rule guarantees that threads cannot interfere with memory outside of their local state.

⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩

⟨𝜑1 ∗ 𝜑2⟩ 𝐶1 ∥ 𝐶2 ⟨𝜓1 ∗𝜓2⟩
Par

⟨𝜑⟩ 𝐶 ⟨𝜓⟩

⟨𝜑 ∗ 𝜗⟩ 𝐶 ⟨𝜓 ∗ 𝜗⟩
Frame

Now suppose that 𝐶1 and 𝐶2 in the Par rule are probabilistic programs. For example, if we flip two
coins and store the results in the variables 𝑥 and 𝑦, then the respective variables will be distributed
according to Bernoulli distributions with parameter 1

2 , as shown in the following specifications,
where ⌈𝑃⌉ means that 𝑃 holds with probability 1 (almost surely), 𝑥 ↦→ − means that the current
thread has permission to read and write 𝑥 , and 𝑥 ∼ 𝑑 means that 𝑥 is distributed according to 𝑑 .

⟨⌈𝑥 ↦→ −⌉⟩ 𝑥 :≈ Ber
(1
2
)
⟨𝑥 ∼ Ber

(1
2
)
⟩ ⟨⌈𝑦 ↦→ −⌉⟩ 𝑦 :≈ Ber

(1
2
)
⟨𝑦 ∼ Ber

(1
2
)
⟩

Composing these programs in parallel, we would ideally want to derive a specification that dictates
not only how 𝑥 and 𝑦 are distributed, but also their joint distribution. In this case, 𝑥 and 𝑦 are
probabilistically independent, meaning that each outcome (e.g., 𝑥 and 𝑦 are both 1) occurs with
probability 1

2 ·
1
2 = 1

4 . Thus, it is natural to consider using the interpretation of separation proposed
in Probabilistic Separation Logic (PSL) [Barthe et al. 2020], in which 𝜑 ∗𝜓 states that the events
described by 𝜑 and𝜓 are probabilistically independent. By treating separation as both disjointness
of memory and probabilistic independence, one might hope to validate a probabilistic interpretation

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:4 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

of the Par rule, with which we could derive the following specification.

⟨⌈𝑥 ↦→ −⌉ ∗ ⌈𝑦 ↦→ −⌉⟩ 𝑥 :≈ Ber
(1
2
)
∥ 𝑦 :≈ Ber

(1
2
)
⟨𝑥 ∼ Ber

(1
2
)
∗ 𝑦 ∼ Ber

(1
2
)
⟩

Intuitively, the probabilistic interpretation of Par in this instance is justifiable because 𝐶1 and 𝐶2
execute without interaction, so there is no correlation between their random behaviors. The lack
of correlation is due to the fact that there is no shared state, and therefore the nondeterminism
introduced by the interleaving behavior of the scheduler is not observable in any way.

Bigger challenges arise when the threads do share state, making the nondeterministic behavior
of the scheduler observable. CSL handles shared state with resource invariants—threads can interact
with shared state as long as the invariant 𝐼 is preserved by every atomic step. More specifically, CSL
provides the following inference rules: a more general Par rule allows the invariant resources to be
used in both threads; the Atom rule opens the invariant, as long as the program is a single atomic
command 𝑎; and Share allocates an invariant that is true before and after the program execution.

𝐼 ⊢ ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ 𝐼 ⊢ ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩

𝐼 ⊢ ⟨𝜑1 ∗ 𝜑2⟩ 𝐶1 ∥ 𝐶2 ⟨𝜓1 ∗𝜓2⟩
Par

⊢ ⟨𝜑 ∗ ⌈𝐼⌉⟩ 𝑎 ⟨𝜓 ∗ ⌈𝐼⌉⟩
𝐼 ⊢ ⟨𝜑⟩ 𝑎 ⟨𝜓⟩

Atom
𝐼 ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

⊢ ⟨𝜑 ∗ ⌈𝐼⌉⟩ 𝐶 ⟨𝜓 ∗ ⌈𝐼⌉⟩
Share

Under a probabilistic interpretation of ∗, this stronger Par rule is valid when the shared state
described by the invariant 𝐼 is deterministic, for example, in the following program, where 𝑧 has a
fixed value, which is read from both threads.

𝑧 ↦→ 1 ⊢ ⟨⌈𝑥 ↦→ −⌉ ∗ ⌈𝑦 ↦→ −⌉⟩ 𝑥 :≈ Ber
(
𝑧
2
)
∥ 𝑦 :≈ Ber

(
𝑧
2
)
⟨(𝑥 ∼ Ber

(1
2
)
) ∗ (𝑦 ∼ Ber

(1
2
)
)⟩

However, with nondeterministic or randomized shared state, reasoning about programs becomes
more complicated because correlations can be introduced in very subtle ways. In the remainder of
this section, we will see a few such representative scenarios, and how they are handled in pcOL.

2.2 Handling Randomized Shared State with Outcome Logic
When shared state is randomized, compositional reasoning about outcomes becomes essential.
As an example, consider the following program, where 𝑥 and 𝑦 read from the shared randomized
variable 𝑧 in different threads.

𝑧 :≈ Ber
(1
2
)
(𝑥 B 𝑧 ∥ 𝑦 B 1 − 𝑧) (1)

Here, 𝑥 and 𝑦 are clearly not independently distributed, since both are derived from 𝑧. So it seems
dubious that Par could be used to reason about this program. The key observation is that 𝑥 and 𝑦
are conditionally independent on 𝑧, so we can compositionally reason about the threads by first
breaking down the outcomes of the sampling operation such that 𝑧 is deterministic in each case.
We draw inspiration from the logics DIBI [Bao et al. 2021], Lilac [Li et al. 2023], and Bluebell [Bao
et al. 2025], which include constructs to reason about conditioning, but which are not sufficient
for the kind of analysis needed here. DIBI’s model of separation is too coarse (see Section 2.3),
Lilac has no rule for case analysis over conditioning modalities, and Bluebell’s case analysis rule
(c-wp-swap) has side conditions which would preclude adapting it for use in parallel composition.

To support both case analysis and parallel composition, in pcOL we introduce an outcome

conjunction

⊕
𝑋∼𝑑 𝜑 , which binds a new logical variable 𝑋 that can be referenced in 𝜑 , and is

distributed according to 𝑑 , e.g., 𝑧 ∼ Ber
(1
2
)
is syntactic sugar for

⊕
𝑍∼Ber(1

2) ⌈𝑧 ↦→ 𝑍 ⌉. Outcome
conjunctions feature in prior logics [Zhang et al. 2024; Zilberstein 2025; Zilberstein et al. 2023,
2025b, 2024], but in this paper we use a new measure theoretic foundation based on direct sums

[Fremlin 2001], which interacts well with separation, and represents conditional probabilities via
Bayes’ Law. As a result, the Split rule—shown below—is admissible in pcOL, which is critical for

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:5

concurrency reasoning.1

𝐼 ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

𝐼 ⊢ ⟨
⊕

𝑋∼𝑑 𝜑⟩ 𝐶 ⟨
⊕

𝑋∼𝑑 𝜓⟩
Split

In the premise of Split, 𝑋 is unbound, and therefore it is implicitly universally quantified. So, the
rule allows us to partition the sample space according to 𝑑 , reason about the program as if 𝑋 is a
deterministic value, and then once again bind 𝑋 under an outcome conjunction in the conclusion.

Returning to Example (1), by considering each possible outcome of the sampling operation, we
end up in a situation where 𝑧 is deterministic, and therefore the Par rule can apply. Indeed, the Split
rule is the missing piece that we need. After executing the sampling operation, we get the assertion
(𝑧 ∼ Ber

(1
2
)
) ∗ ⌈𝑥 ↦→ −∗𝑦 ↦→ −⌉, which is equivalent to

⊕
𝑍∼Ber(1

2) ⌈𝑧 ↦→ 𝑍 ∗𝑥 ↦→ −∗𝑦 ↦→ −⌉. So,
to analyze the parallel composition, all we have to do is apply Split to make 𝑧 deterministic, and
then allocate the invariant 𝑧 ↦→ 𝑍 , stating that 𝑧 has some fixed—but universally quantified—value.
The derivation is sketched below and shown fully in Appendix F.1.

𝑧 ↦→ 𝑍 ⊢ ⟨⌈𝑥 ↦→ −⌉⟩ 𝑥 B 𝑧 ⟨⌈𝑥 ↦→ 𝑍 ⌉⟩ 𝑧 ↦→ 𝑍 ⊢ ⟨⌈𝑦 ↦→ −⌉⟩ 𝑦 B 1 − 𝑧 ⟨⌈𝑦 ↦→ 1 − 𝑍 ⌉⟩
𝑧 ↦→ 𝑍 ⊢ ⟨⌈𝑥 ↦→ − ∗ 𝑦 ↦→ −⌉⟩ 𝑥 B 𝑧 ∥ 𝑦 B 1 − 𝑧 ⟨⌈𝑥 ↦→ 𝑍 ∗ 𝑦 ↦→ 1 − 𝑍 ⌉⟩

Par

⊢ ⟨⌈𝑧 ↦→ 𝑍 ∗ 𝑥 ↦→ − ∗ 𝑦 ↦→ −⌉⟩ 𝑥 B 𝑧 ∥ 𝑦 B 1 − 𝑧 ⟨⌈𝑧 ↦→ 𝑍 ∗ 𝑥 ↦→ 𝑍 ∗ 𝑦 ↦→ 1 − 𝑍 ⌉⟩
Share

⊢ ⟨
⊕

𝑍∼Ber(12)
⌈𝑧 ↦→ 𝑍 ∗ 𝑥 ↦→ − ∗ 𝑦 ↦→ −⌉⟩ 𝑥 B 𝑧 ∥ 𝑦 B 1 − 𝑧 ⟨

⊕
𝑍∼Ber(12)

⌈𝑧 ↦→ 𝑍 ∗ 𝑥 ↦→ 𝑍 ∗ 𝑦 ↦→ 1 − 𝑍 ⌉⟩
Split

Ultimately, we conclude that 𝑥 and 𝑦 are independent inside the scope of the
⊕

𝑍∼Ber(1
2)—where

they are deterministic—while still recording exactly how they are probabilistically correlated. This
pattern arises frequently, e.g., in Section 6.2, where we prove the correctness of a concurrent
shuffling algorithm in pcOL.

2.3 Taming Nondeterminism with Precise Assertions
In the previous section, we saw a new form of compositional reasoning, but it was limited to
scenarios where the shared state could be made deterministic via case analysis. In other words,
the nondeterministic scheduling order could not affect the outcome of the program. The effects of
scheduling become observable when threads mutate shared state, because different interleavings
can cause the shared variables to take on different values throughout the program execution.

In fact, treating the scheduler adversarially, shared state provides opportunities for the scheduler
to introduce probabilistic correlations in unexpected ways. For example, in the following program,
the scheduler can force 𝑥 and 𝑦 to be equal by first executing the sampling operation; then, with the
value of 𝑥 fixed, choosing an order for the writes to 𝑦 so that 𝑦 B 1 − 𝑥 is first, and 𝑦 B 𝑥 is last.(

𝑥 :≈ Ber
(1
2
)
𝑦 B 0

) ∥ 𝑦 B 1 (2)

In that case, 𝑥 and 𝑦 are both distributed according to Ber
(1
2
)
, but are certainly not independently

distributed. To ensure that the correlations between 𝑥 and 𝑦 do not invalidate the Par rule in pcOL,
we additionally require the postconditions of each thread to be precise (Definition 4.1), essentially
meaning that they exactly determine the probability of each event. Any pure assertion ⌈𝑃⌉ is
precise—𝑃 occurs with probability exactly 1—as is 𝑥 ∼ 𝑑 , since 𝑑 dictates the probability of ⌈𝑥 ↦→ 𝑣⌉
for all 𝑣 . Given that, (𝑥 ∼ Ber

(1
2
)
) ∗ ⌈𝑦 ∈ {0, 1}⌉ is a valid—and precise—postcondition for (2).

1Our approach of using direct sums has tradeoffs: the outcome conjunction
⊕

is fundamentally discrete, whereas other
logics, notably Lilac [Li et al. 2023], have continuous conditioning modalities. Despite this restriction, our examples will
illustrate the expressive power of the logic, as many uses of randomization in concurrent and distributed programs only
require discrete distributions. See Section 7 for a deeper comparison with other logics.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:6 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

It may be surprising that (𝑥 ∼ Ber
(1
2
)
) ∗ ⌈𝑦 ∈ {0, 1}⌉ holds; as we just saw, 𝑥 and 𝑦 are not

necessarily independently distributed. However, pcOL uses a probability-space-as-a-resource model
of separation, first explored by Li et al. [2023], to make separation more flexible. That is, we care
only about independence of measurable events and not samples. In the above case, we need only
measure the probability of ⌈𝑦 ∈ {0, 1}⌉, which occurs with probability 1, and nothing finer such as
⌈𝑦 ↦→ 0⌉ and ⌈𝑦 ↦→ 1⌉. Independence is therefore trivial, e.g., we get that 𝑥 ↦→ 1 and 𝑦 ∈ {0, 1} with
probability 1

2 · 1 = 1
2 . While it is difficult to compositionally determine the exact set of possible

joint distributions resulting from different scheduling behaviors, pcOL neatly abstracts away those
semantic considerations using simple syntactic checks on the postcondition.

2.4 Weak Separation and Case Analysis over Shared State
Examples (1) and (2) illustrate how pcOL combines both the disjointness and independence inter-
pretations of separation to obtain a probabilistic Par rule. However, in some cases, the combination
of disjointness and independence is too strong and does not hold, because the scheduler can induce
correlations between concurrent threads through shared state. While we can sometimes coarsen
what is measurable to recover independence—as we did with 𝑦 in (2)—it is not always possible.

In response, pcOL uses a second form of separating conjunction, which we call weak separation,
written 𝜑 ∗w𝜓 , which only requires that 𝜑 and𝜓 hold for disjoint state, and need not be probabilis-
tically independent. Weak separation allows us to still recover some of the benefits of separation
logic for reasoning about disjointness, even when we cannot expect independence to hold. To see
an example, consider a thread running the following command, in which control flow depends on
a variable 𝑥 that is part of shared state and may be written by another thread:

𝐶 ≜ 𝑥 ′ B 𝑥 # if 𝑥 ′ then 𝑧 :≈ Ber
(1
2
)
else 𝑧 B 1

To analyze the program above, we need to do case analysis on the value of 𝑥 at the moment that it
is read. Then, we conclude that regardless of 𝑥 ’s value, 𝑧 is distributed according to a Bernoulli
distribution with parameter at least 1

2 , motivating the following triple.

𝑥 ↦→ 0 ∨ 𝑥 ↦→ 1 ⊢ ⟨⌈𝑧 ↦→ − ∗ 𝑥 ′ ↦→ −⌉⟩ 𝐶 ⟨∃𝑋 ≥ 1
2 . 𝑧 ∼ Ber (𝑋) ⟩ (3)

Triple (3) is indeed valid on its own, but it is not compatible with the Frame rule that we saw in
Section 2.1. To see why, consider the extended program below in a case where 𝑥 is initially 0.

(𝑦 :≈ Ber
(1
2
)
#𝐶) ∥ (𝑥 B 1)

In the left thread, after the 𝑦 :≈ Ber
(1
2
)
, if we apply Frame with 𝜗 = 𝑦 ∼ Ber

(1
2
)
and use the triple

for 𝐶 in (3), we would get the postcondition (∃𝑋 ≥ 1
2 . 𝑧 ∼ Ber (𝑋)) ∗ (𝑦 ∼ Ber

(1
2
)
). But that

postcondition is not valid because the scheduler can force𝑦 and 𝑧 to be correlated by using the value
of 𝑦 to influence the value of 𝑥 .2 As we show in Section 5.3, case analysis on nondeterministic state
causes triples to only be weakly frame preserving, meaning that only a variant of the Frame rule
using weak separation 𝜑 ∗w𝜓 can be used. Under the right conditions, strong frame preservation
can be restored, as shown in Sections 5.4, 6.1 and 6.4.

Having now given an overview of pcOL’s features, we begin the technical development in Section 3
by outlining a denotational model for probabilistic concurrent programs. We then give a measure
theoretic model of assertions—including the separating and outcome conjunctions— in Section 4. In
Section 5, we define pcOL triples and provide a proof system. Four examples are shown in Section 6
before we conclude by discussing related work in Section 7 and future directions in Section 8.
2For the interested reader: if the scheduler makes 𝑥 equal to 𝑦, then 𝑥 must also be uniformly distributed, and so 𝑧 ∼ Ber

(1
2
)

with probability 1
2 and 𝑧 ↦→ 1 with probability 1

2 , which implies that 𝑧 ∼ Ber
(3
4
)
. But clearly, (𝑧 ∼ Ber

(3
4
)
) ∗ (𝑦 ∼ Ber

(1
2
)
)

does not hold, since whenever 𝑦 = 0, then 𝑧 = 1, and so the probability of ⌈𝑦 ↦→ 0 ∗𝑧 ↦→ 1⌉ is 1
2 , which is not equal to 1

2 · 34 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:7

Cmd ∋ 𝐶 F skip | 𝐶1 #𝐶2 | 𝐶1 ∥ 𝐶2 | if 𝑏 then 𝐶1 else 𝐶2 | while 𝑏 do 𝐶 | 𝑎
Act ∋ 𝑎 F 𝑥 B 𝑒 | 𝑥 :≈ 𝑑 (𝑒)
Dist ∋ 𝑑 F Ber (−) | geo (−) | unif (−)
Test ∋ 𝑏 F true | false | 𝑏1 ∧ 𝑏2 | 𝑏1 ∨ 𝑏2 | ¬𝑏 | 𝑒1 ≍ 𝑒2
Exp ∋ 𝑒 F 𝑥 | 𝑣 | 𝑏 | 𝑒 [𝑒 ′] | [𝑒1, . . . , 𝑒𝑛] | 𝑒1 + 𝑒2 | 𝑒1 · 𝑒2 | · · ·

Fig. 1. Syntax of a probabilistic concurrent language, where 𝑥 ∈ Var, 𝑣 ∈ Val, and ≍ ∈ {=, ≤, <, . . .}.

3 A Probabilistic and Concurrent Programming Language
We begin by describing the syntax and semantics of a probabilistic concurrent programming
language, shown in Figure 1. Program commands 𝐶 ∈ Cmd consist of no-ops (skip), sequential
composition (𝐶1 #𝐶2), parallel composition (𝐶1 ∥ 𝐶2), if statements, while loops, and actions 𝑎 ∈ Act.
Actions can perform probabilistic sampling operations 𝑥 :≈ 𝑑 (𝑒), where 𝑑 ∈ Dist is a discrete

probability distributionwith the expression 𝑒 as a parameter.We include three types of distributions—
Bernoulli distributions Ber (𝑝), assigning probability 𝑝 to 1 and probability 1 − 𝑝 to 0; geometric
distributions geo (𝑝), assigning probability (1 − 𝑝)𝑛𝑝 to each 𝑛 ∈ N; and uniform distributions
unif (𝑒) where 𝑒 evaluates to a finite set or list of values [𝑣1, . . . , 𝑣𝑛], each having probability 1/𝑛.

Our restriction to discrete distributions was motivated by the applications that we are targeting,
including synchronization protocols, which only require fair coin flips [Ben-Or 1983; Lehmann
and Rabin 1981]; cryptography, where keys are uniformly sampled fixed length bit-strings; and
randomized sketching data structures, where hashes are modeled as uniform random samples
over a finite set [Flajolet 1985]. Semantic domains for combining nondeterminism with continuous
probability have been explored [Keimel and Plotkin 2017; Tix et al. 2009], but our approach would
need modifications to exploit that. See Section 7 for a discussion.
The language also has deterministic assignments 𝑥 B 𝑒 , where 𝑒 is an expression. Expressions

consist of variables 𝑥 , values 𝑣 , tests 𝑏, list literals [𝑒1, . . . , 𝑒𝑛], list accesses 𝑒 [𝑒 ′] (where 𝑒 is a list
and 𝑒 ′ is an index), and standard arithmetic operations. Many more actions could be added to
this semantics, including nondeterministic assignment and atomic concurrency primitives such as
compare-and-swap, but we do not explore them in this paper.
We use the recently introduced Pomsets with Formulae model [Zilberstein et al. 2025a], which

augments typical denotational techniques for concurrency semantics [Gischer 1988; Pratt 1986] in
order to properly capture probabilistic behavior. We use a denotational model because pcOL de-
scribes distributions over program states, which differs from the usual CSL setting where assertions
are predicates on a single state. Thus, we cannot adapt the Vafeiadis [2011] style operational sound-
ness argument of quantifying over all finite executions. Instead, we must use domain-theoretic
techniques to construct the full set of distributions that can occur after an infinite amount of
time. While there are several Iris-based separation logics for randomized programs that use an
operational proof, all of those logics have predicates over single program states, which they then
lift to a probabilistic interpretation using either couplings (for relational proofs) [Gregersen et al.
2024b; Tassarotti and Harper 2019] or using resources to describe one property of the randomized
program (e.g., error bounds or expected costs) [Aguirre et al. 2024; Haselwarter et al. 2024b]. In
contrast, pcOL assertions allow for rich specifications over distributions of states.

3.1 Preliminaries: Memories and the Convex Powerset
Programs must be interpreted in a domain that supports both probabilistic and nondeterministic
computation. Although none of our actions are explicitly nondeterministic, nondeterminism arises

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:8 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

due to the interleaving of concurrent threads. The difficulty is that typical representations of
probabilistic computation (distributions) do not compose well with nondeterminism (powersets)
[Varacca and Winskel 2006; Zwart and Marsden 2019]. We instead use the convex powerset C in
our denotational semantics, which we describe in this section.

Memories, Expressions, and Tests. A memory 𝜎 ∈ Mem[𝑆] ≜ 𝑆 → Val is a mapping from a finite
set of variables 𝑆 ⊆fin Var to values, where Val consist of integers, rationals, and lists. The disjoint
union ⊎ : Mem[𝑆] → Mem[𝑇] → Mem[𝑆 ∪𝑇] combines two memories as long as 𝑆 ∩𝑇 = ∅, and
a similar operation 𝐴 ∗ 𝐵 is defined on sets of memories 𝐴 ⊆ Mem[𝑆] and 𝐵 ⊆ Mem[𝑇].

(𝜎 ⊎ 𝜏) (𝑥) ≜
{
𝜎 (𝑥) if 𝑥 ∈ 𝑆
𝜏 (𝑥) if 𝑥 ∈ 𝑇 𝐴 ∗ 𝐵 ≜ {𝜎 ⊎ 𝜏 | 𝜎 ∈ 𝐴, 𝜏 ∈ 𝐵}

The notation 𝐴 ∗ 𝐵 is reminiscent of the separating conjunction [O’Hearn and Pym 1999], and
indeed we will use it in Section 5 to define the separating conjunction. We define projections
𝜋𝑆 : Mem[𝑇] → Mem[𝑆 ∩𝑇] as 𝜋𝑆 (𝜎) (𝑥) ≜ 𝜎 (𝑥) if 𝑥 ∈ 𝑆 . Expressions are interpreted in the usual
way with J𝑒K

Exp
: Mem[𝑆] → Val as long as vars(𝑒) ⊆ 𝑆 , if not then J𝑒K

Exp
(𝜎) is undefined. The

same is true for tests and J𝑏K
Test

: Mem[𝑆] → B (where B = {0, 1}) is defined if vars(𝑏) ⊆ 𝑆 .

Discrete Probability Distributions. A discrete probability distribution 𝜇 ∈ D(𝑋) over a countable set
𝑋 is a mapping from elements of 𝑋 to [0, 1] such that

∑
𝑥 ∈𝑋 𝜇 (𝑥) = 1. The support of a distribution

is the set of elements to which it assigns nonzero probability supp(𝜇) ≜ {𝑥 ∈ 𝑋 | 𝜇 (𝑥) ≠ 0}.
The Dirac, or point-mass, distribution 𝛿𝑥 assigns probability 1 to 𝑥 and 0 to everything else. The
previously defined projections extend to distributions 𝜋𝑆 : D(Mem[𝑇]) → D(Mem[𝑆 ∩𝑇]) by
marginalizing as follows 𝜋𝑆 (𝜇) (𝜎) ≜

∑
𝜏 ∈Mem[𝑇 \𝑆]𝜇 (𝜎 ⊎ 𝜏). Distributions 𝜇, 𝜈 ∈ D(𝑋 ∪ {⊥})

are ordered as follows: 𝜇 ⊑D 𝜈 iff 𝜇 (𝑥) ≤ 𝜈 (𝑥) for all 𝑥 ∈ 𝑋 and 𝜇 (⊥) ≥ 𝜈 (⊥). This makes
⟨D(𝑋 ∪ {⊥}), ⊑D⟩ a pointed poset with bottom ⊥D = 𝛿⊥.

The Convex Powerset. A convex powerset is a set of all the possible distributions of outcomes
that could result from (nondeterministic) scheduling. For a more complete explanation, refer to
He et al. [1997] and Zilberstein et al. [2025b]. Distributions can be added and scaled pointwise:
(𝜇 + 𝜈) (𝑥) = 𝜇 (𝑥) + 𝜈 (𝑥) and (𝑝 · 𝜇) (𝑥) = 𝑝 · 𝜇 (𝑥). The convex combination of two distributions is
defined as 𝜇 ⊕𝑝 𝜈 = 𝑝 · 𝜇 + (1 − 𝑝) · 𝜈 . A set of distributions 𝑆 ⊆ D(𝑋 ∪ {⊥}) is convex if it is closed
under convex combinations: (𝜇 ⊕𝑝 𝜈) ∈ 𝑆 for every 𝜇, 𝜈 ∈ 𝑆 and 𝑝 ∈ [0, 1].

Additional requirements ensure that the domain is a DCPO, and therefore suitable for representing
iterated computations and fixed points. A set 𝑆 is up-closed if for all 𝜇, 𝜈 ∈ D(𝑋 ∪ {⊥}), if 𝜇 ∈ 𝑆 and
𝜇 ⊑D 𝜈 then 𝜈 ∈ 𝑆 . Finally, 𝑆 is Cauchy closed if it is closed in the product of Euclidean topologies
[McIver and Morgan 2005], i.e., it is a finite union of closed regions of 𝑋 ∪ {⊥}-dimensional
Euclidean space. The convex powerset is now defined as follows:

C(𝑋) ≜ {𝑆 ⊆ D(𝑋 ∪ {⊥}) | 𝑆 is nonempty, up-closed, convex, and Cauchy closed}

We include ⊥ to represent nontermination and undefined behavior such as accessing a variable that
is not scope. Nonemptiness ensures that the semantics is not vacuous, since undefined behavior is
represented by {𝛿⊥} rather than ∅. Up-closure ensures that C is a partial order in the Smyth [1978]
powerdomain, i.e., 𝑆 ⊑C 𝑇 iff ∀𝜈 ∈ 𝑇 . ∃𝜇 ∈ 𝑆. 𝜇 ⊑D 𝜈 . In fact, due to up-closure, 𝑆 ⊑C 𝑇 iff 𝑆 ⊇ 𝑇 ,
so suprema are given by set intersections. Cauchy closure ensures that the intersections of directed
sets are nonempty, and therefore ⟨C(𝑋), ⊑C⟩ is a pointed DCPO with bottom ⊥C = D(𝑋 ∪ {⊥}).
Convexity ensures that C carries a monad structure [Jacobs 2008], making the sequencing

of actions compositional. More precisely, there is a unit 𝜂 : 𝑋 → C(𝑋) and Kleisli extension
(−)† : (𝑋 → C(𝑌)) → C(𝑋) → C(𝑌), which obey the monad laws: 𝜂† = id, 𝑓 † ◦ 𝜂 = 𝑓 , and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:9

𝑓 † ◦ 𝑔† = (𝑓 † ◦ 𝑔)†. These operations are defined as follows:

𝜂 (𝑥) ≜ {𝛿𝑥 } 𝑓 † (𝑆) ≜
{ ∑︁
𝑥 ∈supp(𝜇)

𝜇 (𝑥) · 𝜈𝑥
��� 𝜇 ∈ 𝑆,∀𝑥 ∈ supp(𝜇). 𝜈𝑥 ∈ 𝑓⊥ (𝑥)

}
where 𝑓⊥ (𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝑋 and 𝑓⊥ (⊥) = ⊥C . As an overloading of notation, we will occasionally
write 𝑓 † (𝜇) to mean 𝑓 † ({𝜇}) for any 𝜇 ∈ D(𝑋). Convex combinations in C are defined as 𝑆 ⊕𝑝 𝑇 ≜
{𝜇 ⊕𝑝 𝜈 | 𝜇 ∈ 𝑆, 𝜈 ∈ 𝑇 }, and convex union is 𝑆 & 𝑇 ≜

⋃
𝑝∈[0,1] 𝑆 ⊕𝑝 𝑇 . For some finite index set

𝐼 = {𝑖1, . . . , 𝑖𝑛}, we let &𝑖∈𝐼 𝑆𝑖 ≜ 𝑆𝑖1 & · · · & 𝑆𝑖𝑛 . Finally, we extend projections to convex sets as
𝜋𝑆 (𝑇) ≜ {𝜋𝑆 (𝜇) | 𝜇 ∈ 𝑇 } where we let 𝜎 ⊎ ⊥ = ⊥.

In the next section, we will see how ‘&’ will be used to represent the choices of the scheduler when
interleaving concurrent threads. The fact that 𝑆 &𝑇 is represented as a set of convex combinations
operationally corresponds to the idea that the scheduler can use randomness to choose between 𝑆
and 𝑇 , rather than making the choice deterministically [Varacca 2002, §6.5].

3.2 Actions and Invariants
We can now use the convex powerset to give semantics to actions. The basic action evaluation is
defined below J−K

Act
: Act → Mem[𝑆] → C(Mem[𝑆]).

J𝑥 B 𝑒K
Act

(𝜎) ≜
{
𝜂 (𝜎 [𝑥 B J𝑒K

Exp
(𝜎)]) if vars(𝑒) ∪ {𝑥} ⊆ 𝑆

⊥C otherwise

J𝑥 :≈ 𝑑 (𝑒)K
Act

(𝜎) ≜
{ {∑

𝑣∈supp(𝜇) 𝜇 (𝑣) · 𝛿𝜎 [𝑥B𝑣]
}

if vars(𝑒) ∪ {𝑥} ⊆ 𝑆, 𝜇 = 𝑑 (J𝑒K
Exp

(𝜎))
⊥C otherwise

As we alluded to in Section 2, we will reason about shared state via invariants—assertions about
shared state that must be preserved by every atomic action. To model the ways in which shared
state may be modified by other threads, we define an invariant sensitive semantics, in which the
scheduler may alter shared state before executing each atomic action. This is based on semantic

invariants, finite sets of memories I ⊆fin Mem[𝑇] that represent the legal values of shared state.
We limit invariants to be finite sets in order to avoid issues arising from unbounded nondeter-

minism. Stemming from the impossibility result of Apt and Plotkin [1986], the semantics of loops
cannot be constructed in standard ways using least fixed points in the presence of unbounded
nondeterminism. In C specifically, unbounded nondeterminism breaks Cauchy closure [McIver and
Morgan 2005, Appendix B.4.2]. Finite invariants are sufficient for a wide variety of verification tasks,
such as the examples in Section 6. Looking forward, there are additional algorithms where shared
state only takes on finitely many values such as the randomized Dining Philosophers [Lehmann
and Rabin 1981] and other synchronization protocols [Rabin 1980, 1982].

The invariant-sensitive model is a family of semantic functions for actions, indexed by a semantic
invariant: J𝑎KI

Act
: Mem[𝑆] → C(Mem[𝑆]), where I ⊆fin Mem[𝑇] and 𝑇 ⊆ 𝑆 .

J𝑎KI
Act
≜ (checkI)† ◦ J𝑎K†

Act
◦ (replaceI)† ◦ checkI

check
I (𝜎) ≜

{
𝜂 (𝜎) if 𝜋𝑇 (𝜎) ∈ I
⊥C if 𝜋𝑇 (𝜎) ∉ I replace

I (𝜎) =&
𝜏 ∈I

𝜂 (𝜋𝑆\𝑇 (𝜎) ⊎ 𝜏)

In the invariant sensitive semantics, I is first checked to ensure that the current state satisfies the
invariant. Next, a new valid state (or distribution thereof) is chosen to replace the current one,
simulating a parallel thread which may alter the shared state at any step. The standard action
semantics is then executed, followed by another check to ensure that the invariant still holds. If
the invariant is ever violated, then ⊥C is returned to indicate that the execution is faulty. Letting
emp ∈ Mem[∅] be the empty memory, we remark that J𝑎K

Act
= J𝑎K{emp}

Act
, meaning that invariant

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:10 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

sensitive execution using the empty invariant is equal to normal execution. In Lemma C.2, we
prove that the invariant sensitive semantics is monotonic—i.e., J𝑎K

Act
(𝜎) ⊆ J𝑎KI

Act
(𝜎)—adding an

invariant can only add behaviors, making it an over-approximation of the program’s behavior. So,
safety properties about J𝑎KI

Act
(𝜎) immediately apply to J𝑎K

Act
(𝜎) too.

3.3 Semantics of Randomized Concurrent Programs
To give semantics to commands, we use Partially Ordered Multisets (Pomsets) with Formulae [Zilber-
stein et al. 2025a], where a partial order represents the causality between actions in the program. We
write 𝑎1 → 𝑎2 to mean that the action 𝑎1 must be scheduled before 𝑎2. Pomsets with formulae are
constructed using three composition operators, shown below, which mirror the program syntax.

J𝑎1 # 𝑎2K =
𝑎2

𝑎1

OO J𝑎1 ∥ 𝑎2K =
𝑎1 𝑎2

•
^^ @@ Jif 𝑏 then 𝑎1 else 𝑎2K =

𝑎1 𝑎2

𝑏
T

]]]]
F

AAAA

From left to right, the sequential composition 𝑎1 # 𝑎2 results in a totally ordered structure, where
𝑎1 must occur before 𝑎2. In a parallel composition 𝑎1 ∥ 𝑎2, the actions 𝑎1 and 𝑎2 are not ordered
with respect to each other, so they can be scheduled in any order. Finally, if statements result in a
guarded branch, where the two successors of the test 𝑏 both must be scheduled after 𝑏, but also
will only be scheduled if the outcome of the test matches the label on the arrow.

For the purposes of our program logic, we are interested in the linearized version of the model,
L(J−K) : Cmd → Mem[𝑆] → C(Mem[𝑆]), which maps input memories to convex sets of output
memories, representing the set of possible distributions that can arise due to different interleavings
of the parallel threads chosen by the scheduler. Linearization is defined in terms of the semantics
for actions and tests from Section 3.2. The semantics of actions J−KI

Act
is indexed by an invariant I,

and so linearization LI is also indexed by an invariant, indicating which semantic function to use
for actions. We provide the definition of L—due to Zilberstein et al. [2025a]—in Appendix A. We
omit the indexing invariant I and just write L(J−K) when I = {emp}.

When the invariant I is {emp} in L, the scheduler does not simulate any mutations performed
by other threads, since all actions are evaluated according to J𝑎K{emp}

Act
= J𝑎K

Act
, so L(J𝐶K) (𝜎)

can be viewed as the true semantics of the program. Similar to action evaluation, linearization is
also monotonic with respect to invariants (Lemma 5.3), meaning that L(J𝐶K) (𝜎) ⊆ LI (J𝐶K) (𝜎).
This guarantees that adding an invariant will only add new behaviors, so safety properties about
LI (J𝐶K) (𝜎) will automatically carry over to L(J𝐶K) (𝜎).
The linearized state transformer is ideal for modeling a program logic, where programs are

specified in terms of preconditions and postconditions. As shown by Zilberstein et al. [2025a, Lemma
5.2], linearization of non-parallel programming constructs is well-behaved; it is compositional with
respect to sequencing, if statements, and while loops, as shown by the following equational rules:

LI (JskipK) = 𝜂 LI (J𝑎K) = J𝑎KI
Act

LI (J𝐶1 #𝐶2K) = LI (J𝐶2K)† ◦ LI (J𝐶1K)

LI (Jif 𝑏 then 𝐶1 else 𝐶2K) (𝜎) =
{
LI (J𝐶1K) (𝜎) if J𝑏K

Test
(𝜎) = true

LI (J𝐶2K) (𝜎) if J𝑏K
Test

(𝜎) = false

LI (Jwhile 𝑏 do 𝐶K) = lfp

(
Ψ⟨𝑏,𝐶,I⟩

)
Ψ⟨𝑏,𝐶,I⟩ (𝑓) (𝜏) =

{
𝑓 † (LI (J𝐶K) (𝜏)) if J𝑏K

Test
(𝜏) = true

𝜂 (𝜏) if J𝑏K
Test

(𝜏) = false

In fact, the parallel-free fragment of the linearized model is equivalent to the model of Demonic
Outcome Logic [Zilberstein et al. 2025a, Theorem 5.3], and so some of the metatheory for standard
commands carries over from dOL to pcOL. However, there is no straightforward compositional

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:11

property for parallel programs, since the input-output behavior of two threads can completely
change if they are run in parallel. Building on the insights of Concurrent Separation Logic [O’Hearn
2004] and Probabilistic Separation Logics [Bao et al. 2025; Barthe et al. 2020; Li et al. 2023], we
develop compositional reasoning techniques for parallel programs in Sections 4 and 5.

4 The Model of Probabilistic Assertions
Preconditions and postconditions in Probabilistic Concurrent Outcome Logic (pcOL) are inspired
by both Demonic Outcome Logic [Zilberstein et al. 2025b] and also probabilistic separation logics
[Bao et al. 2021, 2025, 2022; Barthe et al. 2020; Li et al. 2023]. We begin by giving the syntax and
semantics for basic assertions about memories in Section 4.1. Next, we discuss background on
measure theory and probability spaces in Section 4.2. Like Lilac [Li et al. 2023] and Bluebell [Bao
et al. 2025], the model of resources uses probability spaces that only assign probabilities to certain
measurable sets of memories. Based on this, we define probabilistic assertions in Section 4.3.

4.1 Pure Assertions
We begin by describing pure (non-probabilistic) assertions, which are inspired by standard separa-
tion logic [O’Hearn et al. 2001; Reynolds 2002], but where memories range over variables rather
than heap cells, as we discussed in Section 3.2. The syntax for these assertions are shown below.

𝑃 F true | false | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ∗𝑄 | ∃𝑋 . 𝑃 | 𝑒 ↦→ 𝐸 | 𝐸1 ≍ 𝐸2 (≍ ∈ {=, ≤, <, ∈, . . .})
𝐸 F 𝑋 | 𝑣 | 𝐸1 + 𝐸2 | 𝐸1 · 𝐸2 | · · ·

In addition to expressions and variables from Section 3, assertions also depend on logical variables
𝑋,𝑌, 𝑍 ∈ LVar, which cannot be modified by programs. Logical expressions 𝐸 ∈ LExp mirror
standard ones, but operate over logical variables 𝑋 ∈ LVar rather than 𝑥 ∈ Var. Logical expression
evaluation under a context Γ : LVar → Val is written J𝐸K

LExp
(Γ) and is defined in a standard way.

Pure assertions are modelled by both a context Γ, and a memory 𝜎 ∈ Mem[𝑆], the satisfaction
relation is shown in Figure 2. The meaning of true, false, conjunction, and disjunction are standard.
The separating conjunction 𝑃 ∗ 𝑄 means that the memory 𝜎 ∈ Mem[𝑆] can be divided into
two smaller memories 𝜎1 ∈ Mem[𝑆1] and 𝜎2 ∈ Mem[𝑆2] to satisfy 𝑃 and 𝑄 individually. By the
definition of ⊎, 𝑆1 and 𝑆2 must be disjoint. Our logic is an intuitionistic [Docherty 2019] or affine

interpretation of separation logic, meaning that information about variables can be discarded; if
Γ, 𝜎 ⊨ 𝑃 , then 𝑃 need not describe the entire memory 𝜎 . As such, we only require that 𝜎1 ⊎ 𝜎2 ⊑ 𝜎 ,
which we define as 𝜎 ⊑ 𝜏 iff 𝜎 ⊎ 𝜎 ′ = 𝜏 for some 𝜎 ′, so 𝜏 could contain more variables than 𝜎 .

We also include a points-to predicate 𝑒 ↦→ 𝐸, although it has a slightly different meaning than
points-to predicates in the heap model. Here, 𝑒 does not describe a pointer, but can rather be any
concrete expression, and 𝑒 ↦→ 𝐸 simply means that the 𝑒 evaluates to the same value under 𝜎 as 𝐸
does under Γ, allowing us to connect the concrete and logical state. Finally, 𝐸1 ≍ 𝐸2 allows us to
make assertions about logical state, where ≍ ∈ {=, ≤, ∈, · · · } ranges over similar comparators to the
ones in Section 3. We define the following notation to obtain the set of all memories 𝜎 ∈ Mem[𝑆]
that satisfy an assertion 𝑃 , we omit the superscript when we wish to minimize 𝑆 , so that the
memories contain only the free variables of 𝑃 :

L𝑃M𝑆Γ ≜ {𝜎 ∈ Mem[𝑆] | Γ, 𝜎 ⊨ 𝑃} L𝑃MΓ ≜ L𝑃Mvars(𝑃)Γ

Finally, we provide syntactic sugar for restricting the domain of existential quantifiers, asserting
membership in a set, and asserting that the resources of 𝑒 are owned by the current thread.

∃𝑋 ∈ 𝐸. 𝑃 ≜ ∃𝑋 . 𝑃 ∗𝑋 ∈ 𝐸 𝑒 ∈ 𝐸 ≜ ∃𝑋 ∈ 𝐸. 𝑒 ↦→ 𝑋 own(𝑒1, . . . , 𝑒𝑛) ≜∗𝑛

𝑖=1
∃𝑋𝑖 . 𝑒𝑖 ↦→ 𝑋𝑖

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:12 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Γ, 𝜎 ⊨ true always
Γ, 𝜎 ⊨ false never
Γ, 𝜎 ⊨ 𝑃 ∧𝑄 iff Γ, 𝜎 ⊨ 𝑃 and Γ, 𝜎 ⊨ 𝑄
Γ, 𝜎 ⊨ 𝑃 ∨𝑄 iff Γ, 𝜎 ⊨ 𝑃 or Γ, 𝜎 ⊨ 𝑄
Γ, 𝜎 ⊨ 𝑃 ∗𝑄 iff ∃𝜎1, 𝜎2 . 𝜎1 ⊎ 𝜎2 ⊑ 𝜎 and Γ, 𝜎1 ⊨ 𝑃 and Γ, 𝜎2 ⊨ 𝑄
Γ, 𝜎 ⊨ ∃𝑋 . 𝑃 iff Γ [𝑋 B 𝑣], 𝜎 ⊨ 𝑃 for some 𝑣 ∈ Val

Γ, 𝜎 ⊨ 𝑒 ↦→ 𝐸 iff J𝑒K
Exp

(𝜎) = J𝐸K
LExp

(Γ)
Γ, 𝜎 ⊨ 𝐸1 ≍ 𝐸2 iff J𝐸1K (Γ) ≍ J𝐸2K (Γ)

Fig. 2. Satisfaction relation for pure assertions.

4.2 Measure Theory and Probability Spaces
We now introduce basic definitions from measure theory needed to define probabilistic separation.
For a more thorough background, refer to Royden [1968] or Fremlin [2001]. A probability space
P = ⟨Ω, F , 𝜇⟩ consists of a sample space Ω, an event space F , and a probability measure 𝜇. For our
purposes, the sample space Ω ⊆ Mem[𝑆] will consist of memories over a particular set of variables 𝑆 .
The event space F ⊆ 2Ω gives the events—i.e., sets of memories—which are measurable. It must be a
𝜎-algebra, meaning that it contains ∅ and Ω, and it is closed under complementation and countable
unions and intersections. The probability measure 𝜇 : F → [0, 1] assigns probabilities to the events
in F , and must obey 𝜇 (∅) = 0, 𝜇 (Ω) = 1, and countable additivity: 𝜇 (⊎𝑖∈𝐼 𝐴𝑖) =

∑
𝑖∈𝐼 𝜇 (𝐴𝑖) where

𝐼 is a countable index set and all the 𝐴𝑖 sets are pairwise disjoint. For a probability space P, we use
ΩP , FP , and 𝜇P to refer to its respective parts.
We require probability spaces to be complete, meaning that they contain all events of measure

zero. More formally, P is complete if for any 𝐴 ∈ FP such that 𝜇P (𝐴) = 0, then 𝐵 ∈ FP for all
𝐵 ⊆ 𝐴 [Royden 1968]. We will often also require the sample space to be the full set of memories
Mem[𝑆] for some 𝑆 . A probability space P with ΩP ⊆ Mem[𝑆] can be extended as follows:
ext(P) ≜ ⟨Mem[𝑆], F , 𝜇⟩ where F ≜ {𝐴 ⊆ Mem[𝑆] | 𝐴 ∩ ΩP ∈ FP} and 𝜇 (𝐴) ≜ 𝜇P (𝐴 ∩ ΩP).

We now define a preorder on probability spaces. As is typical in intuitionistic logic, this preorder
P ⪯ Q will indicate when Q contains more information than P. The information can be gained
across two dimensions: by expanding the memory footprint, or by making the event space more
granular. Formally, for P and Q such that ΩP ⊆ Mem[𝑆], we define P ⪯ Q as follows:

P ⪯ Q iff ΩP ⊆ 𝜋𝑆 (ΩQ)
and FP ⊆ {𝜋𝑆 (𝐴) | 𝐴 ∈ FQ}

and ∀𝐴 ∈ FP . 𝜇P (𝐴) = 𝜇Q
(⋃

{𝐵 ∈ FQ | 𝜋𝑆 (𝐵) = 𝐴}
)

So, P ⪯ Q iff P contains smaller sample and event spaces, but P and Q agree on the probability
of events whose projections are measurable in P. Any proper distribution 𝜇 ∈ D(Mem[𝑈]), can
be used as a probability space where Ω𝜇 = Mem[𝑈], F𝜇 = 2Mem[𝑈] is the greatest 𝜎-algebra
on Mem[𝑈], and 𝜇𝜇 (𝐴) =

∑
𝜎 ∈𝐴 𝜇 (𝜎). Projections of probability spaces are defined as 𝜋𝑈 (P) =

⟨Ω, F , 𝜇⟩, where Ω = 𝜋𝑈 (ΩP), F = {𝜋𝑈 (𝐴) | 𝐴 ∈ FP}, and 𝜇 (𝐴) = 𝜇P (𝐴 ∗ 𝜋Var\𝑈 (ΩP)).
We define two more operations on probability spaces, which will help us to give semantics

to the separating conjunction and outcome conjunction in Section 4.3. The first operation is the
product space P ⊗ Q, which is defined when ΩP ⊆ Mem[𝑆], ΩQ ⊆ Mem[𝑇], and 𝑆 ∩𝑇 = ∅. The
sample space ΩP⊗Q = ΩP ∗ ΩQ is the set of all joined memories in the two spaces, the event space
FP⊗Q is the smallest 𝜎-algebra containing {𝐴 ∗ 𝐵 | 𝐴 ∈ FP , 𝐵 ∈ FQ}, and the measure has the
property that 𝜇P⊗Q (𝐴 ∗ 𝐵) = 𝜇P (𝐴) · 𝜇Q (𝐵) for any 𝐴 ∈ FP and 𝐵 ∈ FQ . The full construction
uses Carathéodory’s method, and is given in Chapter 25 of Fremlin [2001].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:13

Γ,P ⊨ ⊤ always

Γ,P ⊨ ⊥ never

Γ,P ⊨ 𝜑 ∧𝜓 iff Γ,P ⊨ 𝜑 and Γ,P ⊨ 𝜓

Γ,P ⊨ 𝜑 ∨𝜓 iff Γ,P ⊨ 𝜑 or Γ,P ⊨ 𝜓

Γ,P ⊨ ∃𝑋 . 𝜑 iff Γ[𝑋 B 𝑣],P ⊨ 𝜑 for some 𝑣 ∈ Val

Γ,P ⊨
⊕

𝑋∼𝑑 (𝐸) 𝜑 iff ∀𝑣 . Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 and
⊕

𝑣∼𝜇 P𝑣 ⪯ P for some (P𝑣)𝑣∈supp(𝜇)
where 𝜇 = 𝑑 (J𝐸K

LExp
(Γ))

Γ,P ⊨&𝑋 ∈𝐸 𝜑 iff Γ,P ⊨
⊕

𝑋∼𝜇 𝜑 for some 𝜇 ∈ D(J𝐸K
LExp

(Γ))

Γ,P ⊨ 𝜑 ∗𝑚 𝜓 iff P ′ ⪯ P and Γ,P1 ⊨ 𝜑 and Γ,P2 ⊨ 𝜓 for some P1,P2, and P ′ ∈ P1 ⋄𝑚 P2

Γ,P ⊨ ⌈𝑃⌉ iff L𝑃M𝑆Γ ∈ FP and 𝜇P
(
L𝑃M𝑆Γ

)
= 1

Fig. 3. The satisfaction relation, where Γ : LVar → Var is a logical context and P = ⟨Mem[𝑆], FP , 𝜇P⟩ is a
complete probability space. All the existentially quantified probability spaces are also complete.

Note that this definition is more similar to the initial formulation of PSL [Barthe et al. 2020]
(albeit, in a probability space), rather than Lilac and Bluebell, which rely on a theorem stating
that independent products are unique [Li et al. 2023, Lemma 2.3]. We use the explicit product
construction in order to guarantee that each variable can only occur on one side of the ∗, making
mutation rules simpler. Lilac does not allow mutable state, and so mutation is not a factor. On the
other hand, Bluebell handles mutation by explicitly tracking permissions, but we found the product
construction to be simpler to use than the permission approach.

The next operation is a direct sum for combining disjoint probability spaces [Fremlin 2001, 214L].
More precisely, for some countable index set 𝐼 , discrete distribution 𝜈 ∈ D(𝐼), and probability
spaces P𝑖 = ⟨Ω𝑖 , F𝑖 , 𝜇𝑖⟩ such that the Ω𝑖 are pairwise disjoint, we define the direct sum as:⊕
𝑖∼𝜈

P𝑖 ≜ ⟨⊎
𝑖∈𝐼

Ω𝑖 , F , 𝜇⟩ F ≜ {𝐴 ⊆ Ω | ∀𝑖 ∈ 𝐼 . 𝐴 ∩ Ω𝑖 ∈ F𝑖 } 𝜇 (𝐴) ≜
∑︁
𝑖∈𝐼

𝜈 (𝑖)· 𝜇𝑖 (𝐴 ∩ Ω𝑖)

The sample space is the union of all the individual sample spaces, the measurable events are those
events whose projections into each Ω𝑖 are measurable according to F𝑖 , and the probability measure
is given by a convex sum. The direct sum will be used to give semantics to our outcome conjunction.
Finally, we remark that independent products distribute over direct sums (Lemma B.3):(⊕

𝑖∼𝜈 P𝑖
)
⊗ Q =

⊕
𝑖∼𝜈 (P𝑖 ⊗ Q)

4.3 Probabilistic Assertions
We now define probabilistic assertions, which will serve as pre- and postconditions in pcOL triples.
The syntax is shown below and the semantics is in Figure 3.

𝜑 F ⊤ | ⊥ | 𝜑 ∧𝜓 | 𝜑 ∨𝜓 | ∃𝑋 . 𝜑 |
⊕
𝑋∼𝑑 (𝐸)

𝜑 |&
𝑋 ∈𝐸

𝜑 | 𝜑 ∗𝑚 𝜓 | ⌈𝑃⌉ (𝑚 ∈ {s,w})

The semantics for probabilistic assertions is based on a context Γ : LVar → Val, and a complete
probability space P = ⟨Mem[𝑆], FP, 𝜇P⟩. The ⊤, ⊥, conjunction, disjunction, and existential
quantification assertions have the usual semantics.

Next, we have two kinds of outcome conjunctions, adapted from Demonic OL (dOL) [Zilberstein
et al. 2025b], but with a new measure-theoretic semantics based on direct sums. The standard
outcome conjunction

⊕
𝑋∼𝑑 (𝐸) 𝜑 allocates a new logical variable 𝑋 , which is distributed according

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:14 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

to 𝜇 = 𝑑 (J𝐸K
LExp

(Γ)), and can be referenced in 𝜑 . The probability space P must be a refinement of
the direct sum of (P𝑣)𝑣∈supp(𝜇) . For every 𝑣 , we then also require that Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 , so 𝜑
holds in the sub-probability space P𝑣 with the value of 𝑋 in Γ updated accordingly. Essentially, the
outcome conjunction splits the sample space Mem[𝑆] according to the support of 𝑑 (𝐸).
The nondeterministic outcome conjunction &𝑋 ∈𝐸 is similar, but here only the support of the

distribution is specified (as 𝐸). This connective is usedwhen disjunctions or existential quantification
would be used in a purely nondeterministic logic. For example, as a result of running the concurrent
program 𝑥 B 1 ∥ 𝑥 B 2, it is not correct to say that ⌈𝑥 ↦→ 1⌉ ∨ ⌈𝑥 ↦→ 2⌉ since the probabilistic
scheduler could choose to make 𝑥 equal to 1 with some probability 0 < 𝑝 < 1. On the other hand
&𝑋 ∈{1,2} ⌈𝑥 ↦→ 𝑋 ⌉ means that 𝑥 takes on value 1 with some (existentially quantified) probability,
matching the convex powerset interpretation of nondeterminism.

Next, we have two variations of the separating conjunction, parameterized by a mode𝑚 ∈ {s,w}.
Strong separation (mode s) is the interpretation of separation that requires probabilistic independence
and separation of variables, whereas weak separation (mode w) does not require independence, and
only separates the variables. As we explained in Section 2, weak separation is needed when case
analysis over nondeterministic shared state leaves us in a scenario where strong frame preservation
does not hold. Semantically, the difference is captured by the combinator operation ⋄𝑚 , with strong
separation using an independent product and weak separation simply requiring that the marginal
probability spaces are correct.

P1 ⋄s P2 ≜ {P1 ⊗ P2} P1 ⋄w P2 ≜ {P | P1 = 𝜋𝑈 (P),P2 = 𝜋𝑉 (P)}
where ΩP1 = Mem[𝑈] and ΩP2 = Mem[𝑉] and 𝑈 ∩𝑉 = ∅. Clearly, P1 ⋄s P2 ⊆ P1 ⋄w P2, which
immediately gives us that 𝜑 ∗s 𝜓 ⇒ 𝜑 ∗w𝜓 . Strong separation will be used more commonly, so we
will drop the subscript there and write ∗ to mean ∗s.

Finally, the almost sure assertion ⌈𝑃⌉ states that the pure assertion 𝑃 , as described in Section 4.1,
occurs with probability 1. We also define syntactic sugar below for a binary outcome conjunction
⊕𝐸 , a bounded binary outcome conjunction ⊕≥𝐸 , and expressions distributed according to some
distribution 𝑒 ∼ 𝑑 (𝐸).

𝜑 ⊕𝐸 𝜓 ≜
⊕

𝑋∼Ber(𝐸)
(⌈𝑋 = 1⌉ ∗ 𝜑) ∨ (⌈𝑋 = 0⌉ ∗𝜓) 𝑒 ∼ 𝑑 (𝐸) ≜

⊕
𝑋∼𝑑 (𝐸)

⌈𝑒 ↦→ 𝑋 ⌉

𝜑 ⊕≥𝐸 𝜓 ≜ ∃𝑋 . ⌈𝑋 ≥ 𝐸⌉ ∗ (𝜑 ⊕𝑋 𝜓)

4.4 Convex and Precise Assertions and Entailment Laws
As we mentioned in Section 2, the parallel composition rule of pcOL requires the postcondition
from each thread to be precise, so that any correlations introduced via concurrent scheduling are
not measurable. We now define precision formally in terms of probability spaces.

Definition 4.1 (Precision). An assertion 𝜑 is precise if for any Γ under which 𝜑 is satisfiable there is
a unique smallest probability space P such that Γ,P ⊨ 𝜑 and if Γ,P ′ ⊨ 𝜑 , then P ⪯ P ′. We write
precise(𝜑1, . . . , 𝜑𝑛) to mean precise(𝜑1) ∧ · · · ∧ precise(𝜑𝑛).

Below, we give a few rules to determine that assertions are precise.

precise(⌈𝑃⌉)
precise(𝜑,𝜓)
precise(𝜑 ∗𝜓)

precise(𝜑) 𝜑 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉
precise(

⊕
𝑋∼𝑑 (𝐸) 𝜑)

Almost sure assertions are always precise, since the smallest model is the onewhere L𝑃MΓ occurs with
probability 1, and is the smallest measurable set with nonzero probability. Separating conjunctions
are precise if their subcomponents are, which follows frommonotonicity of the independent product

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:15

𝑃 ⊢ 𝑄
⌈𝑃⌉ ⊢ ⌈𝑄⌉

𝜑 ⊢ 𝜑 ′ 𝜓 ⊢ 𝜓 ′

𝜑 ∗𝑚 𝜓 ⊢ 𝜑 ′ ∗𝑚 𝜓 ′ 𝜑 ∗𝜓 ⊢ 𝜑 ∗w𝜓 ⌈𝑃 ∗𝑄⌉ ⊣⊢ ⌈𝑃⌉ ∗𝑚 ⌈𝑄⌉ 𝜑 ∗ ⌈𝑃⌉ ⊣⊢ 𝜑 ∗w ⌈𝑃⌉

⊕
𝑋∼𝑑 (𝐸) 𝜑 ⊢&𝑋 ∈supp(𝑑 (𝐸)) 𝜑 𝜑 [𝐸/𝑋] ⊣⊢&𝑋 ∈{𝐸 } 𝜑 ⌈𝐸 ⊆ 𝐸 ′⌉ ∗&𝑋 ∈𝐸 𝜑 ⊢&𝑋 ∈𝐸′ 𝜑

𝜑 ⊢ 𝜓⊕
𝑋∼𝑑 (𝐸) 𝜑 ⊢

⊕
𝑋∼𝑑 (𝐸) 𝜓

𝑌 ∉ fv(𝜑)⊕
𝑋∼𝑑 (𝐸) 𝜑 ⊢

⊕
𝑌∼𝑑 (𝐸) 𝜑 [𝑌/𝑋]

𝑋 ∉ fv(𝜓)
(
⊕

𝑋∼𝑑 (𝐸) 𝜑) ∗𝜓 ⊢
⊕

𝑋∼𝑑 (𝐸) (𝜑 ∗𝜓)

𝑋 ∉ fv(𝜓) precise(𝜓)⊕
𝑋∼𝑑 (𝐸) (𝜑 ∗𝜓) ⊢ (

⊕
𝑋∼𝑑 (𝐸) 𝜑) ∗𝜓

𝑋 ∉ fv(𝜓) convex(𝜓)⊕
𝑋∼𝑑 (𝐸) (𝜑 ∗w𝜓) ⊢ (

⊕
𝑋∼𝑑 (𝐸) 𝜑) ∗w𝜓

𝑋 ∉ fv(𝜑) convex(𝜑)⊕
𝑋∼𝑑 (𝐸) 𝜑 ⊢ 𝜑

Fig. 4. Selected entailment laws, where 𝜑 [𝐸/𝑋] denotes a syntactic substitution of 𝐸 for 𝑋 in 𝜑 . Recall that

𝑚 ∈ {s,w} and when𝑚 is omitted, ∗ = ∗s.

(Lemma B.4). Outcome conjunctions are precise if the inner assertion is precise, and implies that
⌈𝑒 ↦→ 𝑋 ⌉ for some program expression 𝑒 , which witnesses how to partition the sample space for
the direct sum. Without this partitioning side condition, the result is not necessarily precise. For
example, ⌈𝑥 ↦→ 1⌉ ⊕ 1

2
⌈𝑥 ∈ {0, 1}⌉ is not precise, since it is not possible to determine the probability

of the event 𝑥 = 1, despite it being measurable in one of the sub-probability spaces. However,
⌈𝑥 ↦→ 1 ∗ 𝑦 ↦→ 0⌉ ⊕ 1

2
⌈𝑥 ∈ {0, 1} ∗ 𝑦 ↦→ 1⌉ is precise, since 𝑦 witnesses the partition.

Weak separating conjunctions ∗w and nondeterministic outcome conjunctions & are not precise,
as there are generally many different minimal probability spaces that satisfy them, assigning differ-
ent probabilities to each event. However, those assertions do obey convexity, a weaker condition,
which intuitively means that 𝜑 ⊕𝑝 𝜑 ⇒ 𝜑 . We give the formal definition below.

Definition 4.2 (Convex Assertions). convex(𝜑) iff for all Γ under which 𝜑 is satisfiable, there exist Ω,
F , and a convex set 𝑆 of probability measures on F such that:

∀P . Γ,P ⊨ 𝜑 iff ∃𝜇 ∈ 𝑆. ⟨Ω, F , 𝜇⟩ ⪯ P

Clearly any precise assertion is convex, since the set of measures 𝑆 is just a singleton in that
case. So, in addition to analogues of the precision rules above, we also have the following:

convex(𝜑,𝜓)
convex(𝜑 ∗w𝜓)

convex(𝜑,𝜓) 𝜑⇒⌈𝑒 ↦→1⌉
𝜓⇒⌈𝑒 ↦→0⌉

convex(𝜑 ⊕≥𝑝 𝜓)
convex(𝜑) 𝜑 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉

convex(&𝑋 ∈𝐸 𝜑)

Precision and convexity are useful for formulating entailment laws, which we provide in Figure 4.
The first row consists of rules for the interaction between separating conjunctions and pure asser-
tions. Weakening can be performed underneath both pure assertions and separating conjunctions. In
addition, strong separation implies weak separation, and weak and strong separation are equivalent
when one of the conjuncts is a pure assertion (since independence is trivial in that case).

In the second row, we give some rules pertaining to &. An outcome conjunction
⊕

𝑋∼𝑑 (𝐸) can
be weakened to a & over supp(𝑑 (𝐸)), where supp(Ber (𝐸)) ≜ {0, 1} and supp(unif (𝐸)) ≜ 𝐸. A
&𝑋 ∈{𝐸 } 𝜑 over a singleton set is the same as substituting 𝐸 for 𝑋 in 𝜑 . Finally, the bounds of a &
can always be expanded, similar to how 𝑃 ⇒ 𝑃 ∨𝑄 in classical logic.

The final two rows pertain to outcome conjunctions, and each rule has a corresponding one (not
shown) with & instead of

⊕
. Weakening can be performed inside of an outcome conjunction, and

bound variables can be 𝛼-renamed as long as the new variable name is fresh. As in Bluebell, the
(strong) separating conjunction distributes over the outcome conjunction, so that assertions can be

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:16 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

moved inside of an outcome conjunction, but this rule is invalid if ∗ is replaced by ∗w, due to the
possibility of correlations between𝜓 and 𝑑 (𝐸).

Factoring assertions out of an outcome conjunction is only supported in Bluebell for almost-sure
assertions ⌈𝑃⌉, whereas in pcOL, it can be performed for any precise assertion, due to our semantics
based on a direct sum. We saw at the end of Section 4.2 that independent products (which model
separating conjunctions) distribute over direct sums (which model outcome conjunctions), however
the corresponding entailment

⊕
𝑋∼𝑑 (𝐸) (𝜑 ∗𝜓) ⊢ (

⊕
𝑋∼𝑑 (𝐸) 𝜑) ∗𝜓 requires that𝜓 is satisfied by

the same model in each case, which can be guaranteed by forcing𝜓 to be precise. In fact, this exact
scenario also arose in the RCond and RCase rules of PSL, where an analogous concept called
supported was used to ensure soundness [Barthe et al. 2020]. Replacing strong separation with weak
separation, we only need𝜓 to be convex—not precise—to factor it out of the outcome conjunction,
since independence is not implied. Finally, outcome conjunctions over convex assertions that do
not depend on the bound variable 𝑋 can be collapsed.

5 Probabilistic Concurrent Outcome Logic
Probabilistic Concurrent Outcome Logic (pcOL) specifications are given as triples of the form
𝐼 ⊨𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩, where 𝜑 and𝜓 are probabilistic assertions (Section 4.3), 𝐶 ∈ Cmd (Figure 1), 𝐼 is a
basic assertion, and𝑚 ∈ {s,w}. Roughly speaking, the meaning of these triples is that if the states
are initially distributed according to 𝜑 , then any invariant sensitive execution of 𝐶 with invariant 𝐼
will satisfy𝜓 . The mode𝑚 dictates what kind of frame preservation property the triple has.

Recall from Section 3.3 that invariant sensitive execution requires the invariant states to be
drawn from a finite set. For this reason, 𝐼 must be a finitary basic assertion; formally, finitary(𝐼) iff
L𝐼MΓ is a finite set for any context Γ. The formal validity definition of pcOL triples is below.

Definition 5.1 (pcOL Triples). The pcOL triple 𝐼 ⊨𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ is valid iff for all Γ : LVar → Val, 𝜇,
and probability spaces P, P𝐹 , and P ′ ∈ P ⋄𝑚 P𝐹 such that P ′ ⪯ 𝜇 and Γ,P ⊨ 𝜑 ∗ ⌈𝐼⌉, then:

∀𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇). ∃Q . ∃Q ′ ∈ Q ⋄𝑚 P𝐹 . Q ′ ⪯ 𝜈 and Γ,Q ⊨ 𝜓 ∗ ⌈𝐼⌉

As inmany separation logics, frame preservation is built into the semantics of the triples [Birkedal
and Yang 2007; Jung et al. 2018]; in addition to quantifying over a probability space P to satisfy 𝜑 ,
we also quantify over a probability space P𝐹 , which describes unused resources and is preserved
by the program execution. As with the separating conjunction, we will omit the𝑚 when𝑚 = s. In
addition, since we defined probability spaces to operate over memoriesMem[𝑆], without ⊥, our
triples are fault avoiding, which is also a standard choice for separation logics [Yang and O’Hearn
2002]. That is, if 𝐼 ⊨ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ is valid, then we know that 𝐶 will not encounter a memory fault
starting from a distribution satisfying 𝜑 .
These triples also imply almost sure termination, or total correctness. We chose to pursue total

correctness, as it aligns with probabilistic liveness properties that we are interested in (e.g., see
Section 6.4). In the probabilistic context, there is no single natural notion of partial correctness, and
nontermination breaks parallel composition; composing a thread with a nonterminating thread
alters the behavior of the first thread even without shared state.
In the remainder of this section, we will present inference rules for deriving pcOL triples. We

write 𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ to mean that a triple is derivable using these rules. All of the rules are sound
with respect to Definition 5.1.

Theorem 5.2 (Soundness). For all of the rules in Figures 5 to 8, if 𝐼 ⊢𝑚 ⟨𝜑⟩𝐶 ⟨𝜓⟩ then 𝐼 ⊨𝑚 ⟨𝜑⟩𝐶 ⟨𝜓⟩.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:17

𝐼 ⊢𝑚 ⟨𝜑⟩ skip ⟨𝜑⟩
Skip

𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶1 ⟨𝜗⟩ 𝐼 ⊢𝑚 ⟨𝜗⟩ 𝐶2 ⟨𝜓⟩

𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶1 #𝐶2 ⟨𝜓⟩
Seq

𝜑 ⇒ ⌈𝑏 ↦→ true⌉ 𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶1 ⟨𝜓⟩

𝐼 ⊢𝑚 ⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
IfT

𝜑 ⇒ ⌈𝑏 ↦→ false⌉ 𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶2 ⟨𝜓⟩

𝐼 ⊢𝑚 ⟨𝜑⟩ if 𝑏 then 𝐶1 else 𝐶2 ⟨𝜓⟩
IfF

𝜑 ⇒ ⌈𝑒 ↦→ 𝐸⌉ ∧ (𝜓 ∗ ⌈own(𝑥)⌉)
𝐼 ⊢𝑚 ⟨𝜑⟩ 𝑥 B 𝑒 ⟨𝜓 ∗ ⌈𝑥 ↦→ 𝐸⌉⟩

Assign
𝜑 ⇒ ⌈𝑒 ↦→ 𝐸⌉ ∧ (𝜓 ∗ ⌈own(𝑥)⌉)
𝐼 ⊢𝑚 ⟨𝜑⟩ 𝑥 :≈ 𝑑 (𝑒) ⟨𝜓 ∗ (𝑥 ∼ 𝑑 (𝐸)⟩

Samp

Fig. 5. Rules for Sequential Commands

5.1 Rules for Sequential Commands
The rules for sequential commands are given in Figure 5. Although the rules appear like the standard
ones for Hoare-like logics [Hoare 1969] and separation logic [O’Hearn et al. 2001; Reynolds 2002],
they rely on the properties of linearization shown in Section 3.3. In Skip, the precondition is
preserved by a no-op, and Seq is the standard rule for sequential composition.
The rules for if statements are split into two cases, for when the precondition implies that the

true or false branch will be taken, respectively, similar to standard Outcome Logic [Zilberstein
2025; Zilberstein et al. 2025b]. These rules can be combined into a single rule for analyzing both
branches using the various split rules, which we will introduce in Section 5.3.

Finally, we give rules for atomic actions. Assign requires the precondition to determine that the
program expression 𝑒 evaluates to the logical expression 𝐸, and that the variable 𝑥 , which is being
assigned, is owned by the current thread and is disjoint from the assertion𝜓 . This structure gives
the flexibility to apply the rule both when 𝜑 = 𝜓 ∗ ⌈𝑥 ↦→ 𝐸 ′⌉ and 𝜑 = 𝜓 ∗ ⌈own(𝑥)⌉. Samp has a
similar requirement, but ultimately concludes that 𝑥 is distributed according to 𝑑 (𝐸) rather than
having a deterministic value.

5.2 Concurrent Separation Logic Rules
Next, in Figure 6, we have a variety of rules inspired by Concurrent Separation Logic (CSL) [Brookes
2004; O’Hearn 2004; Vafeiadis 2011]. First is the Par rule for parallel composition. Although Par
looks like the analogous rule from CSL—aside from the condition about precision—the soundness of
the rule is substantially more complicated due to the probabilistic interpretation of the separating
conjunction. It is not hard to imagine situations where the scheduler can introduce correlation
between variables. For example, in the following program (which we previously saw in Section 2.3),
the scheduler could choose to schedule the 𝑦 B 1 action after the sampling operation is resolved,
meaning that it could make 𝑥 = 𝑦 with probability 1, a clear correlation.

𝑥 :≈ Ber
(1
2
)
𝑦 B 0 ∥ 𝑦 B 1

As such, the outcomes of the two threads will not be independent after being run concurrently, but
rather only observably independent in some restricted event space. By requiring the postconditions
of each thread to be precise, we know that the probability of each measurable event must be
specified exactly, so that the nondeterministic behavior of the scheduler will not be measurable
(Lemmas C.5 and C.6). In the case of the program above, the strongest precise assertion about 𝑦 is
⌈𝑦 ∈ {0, 1}⌉, that 𝑦 is always either 0 or 1, and

(
𝑥 ∼ Ber

(1
2
))
∗ ⌈𝑦 ∈ {0, 1}⌉ is a valid postcondition

for the program, since almost sure assertions ⌈𝑃⌉ are trivially independent from all other assertions.
More formally, the soundness proof uses the fact that 𝜓1 and 𝜓2 are precise to obtain unique

minimal probability spaces Q1 and Q2 satisfying them. We then show that for any distribution 𝜈
resulting from running𝐶1 ∥ 𝐶2, and for any events 𝐵1 ∈ FQ1 and 𝐵2 ∈ FQ2 , it must be the case that

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:18 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

𝐼 ⊢ ⟨𝜑1⟩ 𝐶1 ⟨𝜓1⟩ 𝐼 ⊢ ⟨𝜑2⟩ 𝐶2 ⟨𝜓2⟩ precise(𝜓1,𝜓2)
𝐼 ⊢ ⟨𝜑1 ∗ 𝜑2⟩ 𝐶1 ∥ 𝐶2 ⟨𝜓1 ∗𝜓2⟩

Par

𝐽 ⊢𝑚 ⟨𝜑 ∗ ⌈𝐼⌉⟩ 𝑎 ⟨𝜓 ∗ ⌈𝐼⌉⟩
𝐼 ∗ 𝐽 ⊢𝑚 ⟨𝜑⟩ 𝑎 ⟨𝜓⟩

Atom
𝐼 ∗ 𝐽 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ finitary(𝐼)
𝐽 ⊢𝑚 ⟨𝜑 ∗ ⌈𝐼⌉⟩ 𝐶 ⟨𝜓 ∗ ⌈𝐼⌉⟩

Share

𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

𝐼 ⊢𝑚 ⟨𝜑 ∗𝑚 𝜗⟩ 𝐶 ⟨𝜓 ∗𝑚 𝜗⟩
Frame

𝐼 ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

𝐼 ⊢w ⟨𝜑⟩ 𝐶 ⟨𝜓⟩
Weaken

𝐼 ⊢w ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ precise(𝜓)
𝐼 ⊢ ⟨𝜑⟩ 𝐶 ⟨𝜓⟩

Strengthen

Fig. 6. Concurrent Separation Logic Rules

𝜈 (𝐵1 ∗ 𝐵2) = 𝜇Q1 (𝐵1) · 𝜇Q2 (𝐵2). Since 𝐶1 and 𝐶2 may not terminate in a bounded amount of time,
this probability only converges to the desired product in the limit.
The next two rules are for interacting with invariants. The Atom rule opens the invariant by

moving it into the triple as an almost sure assertion, as long as the program is a single atomic action
𝑎. The fact that that the program executes atomically, and that 𝐼 is true before and after execution,
means that 𝐼 is true at every step. Next, the Share rule allows a finitary almost sure assertion 𝐼
to be moved into the invariant. The soundness of this rule relies on the invariant monotonicity
property that we discussed in Section 3.3.

Lemma 5.3 (Invariant Monotonicity). For any 𝑈 ,𝑉 ,𝑊 ⊆ Var and 𝜎 ∈ Mem[𝑊] such that

𝑈 ∩𝑉 = ∅, I ⊆ Mem[𝑈], J ⊆ Mem[𝑉], and𝑈 ∪𝑉 ⊆𝑊 :

LI∗J (𝜶) (𝜎) ⊑C LI (𝜶) (𝜎)

Recall that ⊑C is equivalent to ⊇, so invariant monotonicity states that expanding the invariant
(via ∗) can only add new behaviors to the set of outcomes. Lemma 5.3 follows from the more general
monotonicity property of linearization [Zilberstein et al. 2025a].

The Frame rule allows a local specification to be lifted into a larger memory footprint [Yang and
O’Hearn 2002]. The type of separation used depends on the mode𝑚 of the triple. If𝑚 = s, then the
frame 𝜗 not only represents a disjoint set of physical resources, but also that those resources are
distributed independently from the information about the present program. A strong triple can
always be weakened to a weak triple using theWeaken rule. A weak triple can be strengthened—via
Strengthen—as long as the postcondition is precise. Just as with the Par rule, precision here
ensures that the scheduler cannot force any correlation between the postcondition and the frame.

5.3 Structural and Outcome Splitting Rules
Additional structural rules are given in Figure 7. The first four splitting rules enable pointwise
reasoning over outcome conjunctions, similar to those of Demonic Outcome Logic [Zilberstein
et al. 2025b]. All these rules require that the logical variable 𝑋 , bound by the outcome conjunction,
does not appear free in the invariant 𝐼 , since 𝑋 is unbound in the premise of the rule. If 𝑋 is free in
𝐼 , then the rule can be applied after 𝛼-renaming 𝑋 in the outcome conjunction (see Figure 4).

The first rule, Split1, requires that𝜓 dictates the partition of the probability spaces in order to
construct a final direct sum. This is done in a similar fashion to rules for establishing precision
that we saw in Section 4.3—by requiring that𝜓 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉ for some expression 𝑒 . Since 𝑋 takes
on distinct values in each case of the direct sum, then 𝑒 ↦→ 𝑋 witnesses that the sample space can
be partitioned. If𝜓 does not witness a partition, then the Split2 rule can instead be used, which
requires𝜓 to be convex and not dependent on 𝑋 .
We now demonstrate these two modes of use. Below, 𝑥 is initially distributed according to

some distribution 𝑑 (𝐸), and then it is incremented. The sample space is still partitioned after the

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:19

𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ 𝜓 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉ 𝑋 ∉ fv(𝐼)

𝐼 ⊢𝑚 ⟨
⊕

𝑋∼𝑑 (𝐸)
𝜑⟩ 𝐶 ⟨

⊕
𝑋∼𝑑 (𝐸)

𝜓⟩
Split1

𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ 𝜓 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉ 𝑋 ∉ fv(𝐼)

𝐼 ⊢𝑚 ⟨&
𝑋 ∈𝐸

𝜑⟩ 𝐶 ⟨&
𝑋 ∈𝐸

𝜓⟩
NSplit1

𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ convex(𝜓) 𝑋 ∉ fv(𝐼 ,𝜓)

𝐼 ⊢𝑚 ⟨
⊕

𝑋∼𝑑 (𝐸)
𝜑⟩ 𝐶 ⟨𝜓⟩

Split2
𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ convex(𝜓) 𝑋 ∉ fv(𝐼 ,𝜓)

𝐼 ⊢𝑚 ⟨&
𝑋 ∈𝐸

𝜑⟩ 𝐶 ⟨𝜓⟩
NSplit2

𝐼 ⊢w ⟨&𝑋 ∈𝐸 ⌈𝑃⌉⟩ 𝐶 ⟨𝜓⟩ ⌈𝑃⌉ ⇒ ⌈𝑒 ↦→ 𝑋 ⌉
𝐼 ⊢w ⟨⌈∃𝑋 ∈ 𝐸. 𝑃⌉⟩ 𝐶 ⟨𝜓⟩

Exists
𝜑 ′ ⇒ 𝜑 𝐼 ⊢𝑚 ⟨𝜑⟩ 𝐶 ⟨𝜓⟩ 𝜓 ⇒ 𝜓 ′

𝐼 ⊢𝑚 ⟨𝜑 ′⟩ 𝐶 ⟨𝜓 ′
⟩

Conseqence

Fig. 7. Structural and Outcome Splitting Rules

increment, which is witnessed by ⌈𝑥 − 1 ↦→ 𝑋 ⌉, so Split1 can be used.

⊢ ⟨⌈𝑥 ↦→ 𝑋 ⌉⟩ 𝑥 B 𝑥 + 1 ⟨⌈𝑥 ↦→ 𝑋 + 1⌉⟩ ⌈𝑥 ↦→ 𝑋 + 1⌉ ⇒ ⌈𝑥 − 1 ↦→ 𝑋 ⌉

⊢ ⟨
⊕
𝑋∼𝑑 (𝐸)

⌈𝑥 ↦→ 𝑋 ⌉⟩ 𝑥 B 𝑥 + 1 ⟨
⊕
𝑋∼𝑑 (𝐸)

⌈𝑥 ↦→ 𝑋 + 1⌉⟩
Split1

On the other hand, the next program samples 𝑦, and the resulting sample space is not partitioned
according to 𝑋 . Instead, Split2 is used since the postcondition is convex.

⊢ ⟨⌈𝑥 ↦→ 𝑋 ∗ 𝑋 ∈ {0, 1}⌉⟩ 𝑦 :≈ Ber (𝑥/2) ⟨∃𝑌 . ⌈𝑌 ≤ 1/2⌉ ∗ 𝑦 ∼ Ber (𝑌) ⟩

⊢ ⟨
⊕

𝑋∼Ber(1/2)
⌈𝑥 ↦→ 𝑋 ∗ 𝑋 ∈ {0, 1}⌉⟩ 𝑦 :≈ Ber (𝑥/2) ⟨∃𝑌 . ⌈𝑌 ≤ 1/2⌉ ∗ 𝑦 ∼ Ber (𝑌) ⟩

Split2

NSplit1 and NSplit2 are the nondeterministic analogues of the two aforementioned rules. They
operate in exactly the same way when the distribution over 𝑋 is not known.
The Exists rule allows for a more complex form of case analysis, where the logical variable

being scrutinized, 𝑋 , is bound by an existential quantifier inside of a pure assertion. Since the
precondition is a pure assertion, it may be satisfied by a probability space that cannot measure
the probability that 𝑋 takes on each value of 𝐸. Nonetheless, Exists allows us to use a stronger
precondition where 𝑋 is instead bound by a &, allowing us to do case analysis using NSplit1 or
NSplit2. The tradeoff is that this form of reasoning is incompatible with strong frame preservation
because turning a pure assertion into a nondeterministic outcome conjunction has a bad interaction
with the strong separating conjunction, as shown below.

⌈𝑦 ∈ {0, 1}⌉ ∗ (𝑥 ∼ Ber (𝑝)) ⇏
(
&

𝑌 ∈{0,1}
⌈𝑦 ↦→ 𝑌 ⌉

)
∗ (𝑥 ∼ Ber (𝑝)) ⇒ &

𝑌 ∈{0,1}

(
⌈𝑦 ↦→ 𝑌 ⌉ ∗ (𝑥 ∼ Ber (𝑝))

)
On the left hand side, it is possible that 𝑥 and 𝑦 are always equal. However, the first implication—
which is unsound—implies that information about 𝑥 ’s distribution can be distributed into every
outcome of 𝑦, i.e., 𝑥 is distributed according to Ber (𝑝) for every value of 𝑦. So, Exists is compatible
only with weak frame preservation, but it nevertheless provides an important capability to do case
analysis over shared state, which we will see more concretely in Sections 5.4, 6.1 and 6.4. As long as
the postcondition becomes precise at some later point, the Strengthen rule can be used to regain
strong frame preservation. Finally, the rule of Conseqence allows pre- and postconditions to be
manipulated in the standard way. The invariant can be neither strengthened nor weakened, since
doing so would break the assumptions of other threads.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:20 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

𝜑⇒⌈ℓ≤𝑅≤ℎ⌉
𝜑∗⌈𝑅=ℓ ⌉⇒⌈𝑏 ↦→false⌉
𝜑∗⌈𝑅>ℓ ⌉⇒⌈𝑏 ↦→true⌉

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑅 = 𝑁 > ℓ⌉⟩ 𝐶 ⟨(&𝑁−1
𝑅=ℓ

𝜑) ⊕≥𝑝 (&ℎ
𝑅=𝑁

𝜑)⟩
0<𝑝≤1

𝑁∉vars(𝜑)
precise(𝜑 [ℓ/𝑅])

𝐼 ⊢𝑚 ⟨&ℎ
𝑅=ℓ

𝜑⟩ while 𝑏 do 𝐶 ⟨𝜑 [ℓ/𝑅]⟩
BoundedRank

Fig. 8. The BoundedRank rule for almost sure termination.

5.4 Loops and Almost Sure Termination
The final proof rule is for analyzing while loops, and proving that they almost surely terminate—that
is, they terminate with probability 1. The BoundedRank rule, shown in Figure 8, is based on rules
for sequential programs due to McIver and Morgan [2005] and Zilberstein et al. [2025b]. It revolves
around a loop invariant𝜑 and a rank. The rank 𝑅 must be integer-valued and bounded between ℓ and
ℎ, i.e., 𝜑 ⇒ ⌈ℓ ≤ 𝑅 ≤ ℎ⌉. As long as 𝑅 > ℓ , the loop continues to iterate (𝜑 ∗ ⌈𝑅 > ℓ⌉ ⇒ ⌈𝑏 ↦→ true⌉)
and once 𝑅 reaches ℓ , the loop must terminate (𝜑 ∗ ⌈𝑅 = ℓ⌉ ⇒ ⌈𝑏 ↦→ false⌉).
The premise of BoundedRank guarantees that the rank strictly decreases each iteration with

probability at least 𝑝 > 0. Since the rank is bounded between ℓ and ℎ, this means that from any
start state, the loop is guaranteed to terminate with probability at least 𝑝ℎ−ℓ > 0, which allows us
to conclude that the program must almost surely terminate by the Zero-One law of McIver and
Morgan [2005, Lemma 2.6.1]. Finally, since the terminating outcome 𝜑 [ℓ/𝑅] is precise, there must
be a unique minimal probability space Q that satisfies it. Similar to the soundness proof of the Par
rule, we complete the soundness proof of the BoundedRank rule by showing that for all 𝐵 ∈ FQ
and all 𝜈 resulting from finite approximations of the loop, 𝜈 (𝐵) converges to 𝜇Q (𝐵).
As an example of how to apply this rule, consider the example program below. The program

implements a sort of random walk where 𝑥 moves towards the origin with probability 1
2 , otherwise

it is updated to 𝑦, which may be altered by a parallel thread.

RandWalk = while 𝑥 > 0 do 𝑏 :≈ Ber
(1
2
)
if 𝑏 then 𝑥 B 𝑥 − 1 else 𝑥 B 𝑦︸ ︷︷ ︸

𝐶body

As long as the value of 𝑦 is bounded, this loop almost surely terminates, which we can prove using
BoundedRank, subject to the resource invariant 𝐼 = 𝑦 ∈ {0, . . . , 5}. We will sketch the proof of
almost sure termination here, the full derivation is shown in Appendix F.2. The loop invariant is
𝜑 ≜ ⌈𝑥 ↦→ 𝑅 ∗ 0 ≤ 𝑅 ≤ 5 ∗ own(𝑏)⌉, essentially just stating that 𝑥 is between 0 and 5. The rank 𝑅
is the value of 𝑥 , and so 𝑅 decreases each iteration with probability at least 1

2 . However, 𝑥 may also
be updated to 𝑦, which is nondeterministic, requiring a use of the Exists rule to conclude that
&5
𝑅=1⌈𝑥 ↦→ 𝑅⌉ after the command 𝑥 B 𝑦. Clearly &5

𝑅=1⌈𝑥 ↦→ 𝑅⌉ is not precise, so the resulting
triple is not strongly frame preserving. Ultimately, we get the following weak triple for the loop
body, which states that the rank strictly decreases with probability at least 1

2 .

𝑦 ∈ {0, . . . , 5} ⊢w ⟨⌈𝑥 ↦→ 𝑁 ⌉⟩ 𝐶
body

⟨
(
&𝑁−1
𝑅=0 ⌈𝑥 ↦→ 𝑅⌉

)
⊕≥ 1

2

(
&5
𝑅=𝑁

⌈𝑥 ↦→ 𝑅⌉
)
⟩ (4)

At this stage, the weak triple signifies that we do not know exactly how likely the program is to
terminate; we can only bound the probability. Indeed, the scheduler can influence the likelihood
that 𝑥 takes on particular values, and can force 𝑥 to be correlated with other state. For example,
suppose we wanted to apply the Frame rule with 𝑧 ∼ unif ({0, . . . , 5}). The scheduler could choose
to always make 𝑦 and 𝑧 equal, in which case 𝑧 ∼ unif ({0, . . . , 5}) would not be independent of
the postcondition of (4). However, the point of BoundedRank is that the scheduler cannot affect
the probability of eventual termination. As such, the postcondition at the end of the execution is
𝜑 [0/𝑅], which is equivalent to the precise assertion ⌈𝑥 ↦→ 0⌉, allowing us to apply Strengthen to

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:21

get the following strong triple for the entire program.

𝑦 ∈ {0, . . . , 5} ⊢ ⟨⌈𝑥 ∈ {0, . . . , 5}⌉⟩ RandWalk ⟨⌈𝑥 ↦→ 0⌉⟩
One remarkable aspect of pcOL is that the triple above also implies that RandWalk almost surely
terminates when run in parallel with any other almost surely terminating program that obeys the
resource invariant 𝐼 . We get this property for free from the Par rule, which guarantees that the
probability of any infinite interleaving of both programs converges to 0.

This holds without any fairness assumption; our semantics guarantees that each thread almost
surely terminates regardless of interference from any other threads, therefore each enabled action
is almost surely scheduled within a finite amount of time. Of course, there are many programs
that only almost surely terminate subject to a fair scheduler, including probabilistic consensus and
synchronization protocols [Ben-Or 1983; Lehmann and Rabin 1981; Rabin 1980]. As we discuss in
Section 8, we plan to augment pcOL with capabilities to reason about fair termination in the future.

6 Examples
In this section, we present four examples to demonstrate how the proof rules of pcOL come together
into more complex derivations. Proofs are sketched here, and shown fully in Appendix F.

6.1 Entropy Mixer
There are many scenarios where several potential sources of entropy or randomness are available,
which must be mixed together with the guarantee that if at least one of the sources of entropy is
high quality, then the output will be at least that good. A simplified example of a such scenario is
modeled in the following program, where 𝑥2 is a reliable source of entropy, but 𝑥1 is unreliable,
because it is derived from 𝑦 in a way that can be controlled adversarially by the scheduler. Despite
that, 𝑧, which is derived from 𝑥1 and 𝑥2 is a high quality source of randomness.

EntropyMixer ≜ 𝑦 B 0 #
(
𝑥1 B 𝑦 # 𝑥2 :≈ Ber

(1
2
)
𝑧 B xor(𝑥1, 𝑥2) ∥ 𝑦 B 1

)
We will analyze this program using the invariant 𝐼 = (𝑦 ∈ {0, 1}), and conclude in the end that
𝑧 ∼ Ber

(1
2
)
. It is easy to see that the second thread satisfies the invariant, so we will focus on the

first thread. We first show how information about 𝑦 can be extracted from the invariant in order to
give a specification for the assignment to 𝑥1. The use of the Exists rule results in a weak triple.

⊢w ⟨ ⌈𝑦 ↦→ 𝑌 ∗ own(𝑥1) ⌉ ⟩ 𝑥1 B 𝑦 ⟨ ⌈𝑥1 ↦→ 𝑌 ∗ 𝑦 ↦→ 𝑌 ⌉ ⟩
Assign

⊢w ⟨&𝑌 ∈{0,1} ⌈𝑦 ↦→ 𝑌 ∗ own(𝑥1) ⌉ ⟩ 𝑥1 B 𝑦 ⟨&𝑌 ∈{0,1} ⌈𝑥1 ↦→ 𝑌 ∗ 𝑦 ↦→ 𝑌 ⌉ ⟩
NSplit1

⊢w ⟨&𝑌 ∈{0,1} ⌈𝑦 ↦→ 𝑌 ∗ own(𝑥1) ⌉ ⟩ 𝑥1 B 𝑦 ⟨(&𝑌 ∈{0,1} ⌈𝑥1 ↦→ 𝑌 ⌉) ∗ ⌈𝑦 ∈ {0, 1}⌉ ⟩
Conseqence

⊢w ⟨ ⌈own(𝑥1) ⌉ ∗ ⌈𝑦 ∈ {0, 1}⌉ ⟩ 𝑥1 B 𝑦 ⟨(&𝑌 ∈{0,1} ⌈𝑥1 ↦→ 𝑌 ⌉) ∗ ⌈𝑦 ∈ {0, 1}⌉ ⟩
Exists

𝑦 ∈ {0, 1} ⊢w ⟨ ⌈own(𝑥1) ⌉ ⟩ 𝑥1 B 𝑦 ⟨&𝑌 ∈{0,1} ⌈𝑥1 ↦→ 𝑌 ⌉ ⟩
Atom

These derivations are best read moving up from the lowermost precondition and then down from
the topmost postcondition. First, Atom is applied to open the invariant. Next, we use Exists and
NSplit1 to gain access to the value of 𝑦, so that we can apply the Assign rule. After the assignment,
we use Conseqence to weaken the information about 𝑦 and move it outside the scope of the & so
that we can close the invariant. Now, we move on to the derivation for the remainder of the thread.

.

.

.

𝐼 ⊢w ⟨ ⌈𝑥1 ↦→ 𝑌 ∗ own(𝑥2, 𝑧) ⌉ ⟩ 𝑥2 :≈ Ber (1/2) # 𝑧 B xor(𝑥1, 𝑥2) ⟨
⊕

𝑋∼Ber(1/2) ⌈𝑧 ↦→ xor(𝑌,𝑋) ⌉ ⟩
𝐼 ⊢w ⟨ ⌈𝑥1 ↦→ 𝑌 ∗ own(𝑥2, 𝑧) ⌉ ⟩ 𝑥2 :≈ Ber (1/2) # 𝑧 B xor(𝑥1, 𝑥2) ⟨𝑧 ∼ Ber (1/2) ⟩

Conseqence

𝐼 ⊢w ⟨&𝑌 ∈{0,1} ⌈𝑥1 ↦→ 𝑌 ∗ own(𝑥2, 𝑧) ⌉ ⟩ 𝑥2 :≈ Ber (1/2) # 𝑧 B xor(𝑥1, 𝑥2) ⟨𝑧 ∼ Ber (1/2) ⟩
NSplit2

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:22 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

ConcurrentShuffle :
𝑎1 B [] # 𝑎2 B [] # 𝑖 B 0 #
while 𝑖 < len(𝑎) do (
𝑏 :≈ Ber

(1
2
)
#

if 𝑏 then 𝑎1 B 𝑎1 ++ [𝑎[𝑖]] else 𝑎2 B 𝑎2 ++ [𝑎[𝑖]] #
𝑖 B 𝑖 + 1

) #
shuffle1 ∥ shuffle2 #
𝑎 B 𝑎1 ++ 𝑎2

shuffle𝑘 :
𝑖𝑘 B len(𝑎𝑘) #
while 𝑖𝑘 > 1 do
𝑗𝑘 :≈ unif ([0, . . . , 𝑖𝑘]) #
𝑎𝑘 B swap(𝑎𝑘 , 𝑖𝑘 , 𝑗𝑘) #
𝑖𝑘 B 𝑖𝑘 − 1

Fig. 9. A concurrent shuffling algorithm, where ℓ1 ++ ℓ2 concatenates two lists and swap(ℓ, 𝑖, 𝑗) returns ℓ with
the elements ℓ [𝑖] and ℓ [𝑗] swapped.

First, we must again do case analysis on the logical variable 𝑌 , but this time we use NSplit2, which
requires the postcondition to be convex and not depend on 𝑌 . In the premise of NSplit2, we we
show that 𝑧 is distributed properly regardless of the value of 𝑌 . For any fixed 𝑌 , after executing the
writes to 𝑥2 and 𝑧, we know that

⊕
𝑋∼Ber(1/2) ⌈𝑧 ↦→ xor(𝑌,𝑋)⌉ (the proof is quite mechanical, and

shown in Appendix F.3). Since 𝑌 is constant, then xor(𝑌,𝑋) is a bijection from {0, 1} to {0, 1}, and
we can therefore use the rule of Conseqence to conclude that 𝑧 is uniformly distributed. Since
that postcondition is precise, we can strengthen the triple. After combining the two threads with
Par, we get the following specification for the whole program.

⊢ ⟨⌈own(𝑥1, 𝑥2, 𝑦, 𝑧)⌉⟩ EntropyMixer ⟨𝑧 ∼ Ber
(1
2
)
⟩

6.2 Concurrent Shuffle
Bacher et al. [2015] showed that shuffling algorithms can be made up to seven times faster through
parallelization. They introduced a divide-and-conquer algorithm in which sub-arrays are shuffled
concurrently and then merged. In this example, we prove the correctness of a simple concurrent
shuffle algorithm using pcOL. The program is shown in Figure 9. First, the elements in the array
are randomly assigned to two buckets, 𝑎1 and 𝑎2, the buckets are then shuffled in parallel using the
standard Fisher and Yates [1938] algorithm, and then the two shuffled sub-lists are concatenated
together. For some list ℓ , let Π(ℓ) be the set of all permutations of ℓ . For the purposes of this example,
we will presume that all lists do not contain duplicate values. The specification of the Fisher-Yates
shuffle is shown below (and proven in Appendix F.4). That is, if a list 𝐴 is stored in 𝑎𝑘 , then 𝑎𝑘 will
hold a uniformly chosen permutation of that list after execution of shuffle𝑘 .

⊢ ⟨⌈𝑎𝑘 ↦→ 𝐴 ∗ own(𝑖𝑘 , 𝑗𝑘)⌉⟩ shuffle𝑘 ⟨𝑎𝑘 ∼ unif (Π(𝐴)) ⟩
For some list ℓ and bit-string 𝑥 , let ℓ [𝑥] be the list obtained by filtering ℓ to only contain the indices
𝑖 such that 𝑥 [𝑖] = 1, e.g., [1, 2, 3, 4] [1001] = [1, 4]. After the execution of the bucketing loop, we get
the postcondition

⊕
𝑋∼unif ({0,1}len(𝐴)) ⌈𝑎1 ↦→ 𝐴[𝑋] ∗ 𝑎2 ↦→ 𝐴[¬𝑋]⌉, where 𝑋 is a uniformly chosen

bit-string that dictates into which bucket each element of 𝐴 is placed, and ¬𝑋 is bitwise logical
negation. Next, to analyze the concurrent calls to shuffle𝑘 , we first use Split1 so that we can
separate 𝑎1 and 𝑎2. Using Par with the triple for shuffle𝑘 , we have that 𝑎1 and 𝑎2 are uniformly
and independently distributed permutations of the initial lists after the concurrent shuffles.
⊢ ⟨ ⌈𝑎1 ↦→ 𝐴 [𝑋] ⌉ ⟩ shuffle1 ⟨𝑎1 ∼ unif (Π (𝐴 [𝑋])) ⟩ ⊢ ⟨ ⌈𝑎2 ↦→ 𝐴 [¬𝑋] ⌉ ⟩ shuffle2 ⟨𝑎2 ∼ unif (Π (𝐴 [¬𝑋])) ⟩
⊢ ⟨ ⌈𝑎1 ↦→ 𝐴 [𝑋] ∗ 𝑎2 ↦→ 𝐴 [¬𝑋] ⌉ ⟩ shuffle1 ∥ shuffle2 ⟨(𝑎1 ∼ unif (Π (𝐴 [𝑋]))) ∗ (𝑎2 ∼ unif (Π (𝐴 [¬𝑋])) ⟩

Par

Reapplying the outcome conjunction over 𝑋 , we can rewrite the postcondition to be:⊕
𝑋∼unif ({0,1}len(𝐴))

⊕
𝐴1∼unif (Π (𝐴 [𝑋]))

⊕
𝐴2∼unif (Π (𝐴 [¬𝑋])) ⌈𝑎1 ↦→ 𝐴1 ∗ 𝑎2 ↦→ 𝐴2⌉

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:23

PrivFetch :
𝑞1 :≈ unif ({0, 1}𝑛) #
𝑞2 B xor(𝑞1, 𝑥) #
fetch1 ∥ fetch2 #
𝑟 B xor(𝑟1, 𝑟2)

fetch𝑘 :
𝑖𝑘 B 0 # 𝑟𝑘 B 0 #
while 𝑖𝑘 < len(𝑞𝑘) do

if 𝑞𝑘 [𝑖𝑘] = 1 then
𝑟𝑘 B xor(𝑟𝑘 , 𝑑 [𝑖𝑘]) #

𝑖𝑘 B 𝑖𝑘 + 1

Fig. 10. A concurrent private information retrieval protocol.

Using Split1 three times and Assign, we get the following postcondition after the assignment to 𝑎.⊕
𝑋∼unif ({0,1}len(𝐴))

⊕
𝐴1∼unif (Π (𝐴 [𝑋]))

⊕
𝐴2∼unif (Π (𝐴 [¬𝑋])) ⌈𝑎 ↦→ 𝐴1 ++𝐴2⌉

We now prove the assertion above implies that 𝑎 is a uniform permutation. Take any ℓ ∈ Π(𝐴) and
let 𝑛 = len(𝐴). For every 0 ≤ 𝑘 ≤ 𝑛, there is exactly one split 𝑋 such that 𝑋 assigns the elements
ℓ [0], . . . , ℓ [𝑘 − 1] to 𝑎1 and the rest to 𝑎2. This split occurs with probability 1

2𝑛 . Further, given that
this correct split has occurred, 𝑎1 and 𝑎2 are shuffled so that 𝑎1 ++ 𝑎2 = ℓ with probability 1

𝑘!
1

(𝑛−𝑘)! .
Thus the probability of getting the permutation ℓ is

∑𝑛
𝑘=0

1
2𝑛

1
𝑘!

1
(𝑛−𝑘)! =

1
𝑛! . Since there are exactly

|Π(𝐴) | = 𝑛! permutations, this means that these permutations are produced uniformly, therefore:

⊢ ⟨⌈𝑎 ↦→ 𝐴 ∗ own(· · ·)⌉⟩ ConcurrentShuffle ⟨𝑎 ∼ unif (Π(𝐴)) ⟩

6.3 Private Information Retrieval
Private information retrieval allows a user to fetch data without the database operator learning
what data was requested [Chor et al. 1998]. A simple form of private information retrieval is
modeled in the program shown in Figure 10. The fetch𝑘 programs process a bit string query 𝑞𝑘 ,
indicating which entries of the database 𝑑 to return. Those entries are then bitwise xor’ed together.
Private retrieval is implemented in PrivFetch. The input 𝑥 is a one-hot bit string onehot(𝐾), with
a 1 in position 𝐾—indicating the index of the data to retrieve—and zeros everywhere else. Two
queries are then made concurrently. The first one uses a randomly chosen bit string, and the second
uses the same random string xor’ed with onehot(𝐾). The final data is an xor of the two responses,
which reveals the data at position 𝐾 . Barthe et al. [2020] proved a similar example in PSL, but
their version was sequential; both fetches happened within a single for loop. Our version better
models a distributed system where the computation does not occur in lockstep. We first present a
specification for fetch𝑘 (proven in Appendix F.5), which states that 𝑟 is an xor of data entries 𝑖 ,
such that 𝑞𝑘 [𝑖] = 1, subject to the invariant that 𝑑 ↦→ 𝐷 .

𝑑 ↦→ 𝐷 ⊢ ⟨⌈𝑞𝑘 ↦→ 𝑄⌉ ∗ ⌈own(𝑖𝑘 , 𝑟𝑘)⌉⟩ fetch𝑘 ⟨⌈𝑟𝑘 ↦→ xor
0≤𝑖<𝑛:𝑄 [𝑖]=1

𝐷 [𝑖]⌉⟩

We now sketch the derivation of the main procedure, the full proof is shown in Appendix F.5. After
sampling into 𝑞1, we use Split2 to make the outcome of that query deterministic. After assigning
𝑞2, we get ⌈𝑞1 ↦→ 𝑄⌉ ∗ ⌈𝑞2 ↦→ xor(𝑄, onehot(𝐾))⌉. We can then apply the Par rule to analyze the
concurrent fetches to get the following postcondition:

⌈𝑟1 ↦→ xor
0≤𝑖<𝑛:𝑄 [𝑖]=1

𝐷 [𝑖]⌉ ∗ ⌈𝑟2 ↦→ xor
0≤𝑖<𝑛:xor(𝑄,onehot(𝐾)) [𝑖]=1

𝐷 [𝑖]⌉

The value of 𝑟 is the xor of 𝑟1 and 𝑟2, which differ only at index 𝐾 , therefore we can conclude that
⌈𝑟 ↦→ 𝐷 [𝐾]⌉. Since this assertion is convex and does not depend on 𝑄 , we meet the side conditions
of the Cond2 rule, and therefore the final postcondition is simply ⌈𝑟 ↦→ 𝐷 [𝐾]⌉.

⊢ ⟨⌈𝑥 ↦→ onehot(𝐾) ∗ 𝑑 ↦→ 𝐷 ∗ own(𝑞1, 𝑞1, 𝑟1, 𝑟2, 𝑟 , 𝑖1, 𝑖2)⌉⟩ PrivFetch ⟨⌈𝑟 ↦→ 𝐷 [𝐾]⌉⟩

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:24 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

6.4 The von Neumann Trick
The von Neumann [1951] trick is a protocol for simulating a fair coin given a coin with unknown
bias. The biased coin is flipped twice, if the outcome is 1-0 or 0-1, then the output is the first coin
flip, otherwise the experiment is repeated. Below, we have a variant of the von Neumann trick
where the coin’s bias is stored in shared memory, and its value is not remembered across rounds.

vonNeumann ≜ 𝑥 B 0 # 𝑦 B 0 # while 𝑥 = 𝑦 do 𝑝 ′ B 𝑝 # 𝑥 :≈ Ber (𝑝 ′) # 𝑦 :≈ Ber (𝑝 ′)
Every round, a concurrent thread could change the bias, altering the probability of terminating
in that round. Despite this, we show that the program almost surely terminates, and that 𝑥 is
distributed according to a fair coin, subject to the invariant 𝐼 = (𝑝 ∈ [𝜀, 1 − 𝜀]Δ) where 0 < 𝜀 ≤ 1

2 is
an arbitrarily small probability and Δ is a nonzero step size, making the interval finite (if 𝑝 could
be 0 or 1, then the program may not terminate). A variant of this example appeared in Zilberstein
et al. [2025b], where the bias was explicitly altered by an adversary. This concurrent version of the
program introduces new challenges from a program analysis perspective. The bulk of the derivation
involves analyzing the while loop. To do so, we need a loop invariant, which is shown below.

𝜑 ≜ 𝜑0 ∨ 𝜑1 𝜑0 ≜
⊕

𝑋∼Ber(1/2)
⌈𝑥 ↦→ 𝑋 ∗ 𝑦 ↦→ ¬𝑋 ∗ 𝑅 = 0⌉ 𝜑1 ≜ ⌈𝑥 = 𝑦 ↦→ true ∗ 𝑅 = 1 ∗ own(𝑝 ′)⌉

The rank 𝑅 is either 0 or 1. When 𝑅 = 0, 𝑥 ≠ 𝑦 and 𝑥 is uniformly distributed, so the loop terminates.
When 𝑅 = 1, 𝑥 = 𝑦, so the loop keeps iterating. Each iteration, the loop terminates with probability
at least 2𝜀 (1− 𝜀). Due to the reliance on shared state, this probability is not exact, but only a bound.
The structure of the proof is similar to that of Section 6.1. First, we use Atom and NSplit1 to open
the invariant and conclude that 𝑝 ′ holds some probability in [𝜀, 1 − 𝜀]Δ. Since the postcondition is
imprecise and based on shared state, we are only able to obtain a weak triple at this point.

𝐼 ⊢w ⟨⌈own(𝑝 ′)⌉⟩ 𝑝 ′ B 𝑝 ⟨&𝑋 ∈[𝜀,1−𝜀]Δ ⌈𝑝 ′ ↦→ 𝑋 ⌉⟩
We then sequence this with the two sampling operations, shown below:

.

.

.

𝐼 ⊢w ⟨ ⌈𝑝′ ↦→ 𝑋 ∗ own(𝑥, 𝑦) ⌉ ⟩ 𝑥 :≈ Ber
(
𝑝′

)
𝑦 :≈ Ber

(
𝑝′

)
⟨ ⌈𝑝′ ↦→ 𝑋 ⌉ ∗ 𝑥 ∼ Ber (𝑋) ∗ 𝑦 ∼ Ber (𝑋) ⟩

𝐼 ⊢w ⟨ ⌈𝑝′ ↦→ 𝑋 ∗ own(𝑥, 𝑦) ⌉ ⟩ 𝑥 :≈ Ber
(
𝑝′

)
𝑦 :≈ Ber

(
𝑝′

)
⟨𝜑0 ⊕≥2𝜀 (1−𝜀) 𝜑1 ⟩

Conseqence

𝐼 ⊢w ⟨&𝑋 ∈[𝜀,1−𝜀]Δ ⌈𝑝
′ ↦→ 𝑋 ∗ own(𝑥, 𝑦) ⌉ ⟩ 𝑥 :≈ Ber (𝑝′) # 𝑦 :≈ Ber (𝑝′) ⟨𝜑0 ⊕≥2𝜀 (1−𝜀) 𝜑1 ⟩

NSplit2

We first use NSplit2 to show that for any fixed probability 𝑋 , the loop terminates with probability
at least 2𝜀 (1 − 𝜀). This is done using straightforward combinatorial reasoning. Given that 𝑝 ′ ↦→ 𝑋 ,
we know that 𝑥 and 𝑦 will be independently and identically distributed according to Ber (𝑋). That
means that ⌈𝑥 ↦→ 1 ∗ 𝑦 ↦→ 0⌉ and ⌈𝑥 ↦→ 0 ∗ 𝑦 ↦→ 1⌉ both occur with probability 𝑋 (1 − 𝑋), so
𝜑0 occurs with probability 2𝑋 (1 − 𝑋), and otherwise 𝑥 = 𝑦, so 𝜑1 holds. Since we know that
𝑋 ∈ [𝜀, 1− 𝜀], then clearly 2𝜀 (1− 𝜀) ≤ 2𝑋 (1−𝑋), so the consequence above is valid. After applying
BoundedRank, we get the postcondition 𝜑0 ⇒ (𝑥 ∼ Ber

(1
2
)
). Since this postcondition is precise,

we can use Strengthen to get the following strong triple for the whole program, indicating both
that the program almost surely terminates, and that 𝑥 is distributed like a fair coin. In fact, it also
terminates when composed in parallel with other terminating threads that alter 𝑝 in arbitrary ways!

𝑝 ∈ [𝜀, 1 − 𝜀]Δ ⊢ ⟨⌈own(𝑥,𝑦, 𝑝 ′)⌉⟩ vonNeumann ⟨𝑥 ∼ Ber
(1
2
)
⟩

7 Related Work
Logics for Probabilistic Concurrency. Polaris is a relational separation logic built on Iris [Jung
et al. 2018] for reasoning about concurrent probabilistic programs [Tassarotti 2018; Tassarotti and

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:25

Harper 2019]. Compared to Polaris, pcOL has two main advantages: it supports unbounded looping
and it supports direct probabilistic reasoning about the distribution of outcomes. Polaris cannot
handle the von Neumann trick, which involves unbounded looping. Because it is a relational logic,
Polaris works by relating a randomized concurrent program to a specification program, which is
randomized and nondeterministic (but not concurrent). This requires the random choices between
the two programs to be coupled in lockstep.
In our concurrent shuffling example, we prove with pcOL that a sequence of many random

choices results in a completely different uniform distribution of outcomes. It would be impossible
to recreate this proof in Polaris, since the natural specification program for a randomized shuffle
would only make a single random choice (a uniform sample over permutations), whereas the actual
programmakes a large sequence of random choices. It might be possible to do an alternate relational
proof in Polaris by instead picking a specification program that makes a similar sequence of random
choices, but then one would be left with the challenge of proving that such a specification program
actually generated a uniform shuffle, for which Polaris cannot help.
In pcOL, we combine the two steps, avoiding the need to write down a specification program

by building quantitative reasoning tools into the logic itself. However, the approaches do have
similarities—our invariant sensitive semantics implicitly captures the behavior of the specification
program by converting parallel manipulation of shared state into nondeterminism. This is slightly
easier, since the user must only write down an invariant rather than an entire specification program.
Then, rather than externally analyzing the specification program, we directly prove a quantitative
postcondition. While pcOL does not support all the capabilities of Polaris (e.g., ghost state, higher
order state, etc.), proofs are carried out in fewer steps using a single, self-contained logic. In the
future, it may be fruitful to combine the two approaches. Indeed, Bao et al. [2025] showed the
advantages of supporting both relational and unary reasoning in a single probabilistic logic.
Fesefeldt et al. [2022] pursued an alternative technique for reasoning about probabilistic con-

current programs, based on a quantitative interpretation of separation logic [Batz et al. 2019].
Their logic can be used to lower bound the probability of a single outcome, making all but the
private information retrieval example in this paper out of reach. While Fesefeldt et al. do support
unbounded looping, the probability of nontermination is always added to the final expected values,
and so it cannot be used to prove almost sure termination.
Fan et al. [2025] developed another logic based on Probabilistic Rely-Guarantee [McIver et al.

2016]. While it supports outcome splitting, the program must be re-instrumented to explicitly
declare where splitting occurs, whereas in pcOL splitting is purely logical and can be used anywhere.
Fan et al. require postconditions after splitting to be convex; they have a rule similar to Split2, but
not Split1. In addition, their parallel composition rules do not give independence guarantees, and
accordingly can only make conclusions about the local distributions of all threads, and not the joint
distributions of all the variables in global memory, and programs must be proven to almost surely
terminate externally to the logic. Their logic is based on an oblivious adversary model—a weaker
model than our unrestricted adversary. More programs are verifiable in this model, so it is often
preferred, however the logic of Fan et al. can only reason about obliviousness in limited ways, i.e.,
by treating coin flip actions as atomic, so many programs are still out of reach.

Probabilistic Separation Logics. Capturing probabilistic independence in separation logic was first
explored by Barthe et al. [2020], however the resulting Probabilistic Separation Logic (PSL) was
limited in its ability to reason about control flow, and the frame rule had stringent side conditions.
DIBI later extended the PSL model to include conditioning [Bao et al. 2021]. Lilac built on the
two aforementioned logics and used conditioning to improve on PSL’s handling of control flow,

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:26 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

although without mutable state [Li et al. 2023]. Lilac also added support for continuous distributions,
and reformulated the notion of separation using probability spaces, making it more expressive.
Lilac’s lack of mutable state means that information about variables can be duplicated; for

example, 𝑥 ∼ Ber
(1
2
)
∗ ⌈𝑥 ∈ {0, 1}⌉ is satisfiable. Bluebell uses a similar model to Lilac, with the

ability to reason about mutable state, which requires the logic to track permissions too [Bao et al.
2025]. We chose to use a more restrictive form of separation where information about variables
cannot be shared, as it simplified the logical rules by eliminating the need for tracking permissions.

As wementioned in Section 2, the direct sum semantics of
⊕

differs from conditioningmodalities
C𝑋∼𝑑𝜑 , which are based on disintegration. However, we believe that in the future the two modalities
can work together to do discrete case analysis over continuous programs. For example, consider the
following program, which samples from a continuous distribution and then branches on the result.

𝑥 :≈ unif ([0, 1]) # if 𝑥 ≤ 1
2 then 𝐶1 else 𝐶2

Lilac’s rule for analyzing if statements is incompatible with mutable state, so we would instead need
to use Split1 or Split2 to do case analysis on the guard 𝑥 ≤ 1

2 in order to derive a specification
for this program. However, those rules require an outcome conjunction, which cannot express
the fact that 𝑥 is distributed according to a continuous distribution. Instead, we can partition the
continuous distribution into two parts, joined with an outcome conjunction, which would then
allow us to analyze the two branches of the if statement.

C𝑋∼unif ([0,1]) ⌈𝑥 ↦→ 𝑋 ⌉ =⇒
(
C𝑋∼unif ([0,1/2]) ⌈𝑥 ↦→ 𝑋 ⌉

)
⊕ 1

2

(
C𝑋∼unif ((1/2,1]) ⌈𝑥 ↦→ 𝑋 ⌉

)
Although the direct sum’s partitioning of the sample space imposes some limitations on the splitting
rules, the benefit is that they are fully compositional; the use of splitting does not impede the
application of other rules later in the derivation. This is in contrast with Bluebell’s c-wp-swap [Bao
et al. 2025, §5.1], which requires ownership over all program variables (denoted ownX), thereby
precluding most later applications of the frame rule. Although Bao et al. [2025] show fruitful uses
of c-wp-swap, the restriction is not acceptable for a concurrency logic, since it would preclude use
of the Par rule.
This is similar to Exists disabling strong frame preservation, but Exists is used in specific

scenarios for case analysis on nondeterministic shared state, which only arises in the concurrency
setting. In any case, strong frame preservation can always be reenabled if the postcondition is
precise. Non-frame-preserving operations arise in non-probabilistic separation logics too [Spies
et al. 2025; Vindum et al. 2025]. The idea of having two types of probabilistic separation was also
explored in LINA, where weak separation corresponds to negative dependence [Bao et al. 2022].
The notion of precision has been previously studied in separation logics, in part to explain

when the separating conjunction distributes over other logical connectives, such as the regular
conjunction [Calcagno et al. 2007; Vafeiadis 2011]. In PSL, precision (under the name supported)
was used to ensure that the guard of an if statement remains independent of the postcondition
of the two branches. Conditioning à la Lilac and Bluebell provides a more flexible way to reason
about control flow without forcing the guard to be independent of the states in the two branches.

Another category of probabilistic separation logics build on Iris [Jung et al. 2018], fromwhich they
inherit expressive features, including ghost state and impredicative invariant reasoning. In these
logics, separating conjunctions have the usual meaning from CSL, and do not capture probabilistic
independence. Lohse and Garg [2024] and Haselwarter et al. [2024b] develop logics for proving
bounds on the expected runtime of a randomized program. Aguirre et al. [2024] apply a similar
approach for upper bounding the probability that a postcondition will fail to hold in sequential
programs, and Li et al. [2025] extended this work to the concurrent setting. Additional logics have
also been developed for relational reasoning and refinement [Gregersen et al. 2024a,b; Haselwarter

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:27

et al. 2024a]. The tradeoff is that they focus on a narrow property about programs’ probabilistic
behaviors, e.g., only capturing a bound on an expected cost or probability of a single event. Outcome
Separation Logic uses a more primitive form of heap separation, but is backed by a denotational
model that supports specifications about the distribution of outcomes [Zilberstein et al. 2024].

8 Conclusion
This paper brings together ideas from concurrent, probabilistic separation logics, and Demonic
Outcome Logic in developing pcOL, a new expressive logic for analysis of probabilistic concurrent
programs. Although pcOL represents a significant step in reasoning for randomized concurrent
programs, more work remains to be done. Fine-grained concurrency analysis is notoriously complex,
and we plan to augment pcOL in the following ways to support more expressive verification.

Fair Termination and Synchronization. Our BoundedRank rule makes no assumptions about fairness
(meaning that no thread can be indefinitely starved); indeed it applies only to programs for which the
probability of eventual termination does not depend on the scheduler. However, many probabilistic
synchronization protocols [Hart et al. 1983] such as the Dining Philosophers problem [Lehmann
and Rabin 1981] only terminate under a fair scheduler. We would like to extend pcOL to reason
about these programs, but it will present significant challenges. Fairness is not a compositional
property, so many of the properties of L(J−K) that we rely on for soundness would not hold.

Dynamic Allocation and Resource Algebras. As with PSL and all logics that build on it, our resource
model uses variables rather than pointers. However, most concurrent programs use pointers.
Modern CSL implementations such as Iris [Jung et al. 2018, 2015] use resource algebras, so that
additional types of physical and logical state can be added to govern the ways in which concurrent
threads modify shared resources. Bluebell already includes permissions, which help to duplicate
knowledge about read-only variables [Bao et al. 2025], however many other resources are used in
practice and it is not yet understood how those resources interact with the independence model of
separation. We plan to augment the model of pcOL to support Iris style resource algebras.

Mechanization. As we saw in Section 6 and Appendix F, pcOL derivations are quite involved—even
for small programs—due to the handling of invariants, conditioning, and case analysis on shared
state. Verification of larger programs would be infeasible with pen-and-paper proofs, therefore we
plan to mechanize pcOL in the Lean proof assistant [de Moura et al. 2015]. Lean is the ideal choice
because much the underlying probability theory, domain theory, and topology needed to support
pcOL are already formalized in mathlib [mathlib Community 2020], although more work would
still be needed to formalize all the foundational theories of pcOL, such as the convex powerdomain.

Acknowledgements
This work was supported by the National Science Foundation under awards 2504142 and 2504143
and ARIA’s Safeguarded AI programme.

References
Alejandro Aguirre, Philipp G. Haselwarter, Markus de Medeiros, Kwing Hei Li, Simon Oddershede Gregersen, Joseph Tas-

sarotti, and Lars Birkedal. 2024. Error Credits: Resourceful Reasoning about Error Bounds for Higher-Order Probabilistic
Programs. Proc. ACM Program. Lang. 8, ICFP, Article 246 (Aug. 2024), 33 pages. https://doi.org/10.1145/3674635

Krzysztof Apt and Gordon Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM 33, 4 (aug 1986),
724–767. https://doi.org/10.1145/6490.6494

Axel Bacher, Olivier Bodini, Alexandros Hollender, and Jérémie Lumbroso. 2015. MergeShuffle: A Very Fast, Parallel Random
Permutation Algorithm. arXiv:1508.03167 [cs.DS] https://arxiv.org/abs/1508.03167

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://doi.org/10.1145/3674635
https://doi.org/10.1145/6490.6494
https://arxiv.org/abs/1508.03167
https://arxiv.org/abs/1508.03167

9:28 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Jialu Bao, Simon Docherty, Justin Hsu, and Alexandra Silva. 2021. A Bunched Logic for Conditional Independence. In
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (Rome, Italy) (LICS ’21). Association
for Computing Machinery, New York, NY, USA, Article 13, 14 pages. https://doi.org/10.1109/LICS52264.2021.9470712

Jialu Bao, Emanuele D’Osualdo, and Azadeh Farzan. 2025. Bluebell: An Alliance of Relational Lifting and Independence for
Probabilistic Reasoning. Proc. ACM Program. Lang. 9, POPL, Article 58 (Jan. 2025), 31 pages. https://doi.org/10.1145/
3704894

Jialu Bao, Marco Gaboardi, Justin Hsu, and Joseph Tassarotti. 2022. A Separation Logic for Negative Dependence. Proc.
ACM Program. Lang. 6, POPL, Article 57 (jan 2022), 29 pages. https://doi.org/10.1145/3498719

Gilles Barthe, Justin Hsu, and Kevin Liao. 2020. A Probabilistic Separation Logic. Proc. ACM Program. Lang. 4, POPL, Article
55 (Jan. 2020), 30 pages. https://doi.org/10.1145/3371123

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative
Separation Logic: A Logic for Reasoning about Probabilistic Pointer Programs. Proc. ACM Program. Lang. 3, POPL, Article
34 (Jan 2019), 29 pages. https://doi.org/10.1145/3290347

Michael Ben-Or. 1983. Another advantage of free choice (Extended Abstract): Completely asynchronous agreement protocols.
In Proceedings of the Second Annual ACM Symposium on Principles of Distributed Computing (Montreal, Quebec, Canada)
(PODC ’83). Association for Computing Machinery, New York, NY, USA, 27–30. https://doi.org/10.1145/800221.806707

Lars Birkedal and Hongseok Yang. 2007. Relational Parametricity and Separation Logic. In Foundations of Software Science

and Computational Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, 93–107. https://doi.org/10.1007/978-3-
540-71389-0_8

Stephen Brookes. 2004. A Semantics for Concurrent Separation Logic. In CONCUR 2004 - Concurrency Theory, Philippa
Gardner and Nobuko Yoshida (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 16–34. https://doi.org/10.1007/978-
3-540-28644-8_2

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd

Annual IEEE Symposium on Logic in Computer Science (LICS 2007). 366–378. https://doi.org/10.1109/LICS.2007.30
Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private information retrieval. J. ACM 45, 6 (Nov.

1998), 965–981. https://doi.org/10.1145/293347.293350
Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von Raumer. 2015. The Lean Theorem

Prover (System Description). In Automated Deduction - CADE-25, Amy P. Felty and Aart Middeldorp (Eds.). Springer
International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26

Simon Docherty. 2019. Bunched logics: a uniform approach. Ph.D. Dissertation. University College London. https:
//discovery.ucl.ac.uk/id/eprint/10073115/

Weijie Fan, Hongjin Liang, Xinyu Feng, and Hanru Jiang. 2025. A Program Logic for Concurrent Randomized Programs
in the Oblivious Adversary Model. In Programming Languages and Systems, Viktor Vafeiadis (Ed.). Springer Nature
Switzerland, Cham, 322–348. https://doi.org/10.1007/978-3-031-91118-7_13

Ira Fesefeldt, Joost-Pieter Katoen, and Thomas Noll. 2022. Towards Concurrent Quantitative Separation Logic. In 33rd

International Conference on Concurrency Theory (CONCUR 2022) (Leibniz International Proceedings in Informatics (LIPIcs),

Vol. 243), Bartek Klin, Sławomir Lasota, and Anca Muscholl (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl, Germany, 25:1–25:24. https://doi.org/10.4230/LIPIcs.CONCUR.2022.25

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility of distributed consensus with one faulty
process. J. ACM 32, 2 (April 1985), 374–382. https://doi.org/10.1145/3149.214121

Ronald A. Fisher and Frank Yates. 1938. Statistical Tables: for biological , agricultural and medical research (4th ed. ed.). Oliver
and Boyd, Edinburgh.

Philippe Flajolet. 1985. Approximate counting: A detailed analysis. BIT 25, 1 (March 1985), 113–134. https://doi.org/10.
1007/BF01934993

David Fremlin. 2001. Measure Theory, Volume 2.
Jay L. Gischer. 1988. The equational theory of pomsets. Theoretical Computer Science 61, 2 (1988), 199–224. https:

//doi.org/10.1016/0304-3975(88)90124-7
Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024a.

Almost-Sure Termination by Guarded Refinement. Proc. ACM Program. Lang. 8, ICFP, Article 243 (Aug. 2024), 31 pages.
https://doi.org/10.1145/3674632

Simon Oddershede Gregersen, Alejandro Aguirre, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal. 2024b.
Asynchronous Probabilistic Couplings in Higher-Order Separation Logic. Proc. ACM Program. Lang. 8, POPL, Article 26
(Jan. 2024), 32 pages. https://doi.org/10.1145/3632868

Sergiu Hart, Micha Sharir, and Amir Pnueli. 1983. Termination of Probabilistic Concurrent Program. ACM Trans. Program.

Lang. Syst. 5, 3 (July 1983), 356–380. https://doi.org/10.1145/2166.357214
Philipp G. Haselwarter, Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Joseph Tassarotti, and Lars

Birkedal. 2024a. Approximate Relational Reasoning for Higher-Order Probabilistic Programs. arXiv:2407.14107 [cs.LO]

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://doi.org/10.1109/LICS52264.2021.9470712
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3704894
https://doi.org/10.1145/3498719
https://doi.org/10.1145/3371123
https://doi.org/10.1145/3290347
https://doi.org/10.1145/800221.806707
https://doi.org/10.1007/978-3-540-71389-0_8
https://doi.org/10.1007/978-3-540-71389-0_8
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1007/978-3-540-28644-8_2
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-319-21401-6_26
https://discovery.ucl.ac.uk/id/eprint/10073115/
https://discovery.ucl.ac.uk/id/eprint/10073115/
https://doi.org/10.1007/978-3-031-91118-7_13
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.1145/3149.214121
https://doi.org/10.1007/BF01934993
https://doi.org/10.1007/BF01934993
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1016/0304-3975(88)90124-7
https://doi.org/10.1145/3674632
https://doi.org/10.1145/3632868
https://doi.org/10.1145/2166.357214
https://arxiv.org/abs/2407.14107

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:29

https://arxiv.org/abs/2407.14107
Philipp G. Haselwarter, Kwing Hei Li, Markus de Medeiros, Simon Oddershede Gregersen, Alejandro Aguirre, Joseph

Tassarotti, and Lars Birkedal. 2024b. Tachis: Higher-Order Separation Logic with Credits for Expected Costs.
arXiv:2405.20083 [cs.LO] https://arxiv.org/abs/2405.20083

Jifeng He, Karen Seidel, and Annabelle McIver. 1997. Probabilistic models for the guarded command language. Science of
Computer Programming 28, 2 (1997), 171–192. https://doi.org/10.1016/S0167-6423(96)00019-6 Formal Specifications:
Foundations, Methods, Tools and Applications.

Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (Oct. 1969),
576–580. https://doi.org/10.1145/363235.363259

Bart Jacobs. 2008. Coalgebraic Trace Semantics for Combined Possibilitistic and Probabilistic Systems. Electronic Notes in
Theoretical Computer Science 203, 5 (2008), 131–152. https://doi.org/10.1016/j.entcs.2008.05.023 Proceedings of the Ninth
Workshop on Coalgebraic Methods in Computer Science (CMCS 2008).

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground
up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018).
https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:
Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Mumbai, India) (POPL ’15). Association for
Computing Machinery, New York, NY, USA, 637–650. https://doi.org/10.1145/2676726.2676980

Klaus Keimel and Gordon Plotkin. 2017. Mixed powerdomains for probability and nondeterminism. Logical Methods in

Computer Science Volume 13, Issue 1 (Jan. 2017). https://doi.org/10.23638/LMCS-13(1:2)2017
Daniel Lehmann and Michael O. Rabin. 1981. On the advantages of free choice: a symmetric and fully distributed solution to

the dining philosophers problem. In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (Williamsburg, Virginia) (POPL ’81). Association for Computing Machinery, New York, NY, USA, 133–138.
https://doi.org/10.1145/567532.567547

John M. Li, Amal Ahmed, and Steven Holtzen. 2023. Lilac: A Modal Separation Logic for Conditional Probability. Proc. ACM
Program. Lang. 7, PLDI, Article 112 (jun 2023), 24 pages. https://doi.org/10.1145/3591226

Kwing Hei Li, Alejandro Aguirre, Simon Oddershede Gregersen, Philipp G. Haselwarter, Joseph Tassarotti, and Lars Birkedal.
2025. Modular Reasoning about Error Bounds for Concurrent Probabilistic Programs. Proc. ACM Program. Lang. 9, ICFP,
Article 245 (Aug. 2025), 30 pages. https://doi.org/10.1145/3747514

Janine Lohse and Deepak Garg. 2024. An Iris for Expected Cost Analysis. arXiv:2406.00884 [cs.PL] https://arxiv.org/abs/
2406.00884

George Markowsky. 1976. Chain-complete posets and directed sets with applications. Algebra Universalis 6 (12 1976), 53–68.
https://doi.org/10.1007/BF02485815

The mathlib Community. 2020. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International

Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for Computing Machinery,
New York, NY, USA, 367–381. https://doi.org/10.1145/3372885.3373824

Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer. https:
//doi.org/10.1007/b138392

Annabelle McIver, Tahiry Rabehaja, and Georg Struth. 2016. Probabilistic rely-guarantee calculus. Theoretical Computer

Science 655 (2016), 120–134. https://doi.org/10.1016/j.tcs.2016.01.016 Quantitative Aspects of Programming Languages
and Systems (2013-14).

Robert Morris. 1978. Counting large numbers of events in small registers. Commun. ACM 21, 10 (Oct. 1978), 840–842.
https://doi.org/10.1145/359619.359627

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory. Springer
Berlin Heidelberg, Berlin, Heidelberg, 49–67. https://doi.org/10.1016/j.tcs.2006.12.035

Peter W. O’Hearn and David J. Pym. 1999. The Logic of Bunched Implications. The Bulletin of Symbolic Logic 5, 2 (1999),
215–244.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs That Alter Data Structures.
In Proceedings of the 15th International Workshop on Computer Science Logic (CSL ’01). Springer-Verlag, Berlin, Heidelberg,
1–19. https://doi.org/10.1007/3-540-44802-0_1

Vaughan R. Pratt. 1986. Modeling Concurrency with Partial Orders. Int. J. Parallel Program. 15, 1 (1986), 33–71. https:
//doi.org/10.1007/BF01379149

Michael O. Rabin. 1980. N-process synchronization by 4.log2N-valued shared variable. In 21st Annual Symposium on

Foundations of Computer Science (sfcs 1980). 407–410. https://doi.org/10.1109/SFCS.1980.26
Michael O. Rabin. 1982. The choice coordination problem. Acta Inf. 17, 2 (June 1982), 121–134. https://doi.org/10.1007/

BF00288965

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://arxiv.org/abs/2407.14107
https://arxiv.org/abs/2405.20083
https://arxiv.org/abs/2405.20083
https://doi.org/10.1016/S0167-6423(96)00019-6
https://doi.org/10.1145/363235.363259
https://doi.org/10.1016/j.entcs.2008.05.023
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.23638/LMCS-13(1:2)2017
https://doi.org/10.1145/567532.567547
https://doi.org/10.1145/3591226
https://doi.org/10.1145/3747514
https://arxiv.org/abs/2406.00884
https://arxiv.org/abs/2406.00884
https://arxiv.org/abs/2406.00884
https://doi.org/10.1007/BF02485815
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1145/359619.359627
https://doi.org/10.1016/j.tcs.2006.12.035
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/BF01379149
https://doi.org/10.1007/BF01379149
https://doi.org/10.1109/SFCS.1980.26
https://doi.org/10.1007/BF00288965
https://doi.org/10.1007/BF00288965

9:30 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual IEEE Symposium

on Logic in Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.1029817
H. L. Royden. 1968. Real Analysis (2d ed. ed.). Macmillan, New York.
Michael Smyth. 1978. Power domains. J. Comput. System Sci. 16, 1 (1978), 23–36. https://doi.org/10.1016/0022-0000(78)90048-

X
Simon Spies, Niklas Mück, Haoyi Zeng, Michael Sammler, Andrea Lattuada, Peter Müller, and Derek Dreyer. 2025. Destabi-

lizing Iris. Proc. ACM Program. Lang. 9, PLDI, Article 181 (June 2025), 26 pages. https://doi.org/10.1145/3729284
Joseph Tassarotti. 2018. Verifying Concurrent Randomized Algorithms. Ph.D. Dissertation. Carnegie Mellon University.

https://csd.cmu.edu/academics/doctoral/degrees-conferred/joseph-tassarotti
Joseph Tassarotti and Robert Harper. 2019. A Separation Logic for Concurrent Randomized Programs. Proc. ACM Program.

Lang. 3, POPL, Article 64 (Jan 2019), 30 pages. https://doi.org/10.1145/3290377
Regina Tix, Klaus Keimel, and Gordon Plotkin. 2009. Semantic Domains for Combining Probability and Non-Determinism.

Electronic Notes in Theoretical Computer Science 222 (2009), 3–99. https://doi.org/10.1016/j.entcs.2009.01.002
Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. Electronic Notes in Theoretical Computer

Science 276 (2011), 335–351. https://doi.org/10.1016/j.entcs.2011.09.029 Twenty-seventh Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVII).

Daniele Varacca. 2002. The powerdomain of indexed valuations. In Proceedings 17th Annual IEEE Symposium on Logic in

Computer Science. 299–308. https://doi.org/10.1109/LICS.2002.1029838
Daniele Varacca and Glynn Winskel. 2006. Distributing probability over non-determinism. Mathematical Structures in

Computer Science 16, 1 (2006), 87–113. https://doi.org/10.1017/S0960129505005074
Simon Friis Vindum, Aïna Linn Georges, and Lars Birkedal. 2025. The Nextgen Modality: A Modality for Non-Frame-

Preserving Updates in Separation Logic. In Proceedings of the 14th ACM SIGPLAN International Conference on Certified

Programs and Proofs (Denver, CO, USA) (CPP ’25). Association for Computing Machinery, New York, NY, USA, 83–97.
https://doi.org/10.1145/3703595.3705876

John von Neumann. 1951. Various techniques used in connection with random digits. In Monte Carlo Method, A.S.
Householder, G.E. Forsythe, and H.H. Germond (Eds.). National Bureau of Standards Applied Mathematics Series, 12,
Washington, D.C.: U.S. Government Printing Office, 36–38.

Pengbo Yan, Toby Murray, Olga Ohrimenko, Van-Thuan Pham, and Robert Sison. 2025. Combining Classical and Probabilistic
Independence Reasoning to Verify the Security of Oblivious Algorithms. In Formal Methods, André Platzer, Kristin Yvonne
Rozier, Matteo Pradella, and Matteo Rossi (Eds.). Springer Nature Switzerland, Cham, 188–205. https://doi.org/10.1007/
978-3-031-71162-6_10

Hongseok Yang and Peter O’Hearn. 2002. A Semantic Basis for Local Reasoning. In Foundations of Software Science and

Computation Structures. Springer Berlin Heidelberg, Berlin, Heidelberg, 402–416. https://doi.org/10.1007/3-540-45931-
6_28

Linpeng Zhang, Noam Zilberstein, Benjamin Lucien Kaminski, and Alexandra Silva. 2024. Quantitative Weakest Hyper
Pre: Unifying Correctness and Incorrectness Hyperproperties via Predicate Transformers. Proc. ACM Program. Lang. 8,
OOPSLA2, Article 300 (oct 2024), 30 pages. https://doi.org/10.1145/3689740

Noam Zilberstein. 2025. Outcome Logic: A Unified Approach to the Metatheory of Program Logics with Branching Effects.
ACM Trans. Program. Lang. Syst. 47, 3, Article 14 (Sept. 2025), 71 pages. https://doi.org/10.1145/3743131

Noam Zilberstein, Derek Dreyer, and Alexandra Silva. 2023. Outcome Logic: A Unifying Foundation for Correctness and
Incorrectness Reasoning. Proc. ACM Program. Lang. 7, OOPSLA1, Article 93 (Apr 2023), 29 pages. https://doi.org/10.
1145/3586045

Noam Zilberstein, Daniele Gorla, and Alexandra Silva. 2025a. Denotational Semantics for Probabilistic and Concurrent
Programs. In 36th International Conference on Concurrency Theory (CONCUR 2025) (Leibniz International Proceedings

in Informatics (LIPIcs), Vol. 348), Patricia Bouyer and Jaco van de Pol (Eds.). Schloss Dagstuhl – Leibniz-Zentrum f"ur
Informatik, Dagstuhl, Germany, 39:1–39:24. https://doi.org/10.4230/LIPIcs.CONCUR.2025.39

Noam Zilberstein, Dexter Kozen, Alexandra Silva, and Joseph Tassarotti. 2025b. A Demonic Outcome Logic for Randomized
Nondeterminism. Proc. ACM Program. Lang. 9, POPL, Article 19 (Jan 2025), 30 pages. https://doi.org/10.1145/3704855

Noam Zilberstein, Angelina Saliling, and Alexandra Silva. 2024. Outcome Separation Logic: Local Reasoning for Correctness
and Incorrectness with Computational Effects. Proc. ACM Program. Lang. 8, OOPSLA1 (Apr 2024). https://doi.org/10.
1145/3649821

Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti. 2025c. Probabilistic Concurrent Reasoning in Outcome Logic:
Independence, Conditioning, and Invariants (Full Version). arXiv:2411.11662 [cs.LO] https://arxiv.org/abs/2411.11662

Maaike Zwart and Dan Marsden. 2019. No-Go Theorems for Distributive Laws. In 2019 34th Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS). 1–13. https://doi.org/10.1109/lics.2019.8785707

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1016/0022-0000(78)90048-X
https://doi.org/10.1145/3729284
https://csd.cmu.edu/academics/doctoral/degrees-conferred/joseph-tassarotti
https://doi.org/10.1145/3290377
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1109/LICS.2002.1029838
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1145/3703595.3705876
https://doi.org/10.1007/978-3-031-71162-6_10
https://doi.org/10.1007/978-3-031-71162-6_10
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1007/3-540-45931-6_28
https://doi.org/10.1145/3689740
https://doi.org/10.1145/3743131
https://doi.org/10.1145/3586045
https://doi.org/10.1145/3586045
https://doi.org/10.4230/LIPIcs.CONCUR.2025.39
https://doi.org/10.1145/3704855
https://doi.org/10.1145/3649821
https://doi.org/10.1145/3649821
https://arxiv.org/abs/2411.11662
https://arxiv.org/abs/2411.11662
https://doi.org/10.1109/lics.2019.8785707

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:31

Appendix
A Definition of Program Semantics
In this section, we give details on the Pomsets with Formulae semantic model due to Zilberstein et al. [2025a].

A.1 Pomsets with Formulae
Whereas standard pomsets (partially ordered multisets) use a partial order to record the causality between atomic actions in
the program (elements of a multiset) [Gischer 1988; Pratt 1986], pomsets with formulae add a Boolean formula to each node,
which records which tests must succeed or fail to reach that point in the execution. This is necessary to capture probabilistic
concurrency, since tests may not always pass or fail, but rather they may only have some probability of passing, and so
both paths must be represented in a single semantic structure. We briefly introduce pomsets with formulae here, refer to
Zilberstein et al. [2025a] for a more complete treatment.

Let label ≜ Act ∪ Test ∪ {•,⊥}, which can be either an action or test (from Figure 1), a no-op (•), or undetermined
(⊥). Although ⊥ labels will never appear in the denotation of a complete program, they are used to indicate that a finite
structure is an approximation of an infinite one, i.e., in the semantics of while loops. Also, let nodes be a countable universe
of identifiers and form be the set of Boolean formulae over nodes . For some𝜓 ∈ form, we write sat(𝜓) to indicate that𝜓
is satisfiable, and vars(𝜓) ⊆ nodes is the set of variables referenced in𝜓 . We now define the underlying structure.

Definition A.1 (Labelled Partial Order with Formulae (LPOFs)). An LPOF is a 4-tuple ⟨𝑁,<, 𝜆, 𝜑 ⟩ ∈ lpo where:

(1) 𝑁 ⊆ nodes is a countable set of nodes;
(2) ⟨𝑁,<⟩ is a strict poset with a single minimal element such that finitely many nodes appear at every finite distance

from the root;
(3) 𝜆 : 𝑁 → label is a labelling function such that 𝑥 has no successors whenever 𝜆 (𝑥) = ⊥;
(4) 𝜑 : 𝑁 → form is a formula function such that: 𝜑 (𝑦) ⇒ 𝜑 (𝑥) , for all 𝑥 < 𝑦 and for all 𝑥 ∈ 𝑁 , sat(𝜑 (𝑥)) and 𝑦 < 𝑥

for all 𝑦 ∈ vars(𝜑 (𝑥)) .
For some 𝛼 ∈ lpo, we will often use 𝑁𝛼 , <𝛼 , 𝜆𝛼 , and 𝜑𝛼 to refer to its parts.

The first three components are standard in pomset semantics. The order denotes causality, so 𝑥 < 𝑦 means that the
action 𝜆 (𝑥) must be scheduled before 𝜆 (𝑦) . The order is partial (not total) because actions that occur in parallel are not
related. Formulae are a new addition to this structure, allowing us to encode guarded branching in the structure too. For
any node 𝑥 ∈ 𝑁 , 𝜑 (𝑥) is a satisfiable formula comprised of nodes appearing earlier in the trace, since the corresponding
tests must be resolved before executing later actions. In addition, formulae can only become stronger as the trace goes on,
since dependencies on more and more tests are accumulated over time.

Two LPOFs are isomorphic, denoted 𝛼 ≡ 𝛽 iff there is a bijection 𝑓 : 𝑁𝛼 → 𝑁𝛽 such that 𝑥 <𝛼 𝑦 iff 𝑓 (𝑥) <𝛽 𝑓 (𝑦) ,
𝜆𝛼 = 𝜆𝛽 ◦ 𝑓 , and 𝜑𝛼 = 𝑓 −1 ◦ 𝜑𝛽 ◦ 𝑓 , where 𝑓 −1 (𝜓) renames the variables of𝜓 in the obvious way. Given that, a pomset
with formulae is an equivalence class of LPOFs.

Definition A.2 (Pomsets with Formulae). We denote the isomorphism class of 𝛼 as [𝛼] ≜ {𝛽 ∈ lpo | 𝛼 ≡ 𝛽 }. A pomset with
formulae (or, simply, a pomset) 𝜶 ∈ pom is an isomorphism class of LPOFs.

pom ≜ { [𝛼] | 𝛼 ∈ lpo }

Pomsets with formulae have many nice domain-theoretic properties. For example, they have a DCPO (directed complete
partial order) structure, meaning that Scott continuous operations over them have least fixed points. Roughly speaking
𝜶 ⊑pom 𝜷 iff 𝜷 is obtained by replacing nodes labelled ⊥ in 𝜶 with a new, larger structure. We will see a concrete example
of this shortly when we discuss the semantics of loops. Infinite pomsets with formulae can also be represented as the
supremum of their finite approximation, and monotone operations on those finite approximations can be extended to
continuous operations on infinite pomsets. This is useful, since it is not possible to define operations inductively on infinite
structures, as we will see in Appendix A.2.

The trace semantics J−K : Cmd → pom, shown in Figure 11, interprets every command as a pomset with formulae. We
use several operators to construct pomsets. First, ⟨ − ⟩ : label → pom constructs a singleton pomset with the given label.
This is used for the semantics of skip and actions 𝑎 ∈ Act. Next, we have three combinators for combining pomsets, which
we demonstrate pictorially below. The first is sequential composition 𝜶 # 𝜷 , which constructs a pomset where all the actions
from 𝜶 occur before those in 𝜷 . In the diagram, 𝑎1 → 𝑎2 indicates causality (𝑎1 occurs before 𝑎2)

The second combinator is guarded choice guard(𝑏,𝜶 , 𝜷) , where the test 𝑏 becomes the new root and all formulae of
the nodes in 𝜶 and 𝜷 are updated to indicate that the new root must pass or fail, respectively, as indicated by the arrows
labelled T and F. Finally, parallel composition 𝜶 ∥ 𝜷 joins the two pomsets with a new no-op root, so that the actions of 𝜶

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:32 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

JskipK ≜ ⟨ • ⟩

J𝐶1 #𝐶2K ≜ J𝐶1K # J𝐶2K

J𝐶1 ∥ 𝐶2K ≜ J𝐶1K ∥ J𝐶2K

Jif 𝑏 then𝐶1 else𝐶2K ≜ guard(𝑏, J𝐶1K , J𝐶2K)
Jwhile 𝑏 do𝐶K ≜ lfp

(
Φ⟨𝑏,𝐶⟩

)
where Φ⟨𝑏,𝐶⟩ (𝜶) ≜ guard (𝑏, J𝐶K # 𝜶 , ⟨ • ⟩)

J𝑎K ≜ ⟨𝑎⟩

Fig. 11. Trace semantics for commands J−K : Cmd → pom.

and 𝜷 can be interleaved without restriction.

⟨𝑎1 ⟩ # ⟨𝑎2 ⟩ =
𝑎2

𝑎1

OO
guard(𝑏, ⟨𝑎1 ⟩, ⟨𝑎2 ⟩) =

𝑎1 𝑎2

𝑏
T

]]]]
F

AAAA
⟨𝑎1 ⟩ ∥ ⟨𝑎2 ⟩ =

𝑎1 𝑎2

•
^^ @@

The semantics of loops is given by a least fixed point of the characteristic function Φ⟨𝑏,𝐶⟩ , which is Scott continuous since it
is defined using guard and #, both of which are Scott continuous [Zilberstein et al. 2025a]. This means that the least fixed
point is equal to the supremum of the finite unrollings of Φ⟨𝑏,𝐶⟩ , as shown in the following diagram.

⊥ ⊑pom

⊥
𝑎

OO

•
𝑏T

`` ``
F

>>>> ⊑pom

⊥
𝑎

OO

•
𝑏T

aa aa
F

>>>>

𝑎

OO

•
𝑏T

`` ``
F

>>>>

⊑pom · · · ⊑pom

.

.

.

𝑎

OO

•
𝑏T

`` ``
F

>>>>

𝑎

OO

•
𝑏T

`` ``
F

>>>>

Φ0
⟨𝑎,𝑏⟩ (⟨⊥⟩) Φ1

⟨𝑎,𝑏⟩ (⟨⊥⟩) Φ2
⟨𝑎,𝑏⟩ (⟨⊥⟩) sup𝑛∈N Φ𝑛⟨𝑎,𝑏⟩ (⟨⊥⟩)

In each unrolling, ⊥ appears further and further from the root until, in the supremum, it is pushed infinitely far away. That
infinite spine represents the execution in which the guard 𝑏 never becomes false. In the context of probabilistic programs, it
is important to include the infinite spine, as the probability of continuing to execute may only converge to 0 in the limit.

A.2 Linearization
The benefit of the pomset model is that it is fully compositional; the parallel composition of two commands is interpreted
as a straightforward combination of their syntactic structures. However, for the purposes of designing a program logic,
we need a state transformer model, which maps each input state to a convex set of distributions over output states. For
this purpose, Zilberstein et al. [2025a] also define linearization L : pom → Mem[𝑆] → C(Mem[𝑆]) . The definition is
repeated below.

next(𝛼,𝜓, 𝑆) = {𝑥 ∈ 𝑁𝛼 \ 𝑆 |↓ 𝑥 ⊆ 𝑆,𝜓 ⇒ 𝜑𝛼 (𝑥) }
next

★ (𝛼,𝜓, 𝑆) = {𝑥 ∈ 𝑁𝛼 \ 𝑆 | sat(𝜓 ∧ 𝜑𝛼 (𝑥)) }

LI
node (𝛼,𝜓, 𝑆, 𝑥) (𝜎) =


LI

lpo (𝛼,𝜓, 𝑆 ∪ {𝑥 })†
(
J𝜆𝛼 (𝑥)KIAct (𝜎)

)
if 𝜆𝛼 (𝑥) ∈ Act

LI
lpo (𝛼,𝜓 ∧ L𝑥 = J𝜆𝛼 (𝑥)KTest (𝜎)M, 𝑆 ∪ {𝑥 }) (𝜎) if 𝜆𝛼 (𝑥) ∈ Test

⊥C if 𝜆𝛼 (𝑥) = ⊥
LI

lpo (𝛼,𝜓, 𝑆 ∪ {𝑥 }) (𝜎) if 𝜆𝛼 (𝑥) = •

LI
lpo (𝛼,𝜓, 𝑆) (𝜎) =

{
𝜂 (𝜎) if next(𝛼,𝜓, 𝑆) = ∅
&𝑥∈next(𝛼,𝜓,𝑆) LI

node (𝛼,𝜓, 𝑆, 𝑥) (𝜎) if next(𝛼,𝜓, 𝑆) ≠ ∅

LI
fin

([𝛼]) = LI
lpo (𝛼, true, ∅)

LI (𝜶) = sup
𝜶 ′≪𝜶

LI
fin

(𝜶 ′)

The function next(𝛼,𝜓, 𝑆) gives the set of nodes that are ready to be scheduled, given a finite LPOF 𝛼 , a path condition𝜓 ,
and the set of nodes 𝑆 that have already been processed. Linearizing a node Lnode does case analysis on the label of the
node to decide how to proceed. If the node is an action, then the action is evaluated and composed with the linearization of
the remainder of the LPOF. If the node is a test, then the result of the test is added to the path condition. If the node is ⊥,
then the execution is halted. If it is a no-op, then the execution simply continues.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:33

To linearize an entire finite LPOF, we simply perform a nondeterministic choice over all the next nodes, linearize
those nodes, and then proceed processing the rest of the structure recursively. To make the recursion well-founded, the
structure must be finite, but we extend to the infinite case later. To linearize a finite pomset 𝜶 , we simply linearize any
representative LPOF 𝛼 ∈ 𝜶 . Finally, to linearize an infinite pomset, we take the supremum over the linearization of all the
finite approximations, where 𝜶 ′ ≪ 𝜶 indicates that 𝜶 ′ is a finite approximation of 𝜶 .

Since most operations are continuous, we get, e.g., that the supremum of finite approximations of a sequential composition
is equal to the sequential composition over the supremum of finite approximations:

sup
𝜶 ′≪𝜶

sup
𝜷′≪𝜷

𝜶 ′ # 𝜷′ =

(
sup

𝜶 ′≪𝜶
𝜶 ′

)
#

(
sup
𝜷′≪𝜷

𝜷′
)
= 𝜶 # 𝜷

The exception to this is for parallel composition, which is not continuous for technical reasons. However, if we define ≪1
as follows:

𝜸 ≪1 𝜸
′ iff 𝜸 ≪ 𝜸 ′ and root(𝜸) = root(𝜸 ′) = • or root(𝜸 ′) ≠ •

where root(𝜸) is the label of the root node of the pomset 𝜸 , then we get the following weaker pseudo-continuity property:

sup
𝜶 ′≪1𝜶

sup
𝜷′≪1𝜷

𝜶 ′ ∥ 𝜷′ =

(
sup

𝜶 ′≪1𝜶
𝜶 ′

)
∥

(
sup

𝜷′≪1𝜷
𝜷′

)
= 𝜶 ∥ 𝜷

B General Lemmas
B.1 Measure Theory Lemmas
We begin by proving some general properties for characterizing discrete product spaces. By Lemma C.1 and C.2 of Bao
et al. [2025], for any discrete probability space P, there exists a countable partition {𝐴𝑖 | 𝑖 ∈ 𝐼 } of ΩP such that
FP = {⊎𝑖∈𝐼 ′ 𝐴𝑖 | 𝐼 ′ ⊆ 𝐼 }. Let ev(P) denote this partition. It follows that for every 𝐴 ∈ FP , 𝜇P (𝐴) = ∑

𝐵∈𝑆 𝜇P (𝐵) for
some 𝑆 ⊆ ev(P) .

Lemma B.1. For any probability spaces P1 and P2

FP1⊗P2 =


⊎

(𝐴,𝐵)∈𝑆
𝐴 ∗ 𝐵

������ 𝑆 ⊆ ev(P1) × ev(P2)


Proof. The forward inclusion follows immediately from LemmaC.5 of Bao et al. [2025], so it suffices to only show the reverse
inclusion. Take any 𝑆 ⊆ ev(P1) × ev(P2) . For each (𝐴, 𝐵) ∈ 𝑆 ⊆ ev(P1) × ev(P2) , clearly 𝐴 ∈ ev(P1) and 𝐵 ∈ ev(P2) ,
so 𝐴 ∗ 𝐵 ∈ FP1⊗P2 since by definition FP1⊗P2 is the smallest sigma algebra containing {𝐴 ∗ 𝐵 | 𝐴 ∈ FP1 , 𝐵 ∈ FP2 }. Since
FP1⊗P2 is closed under countable unions, then

⊎
(𝐴,𝐵)∈𝑆 𝐴 ∗ 𝐵 ∈ FP1⊗P2 . □

Lemma B.2. Q = P1 ⊗ P2 iff:

(1) ΩQ = ΩP1 ∗ ΩP2
(2) FQ = {⊎(𝐴,𝐵)∈𝑆 𝐴 ∗ 𝐵 | 𝑆 ⊆ ev(P1) × ev(P2) }
(3) 𝜇Q (𝐴 ∗ 𝐵) = 𝜇P1 (𝐴) · 𝜇P2 (𝐵) for all 𝐴 ∈ ev(P1) and 𝐵 ∈ ev(P2)

Proof. The forward direction follows immediately from the definition of product spaces and Lemma B.1. We now show
the reverse direction. By (1) and the definition of product spaces, ΩQ = ΩP1 ∗ ΩP2 = ΩP1⊗P2 . By (2) and Lemma B.1,
FQ = FP1⊗P2 . Now, take any event 𝐴 ∈ FQ = FP1⊗P2 . We already know that 𝐴 =

⊎
(𝐴1,𝐴2)∈𝑆 𝐴1 ∗ 𝐴2 for some

𝑆 ⊆ ev(P1) × ev(P2) , so:

𝜇Q (𝐴) = 𝜇Q
©­«

⊎
(𝐴1,𝐴2)∈𝑆

𝐴1 ∗𝐴2
ª®¬

=
∑︁

(𝐴1,𝐴2)∈𝑆
𝜇Q (𝐴1 ∗𝐴2)

=
∑︁

(𝐴1,𝐴2)∈𝑆
𝜇P1 (𝐴1) · 𝜇P2 (𝐴2)

=
∑︁

(𝐴1,𝐴2)∈𝑆
𝜇P1⊗P2 (𝐴1 ∗𝐴2)

= 𝜇P1⊗P2
©­«

⊎
(𝐴1,𝐴2)∈𝑆

𝐴1 ∗𝐴2
ª®¬ = 𝜇P1⊗P2 (𝐴)

□

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:34 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Lemma B.3. If both sides of the following equality are well-defined, then:(⊕
𝑖∼𝜈

P𝑖

)
⊗ Q =

⊕
𝑖∼𝜈

(P𝑖 ⊗ Q)

Proof. Let P𝑖 = ⟨Ω𝑖 , F𝑖 , 𝜇𝑖 ⟩ for each 𝑖 ∈ 𝐼 = supp(𝜈) . If the above are well defined, then there must be 𝑆 and𝑇 such that
Ω𝑖 ⊆ Mem[𝑆] and ΩQ ⊆ Mem[𝑇]. We first show that both probability spaces have the same sample space, since:

Ω (
⊕
𝑖∼𝜈 P𝑖)⊗Q = (

⋃
𝑖∈supp(𝜈)

Ω𝑖) ∗ ΩQ

=

{
𝜎 ⊎ 𝜎′

����� 𝜎 ∈
⋃
𝑖∈𝐼

Ω𝑖 𝑣, 𝜎
′ ∈ ΩQ

}
=

⋃
𝑖∈𝐼

{𝜎 ⊎ 𝜎′ | 𝜎 ∈ Ω𝑖 , 𝜎
′ ∈ ΩQ }

=
⋃
𝑖∈𝐼

Ω𝑖 ∗ ΩQ = Ω⊕
𝑖∼𝜈 (P𝑖⊗Q)

To show that the 𝜎-algebras are the same, it will suffice to show that they are generated from the same disjoint partitions
[Bao et al. 2025, Lemma C.1]. We start by using Lemma B.1 to conclude that:

ev

((⊕
𝑖∼𝜈

P𝑖

)
⊗ Q

)
= ev

(⊕
𝑖∼𝜈

P𝑖

)
× ev(Q)

Since all the P𝑖 have disjoint sample spaces, their partitions must also be disjoint:

=

(⊎
𝑖∈𝐼

ev(P𝑖)
)
× ev(Q)

=
⊎
𝑖∈𝐼

ev(P𝑖) × ev(Q)

=
⊎
𝑖∈𝐼

ev(P𝑖 ⊗ Q) = ev

(⊕
𝑖∼𝜈

P𝑖 ⊗ Q
)

Finally, by Lemma B.2, it suffices to show that the product measures agree on events of the form𝐴 ∗𝐵, where𝐴 ∈ F⊕
𝑖∼𝜈

P𝑖
and 𝐵 ∈ FQ :

𝜇 (
⊕
𝑖∼𝜈 P𝑖)⊗Q (𝐴 ∗ 𝐵) = 𝜇⊕

𝑖∼𝜈 P𝑖 (𝐴) · 𝜇Q (𝐵)

=

(∑︁
𝑖∈𝐼

𝜈 (𝑖) · 𝜇𝑖 (𝐴 ∩ Ω𝑖)
)
· 𝜇Q (𝐵)

=
∑︁
𝑖∈𝐼

𝜈 (𝑖) · 𝜇𝑖 (𝐴 ∩ Ω𝑖) · 𝜇Q (𝐵)

=
∑︁
𝑖∈𝐼

𝜈 (𝑖) · 𝜇P𝑖⊗Q ((𝐴 ∩ Ω𝑖) ∗ 𝐵)

=
∑︁
𝑖∈𝐼

𝜈 (𝑖) · 𝜇P𝑖⊗Q ((𝐴 ∗ 𝐵) ∩ (Ω𝑖 ∗ ΩQ))

= 𝜇⊕
𝑖∼𝜈 P𝑖⊗Q (𝐴 ∗ 𝐵)

□

Lemma B.4 (Monotonicity of ⊗). If P ⪯ P′
and Q ⪯ Q′

, then P ⊗ Q ⪯ P′ ⊗ Q′
.

Proof. Let 𝑆 , 𝑆′, 𝑇 , and 𝑇 ′ be sets such that ΩP ⊆ 𝑆 , ΩP′ ⊆ Mem[𝑆′], ΩQ ⊆ Mem[𝑇], and ΩQ′ ⊆ Mem[𝑇 ′]. First we
show the condition on sample spaces:

ΩP⊗Q = ΩP ∗ ΩQ

= {𝜎 ⊎ 𝜏 | 𝜎 ∈ ΩP , 𝜏 ∈ ΩQ }
⊆ {𝜎 ⊎ 𝜏 | 𝜎 ∈ 𝜋𝑆 (ΩP′), 𝜏 ∈ 𝜋𝑇 (ΩQ′) }
= {𝜋𝑆 (𝜎) ⊎ 𝜋𝑇 (𝜏) | 𝜎 ∈ ΩP′ , 𝜏 ∈ ΩQ′ }
= {𝜋𝑆∪𝑇 (𝜎 ⊎ 𝜏) | 𝜎 ∈ ΩP′ , 𝜏 ∈ ΩQ′ } = 𝜋𝑆∪𝑇 (ΩP′⊗Q)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:35

Now we show the condition on 𝜎-algebras:

FP⊗Q = 𝜎 ({𝐴 ∗ 𝐵 | 𝐴 ∈ FP , 𝐵 ∈ FQ })
Since 𝜎-closure is monotonic:

⊆ 𝜎 ({𝐴 ∗ 𝐵 | 𝐴 ∈ 𝜋𝑆 (FP′), 𝐵 ∈ 𝜋𝑇 (FQ′) })
= 𝜎 ({𝜋𝑆 (𝐴) ∗ 𝜋𝑇 (𝐵) | 𝐴 ∈ FP′ , 𝐵 ∈ FQ′ })
= 𝜎 (𝜋𝑆∪𝑇 ({𝐴 ∗ 𝐵 | 𝐴 ∈ FP′ , 𝐵 ∈ FQ′ }))
= 𝜋𝑆∪𝑇 (𝜎 ({𝐴 ∗ 𝐵 | 𝐴 ∈ FP′ , 𝐵 ∈ FQ′ }))
= 𝜋𝑆∪𝑇 (FP′⊗Q′)

Finally, by Lemma B.2, it suffices to show that the product measure is equal only for events of the form𝐴 ∗𝐵 where𝐴 ∈ FP
and 𝐵 ∈ FQ :

𝜇P⊗Q (𝐴 ∗ 𝐵) = 𝜇P (𝐴) · 𝜇Q (𝐵)
Since P ⪯ P′ and Q ⪯ Q′:

= 𝜇P′
(⋃

{𝐴′ ∈ FP′ | 𝜋𝑆 (𝐴′) = 𝐴}
)
· 𝜇Q′

(⋃
{𝐵′ ∈ FQ′ | 𝜋𝑇 (𝐵′) = 𝐵 }

)
= 𝜇P′⊗Q′

((⋃
{𝐴′ ∈ FP′ | 𝜋𝑆 (𝐴′) = 𝐴}

)
∗

(⋃
{𝐵′ ∈ FQ′ | 𝜋𝑇 (𝐵′) = 𝐵 }

))
Let 𝐴′′ =

⋃{𝐴′ ∈ FP′ | 𝜋𝑆 (𝐴′) = 𝐴} and 𝐵′′ = ⋃{𝐵′ ∈ FQ′ | 𝜋𝑇 (𝐵′) = 𝐵 }. Clearly 𝐴′′ ∈ FP′ and 𝐵′′ ∈ FQ′ since both
sets are closed under countable unions. Therefore:

= 𝜇P′⊗Q′
(
𝐴′′ ∗ 𝐵′′

)
We show that the sets above and below are equal by showing the inclusion in both directions. The forward inclusion
is trivial; 𝐴′′ ∗ 𝐵′′ is clearly an element of FP′⊗Q′ and has the property 𝜋𝑆∪𝑇 (𝐴′′ ∗ 𝐵′′) = 𝜋𝑆 (𝐴′′) ∗ 𝜋𝑇 (𝐵′′) = 𝐴 ∗ 𝐵.
For the reverse inclusion, take some element of the set below, which must have the form 𝜎 ⊎ 𝜏 where 𝜎 ∈ ΩP′ and
𝜏 ∈ ΩQ′ and 𝜎 ⊎ 𝜏 ∈ 𝐸 for some 𝐸 ∈ FP′⊗Q′ such that 𝜋𝑆∪𝑇 (𝐸) = 𝐴 ∗ 𝐵. By Lemma B.1, 𝐸 =

⊎
(𝐸1,𝐸2)∈𝑆 𝐸1 ∗ 𝐸2 for some

𝑆 ⊆ ev(P′) ×ev(Q′) , so 𝜎 ∈ 𝐸1 and 𝜏 ∈ 𝐸2 for some (𝐸1, 𝐸2) ∈ 𝑆 . Since 𝜋𝑆∪𝑇 (𝐸) = 𝐴∗𝐵, then 𝜋𝑆 (𝐸) =
⊎

(𝐸1,−)∈𝑆 𝐸1 = 𝐴
and 𝜋𝑇 (𝐸) = ⊎

(−,𝐸2)∈𝑆 𝐸2 = 𝐵, therefore 𝜎 ∈ 𝐸1 ⊆ 𝜋𝑆 (𝐸) ⊆ 𝐴′′ and 𝜏 ∈ 𝐸2 ⊆ 𝜋𝑇 (𝐸) ⊆ 𝐵′′, so 𝜎 ⊎ 𝜏 ∈ 𝐴′′ ∗ 𝐵′′.

= 𝜇P′⊗Q′
(⋃

{𝐸 ∈ FP′⊗Q′ | 𝜋𝑆∪𝑇 (𝐸) = 𝐴 ∗ 𝐵 }
)

□

Lemma B.5 (Monotonicity of ⊕). If P𝑣 ⪯ P′
𝑣 for each 𝑣 ∈ supp(𝜈) , then

⊕
𝑣∼𝜈 P𝑣 ⪯

⊕
𝑣∼𝜈 P′

𝑣 .

Proof. Let P =
⊕

𝑣∼𝜈 P𝑣 and P′ =
⊕

𝑣∼𝜈 P′
𝑣 , so we need to prove that P ⪯ P′. Also, let 𝑆 and 𝑆′ be sets such that

ΩP𝑣 ⊆ Mem[𝑆] and ΩP′
𝑣
⊆ Mem[𝑆′] for all 𝑣. We first establish the required property on the sample space:

ΩP =
⋃

𝑣∈supp(𝜈)
ΩP𝑣 ⊆

⋃
𝑣∈supp(𝜈)

𝜋𝑆 (ΩP′
𝑣
) = 𝜋𝑆 (ΩP′)

Now, we establish the property on 𝜎-algebras.

FP = {𝐴 | 𝐴 ⊆ ΩP , ∀𝑣. 𝐴 ∩ ΩP𝑣 ∈ FP𝑣 }
⊆ {𝐴 | 𝐴 ⊆ 𝜋𝑆 (ΩP′), ∀𝑣. 𝐴 ∩ 𝜋𝑆 (ΩP′

𝑣
) ∈ {𝜋𝑆 (𝐵) | 𝐵 ∈ FP′

𝑣
}}

= {𝜋𝑆 (𝐴) | 𝐴 ⊆ ΩP′ , ∀𝑣. 𝐴 ∩ ΩP′
𝑣
∈ FP′

𝑣
}

= {𝜋𝑆 (𝐴) | 𝐴 ∈ FP′ }
Finally, we establish the condition on probability measures:

𝜇P (𝐴) =
∑︁

𝑣∈supp(𝜈)
𝜈 (𝑣) · 𝜇P𝑣 (𝐴 ∩ ΩP𝑣)

=
∑︁

𝑣∈supp(𝜈)
𝜈 (𝑣) · 𝜇P′

𝑣

(⋃
{𝐵 ∈ FP′

𝑣
| 𝜋𝑆 (𝐵) = 𝐴 ∩ ΩP𝑣 }

)
Since 𝐴 ⊆ ΩP ⊆ 𝜋𝑆 (ΩP′) , then, we can move the intersection out of the set limits:

=
∑︁

𝑣∈supp(𝜈)
𝜈 (𝑣) · 𝜇P′

𝑣

((⋃
{𝐵 ∈ FP′ | 𝜋𝑆 (𝐵) = 𝐴}

)
∩ ΩP′

𝑣

)
= 𝜇P′

(⋃
{𝐵 ∈ FP′ | 𝜋𝑆 (𝐵) = 𝐴}

)
Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:36 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

□

Lemma B.6. For any complete probability spaces P, (P𝑖)𝑖∈𝐼 , and 𝜇 ∈ D(𝐼) such that ΩP ⊆ Mem[𝑆], each ΩP𝑖 ⊆ Mem[𝑇],
and

⋃
𝑖∈𝐼 ΩP𝑖 = Mem[𝑇], if P ⪯ ext(P𝑖) for all 𝑖 ∈ supp(𝜇) , then P ⪯

⊕
𝑖∼𝜇 P𝑖

Proof. Let Q =
⊕

𝑖∼𝜇 P𝑖 . Since P ⪯ P𝑖 , then it must be that 𝑆 ⊆ 𝑇 . The property on sample spaces is simple:

ΩP =
⋃

𝑖∈supp(𝜇)
ΩP ⊆

⋃
𝑖∈supp(𝜇)

𝜋𝑆 (Ωext(P𝑖)) =
⋃

𝑖∈supp(𝜇)
𝜋𝑆 (Mem[𝑇]) = 𝜋𝑆

©­«
⋃

𝑖∈supp(𝜇)
Mem[𝑇]ª®¬ = 𝜋𝑆 (ΩQ)

Next, we verify the property on 𝜎-algebras.

FP =
⋂
𝑖∈𝐼

FP

⊆
⋂
𝑖∈𝐼

{𝜋𝑆 (𝐴) | 𝐴 ∈ F
ext(P𝑖) }

= {𝜋𝑆 (𝐴) | ∀𝑖 ∈ 𝐼 . 𝐴 ∈ F
ext(P𝑖) }

Note that the completion adds information about events outside of ΩP𝑖 , so if𝐴 is in all of the F
ext(P𝑖) sets, then its projection

into each ΩP𝑖 must be in FP𝑖 .

= {𝜋𝑆 (𝐴) | 𝐴 ⊆ Ω𝑄 , ∀𝑖 . 𝐴 ∩ ΩP𝑖 ∈ FP𝑖 }
= {𝜋𝑆 (𝐴) | 𝐴 ∈ FQ }

Finally, we show the property on probability measures.

𝜇P (𝐴) =
∑︁

𝑖∈supp(𝜇)
𝜇 (𝑖) · 𝜇P (𝐴)

=
∑︁

𝑖∈supp(𝜇)
𝜇 (𝑖) · 𝜇

ext(P𝑖)
(⋃

{𝐵 ∈ F
ext(P𝑖) | 𝜋𝑆 (𝐵) = 𝐴}

)
The completion assigns zero probability to events outside of ΩP𝑖 , so removing the completion and projecting into ΩP𝑖 will
yield the same value.

=
∑︁

𝑖∈supp(𝜇)
𝜇 (𝑖) · 𝜇P𝑖

((⋃
{𝐵 ∈ FQ | 𝜋𝑆 (𝐵) = 𝐴}

)
∩ ΩP𝑖

)
= 𝜇Q

(⋃
{𝐵 ∈ FQ | 𝜋𝑆 (𝐵) = 𝐴}

)
□

Lemma B.7. If P ⪯ ext(P𝑖) for all 𝑖 ∈ supp(𝜇) , then P ⪯
⊕

𝑖∼𝜇 P𝑖 .

Proof. Let 𝑆 be the set such that ΩP = Mem[𝑆], 𝑇 be such that Mem[𝑇] = ⋃
𝑖∈supp(𝜇) ΩP𝑖 , and Q =⪯

⊕
𝑖∼𝜇 P𝑖 . The

condition on sample spaces is simple, since ΩP = Mem[𝑆] and ΩQ = Mem[𝑇], and clearly Mem[𝑆] = 𝜋𝑆 (Mem[𝑇]) . For
the condition on 𝜎-algebras, we have:

FP =
⋂

𝑖∈supp(𝜇)
FP

⊆
⋂

𝑖∈supp(𝜇)
{𝜋𝑆 (𝐴) | 𝐴 ∈ F

ext(P𝑖) }

=
⋂

𝑖∈supp(𝜇)
{𝜋𝑆 (𝐴 ∪ 𝐵) | 𝐴 ∈ FP𝑖 , 𝐵 ⊆ Mem[𝑇] \ ΩP𝑖 }

Since for each 𝑖 in the intersection above, we can measure every sample outside of ΩP𝑖 , then after taking the intersection
we are only able to measure samples from ΩP𝑖 according to the information provided by FP𝑖 , which provides the least
information about those samples.

= {𝜋𝑆 (𝐴) | 𝐴 ⊆ Mem[𝑇], ∀𝑖 . 𝐴 ∩ ΩP𝑖 ∈ FP𝑖 }
= {𝜋𝑆 (𝐴) | 𝐴 ∈ FQ }

Now, we show the condition on probability measures:

𝜇P (𝐴) =
∑︁

𝑖∈supp(𝜇)
𝜇 (𝑖) · 𝜇P (𝐴)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:37

=
∑︁

𝑖∈supp(𝜇)
𝜇 (𝑖) · 𝜇

ext(P𝑖)
(⋃

{𝐵 ∈ F
ext(P𝑖) | 𝜋𝑆 (𝐵) = 𝐴}

)
=

∑︁
𝑖∈supp(𝜇)

𝜇 (𝑖) · 𝜇P𝑖
((⋃

{𝐵 ∈ FQ | 𝜋𝑆 (𝐵) = 𝐴}
)
∩ ΩP𝑖

)
= 𝜇Q

(⋃
{𝐵 ∈ FQ | 𝜋𝑆 (𝐵) = 𝐴}

)
□

B.2 The Convex Powerset
Lemma B.8. For any finite index set 𝐼 , 𝑓 : 𝑋 → C(𝑌) , and (𝑆𝑖)𝑖∈𝐼 ∈ C(𝑋)𝐼 :

𝑓 † (&
𝑖∈𝐼

𝑆𝑖) =&
𝑖∈𝐼

𝑓 † (𝑆𝑖)

Proof. Let 𝑔 : 𝐼 → C(𝑋) be defined as 𝑔 (𝑖) ≜ 𝑆𝑖 . Now, observe that:

&
𝑖∈𝐼

𝑆𝑖 =


∑︁

𝑖∈supp(𝜇)
| 𝜇 ∈ D(𝐼), ∀𝑖 . 𝜈𝑖 ∈ 𝑔 (𝑖)

 = 𝑔† (D (𝐼))

So, we get:

𝑓 † (&
𝑖∈𝐼

𝑆𝑖) = 𝑓 † (𝑔† (D (𝐼)))

= (𝑓 † ◦ 𝑔)† (D (𝐼))

=


∑︁

𝑖∈supp(𝜇)
𝜇 (𝑖) · 𝜈𝑖

��� 𝜇 ∈ D(𝐼), ∀𝑖 . 𝜈𝑖 ∈ 𝑓 † (𝑔 (𝑖))


=&
𝑖∈𝐼

𝑓 † (𝑆𝑖)

□

For any 𝑆 ∈ C(Mem[𝑉]) and 𝐴 ⊆ Mem[𝑉], let:

minProb(𝑆,𝐴) ≜ inf
𝜇∈𝑆

𝜇 (𝐴)

Since𝑆 ∈ C(Mem[𝑉]) , it is a closed subset of D(Mem[𝑉]⊥) , and so theremust be a 𝜇 ∈ 𝑆 such that 𝜇 (𝐴) = minProb(𝑆,𝐴) ,
therefore minProb(𝑆,𝐴) = min𝜇∈𝑆 𝜇 (𝐴) .

Lemma B.9 (Monotonicity of minProb). If 𝑆 ⊑C 𝑇 , then:

minProb(𝑆,𝐴) ≤ minProb(𝑇,𝐴)

Proof. By definition 𝑆 ⊑C 𝑇 iff 𝑆 ⊇ 𝑇 . So, we get:

minProb(𝑆,𝐴) = inf
𝜇∈𝑆

𝜇 (𝐴) = min(inf
𝜇∈𝑇

𝜇 (𝐴), inf
𝜇∈𝑆\𝑇

𝜇 (𝐴)) ≤ inf
𝜇∈𝑇

𝜇 (𝐴) = minProb(𝑇,𝐴)

□

Lemma B.10. For any directed set 𝐷 ⊆ C(Mem[𝑉]) :

sup
𝑆∈𝐷

minProb(𝑆,𝐴) ≤ minProb(sup𝐷,𝐴)

Proof. Since 𝑆 ⊑C sup𝐷 for all 𝑆 ∈ 𝐷 , then by Lemma B.9 we know thatminProb(𝑆,𝐴) ≤ minProb(sup𝐷,𝐴) . Therefore,
since the supremum is the least upper bound, it must be that sup𝑆∈𝐷 minProb(𝑆,𝐴) ≤ minProb(sup𝐷,𝐴) . □

Lemma B.11 (Scott Continuity of minProb). For any directed set 𝐷 ⊆ C(Mem[𝑆]) such that 𝜇 (𝐴) = 𝑝 for all 𝜇 ∈ sup𝐷 :

sup
𝑆∈𝐷

minProb(𝑆,𝐴) = minProb(sup𝐷,𝐴)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:38 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Proof. By ?, Corollary 3, we know that any chain-continuous function on a DCPO is Scott continuous, therefore it will
suffice to show that minProb is chain continuous. Let (𝑆𝛿)𝛿<𝜁 be a transfinite chain, so that 𝑆𝛿 ∈ C(Mem[𝑉]) for all
𝛿 < 𝜁 , and 𝑆𝛿 ⊑C 𝑆𝛿′ for all 𝛿 < 𝛿′. We will now prove that:

sup
𝛿<𝜁

minProb(𝑆𝛿 , 𝐴) = minProb

(
sup
𝛿<𝜁

𝑆𝛿 , 𝐴

)
From Lemma B.10, we already know that sup𝑆∈𝐷 minProb(𝑆,𝐴) ≤ minProb(sup𝐷,𝐴) . We will now also show that
sup𝑆∈𝐷 minProb(𝑆,𝐴) < minProb(sup𝐷,𝐴) is a contradiction, and therefore the two quantities are equal. Let 𝑝 =

minProb(sup𝛿<𝜁 𝑆𝛿 , 𝐴) , and suppose for the sake of contradiction that:

sup
𝛿<𝜁

minProb(𝑆𝛿 , 𝐴) < minProb(sup
𝛿<𝜁

𝑆𝛿 , 𝐴)

So, there is some 𝜀 > 0 such that sup𝛿<𝜁 minProb(𝑆𝛿 , 𝐴) = 𝑝 − 𝜀 .
Let𝑇𝛿 = {𝜇 ∈ 𝑆𝛿 | 𝜇 (𝐴) ≤ 𝑝 − 𝜀 } for all 𝛿 < 𝜁 . If there exists a 𝛿 such that𝑇𝛿 = ∅, then sup𝛿′<𝜁 minProb(𝑆𝛿′ , 𝐴) ≥

minProb(𝑆𝛿 , 𝐴) > 𝑝 − 𝜀 , which is a contradiction, therefore𝑇𝛿 ≠ ∅ for all 𝛿 < 𝜁 . Further, by Lemma B.4.3 of McIver and
Morgan [2005], the𝑇𝛿 sets are closed, therefore their intersection must be nonempty by the finite intersection property. That
means that there is some 𝜇 ∈ ⋂

𝛿<𝜁 𝑇𝛿 ⊆ ⋂
𝛿<𝜁 𝑆𝛿 = sup𝛿<𝜁 𝑆𝛿 such that 𝜇 (𝐴) ≤ 𝑝−𝜀 , but this is a contradiction too since

we know thatminProb(sup𝛿<𝜁 𝑆𝛿 , 𝐴) = 𝑝 . Therefore, it cannot be that sup𝛿<𝜁 minProb(𝑆𝛿 , 𝐴) < minProb(sup𝛿<𝜁 𝑆𝛿 , 𝐴) ,
and instead sup𝛿<𝜁 minProb(𝑆𝛿 , 𝐴) = minProb(sup𝛿<𝜁 𝑆𝛿 , 𝐴) .

□

Lemma B.12.
minProb(𝑆 &𝑇,𝐴) = min(minProb(𝑆,𝐴),minProb(𝑇,𝐴))

Proof.

minProb(𝑆 &𝑇,𝐴) = minProb({𝜇 ⊕𝑝 𝜈 | 𝜇 ∈ 𝑆, 𝜈 ∈ 𝑇, 𝑝 ∈ [0, 1] }, 𝐴)
= inf
𝜇∈𝑆

inf
𝜈∈𝑇

inf
𝑝∈[0,1]

𝑝 · 𝜇 (𝐴) + (1 − 𝑝) · 𝜈 (𝐴)

= inf
𝑝∈[0,1]

𝑝 ·
(
inf
𝜇∈𝑆

𝜇 (𝐴)
)
+ (1 − 𝑝) ·

(
inf
𝜈∈𝑇

𝜈 (𝐴)
)

= inf
𝑝∈[0,1]

𝑝 ·minProb(𝑆,𝐴) + (1 − 𝑝) ·minProb(𝑇,𝐴)

Now, there are three cases, ifminProb(𝑆,𝐴) < minProb(𝑇,𝐴) , then the infimumoccurswhen𝑝 = 1. If insteadminProb(𝑆,𝐴) >
minProb(𝑇,𝐴) , then the infimum occurs when 𝑝 = 0. If minProb(𝑆,𝐴) = minProb(𝑇,𝐴) , then the expression is equal for
all 𝑝 . So, the infimum always occurs at one of the extremes (𝑝 = 0 or 𝑝 = 1), and therefore:

= min(minProb(𝑆,𝐴),minProb(𝑇,𝐴))
□

Lemma B.13. For any 𝑓 : Mem[𝑈] → C(Mem[𝑈]) , 𝑆 ∈ C(Mem[𝑈]) , and 𝐴 ⊆ Mem[𝑈]:

minProb(𝑓 † (𝑆), 𝐴) = inf
𝜇∈𝑆

∑︁
𝜎∈supp(𝜇)∩Mem[𝑈]

𝜇 (𝜎) ·minProb(𝑓 (𝜎), 𝐴)

Proof.

minProb(𝑓 † (𝑆), 𝐴) = minProb

©­«


∑︁
𝜎∈supp(𝜇)

𝜇 (𝜎) · 𝜈𝜎

������ 𝜇 ∈ 𝑆, ∀𝜎 ∈ supp(𝜇) . 𝜈𝜎 ∈ 𝑓⊥ (𝜎)
 , 𝐴ª®¬

= inf
𝜇∈𝑆

inf
𝜈𝜎 ∈𝑓⊥ (𝜎),∀𝜎∈supp(𝜇)

∑︁
𝜎∈supp(𝜇)

𝜇 (𝜎) · 𝜈𝜎 (𝐴)

= inf
𝜇∈𝑆

∑︁
𝜎∈supp(𝜇)

𝜇 (𝜎) · inf
𝜈𝜎 ∈𝑓⊥ (𝜎)

𝜈𝜎 (𝐴)

= inf
𝜇∈𝑆

∑︁
𝜎∈supp(𝜇)

𝜇 (𝜎) ·minProb(𝑓⊥ (𝜎), 𝐴)

= inf
𝜇∈𝑆

∑︁
𝜎∈supp(𝜇)∩Mem[𝑈]

𝜇 (𝜎) ·minProb(𝑓⊥ (𝜎), 𝐴) + 𝜇 (⊥) ·minProb(𝑓⊥ (⊥), 𝐴)

= inf
𝜇∈𝑆

∑︁
𝜎∈supp(𝜇)∩Mem[𝑈]

𝜇 (𝜎) ·minProb(𝑓 (𝜎), 𝐴) + 0

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:39

= inf
𝜇∈𝑆

∑︁
𝜎∈supp(𝜇)∩Mem[𝑈]

𝜇 (𝜎) ·minProb(𝑓 (𝜎), 𝐴)

□

C Concurrency Lemmas
C.1 Invariant Sensitive Execution
Lemma C.1 (Check Monotonicity). For any 𝑈 ,𝑉 ,𝑊 ⊆ Var such that 𝑈 ∩𝑉 = ∅, I ⊆ Mem[𝑈], J ⊆ Mem[𝑉], and
𝑈 ∪𝑉 ⊆𝑊 :

check
I∗J ⊑•

C check
I

Proof. Take any 𝜎 ∈ Mem[𝑊]. If 𝜋𝑈 (𝜎) ∉ I or 𝜋𝑉 (𝜎) ∉ J, then we get:

check
I∗J (𝜎) = ⊥C ⊑C check

I (𝜎)

So, we are done. If not, then 𝜋𝑈 (𝜎) ∈ I and 𝜋𝑉 (𝜎) ∈ J, so we get:

check
I∗J (𝜎) = 𝜂 (𝜎) = check

I (𝜎)

□

Lemma C.2 (Action Monotonicity). For any 𝑈 ,𝑉 ,𝑊 ⊆ Var such that 𝑈 ∩𝑉 = ∅, I ⊆ Mem[𝑈], J ⊆ Mem[𝑉], and
𝑈 ∪𝑉 ⊆𝑊 :

J𝑎KI∗J
Act

⊑•
C J𝑎KI

Proof. Let𝑊 ′ =𝑊 \ (𝑈 ∪𝑉) . Take any 𝜎 ∈ Mem[𝑊]. if 𝜋𝑉 (𝜎) ∉ J or 𝜋𝑈 (𝜎) ∉ I, then:

J𝑎KI∗J
Act

(𝜎) = ⊥C ⊑C J𝑎KI (𝜎)

So, we are done. If instead 𝜋𝑉 (𝜎) ∈ J and 𝜋𝑈 (𝜎) ∈ I, then we get:

J𝑎KI∗J
Act

(𝜎) = (checkI∗J)†
(
J𝑎K†

Act

(
(replaceI∗J)† (checkI∗J (𝜎))

))
= (checkI∗J)†

(
J𝑎K†

Act

(
replace

I∗J (𝜎)
))

= (checkI∗J)† ©­« &𝜏∈I∗J J𝑎K
Act

(𝜋𝑊 ′ (𝜎) ⊎ 𝜏)ª®¬
Since 𝜋𝑉 (𝜎) ∈ J and ⊑C is ⊇.

⊑C (checkI∗J)†
(
&
𝜏∈I

J𝑎K
Act

(𝜋𝑊 ′∪𝑉 (𝜎) ⊎ 𝜏)
)

By Lemma C.1 and monotonicity of Kleisli extension.

⊑C (checkI)†
(
&
𝜏∈I

J𝑎K
Act

(𝜋𝑊 ′∪𝑉 (𝜎) ⊎ 𝜏)
)

= (checkI)†
(
J𝑎K†

Act

(
replace

I (𝜎)
))

Since 𝜋𝑈 (𝜎) ∈ I

= (checkI)†
(
J𝑎K†

Act

(
(replaceI)† (checkI (𝜎))

))
= J𝑎KI

Act
(𝜎)

□

Lemma 5.3 (Invariant Monotonicity). For any𝑈 ,𝑉 ,𝑊 ⊆ Var and 𝜎 ∈ Mem[𝑊] such that𝑈 ∩𝑉 = ∅, I ⊆ Mem[𝑈],
J ⊆ Mem[𝑉], and𝑈 ∪𝑉 ⊆𝑊 :

LI∗J (𝜶) (𝜎) ⊑C LI (𝜶) (𝜎)

Proof. For any pomset 𝜶 , let 𝜶I be the pomset obtained by replacing each action 𝑎 with the tuple ⟨𝑎, I⟩. The evaluation
function for these actions and order is as follows:

J⟨𝑎, I⟩K
Act

(𝜎) ≜ J𝑎KI
Act

(𝜎) ⟨𝑎, I⟩ ⊑Act ⟨𝑎′, J⟩ iff 𝑎 = 𝑎′ and ∃J′. I = J ∗ J′

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:40 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

So, clearly 𝜶I∗J ⊑pom 𝜶I , and LI (𝜶) = L(𝜶I) . Note that ⊑Act is not pointed or finitely proceeded, but this doesn’t
matter; as we will see in the following proof, we only need this order for monotonicity, not for the extension lemma
[Zilberstein et al. 2025a, Lemma 3.8]. We now complete the proof as follows:

LI∗J (𝜶) = sup
𝜶 ′≪𝜶

LI∗J
fin

(𝜶 ′)

= sup
𝜶 ′≪𝜶

L
fin

(𝜶 ′I∗J)

By Lemma H.3 of Zilberstein et al. [2025a] and Lemma C.2.

⊑C sup
𝜶 ′≪𝜶

L
fin

(𝜶 ′I)

= sup
𝜶 ′≪𝜶

LI
fin

(𝜶 ′) = LI (𝜶)

□

C.2 Parallel Composition
LemmaC.3. For any pairwise disjoint𝑈1,𝑈2,𝑉 ⊆ Var,𝛼 and 𝛽 such that varsAct (𝛼) ⊆ 𝑈1∪𝑉 , varsTest (𝛼) ⊆ 𝑈1, varsAct (𝛽) ⊆
𝑈2 ∪ 𝑉 , and varsTest (𝛽) ⊆ 𝑈2; I ⊆ Mem[𝑉], 𝑆 ⊆ 𝑁𝛼 ∥𝑥 𝛽 , 𝜓1,𝜓2 ∈ form, 𝜎1 ∈ Mem[𝑈1], 𝜎2 ∈ Mem[𝑈2], 𝜏 ∈ I,
𝐴 ⊆ Mem[𝑈1], and 𝐵 ⊆ Mem[𝑈2]:

minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

Proof. The proof is by induction on the size of next★ (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆) . If the set is empty, then we have:

minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆) (𝜎2 ⊎2 ⊎𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(𝜂 (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

=
∑︁
𝜎′1∈𝐴

∑︁
𝜎′2∈𝐵

∑︁
𝜏′∈I

𝛿𝜎1⊎𝜎2⊎𝜏 (𝜎
′
1 ⊎ 𝜎′2 ⊎ 𝜏′)

Since we already know that 𝜏 ∈ I:

=
∑︁
𝜎′1∈𝐴

∑︁
𝜎′2∈𝐵

∑︁
𝜏′∈I

𝛿𝜎1 (𝜎
′
1) · 𝛿𝜎2 (𝜎

′
2) · 𝛿𝜏 (𝜏′)

=
©­­«
∑︁
𝜎′1∈𝐴

𝛿𝜎1 (𝜎
′
1)

ª®®¬ ·
©­­«
∑︁
𝜎′2∈𝐵

𝛿𝜎2 (𝜎
′
2)

ª®®¬
=

(∑︁
𝜎′∈𝐴

∑︁
𝜏′∈I

𝛿𝜎1⊎𝜏 (𝜎
′
1 ⊎ 𝜏′)

)
·
(∑︁
𝜏′∈𝐵

∑︁
𝜏′∈I

𝛿𝜎2⊎𝜏 (𝜎
′
2 ⊎ 𝜏′)

)
= minProb(𝜂 (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(𝜂 (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

= minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏, 𝐵 ∗ I)

Now suppose that the set of next elements is not empty. If next(𝛼 ∥𝑥 𝛽,𝜓1∧𝜓2, 𝑆) = {𝑥 }, then we know that 𝜆𝛼 ∥𝑥 𝛽 (𝑥) = •,
and so:

minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆 ∪ {𝑥 }) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

By the induction hypothesis:

= minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

If not, then 𝑥 has already been scheduled and so next(𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆) = next(𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) ∪ next(𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) .
Take any 𝑦 ∈ 𝑁𝛼 , we will now show that:

minProb

(
LI

node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I
)

= minProb

(
LI

node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I
)
·minProb

(
LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I
)

There are four cases:

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:41

(1) 𝜆𝛼 ∥𝑥 𝛽 (𝑦) = 𝜆𝛼 (𝑦) ∈ Act. Let 𝑎 = 𝜆𝛼 ∥𝑥 𝛽 (𝑦) , so:

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆 ∪ {𝑦 })† (J𝑎KI

Act
(𝜎1 ⊎ 𝜎2 ⊎ 𝜏)), 𝐴 ∗ 𝐵 ∗ I)

By Lemma B.13.

= inf
𝜇∈J𝑎KI

Act
(𝜎1⊎𝜎2⊎𝜏)

∑︁
𝜌∈supp(𝜇)∩Mem[𝑈1∪𝑉]

𝜇 (𝜌) ·minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆 ∪ {𝑦 }) (𝜌), 𝐴 ∗ 𝐵 ∗ I)

Since vars(𝛼) ∩ dom(𝜎2) = ∅.

= inf
𝜇∈J𝑎KI

Act
(𝜎1⊎𝜏)

∑︁
𝜌∈supp(𝜇)∩Mem[𝑈1∪𝑉]

𝜇 (𝜌) ·minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆 ∪ {𝑦 }) (𝜋𝑈1 (𝜌) ⊎ 𝜎2 ⊎ 𝜋𝑉 (𝜌)), 𝐴 ∗ 𝐵 ∗ I)

Note that by the definition of invariant sensitive execution, either 𝜋𝑉 (𝜌) ⊆ I, or J𝑎KI
Act

(𝜎1 ⊎ 𝜏) = ⊥C . In the
former case, we can apply the induction hypothesis. In the latter case, the entire expression must be zero, and
therefore so is minProb(LI

node (𝛼,𝜓1, 𝑆, 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) , so the claim holds trivially. So, we presume the former
is true and apply the induction hypothesis to get:

= inf
𝜇∈J𝑎KI

Act
(𝜎1⊎𝜏)

∑︁
𝜌∈supp(𝜇)

𝜇 (𝜌) ·minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 ∪ {𝑦 }) (𝜌), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ∗ 𝜋𝑉 (𝜌)), 𝐵 ∗ I)

Note that LI
lpo (𝛽,𝜓2, 𝑆 ∩𝑁𝛽) (𝜎2 ⊎ 𝜏) = LI

lpo (𝛽,𝜓2, 𝑆 ∩𝑁𝛽) (𝜎2 ⊎ 𝜏′) for any 𝜏′ ∈ I, since the invariant sensitive
execution reassigns the𝑉 variables at each step and tests only depend on local state.

=
©­« inf
𝜇∈J𝑎KI

Act
(𝜎1⊎𝜏)

∑︁
𝜌∈supp(𝜇)

𝜇 (𝜌) ·minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 ∪ {𝑦 }) (𝜌), 𝐴 ∗ I)ª®¬ ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏, 𝐵 ∗ I)

=

(
minProb(LI

lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 ∪ {𝑦 })† (J𝑎KI
Act

(𝜎1 ⊎ 𝜏)), 𝐴 ∗ I)
)
·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

= minProb(Lnode (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(Llpo (𝛽,𝜓, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

(2) 𝜆𝛼 ∥𝑥 𝛽 (𝑦) = 𝜆𝛼 (𝑦) ∈ Test. Let 𝑏 = 𝜆𝛼 ∥𝑥 𝛽 (𝑦) , and we therefore have:

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2 ∧ L𝑦 = J𝑏K

Test
(𝜎1 ⊎ 𝜎2 ⊎ 𝜏)M, 𝑆 ∪ {𝑦 }) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

By the induction hypothesis, and the fact that vars(𝑏) ⊆ varsTest (𝛼) ⊆ 𝑈1 (therefore it does not depend on
𝜎2 ∈ Mem[𝑈2] and 𝜏 ∈ Mem[𝑉].

= minProb(LI
lpo (𝛼,𝜓1 ∧ L𝑦 = J𝑏K (𝜎1)M, 𝑆 ∩ 𝑁𝛼 ∪ {𝑦 }) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I)

·minProb(Llpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

= minProb(LI
node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

(3) 𝜆𝛼 ∥𝑥 𝛽 (𝑦) = 𝜆𝛼 (𝑦) = ⊥.

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(⊥C, 𝐴 ∗ 𝐵)
= 0

= 0 ·minProb(LI
lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

= minProb(LI
node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

(4) 𝜆𝛼 ∥𝑥 𝛽 (𝑦) = 𝜆𝛼 (𝑦) = •.

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆 ∪ {𝑦 }) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

By the induction hypothesis.

= minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 ∪ {𝑦 }) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

= minProb(LI
node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎1 ⊎ 𝜏), 𝐵 ∗ I)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:42 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

By a nearly identical argument, we also get that for any 𝑦 ∈ 𝑁𝛽 :

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴) ·minProb(LI

node (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽 , 𝑦) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)

We now complete the proof as follows:

minProb(LI
lpo (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

= minProb

©­« &
𝑦∈next(𝛼 ∥𝑥 𝛽,𝜓1∧𝜓2,𝑆)

LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ Iª®¬

By Lemma B.12

= min
𝑦∈next(𝛼 ∥𝑥 𝛽,𝜓1∧𝜓2,𝑆)

minProb

(
LI

node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I
)

= min
(

min
𝑦∈next(𝛼,𝜓1,𝑆∩𝑁𝛼)

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I),

min
𝑦∈next(𝛽,𝜓2,𝑆∩𝑁𝛽)

minProb(LI
node (𝛼 ∥𝑥 𝛽,𝜓1 ∧𝜓2, 𝑆, 𝑦) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I)

)
= min

(
min

𝑦∈next(𝛼,𝜓1,𝑆∩𝑁𝛼)
minProb(LI

node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI
lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I),

min
𝑦∈next(𝛽,𝜓2,𝑆∩𝑁𝛽)

minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

node (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽 , 𝑦) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)
)

= min
((

min
𝑦∈next(𝛼,𝜓1,𝑆∩𝑁𝛼)

minProb(LI
node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I)

)
·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I),

minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·

(
min

𝑦∈next(𝛽,𝜓2,𝑆∩𝑁𝛽)
minProb(LI

node (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽 , 𝑦) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)
))

= min
(
minProb

©­« &
𝑦∈next(𝛼,𝜓1,𝑆∩𝑁𝛼)

LI
node (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼 , 𝑦) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I)ª®¬ ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I),

minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb

©­­« &
𝑦∈next(𝛽,𝜓2,𝑆∩𝑁𝛽)

LI
node (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽 , 𝑦) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I

ª®®¬
)

= min
(
minProb(LI

lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI
lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I),

minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)
)

= minProb(LI
lpo (𝛼,𝜓1, 𝑆 ∩ 𝑁𝛼) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I) ·minProb(LI

lpo (𝛽,𝜓2, 𝑆 ∩ 𝑁𝛽) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I)
□

Lemma C.4. For any pairwise disjoint𝑈1,𝑈2,𝑉 ⊆ Var and 𝜶 , 𝜷 ∈ pom
fin

such that varsAct (𝜶) ⊆ 𝑈1 ∪𝑉 , varsTest (𝜶) ⊆ 𝑈1,
varsAct (𝜷) ⊆ 𝑈2 ∪𝑉 , and varsTest (𝜷) ⊆ 𝑈2; I ⊆ Mem[𝑉], 𝜎1 ∈ Mem[𝑈1], 𝜎2 ∈ Mem[𝑈2], 𝜏 ∈ I, 𝐴 ⊆ Mem[𝑈1], and
𝐵 ⊆ Mem[𝑈2]:

minProb

(
LI
fin

(𝜶 ∥ 𝜷) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I
)
= minProb

(
LI
fin

(𝜶) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I
)
·minProb

(
LI
fin

(𝜷) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I
)

Proof. Fix any 𝛼 ∈ 𝜶 , 𝛽 ∈ 𝜷 , and 𝑥 ∉ 𝑁𝛼 ∪ 𝑁𝛽 . This give us 𝜶 ∥ 𝜷 = [𝛼 ∥𝑥 𝛽]. So, we get:

minProb

(
LI
fin

(𝜶 ∥ 𝜷) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I
)

= minProb

(
LI
fin

([𝛼 ∥𝑥 𝛽]) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I
)

= minProb

(
LI

lpo (𝛼 ∥𝑥 𝛽, true, ∅) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐴 ∗ 𝐵 ∗ I
)

By Lemma C.3.

= minProb

(
LI

lpo (𝛼, true, ∅) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I
)
·minProb

(
LI

lpo (𝛽, true, ∅) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I
)

= minProb

(
LI
fin

([𝛼]) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I
)
·minProb

(
LI

lpo ([𝛽]) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I
)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:43

= minProb

(
LI
fin

(𝜶) (𝜎1 ⊎ 𝜏), 𝐴 ∗ I
)
·minProb

(
LI

lpo (𝜷) (𝜎2 ⊎ 𝜏), 𝐵 ∗ I
)

□

Lemma C.5. For any pairwise disjoint𝑈1,𝑈2,𝑉 ⊆ Var and 𝜶 , 𝜷 ∈ pom such that varsAct (𝜶) ⊆ 𝑈1 ∪𝑉 , varsTest (𝜶) ⊆ 𝑈1,
varsAct (𝜷) ⊆ 𝑈2 ∪𝑉 , and varsTest (𝜷) ⊆ 𝑈2; I ⊆ Mem[𝑉], 𝜎1 ∈ Mem[𝑈1], 𝜎2 ∈ Mem[𝑈2], 𝜏 ∈ I, 𝐴 ⊆ Mem[𝑈1], and
𝐵 ⊆ Mem[𝑈2], if there exists 𝑝 and 𝑞 such that:

∀𝜈1 ∈ LI (𝜶) (𝜎1 ⊎ 𝜏) . 𝜈1 (𝐵1 ∗ I) = 𝑝 and ∀𝜈2 ∈ LI (𝜷) (𝜎2 ⊎ 𝜏) . 𝜈2 (𝐵2 ∗ I) = 𝑞
Then:

∀𝜈 ∈ LI (𝜶 ∥ 𝜷) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏) . 𝜈 (𝐵1 ∗ 𝐵2 ∗ I) ≥ 𝑝 · 𝑞

Proof. Take any 𝜈 ∈ LI (𝜶 ∥ 𝜷) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏) . We have:

𝜈 (𝐵1 ∗ 𝐵2 ∗ I) ≥ minProb(LI (𝜶 ∥ 𝜷) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐵1 ∗ 𝐵2 ∗ I)

= minProb

(
sup

𝜸≪𝜶 ∥𝜷
LI
fin

(𝜸) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐵1 ∗ 𝐵2 ∗ I
)

By Lemma B.11.

= sup
𝜸≪𝜶 ∥𝜷

minProb

(
LI
fin

(𝜸) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐵1 ∗ 𝐵2 ∗ I
)

= sup
𝜶 ′≪1𝜶

sup
𝜷′≪1𝜷

minProb

(
LI
fin

(𝜶 ′ ∥ 𝜷′) (𝜎1 ⊎ 𝜎2 ⊎ 𝜏), 𝐵1 ∗ 𝐵2 ∗ I
)

By Lemma C.4.

= sup
𝜶 ′≪1𝜶

sup
𝜷′≪1𝜷

minProb

(
LI
fin

(𝜶 ′) (𝜎1 ⊎ 𝜏), 𝐵1 ∗ I
)
·minProb

(
LI
fin

(𝜷′) (𝜎2 ⊎ 𝜏), 𝐵2 ∗ I
)

=

(
sup

𝜶 ′≪1𝜶
minProb

(
LI
fin

(𝜶 ′) (𝜎1 ⊎ 𝜏), 𝐵1 ∗ I
))

·
(
sup

𝜷′≪1𝜷
minProb

(
LI
fin

(𝜷′) (𝜎2 ⊎ 𝜏), 𝐵2 ∗ I
))

By Lemma B.11.

= minProb

(
LI (𝜶) (𝜎1 ⊎ 𝜏), 𝐵1 ∗ I

)
·minProb

(
LI (𝜷) (𝜎2 ⊎ 𝜏), 𝐵2 ∗ I

)
= 𝑝 · 𝑞

□

Lemma C.6. For any pairwise disjoint 𝑈1,𝑈2,𝑉 ⊆ Var and 𝜶 1,𝜶 2 ∈ pom such that varsAct (𝜶𝑘) ⊆ 𝑈𝑘 ∪ 𝑉 and

varsTest (𝜶𝑘) ⊆ 𝑈𝑘 ; I ⊆ Mem[𝑉], let PI be the trivial probability space where 𝜇PI (I) = 1. For all 𝑘 ∈ {1, 2}, P𝑘 ,
Q𝑘 , and 𝜇 ∈ D(Mem[𝑈1 ∪𝑈2 ∪𝑉]) such that P1 ⊗ P2 ⊗ PI ⪯ 𝜇, if:

∀𝜇𝑘 . P𝑘 ⊗ PI ⪯ 𝜇𝑘 =⇒ ∀𝜈𝑘 ∈ LI (𝜶𝑘)† (𝜇𝑘) . Q𝑘 ⊗ PI ⪯ 𝜈𝑘
Then:

∀𝜈 ∈ LI (𝜶 1 ∥ 𝜶 2)† (𝜇) . Q1 ⊗ Q2 ⊗ PI ⪯ 𝜈

Proof. Let (𝐴1,𝑖)𝑖∈𝐼1 and (𝐴2,𝑖)𝑖∈𝐼2 be the most precise, disjoint measurable events from ev(P1) and ev(P2) , respectively.
Since P1 ⊗ P2 ⊗ PI ⪯ 𝜇, we know that for any (𝑖, 𝑗) ∈ 𝐼1 × 𝐼2:∑︁

𝜎1∈𝐴1,𝑖

∑︁
𝜎2∈𝐴2, 𝑗

∑︁
𝜏∈I

𝜇 (𝜎1 ⊎ 𝜎2 ⊎ 𝜏) = 𝜇P1 (𝐴1,𝑖) · 𝜇P2 (𝐴2, 𝑗) = 𝜇P1⊗PI (𝐴1,𝑖 ∗ I) · 𝜇P2⊗I (𝐴2, 𝑗 ∗ I) (5)

Also, for any 𝜇𝑘 such that P𝑘 ⊗ PI ⪯ 𝜇𝑘 , we know that any 𝜈𝑘 ∈ LI (𝛼𝑘)† (𝜇𝑘) has the form:

𝜈𝑘 =
∑︁

𝜎∈supp(𝜇𝑘)
𝜇𝑘 (𝜎) · 𝜈𝜎

Where each 𝜈𝜎 ∈ LI (𝜶𝑘) (𝜎) . Since Q𝑘 ⊗ PI ⪯ 𝜈𝑘 , we know that for any 𝐵 ∈ FQ𝑘 :

𝜇Q𝑘⊗PI (𝐵 ∗ I) =
∑︁
𝜏∈𝐵∗I

𝜈𝑘 (𝜏) =
∑︁

𝜎∈supp(𝜇𝑘)
𝜇𝑘 (𝜎) ·

∑︁
𝜏∈𝐵∗I

𝜈𝜎 (𝜏)

Let 𝑝𝐵,𝜎 =
∑
𝜏∈𝐵∗I 𝜈𝜎 (𝜏) .

=
∑︁

𝜎∈supp(𝜇𝑘)
𝜇𝑘 (𝜎) · 𝑝𝐵,𝜎

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:44 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Wewill now show that
∑
𝜏∈𝐵∗I 𝜉 (𝜏) = 𝑝𝐵,𝜎′ for any𝜎′ ∈ supp(𝜇𝑘) and 𝜉 ∈ LI (𝜶𝑘) (𝜎′) . Take any such 𝜉 . By construction,

𝜇𝑘 (𝜎′) · 𝜉 +
∑
𝜎∈supp(𝜇𝑘)\{𝜎′} 𝜇𝑘 (𝜎) · 𝜈𝜎 ∈ LI (𝜶𝑘)† (𝜇𝑘) , therefore:

𝜇Q𝑘⊗PI (𝐵 ∗ I) =
∑︁
𝜏∈𝐵∗I

©­«𝜇𝑘 (𝜎′) · 𝜉 +
∑︁

𝜎∈supp(𝜇𝑘)\{𝜎′}
𝜇𝑘 (𝜎) · 𝜈𝜎

ª®¬ (𝜏) =
∑︁

𝜎∈supp(𝜇𝑘)
𝜇𝑘 (𝜎) · 𝑝𝐵,𝜎

𝜇𝑘 (𝜎′) ·
∑︁
𝜏∈𝐵∗I

𝜉 (𝜏) +
������
∑︁

𝜎∈supp(𝜇𝑘)\{𝜎′}
𝜇𝑘 (𝜎) · 𝑝𝐵,𝜎 = 𝜇𝑘 (𝜎′) · 𝑝𝐵,𝜎′ +

������
∑︁

𝜎∈supp(𝜇𝑘)\{𝜎′}
𝜇𝑘 (𝜎) · 𝑝𝐵,𝜎

���𝜇𝑘 (𝜎′) ·
∑︁
𝜏∈𝐵∗I

𝜉 (𝜏) =���𝜇𝑘 (𝜎′) · 𝑝𝐵,𝜎′∑︁
𝜏∈𝐵∗I

𝜉 (𝜏) = 𝑝𝐵,𝜎′

Now, let 𝜇𝑘 be constructed by fixing a single state 𝜎𝑖 ∈ 𝐴𝑘,𝑖 ∗ I for each 𝑖 ∈ 𝐼𝑘 and setting 𝜇𝑘 (𝜎𝑖) = 𝜇P𝑘⊗PI (𝐴𝑘,𝑖) , so
clearly P𝑘 ⊗ PI ⪯ 𝜇𝑘 . Now let 𝑝𝐵,𝑘,𝑖 = 𝑝𝐵,𝜎𝑖 . Based on what we have just showed, this gives us:

𝜇Q𝑘⊗PI (𝐵 ∗ I) =
∑︁

𝜎∈supp(𝜇𝑘)
𝜇𝑘 (𝜎) · 𝑝𝐵,𝜎 =

∑︁
𝑖∈𝐼𝑘

𝜇𝑘 (𝜎𝑖) · 𝑝𝐵,𝜎𝑖 =
∑︁
𝑖∈𝐼𝑘

𝜇P𝑘⊗PI (𝐴𝑘,𝑖 ∗ I) · 𝑝𝐵,𝑘,𝑖

We will now show that 𝑝𝐵,𝜎′ = 𝑝𝐵,𝑘,𝑗 for any 𝑗 ∈ 𝐼𝑘 and 𝜎′ ∈ 𝐴𝑘,𝑗 ∗ I. Take any such 𝜎′, then we get:

𝜇Q𝑘⊗PI (𝐵 ∗ I) =

𝜇P𝑘⊗PI (𝐴𝑘,𝑗 ∗ I) · 𝑝𝐵,𝜎′ +
∑︁
𝑖≠𝑗

𝜇P𝑘⊗PI (𝐴𝑘,𝑖 ∗ I) · 𝑝𝐵,𝜎𝑖 =
∑︁
𝑖∈𝐼𝑘

𝜇P𝑘⊗PI (𝐴𝑘,𝑖 ∗ I) · 𝑝𝐵,𝑘,𝑖

𝜇P𝑘⊗PI (𝐴𝑘,𝑗 ∗ I) · 𝑝𝐵,𝜎′ +
����������∑︁
𝑖≠𝑗

𝜇P𝑘⊗PI (𝐴𝑘,𝑖 ∗ I) · 𝑝𝐵,𝑘,𝑖 = 𝜇P𝑘⊗PI (𝐴𝑘,𝑗 ∗ I) · 𝑝𝐵,𝑘,𝑗 +
����������∑︁
𝑖≠𝑗

𝜇P𝑘⊗PI (𝐴𝑘,𝑖 ∗ I) · 𝑝𝐵,𝑘,𝑖

(((((((
𝜇P𝑘⊗PI (𝐴𝑘,𝑗 ∗ I) · 𝑝𝐵,𝜎′ =(((((((

𝜇P𝑘⊗PI (𝐴𝑘,𝑗 ∗ I) · 𝑝𝐵,𝑘,𝑗
𝑝𝐵,𝜎′ = 𝑝𝐵,𝑘,𝑗

We have therefore shown that
∑
𝜏∈𝐵 𝜈𝑘 (𝜏) = 𝑝𝐵,𝑖,𝑘 for any 𝜈𝑘 ∈ LI (𝜶𝑘) (𝜎) where 𝐵 ∈ FQ𝑘 , 𝑖 ∈ 𝐼𝑘 , and 𝜎 ∈ 𝐴𝑘,𝑖

Now take any 𝜈 ∈ LI (𝜶 1 ∥ 𝜶 2)† (𝜇) , which must have the form 𝜈 =
∑
𝜎∈supp(𝜇) 𝜇 (𝜎) · 𝜈𝜎 where 𝜈𝜎 ∈ LI (𝜶 1 ∥

𝜶 2) (𝜎) for each 𝜎 . Since Q1 and Q2 operate over different address spaces, clearly Q1 ⊗ Q2 exists. It just remains to show
that Q1 ⊗ Q2 ⊗ PI ⪯ 𝜈 , which we do as follows. By Lemma B.2, it suffices to show that the probability measures agree on
the product of disjoint partitions. Let {𝐵𝑘,𝑗 | 𝑗 ∈ 𝐽𝑘 } = ev(Q𝑘) for 𝑘 ∈ {1, 2}. For any 𝑖 ∈ 𝐽1 and 𝑗 ∈ 𝐽2, we have:

𝜈 (𝐵1,𝑖 ∗ 𝐵2, 𝑗 ∗ I) =
∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) · 𝜈𝜎 (𝐵1,𝑖 ∗ 𝐵2, 𝑗 ∗ I)

Instead of summing over the support of 𝜎 , we can alternatively sum over the elements of the 𝐴1,𝑖′ and 𝐴2, 𝑗′ sets.

=
∑︁
𝑖′∈𝐼1

∑︁
𝑗′∈𝐼2

∑︁
𝜎1∈𝐴1,𝑖′

∑︁
𝜎2∈𝐴2, 𝑗′

∑︁
𝜏∈I

𝜇 (𝜎1 ⊎ 𝜎2 ⊎ 𝜏) · 𝜈𝜎 (𝐵1,𝑖 ∗ 𝐵2, 𝑗 ∗ I)

We previously showed that 𝜈𝑘 (𝐵𝑘,ℓ ∗ I) = 𝑝𝐵𝑘,ℓ ,𝑘,𝑖′ (a constant) for any 𝜈𝑘 ∈ LI (𝜶𝑘) (𝜎) where 𝜎 ∈ 𝐴𝑘,𝑖′ . So, we can
use Lemma C.5 to conclude that:

≥
∑︁
𝑖′∈𝐼1

∑︁
𝑗′∈𝐼2

∑︁
𝜎1∈𝐴1,𝑖′

∑︁
𝜎2∈𝐴2, 𝑗′

∑︁
𝜏∈I

𝜇 (𝜎1 ⊎ 𝜎2 ⊎ 𝜏) · 𝑝𝐵1,𝑖 ,1,𝑖′ · 𝑝𝐵2, 𝑗 ,2, 𝑗′

=
∑︁
𝑖′∈𝐼1

∑︁
𝑗′∈𝐼2

𝜇 (𝐴1,𝑖′ ∗𝐴2, 𝑗′ ∗ I) · 𝑝𝐵1,𝑖 ,1,𝑖′ · 𝑝𝐵2, 𝑗 ,2, 𝑗′

By Equation (5).

=
∑︁
𝑖′∈𝐼1

∑︁
𝑗′∈𝐼2

𝜇P1⊗PI (𝐴1,𝑖′ ∗ I) · 𝜇P2⊗PI (𝐴2, 𝑗′ ∗ I) · 𝑝𝐵1,𝑖 ,1,𝑖′ · 𝑝𝐵2, 𝑗 ,2, 𝑗′

=
©­«
∑︁
𝑖′∈𝐼1

𝜇P1⊗PI (𝐴1,𝑖′ ∗ I) · 𝑝𝐵1,𝑖 ,1,𝑖′
ª®¬ · ©­«

∑︁
𝑗′∈𝐼2

𝜇P2⊗PI (𝐴2, 𝑗′ ∗ I) · 𝑝𝐵2, 𝑗 ,2, 𝑗′
ª®¬

= 𝜇Q1⊗PI (𝐵1,𝑖 ∗ I) · 𝜇Q2⊗PI (𝐵2, 𝑗 ∗ I)
= 𝜇Q1 (𝐵1,𝑖) · 𝜇Q2 (𝐵2, 𝑗) · 𝜇PI (I)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:45

Now,we have shown that 𝜈 (𝐵1,𝑖∗𝐵2, 𝑗 ∗I) ≥ 𝜇Q1⊗Q2⊗PI (𝐵1,𝑖∗𝐵2, 𝑗 ∗I) for all 𝑖 ∈ 𝐽1 and 𝑗 ∈ 𝐽2. Since
∑
𝑖∈𝐽1

∑
𝑗∈𝐽2 𝜇Q1∗Q2 (𝐵1,𝑖∗

𝐵2, 𝑗) = 1, then 𝜈 (𝐵1,𝑖 ∗ 𝐵2, 𝑗 ∗ I) cannot be strictly greater then 𝜇Q1 (𝐵1,𝑖) · 𝜇Q2 (𝐵2, 𝑗) for any 𝑖 or 𝑗 , and therefore the
quantities must be equal.

□

D Almost Sure Termination
For any 𝑆 ∈ C(Mem[𝑉]) , let minterm(𝑆) = minProb(𝑆,Mem[𝑉]) , i.e., it is the minimum probability that the program
terminates. Also, let Ψ⟨𝑏,𝐶,I⟩ : (Mem[𝑉] → C(Mem[𝑉])) → Mem[𝑉] → C(Mem[𝑉]) be defined as follows:

Ψ⟨𝑏,𝐶,I⟩ (𝑓) (𝜎) ≜
{
𝑓 † (LI (J𝐶K) (𝜎)) if J𝑏K

Test
(𝜎) = true

𝜂 (𝜎) if J𝑏K
Test

(𝜎) = false

By Zilberstein et al. [2025a, Lemma 5.2]:

LI (Jwhile 𝑏 do𝐶K) = lfp

(
Ψ⟨𝑏,𝐶,I⟩

)
= sup
𝑛∈N

Ψ𝑛⟨𝑏,𝐶,I⟩ (⊥
•
C)

Now, for any test 𝑏 and distribution 𝜇 we define a conditioning operator as follows:

(𝑏?𝜇) (𝜎) ≜
{

𝜇 (𝜎)
𝜇 (𝑏) if J𝑏K

Test
(𝜎) = true

0 if J𝑏K
Test

(𝜎) = false

where 𝜇 (𝑏) ≜
∑︁

𝜎∈supp(𝜇) |J𝑏K
Test

(𝜎)=true
𝜇 (𝜎)

Note that if 𝜇 (𝑏) = 0, then 𝑏?𝜇 is not well-defined. In that case, we just let 𝑏?𝜇 = ⊥D . It is also clearly true that
𝜇 = (𝑏?𝜇) ⊕𝜇 (𝑏) (¬𝑏?𝜇) for any 𝑏 and 𝜇. In addition, we call ⟨𝜑,𝜓 ⟩ an loop invariant pair for while 𝑏 do 𝐶 under the
resource invariant 𝐼 iff:

(1) 𝜑 ⇒ ⌈𝑏 ↦→ true⌉
(2) 𝜓 ⇒ ⌈𝑏 ↦→ false⌉
(3) 𝐼 ⊨w ⟨𝜑 ⟩ 𝐶 ⟨𝜑 &𝜓 ⟩

(4) precise(𝜓)
Given these new definitions, we prove some partial correctness results, which show that the𝜓 (as defined above) holds on
the terminating portion of the result of a while loop.

Lemma D.1. Take any Γ, let I = L𝐼MΓ , ⟨𝜑,𝜓 ⟩ be an invariant pair for while 𝑏 do𝐶 under 𝐼 , and Q be the unique smallest

probability space satisfying𝜓 (which exists since precise(𝜓)). For any 𝜇, 𝑛 ∈ N, and 𝐴 ∈ FQ such that Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉:

minProb

(
Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇), 𝐴 ∗ I

)
= minterm

(
Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇)

)
· 𝜇Q (𝐴)

Proof. The proof is by induction on 𝑛. Suppose that 𝑛 = 0, and so we have:

minProb

(
Ψ0
⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇), 𝐴 ∗ I

)
= minProb (⊥C, 𝐴 ∗ I)

= 0
= minterm (⊥C) · 𝜇Q (𝐴)

= minterm

(
Ψ0
⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇)

)
· 𝜇Q (𝐴)

Now suppose that 𝑛 = 1, and so we have:

minProb

(
Ψ1
⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇), 𝐴 ∗ I

)
= minProb

((
⊥•
C

)† (
LI (J𝐶K)† (𝜇)

)
, 𝐴 ∗ I

)
= minProb (⊥C, 𝐴 ∗ I)
= 0
= minterm (⊥C) · 𝜇Q (𝐴)

= minterm

(
Ψ1
⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇)

)
· 𝜇Q (𝐴)

Now suppose that 𝑛 > 1. Then, we have:

minProb

(
Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇), 𝐴 ∗ I

)
= minProb

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(LI (J𝐶K)† (𝜇)), 𝐴 ∗ I

)
Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:46 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

= inf
𝜈∈LI (J𝐶K)† (𝜇)

minProb

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜈), 𝐴 ∗ I

)
Since ⟨𝜑,𝜓 ⟩ is an invariant pair and Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉, then every such 𝜈 above can be split into 𝜈 = 𝑏?𝜈 ⊕𝜈 (𝑏) ¬𝑏?𝜈 such that
Γ, 𝑏?𝜈 ⊨ 𝜑 ∗ ⌈𝐼 ⌉ and Γ,¬𝑏?𝜈 ⊨ 𝜓 ∗ ⌈𝐼 ⌉.

= inf
𝜈∈LI (J𝐶K)† (𝜇)

minProb

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝑏?𝜈 ⊕𝜈 (𝑏) ¬𝑏?𝜈), 𝐴 ∗ I

)
= inf
𝜈∈LI (J𝐶K)† (𝜇)

minProb

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝑏?𝜈) ⊕𝜈 (𝑏) Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(¬𝑏?𝜈), 𝐴 ∗ I

)
Since 𝑛 > 1, then Ψ𝑛−1⟨𝑏,𝐶,I⟩ (⊥

•
C)

† (¬𝑏?𝜈) = {¬𝑏?𝜈 }.

= inf
𝜈∈LI (J𝐶K)† (𝜇)

minProb

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝑏?𝜈) ⊕𝜈 (𝑏) {¬𝑏?𝜈 }, 𝐴 ∗ I

)
= inf
𝜈∈LI (J𝐶K)† (𝜇)

𝜈 (𝑏) ·minProb

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝑏?𝜈), 𝐴 ∗ I

)
+ (1 − 𝜈 (𝑏)) · (¬𝑏?𝜈) (𝐴 ∗ I)

Since Γ,¬𝑏?𝜈 ⊨ 𝜓 ∗ ⌈𝐼 ⌉, then (¬𝑏?𝜈) (𝐴 ∗ I) = 𝜇Q (𝐴) . Also using the induction hypothesis, we get:

= inf
𝜈∈LI (J𝐶K)† (𝜇)

𝜈 (𝑏) ·minterm

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝑏?𝜈)

)
· 𝜇Q (𝐴) + (1 − 𝜈 (𝑏)) · 𝜇Q (𝐴)

=

(
inf

𝜈∈LI (J𝐶K)† (𝜇)
minterm

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝑏?𝜈) ⊕𝜈 (𝑏) {¬𝑏?𝜈 }

))
· 𝜇Q (𝐴)

=

(
inf

𝜈∈LI (J𝐶K)† (𝜇)
minterm

(
Ψ𝑛−1⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜈)

))
· 𝜇Q (𝐴)

= minterm

(
Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇)

)
· 𝜇Q (𝐴)

□

Lemma D.2. Take any Γ, let I = L𝐼MΓ , ⟨𝜑,𝜓 ⟩ be an invariant pair for while 𝑏 do𝐶 under 𝐼 , and Q be the unique smallest

probability space satisfying𝜓 (which exists since precise(𝜓)). For any 𝜇 such that Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉ and 𝐴 ∈ FQ :

minProb

(
LI (Jwhile 𝑏 do𝐶K)† (𝜇), 𝐴 ∗ I

)
= minterm

(
LI (Jwhile 𝑏 do𝐶K)† (𝜇)

)
· 𝜇Q (𝐴)

Proof. The proof proceeds as follows:

minProb

(
LI (Jwhile 𝑏 do𝐶K)† (𝜇), 𝐴 ∗ I

)
= minProb

(
sup
𝑛∈N

Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇), 𝐴 ∗ I

)
= sup
𝑛∈N

minProb

(
Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇), 𝐴 ∗ I

)
By Lemma D.1.

= sup
𝑛∈N

minterm

(
Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇)

)
· 𝜇Q (𝐴)

= minterm

(
sup
𝑛∈N

Ψ𝑛⟨𝑏,𝐶,I⟩

(
⊥•
C

)†
(𝜇)

)
· 𝜇Q (𝐴)

= minterm

(
LI (Jwhile 𝑏 do𝐶K)† (𝜇)

)
· 𝜇Q (𝐴)

□

Corollary D.3 (Almost Sure Termination). Take any Γ and 0 < 𝑝 ≤ 1, let I = L𝐼MΓ , and ⟨𝜑,𝜓 ⟩ be an invariant pair

for while 𝑏 do 𝐶 under 𝐼 . If additionally minterm(LI (Jwhile 𝑏 do𝐶K)† (𝜇)) ≥ 𝑝 for all 𝜇 such that Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉, then
minterm(LI (Jwhile 𝑏 do𝐶K)† (𝜇)) = 1.

Proof. Follows by an identical argument to Lemma D.3 of Zilberstein et al. [2025b]. □

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:47

E Logic and Rules
Lemma E.1 (Monotonicity). If Γ, P ⊨ 𝜑 and P ⪯ Q, then Γ, Q ⊨ 𝜑 .

Proof. By induction on the structure of 𝜑 .

• 𝜑 = ⊤. Since Γ, Q ⊨ ⊤ for all Q, the claim holds trivially.
• 𝜑 = ⊥. The premise is false, therefore this case is vacuous.
• 𝜑 = 𝜑1 ∧ 𝜑2. By the induction hypothesis, we know that Γ, Q ⊨ 𝜑1 and Γ, Q ⊨ 𝜑2, therefore Γ, Q ⊨ 𝜑1 ∧ 𝜑2.
• 𝜑 = 𝜑1∨𝜑2. Without loss of generality, suppose that Γ, P ⊨ 𝜑1. By the induction hypothesis, we know that Γ, Q ⊨ 𝜑1,
therefore by weakening Γ, Q ⊨ 𝜑1 ∨ 𝜑2.

• 𝜑 = ∃𝑋 .𝜓 . We know that there is some 𝑣 ∈ Val such that Γ [𝑋 B 𝑣], P ⊨ 𝜓 . By the induction hypothesis, we get
that Γ [𝑋 B 𝑣], Q ⊨ 𝜓 . This implies that Γ, Q ⊨ ∃𝑋 .𝜓 .

• 𝜑 =
⊕

𝑋∼𝑑 (𝐸) 𝜓 . Immediate, since the semantics stipulates that P is greater than the direct sum, therefore Q is
also greater than the direct sum.

• 𝜑 = &𝑋 ∈𝐸 𝜓 . We know that Γ, P ⊨
⊕

𝑋∼𝜇 for some 𝜇 ∈ D(J𝐸K
LExp

(Γ)) . By the previous case, we get that
Γ, Q ⊨

⊕
𝑋∼𝜇 𝜓 . This implies that Γ, Q ⊨&𝑋 ∈𝐸 𝜓 .

• 𝜑 = 𝜑1 ∗𝑚 𝜑2. Immediate, since we know that P1 ⋄𝑚 P2 ⪯ P such that Γ, P𝑖 ⊨ 𝜑𝑖 for each 𝑖 , and therefore
P1 ⋄𝑚 P2 ⪯ Q as well.
the semantics stipulates that P is greater than the independent product, therefore Q is also greater than the
independent product.

• 𝜑 = ⌈𝑃 ⌉. Let ΩP = Mem[𝑆] and ΩQ = Mem[𝑇], and note that 𝑆 ⊆ 𝑇 since P ⪯ Q. We know that L𝑃M𝑆Γ ∈
FP and 𝜇P (L𝑃M𝑆Γ) = 1. We also know that 𝜇P (L𝑃M𝑆Γ) = 𝜇Q (⋃

𝐵 |𝜋𝑆 (𝐵)=L𝑃M𝑆Γ
𝐵) = 1. Note that by definition⋃

𝐵 |𝜋𝑆 (𝐵)=L𝑃M𝑆Γ
𝐵 ⊆ L𝑃M𝑇Γ . Since that set has probability 1 and Q is a complete probability space, then L𝑃M𝑇Γ ∈ FQ ,

and also has probability 1.

□

E.1 Precise and Convex Assertions
Lemma E.2. precise(⌈𝑃 ⌉)

Proof. Take any Γ. If L𝑃MΓ = ∅, then 𝑃 is unsatisfiable under Γ, so we are done. If not, then let Ω = Mem[fv(𝑃)],
F = {𝐴 ⊆ Ω | L𝑃MΓ ⊆ 𝐴} ∪ {𝐴 ⊆ Ω | 𝐴 ∩ L𝑃MΓ = ∅} and:

𝜇 (𝐴) =
{

1 if L𝑃MΓ ⊆ 𝐴
0 otherwise

It is relatively easy to see that 𝜇 is a probability measure since L𝑃MΓ is the smallest measurable set with nonzero probability,
and it has probability 1, so the countable additivity property holds. By definition, Γ, ⟨Ω, F, 𝜇 ⟩ ⊨ ⌈𝑃 ⌉. Clearly it is also
minimal, since any other P such that Γ, P ⊨ ⌈𝑃 ⌉ must also include F as measurable sets by definition, and must assign
probability 1 to the event L𝑃MΓ . □

Lemma E.3. If precise(𝜑,𝜓) , then precise(𝜑 ∗𝜓) .

Proof. Take any Γ, if either 𝜑 or𝜓 is not satisfiable under Γ, then neither is 𝜑 ∗𝜓 , and then the claim holds vacuously. If
both are satisfiable, then there are unique smallest P1 and P2 such that Γ, P1 ⊨ 𝜑 and Γ, P2 ⊨ 𝜓 . Clearly, this means that
Γ, P1 ⊗ P2 ⊨ 𝜑 ∗𝜓 . We now argue that P1 ⊗ P2 is minimal. Take any Q such that Γ, Q ⊨ 𝜑 ∗𝜓 . This means that there are
Q1 ⊗ Q2 ⪯ Q such that Γ, Q1 ⊨ 𝜑 and Γ, Q2 ⊨ 𝜓 . By precision of 𝜑 and𝜓 , we know that P1 ⪯ Q1 and P2 ⪯ Q2. Using
Lemma B.4, we get:

P1 ⊗ P2 ⪯ Q1 ⊗ Q2 ⪯ Q

□

Lemma E.4. If precise(𝜑) and 𝜑 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉, then precise(
⊕

𝑋∼𝑑 (𝐸) 𝜑) .

Proof. Take any Γ and let 𝜈 = 𝑑 (J𝐸K
LExp

(Γ) , if 𝜑 is unsatisfiable under any Γ [𝑋 B 𝑣], then so is
⊕

𝑋∼𝑑 (𝐸) 𝜑 , so the
claim holds vacuously. If not, then there is a unique smallest P𝑣 such that Γ [𝑋 B 𝑣], P𝑣 ⊨ 𝜑 for each 𝑣 ∈ supp(𝜈) . Since
𝜑 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉, we can create new disjoint probability spaces P′

𝑣 , where each ΩP′
𝑣
= {𝜎 ∈ ΩP𝑣 | J𝑒K

Exp
(𝜎) = 𝑣 }. Note

that this does not remove any samples that have positive probability, and clearly P𝑣 = ext(P′
𝑣) . Let P =

⊕
𝑣∼𝜈 P′

𝑣 , then
Γ, P ⊨

⊕
𝑋∼𝑑 (𝐸) 𝜑 . It only remains to show that P is minimal.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:48 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Take any Q such that Γ, Q ⊨
⊕

𝑋∼𝑑 (𝐸) 𝜑 . That means that Γ [𝑋 B 𝑣], ext(Q𝑣) ⊨ 𝜑 , where
⊕

𝑣∼𝜈 Q𝑣 ⪯ Q. Since
𝜑 is precise, then P𝑣 = ext(P′

𝑣) ⪯ ext(Q𝑣) for each 𝑣. Since the completion only expands the sample space with zero
probability events, this must mean that P′

𝑣 ⪯ Q𝑣 as well. Therefore, by Lemma B.5:

P =
⊕
𝑣∼𝜈

P′
𝑣 ⪯

⊕
𝑣∼𝜈

Q𝑣 ⪯ Q

□

Lemma E.5. If convex(𝜑1, 𝜑2) , then convex(𝜑1 ∗w 𝜑2) .

Proof. Take any Γ, if 𝜑1 ∗w 𝜑2 is satisfiable under Γ, then so are each 𝜑𝑘 . Since each 𝜑𝑘 is convex, we know that there exist
Ω𝑘 , F𝑘 , and 𝑆𝑘 such that Γ, P ⊨ 𝜑 iff ⟨Ω𝑘 , F𝑘 , 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆𝑘 . Let𝑈 and𝑉 be sets such that Ω1 = Mem[𝑈] and
Ω2 = Mem[𝑉], let Ω = Ω1 ∗ Ω2, F be the smallest 𝜎-algebra containing {𝐴 ∗ 𝐵 | 𝐴 ∈ F1, 𝐵 ∈ F2 }, and 𝑆 = {𝜇 | 𝜋𝑈 (𝜇) ∈
𝑆1, 𝜋𝑉 (𝜇) ∈ 𝑆2 } (𝑆 is clearly convex since 𝑆1 and 𝑆2 are convex).

We complete the proof by showing that Γ, P ⊨ 𝜑1 ∗w 𝜑2 iff ⟨Ω, F, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆 . For the forward direction,
suppose that Γ, P ⊨ 𝜑1 ∗w 𝜑2, so Γ, 𝜋𝑈 (P) ⊨ 𝜑1 and Γ, 𝜋𝑉 (P) ⊨ 𝜑2. Due to convexity of 𝜑1 and 𝜑2, there must be 𝜇1 ∈ 𝑆1
and 𝜇2 ∈ 𝑆2 such that ⟨Ω1, F1, 𝜇1 ⟩ ⪯ 𝜋𝑈 (P) and ⟨Ω2, F2, 𝜇2 ⟩ ⪯ 𝜋𝑉 (P) . Now, let:

𝜇 (𝐴) ≜ 𝜇P
(⋃

{𝐵 ∈ FP | 𝜋𝑈∪𝑉 (𝐵) = 𝐴}
)

This gives us:

𝜋𝑈 (𝜇) (𝐴) = 𝜇 (𝐴∗Mem[𝑉]) = 𝜇P
(⋃

{𝐵 ∈ FP | 𝜋𝑈∪𝑉 (𝐵) = 𝐴 ∗Mem[𝑉] }
)
= 𝜇P

(⋃
{𝐵 ∈ FP | 𝜋𝑈 (𝐵) = 𝐴}

)
= 𝜇1 (𝐴)

And similarly, 𝜋𝑉 (𝜇) (𝐵) = 𝜇2 (𝐵) , therefore 𝜇 ∈ 𝑆 by construction, and so also by construction ⟨Ω, F, 𝜇 ⟩ ⪯ P.
For the reverse direction, suppose that ⟨Ω, F, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆 . That means that 𝜋𝑈 (𝜇) ∈ 𝑆1 and 𝜋𝑉 (𝜇) ∈ 𝑆2, and

therefore Γ, ⟨Ω1, F1, 𝜋𝑈 (𝜇) ⟩ ⊨ 𝜑1 and Γ, ⟨Ω2, F2, 𝜋𝑉 (𝜇) ⟩ ⊨ 𝜑2. Since ⟨Ω, F, 𝜇 ⟩ ∈ ⟨Ω1, F1, 𝜋𝑈 (𝜇) ⟩ ⋄w ⟨Ω2, F2, 𝜋𝑉 (𝜇) ⟩,
then Γ, P ⊨ 𝜑1 ∗w 𝜑2. □

Lemma E.6. If convex(𝜑1, 𝜑2) , 𝜑1 ⇒ ⌈𝑒 ↦→ 1⌉, and 𝜑2 ⇒ ⌈𝑒 ↦→ 0⌉, then convex(𝜑1 ⊕≥𝐸 𝜑2) .

Proof. Take any Γ, if 𝜑1 ⊕≥𝐸 𝜑2 is satisfiable under Γ, then so are 𝜑1 and 𝜑2. Let 𝑝 = J𝐸K
LExp

(Γ) and let 𝑋 be the
variable that is bound by ⊕≥𝐸 . Since the 𝜑𝑘 are convex, then for each 𝑘 ∈ {1, 2} there exist Ω𝑘 , F𝑘 , and 𝑆𝑘 such that
Γ [𝑋 B 2 − 𝑘], P ⊨ 𝜑𝑘 iff ⟨Ω𝑘 , F𝑘 , 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆𝑘 . Now, let:

Ω ≜ Ω1 ∪ Ω2 F ≜
{
𝐴 ⊆ Ω | {𝜎 ∈ 𝐴 | J𝑒K

Exp
(𝜎) = 1} ∈ F1, {𝜎 ∈ 𝐴 | J𝑒K

Exp
(𝜎) = 0} ∈ F2

}
𝑆 ≜ {𝜇 ⊕𝑞 𝜈 | 𝜇 ∈ 𝑆1, 𝜈 ∈ 𝑆2, 𝑝 ≤ 𝑞 ≤ 1}

where (𝜇 ⊕𝑞 𝜈) (𝐴) = 𝑞 · 𝜇 ({𝜎 ∈ 𝐴 | J𝑒K
Exp

(𝜎) = 1}) + (1 − 𝑞) · 𝜈 ({𝜎 ∈ 𝐴 | J𝑒K
Exp

(𝜎) = 0})

We complete the proof by showing that Γ, P ⊨ 𝜑1 ⊕≥𝐸 𝜑2 iff ⟨Ω, F, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆 . For the forward direction,
suppose that Γ, P ⊨ 𝜑1 ⊕≥𝐸 𝜑2, so there exists a 𝑞 ≥ 𝑝 such that Γ [𝑋 B 1], ext(P1) ⊨ 𝜑1 and Γ [𝑋 B 0], ext(P2) ⊨ 𝜑2 for
some P1 and P2 such that P1 ⊕𝑞 P2 ⪯ P. This means that ⟨Ω𝑘 , F𝑘 , 𝜇𝑘 ⟩ ⪯ ext(𝑃𝑘) for some 𝜇𝑘 ∈ 𝑆𝑘 for each 𝑘 ∈ {1, 2}.
So, letting 𝜇 = 𝜇1 ⊕𝑞 𝜇2, clearly 𝜇 ∈ 𝑆 by construction. Finally, we get:

⟨Ω, F, 𝜇 ⟩ = ⟨Ω1, F1, 𝜇1 ⟩ ⊕𝑞 ⟨Ω2, F2, 𝜇2 ⟩ ⪯ P1 ⊕𝑞 P2 ⪯ P

For the reverse direction, suppose that ⟨Ω, F, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆 . Since 𝜇 ∈ 𝑆 , then there exist 𝜇1 ∈ 𝑆1, 𝜇2 ∈ 𝑆2, and
𝑞 ≥ 𝑝 such that 𝜇 = 𝜇1 ⊕𝑞 𝜇2. We know by construction that Γ [𝑋 B 2−𝑘], ⟨Ω𝑘 , F𝑘 , 𝜇𝑘 ⟩ ⊨ 𝜑𝑘 for each 𝑘 , therefore clearly
Γ, ⟨Ω, F, 𝜇 ⟩ ⊨ 𝜑1 ⊕𝑞 𝜑2. Therefore, by Lemma E.1, we know that Γ, P ⊨ 𝜑1 ⊕𝑞 𝜑2. Finally, we weaken this assertion to get
Γ, P ⊨ 𝜑1 ⊕≥𝐸 𝜑2. □

Lemma E.7. If convex(𝜑) and 𝜑 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉, then convex(&𝑋 ∈𝐸 𝜑) .

Proof. Take any Γ, if
⊕

𝑋 ∈𝐸 𝜑 is satisfiable under Γ, then so is 𝜑 . Let 𝑆 = J𝐸K
LExp

(Γ) , so for each 𝑣 ∈ 𝑆 , there must be
Ω𝑣 , F𝑣 , and 𝑆𝑣 such that Γ [𝑋 B 𝑣], P ⊨ 𝜑 iff ⟨Ω𝑣, F𝑣, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑆𝑣 . Now let:

Ω ≜
⋃
𝑣∈𝑆

Ω𝑣 F ≜
{
𝐴 ⊆ Ω | ∀𝑣 ∈ 𝑆. {𝜎 ∈ 𝐴 | J𝑒K

Exp
(𝜎) = 𝑣 } ∈ F𝑣

}
𝑇 ≜

{∑︁
𝑣∈𝑆

𝜉 (𝑣) · 𝜇𝑣 | 𝜉 ∈ D(𝑆), ∀𝑣. 𝜇𝑣 ∈ 𝑆𝑣

}

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:49

Clearly 𝑇 is convex, since it is constructed as countable convex combinations of convex sets [Zilberstein et al. 2025b,
Lemma B.1]. We now show that Γ, P ⊨&𝑋 ∈𝐸 𝜑 iff ⟨Ω, F, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑇 . For the forward direction, suppose that
Γ, P ⊨ &𝑋 ∈𝐸 𝜑 , so Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 for each 𝑣 ∈ supp(𝜈) where 𝜈 ∈ D(𝑆) and

⊕
𝑣∼𝜈 P𝑣 ⪯ P. This means that

for each 𝑣, there is a 𝜇𝑣 such that ⟨Ω𝑣, F𝑣, 𝜇𝑣 ⟩ ⪯ ext(P𝑣) . So, letting 𝜇 =
∑
𝑣∈𝑆 𝜈 (𝑣) · 𝜇𝑣 , we get that ⟨Ω, F, 𝜇 ⟩ ⪯ P by

construction.
For the reverse direction, suppose that ⟨Ω, F, 𝜇 ⟩ ⪯ P for some 𝜇 ∈ 𝑇 . Since 𝜇 ∈ 𝑇 , then there exists a 𝜉 ∈ D(𝑆) and

𝜇𝑣 ∈ 𝑆𝑣 for all 𝑣 ∈ 𝑆 such that 𝜇 =
∑
𝑣∈𝑆 𝜉 (𝑣) · 𝜇𝑣 . By definition, Γ [𝑋 B 𝑣], ⟨Ω𝑣, F𝑣, 𝜇𝑣 ⟩ ⊨ 𝜑 . Let P𝑣 be the restriction

of ⟨Ω𝑣, F𝑣, 𝜇𝑣 ⟩ to the states where J𝑒K
Exp

(𝜎) = 𝑣, then in order to show that Γ, P ⊨&𝑋 ∈𝐸 𝜑 , it will suffice to show that⊕
𝑣∼𝜉 P𝑣 ⪯ ⟨Ω, F, 𝜇 ⟩, and then we can conclude that

⊕
𝑣∼𝜉 P𝑣 ⪯ P by transitivity and complete the proof by Lemma E.1.

The conditions on Ω and F hold by construction. For the probability measure, we have:

P⊕
𝑣∼𝜉 P𝑣 (𝐴) =

∑︁
𝑣∈𝑆

𝜉 (𝑣) · 𝜇P𝑣 (𝐴 ∩ Ω𝑣)

=
∑︁
𝑣∈𝑆

𝜉 (𝑣) · 𝜇𝑣 (𝐴 ∩ Ω𝑣)

Since each 𝜇𝑣 assigns 0 probability outside of Ω𝑣 , we can remove the intersection.

=
∑︁
𝑣∈𝑆

𝜉 (𝑣) · 𝜇𝑣 (𝐴)

= 𝜇 (𝐴)

□

E.2 Entailment Rules
Lemma E.8. The entailment rules in Figure 4 are valid.

Proof.

(1)
𝑃 ⊢ 𝑄

⌈𝑃 ⌉ ⊢ ⌈𝑄 ⌉
Suppose that Γ, P ⊨ ⌈𝑃 ⌉, where ΩP = Mem[𝑆]. That means that L𝑃M𝑆Γ ∈ FP and 𝜇 (L𝑃M𝑆Γ) = 1. Since 𝑃 ⊢ 𝑄 , then it
must be that L𝑃M𝑆Γ ⊆ L𝑄M𝑆Γ , therefore L𝑄M𝑆Γ ∈ FP because P is a complete probability space and all samples outside of
L𝑃M𝑆Γ must have measure 0. By the additivity property of probability measures 𝜇 (L𝑄M𝑆Γ) = 1.

(2)
𝜑 ⊢ 𝜑′ 𝜓 ⊢ 𝜓 ′

𝜑 ∗𝑚 𝜓 ⊢ 𝜑′ ∗𝑚 𝜓 ′

Suppose that Γ, P ⊨ 𝜑 ∗𝑚 𝜓 , so Γ, P1 ⊨ 𝜑 and Γ, P2 ⊨ 𝜓 and P′ ⪯ P for some P1, P2, and P′ ∈ P1 ⋄𝑚 P2. Since
𝜑 ⊢ 𝜑′ and𝜓 ⊢ 𝜓 ′, then Γ, P1 ⊨ 𝜑

′ and Γ, P2 ⊨ 𝜓
′, therefore we immediately conclude that Γ, P ⊨ 𝜑′ ∗𝑚 𝜓 ′.

(3) 𝜑 ∗𝜓 ⊢ 𝜑 ∗w𝜓
Suppose that Γ, P ⊨ 𝜑 ∗ 𝜓 , so Γ, P1 ⊨ 𝜑 and Γ, P2 ⊨ 𝜓 for some P1 and P2 such that P1 ⊗ P2 ⪯ P. Clearly,
P1 ⊗ P2 ∈ P1 ⋄w P2, therefore this immediately implies that Γ, P ⊨ 𝜑 ∗w𝜓 .

(4) ⌈𝑃 ∗𝑄 ⌉ ⊣⊢ ⌈𝑃 ⌉ ∗𝑚 ⌈𝑄 ⌉
We first show that ⌈𝑃 ∗ 𝑄 ⌉ ⊢ ⌈𝑃 ⌉ ∗𝑚 ⌈𝑄 ⌉. Suppose that Γ, P ⊨ ⌈𝑃 ∗ 𝑄 ⌉, where ΩP = Mem[𝑆]. That means that
L𝑃 ∗𝑄M𝑆Γ ∈ FP and 𝜇P (L𝑃 ∗𝑄M𝑆Γ) = 1. Now let P1 and P2 be the smallest probability spaces such that Γ, P1 ⊨ ⌈𝑃 ⌉
and Γ, P2 ⊨ ⌈𝑄 ⌉, so clearly P1 ⋄w P2 = P1 ⋄s P2 = {P1 ⊗ P2 } and therefore Γ, P1 ⊗ P2 ⊨ ⌈𝑃 ⌉ ∗𝑚 ⌈𝑄 ⌉. It is also
clearly the case that P1 ⊗ P2 ⪯ P since the smallest event with nonzero measure in P1 ⊗ P2 is L𝑃MΓ ∗ L𝑄MΓ , which
has probability 1, therefore everything larger also has probability 1, and it suffices to show that:

𝜇P1⊗P2 (L𝑃MΓ ∗ L𝑄MΓ) = 1 = 𝜇P
(
L𝑃 ∗𝑄M𝑆Γ

)
= 𝜇P

(⋃
𝐵 |𝜋

fv(𝑃,𝑄) (𝐵)=L𝑃∗𝑄M𝑆Γ
𝐵

)
Therefore, by Lemma E.1, Γ, P ⊨ ⌈𝑃 ⌉ ∗𝑚 ⌈𝑄 ⌉.
Now we show that ⌈𝑃 ⌉ ∗𝑚 ⌈𝑄 ⌉ ⊢ ⌈𝑃 ∗𝑄 ⌉, suppose that Γ, P ⊨ ⌈𝑃 ⌉ ∗𝑚 ⌈𝑄 ⌉. That means that P′ ⪯ P and Γ, P1 ⊨ ⌈𝑃 ⌉
and Γ, P2 ⊨ ⌈𝑄 ⌉ for some P1, P2, and P′ ∈ P1 ⋄𝑚 P2. This also means that 𝜇P1 (L𝑃M𝑆Γ) = 1 and 𝜇P2 (L𝑄M𝑇Γ) = 1
(where ΩP1 = Mem[𝑆] and ΩP2 = Mem[𝑇]). Therefore, we know that 𝜋𝑆 (𝜇P′) (L𝑃M𝑆Γ) = 1 and 𝜋𝑇 (𝜇P′) (L𝑄M𝑇Γ) = 1,
and therefore we know that anything outside of 𝑃 and 𝑄 has measure zero, and therefore it must be the case that
𝜇P′ (L𝑃 ∗𝑄M𝑆∪𝑇Γ) = 1. So, Γ, P′ ⊨ L𝑃 ∗𝑄M, and since P′ ⪯ P, then by Lemma E.1, Γ, P ⊨ L𝑃 ∗𝑄M.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:50 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

(5) 𝜑 ∗ ⌈𝑃 ⌉ ⊣⊢ 𝜑 ∗w ⌈𝑃 ⌉
The forward direction follows immediately from Item 3, so we prove only the reverse direction. Suppose that Γ, P ⊨
𝜑 ∗w ⌈𝑃 ⌉. This means that Γ, P1 ⊨ 𝜑 and Γ, P2 ⊨ ⌈𝑃 ⌉ for some P1, P2, and P′ ∈ P1 ⋄w P2. Now let P′

2 be the smallest
probability space such that Γ, P′

2 ⊨ ⌈𝑃 ⌉. Since P′
2 contains events only of measure 0 or 1, then P1 ⋄w P′

2 = {P1 ⊗ P′
2 },

therefore it must be that P1 ⊗ P′
2 ⪯ P′ ⪯ P. Therefore, by definition, Γ, P ⊨ 𝜑 ∗ ⌈𝑃 ⌉.

(6)
⊕

𝑋∼𝑑 (𝐸) 𝜑 ⊢&𝑋 ∈supp(𝑑 (𝐸)) 𝜑

Suppose that Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) 𝜑 , therefore Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 for each 𝑣 ∈ supp(𝜉) where 𝜉 = 𝑑 (J𝐸K
LExp

(Γ)) .
Obviously 𝜉 ∈ D(supp(𝜉)) , so this immediately implies that Γ, P ⊨&supp(𝑑 (𝐸)) 𝜑 .

(7) 𝜑 [𝐸/𝑋] ⊣⊢&𝑋 ∈{𝐸} 𝜑
For the forward direction, suppose that Γ, P ⊨ 𝜑 [𝐸/𝑋]. Let 𝑣 = J𝐸K

LExp
(Γ) . We therefore have that Γ [𝑋 B 𝑣] ⊨ 𝜑 .

Obviously, 𝛿𝑣 ∈ D({𝑣 }) , therefore we get that Γ, P ⊨&𝑋 ∈{𝐸} 𝜑 .
For the reverse direction, suppose that Γ, P ⊨ &𝑋 ∈{𝐸} 𝜑 . Since the only distribution over a singleton support is the
point-mass distribution, this immediately gives us Γ [𝑋 B 𝑣] ⊨ 𝜑 , where again 𝑣 = J𝐸K

LExp
(Γ) . Finally, we conclude

that Γ, P ⊨ 𝜑 [𝐸/𝑋].

(8) ⌈𝐸 ⊆ 𝐸′⌉ ∗&𝑋 ∈𝐸 𝜑 ⊢&𝑋 ∈𝐸′ 𝜑
Suppose that Γ, P ⊨ ⌈𝐸 ⊆ 𝐸′⌉ ∗&𝑋 ∈𝐸 𝜑 . Let 𝑆 = J𝐸K

LExp
(Γ) and 𝑆′ = J𝐸′K

LExp
(Γ) . We therefore know that 𝑆 ⊆ 𝑆′

and Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 for all 𝑣 ∈ supp(𝜉) and some 𝜉 ∈ D(𝑆) such that
⊕

𝑣∼𝜉 P𝑣 ⪯ P. Obviously, it is also the
case that 𝜉 ∈ D(𝑆′) , since 𝑆 ⊆ 𝑆′, therefore we immediately have that Γ, P ⊨&𝑋 ∈𝐸′ 𝜑 .

(9)
𝜑 ⊢ 𝜓⊕

𝑋∼𝑑 (𝐸)
𝜑 ⊢

⊕
𝑋∼𝑑 (𝐸)

𝜓

Suppose that Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) 𝜑 and let 𝜈 = 𝑑 (J𝐸K
LExp

(Γ) . So,
⊕

𝑣∼𝜈 P𝑣 ⪯ P such that Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 for
each 𝑣. Since 𝜑 ⊢ 𝜓 , we get that Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜓 for each 𝑣. Therefore, Γ, P ⊨

⊕
𝑋∼𝑑 (𝐸) 𝜓 . Note that𝜓 may

not witness a partition of the sample space, but the P𝑣s are still disjoint.

(10)
𝑌 ∉ fv(𝜑)⊕

𝑋∼𝑑 (𝐸)
𝜑 ⊢

⊕
𝑌∼𝑑 (𝐸)

𝜑 [𝑌/𝑋]

Suppose that Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) 𝜑 , and let 𝜈 = 𝑑 (J𝐸K
LExp

(Γ)) . This means that
⊕

𝑣∼𝜈 P𝑣 ⪯ P such that Γ [𝑋 B
𝑣], ext(P𝑣) ⊨ 𝜑 for each 𝑣 ∈ supp(𝜈) . Since 𝑌 ∉ fv(𝜑) , then clearly Γ [𝑌 B 𝑣], ext(P𝑣) ⊨ 𝜑 [𝑌/𝑋]. Therefore, we get
that Γ,

⊕
𝑣∼𝜈 P𝑣 ⊨

⊕
𝑌∼𝑑 (𝐸) 𝜑 [𝑌/𝑋], and since

⊕
𝑣∼𝜈 P𝑣 ⪯ P, then Γ, P ⊨

⊕
𝑌∼𝑑 (𝐸) 𝜑 [𝑌/𝑋] by Lemma E.1.

(11)
𝑋 ∉ fv(𝜓)

(
⊕

𝑋∼𝑑 (𝐸)
𝜑) ∗𝜓 ⊢

⊕
𝑋∼𝑑 (𝐸)

(𝜑 ∗𝜓)

Suppose that Γ, P ⊨ (
⊕

𝑋∼𝑑 (𝐸) 𝜑) ∗ 𝜓 and let 𝜈 = 𝑑 (J𝐸K
LExp

(Γ)) . So, (
⊕

𝑣∼𝜈 P𝑣) ⊗ P′ ⪯ P such that Γ [𝑋 B
𝑣], ext(P𝑣) ⊨ 𝜑 for each 𝑣 and Γ, P′ ⊨ 𝜓 . Since 𝑋 ∉ fv(𝜓) , then Γ [𝑋 B 𝑣], P′ ⊨ 𝜓 for each 𝑣. Also note that
ext(P𝑣) ⊗ P′ = ext(P𝑣 ⊗ P′) since P′ is already a complete probability space. This gives us Γ [𝑋 B 𝑣], ext(P𝑣 ⊗ P′) ⊨
𝜑 ∗𝜓 . Now, by Lemma B.3, we have: ⊕

𝑣∼𝜈
(P𝑣 ⊗ P′) =

(⊕
𝑣∼𝜈

P𝑣

)
⊗ P′ ⪯ P

Therefore, Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) (𝜑 ∗𝜓) .

(12)
𝑋 ∉ fv(𝜓) precise(𝜓)⊕

𝑋∼𝑑 (𝐸)
(𝜑 ∗𝜓) ⊢ (

⊕
𝑋∼𝑑 (𝐸)

𝜑) ∗𝜓

Suppose that Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) (𝜑 ∗𝜓) , and let 𝜈 = 𝑑 (J𝐸K
LExp

(Γ)) . This means that
⊕

𝑣∼𝜈 (P𝑣 ⊗ Q𝑣) ⪯ P such that
Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 and Γ [𝑋 B 𝑣], ext(Q𝑣) ⊨ 𝜓 . Since 𝑋 ∉ fv(𝜓) , we also know that Γ, ext(Q𝑣) ⊨ 𝜓 , and since𝜓
is precise, there is a unique Q such that Γ, Q ⊨ 𝜓 and Q ⪯ ext(Q𝑣) for all 𝑣. Therefore, by recombining the components,
we get that Γ, P ⊨ (

⊕
𝑋∼𝑑 (𝐸) 𝜑) ∗𝜓 .

(13)
𝑋 ∉ fv(𝜓) convex(𝜓)⊕

𝑋∼𝑑 (𝐸)
(𝜑 ∗w𝜓) ⊢ (

⊕
𝑋∼𝑑 (𝐸)

𝜑) ∗w𝜓

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:51

Suppose that Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) (𝜑 ∗w𝜓) , which means that Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 ∗w𝜓 for each 𝑣 ∈ supp(𝜉)
where 𝜉 = 𝑑 (J𝐸K

LExp
(Γ)) and

⊕
𝑣∼𝜉 P𝑣 ⪯ P. Let 𝑆 be the set such that ΩP = Mem[𝑆] and 𝑇 = vars(𝜓) , so

Γ [𝑋 B 𝑣], 𝜋𝑆\𝑇 (ext(P𝑣)) ⊨ 𝜑 , and therefore Γ, 𝜋𝑆\𝑇 (P) ⊨ 𝜑 . In addition, we know that Γ [𝑋 B 𝑣], 𝜋𝑇 (ext(P𝑣)) ⊨ 𝜓
for each 𝑣, and since𝜓 is convex, then Γ, 𝜋𝑇 (P) ⊨ 𝜓 (see Item 14 for more details). Combining these two facts, we get
that Γ, P ⊨ (

⊕
𝑋∼𝑑 (𝐸) 𝜑) ∗w𝜓 .

(14)
𝑋 ∉ fv(𝜑) convex(𝜑)⊕

𝑋∼𝑑 (𝐸)
𝜑 ⊢ 𝜑

Suppose that Γ, P ⊨
⊕

𝑋∼𝑑 (𝐸) 𝜑 , and let 𝜈 = 𝑑 (J𝐸K
LExp

(Γ)) . Thismeans that
⊕

𝑣∼𝜈 P𝑣 ⪯ P and Γ [𝑋 B 𝑣], ext(P𝑣) ⊨
𝜑 . Since 𝑋 ∉ fv(𝜑) ,this also means that Γ, ext(P𝑣) ⊨ 𝜑 . Since 𝜑 is convex, there exist Ω, F, and 𝑆 and for each 𝑣 𝜇𝑣 ∈ 𝑆
such that Γ, ⟨Ω, F, 𝜇𝑣 ⟩ ⊨ 𝜑 and ⟨Ω, F, 𝜇𝑣 ⟩ ⪯ ext(P𝑣) . Now, let 𝜇 =

∑
𝑥∈supp(𝜈) 𝜈 (𝑣) · 𝜇𝑣 , so clearly 𝜇 ∈ 𝑆 since it is a

convex combination of elements of 𝑆 , and therefore, Γ, ⟨Ω, F, 𝜇 ⟩ ⊨ 𝜑 . It remains only to show that ⟨Ω, F, 𝜇 ⟩ ⪯ P. The
conditions on Ω and F hold trivially since ⟨Ω, F, 𝜇𝑣 ⟩ ⪯ ext(P𝑣) for all 𝑣. Now, we show the condition on 𝜇P :

𝜇 (𝐴) =
∑︁

𝑣∈supp(𝜈)
𝜈 (𝑣) · 𝜇𝑣 (𝐴)

Let𝑈 be the set such that Ω = Mem[𝑈]. Since ⟨Ω, F, 𝜇𝑣 ⟩ ⪯ ext(P𝑣) .

=
∑︁

𝑣∈supp(𝜈)
𝜈 (𝑣) · 𝜇P𝑣

(⋃ {
𝐵 ∈ FP𝑣 | 𝜋𝑈 (𝐵) = 𝐴

})
Since ⟨Ω, F, 𝜇𝑣 ⟩ ⪯ ext(P𝑣) , then 𝜇𝑣 gives measure 0 to all events outside of ΩP𝑣 , therefore we can add the following
intersection.

=
∑︁

𝑣∈supp(𝜈)
𝜈 (𝑣) · 𝜇P𝑣

(⋃ {
𝐵 ∈ FP𝑣 | 𝜋𝑈 (𝐵) = 𝐴

}
∩ ΩP𝑣

)
= 𝜇⊕

𝑣∼𝜈 P𝑣

(⋃
{𝐵 ∈ FP | 𝜋𝑈 (𝐵) = 𝐴}

)
Since

⊕
𝑣∼𝜈 P𝑣 ⪯ P.

= 𝜇P
(⋃

{𝐵 ∈ FP | 𝜋𝑈 (𝐵) = 𝐴}
)

□

E.3 Soundness of Inference Rules
We start by providing a lemma stating that weak triples can be stated without the frame preservation property.

Lemma E.9 (Alternative Characterization of Weak Triples).

𝐼 ⊨w ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ iff ∀Γ, 𝜇. Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉ =⇒ ∀𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . Γ, 𝜈 ⊨ 𝜓 ∗ ⌈𝐼 ⌉

Proof. We show both directions:
(⇒) Suppose that Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉. Let P𝐹 be the trivial probability space onMem[∅], so clearly 𝜇 ⋄w P𝐹 = {𝜇 }. Now
take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . Since 𝐼 ⊨w ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩, we get that there exists a Q and Q′ ∈ Q ⋄w P𝐹 such that
Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉. Since Q ⋄w P𝐹 = {Q}, then Q′ = Q, therefore Γ, Q′ ⊨ 𝜓 ∗ ⌈𝐼 ⌉. In addition, since Q′ ⪯ 𝜈 ,
then by Lemma E.1, Γ, 𝜈 ⊨ 𝜓 ∗ ⌈𝐼 ⌉.

(⇐) Suppose that P′ ∈ P ⋄w P𝐹 such that P′ ⪯ 𝜇 and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉. Let 𝑈 ⊆ Var be the variables of P and 𝐼
and𝑉 be the variables of P𝐹 . Clearly Γ, 𝜋𝑈 (𝜇) ⊨ 𝜑 ∗ ⌈𝐼 ⌉. Since 𝜋𝑈 (𝜇) ⪯ 𝜇, then by Lemma E.1, Γ, 𝜇 ⊨ 𝜑 ∗ ⌈𝐼 ⌉ too.
So, by the premise, Γ, 𝜈 ⊨ 𝜓 ∗ ⌈𝐼 ⌉ for any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . But 𝜓 and 𝐼 only depend on the variables 𝑈 , so
Γ, 𝜋𝑈 (𝜈) ⊨ 𝜓 ∗ ⌈𝐼 ⌉ too. In addition, it must be the case that P𝐹 ⪯ 𝜋𝑉 (𝜈) since𝐶 does not alter any variables in𝑉 .
Now, let Q = 𝜋𝑈 (𝜈) and construct Q′ as follows:

ΩQ′ ≜ ΩP′ FQ′ ≜ 𝜎 ({𝐴1 ∗𝐴2 | 𝐴1 ∈ FQ , 𝐴2 ∈ FP𝐹 }) 𝜇Q′ (𝐴) = 𝜈 (𝐴)

So clearly by construction, Q′ ∈ Q ⋄w P𝐹 and Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉. Therefore, we are done.
□

Theorem 5.2 (Soundness). For all of the rules in Figures 5 to 8, if 𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ then 𝐼 ⊨𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩.

Proof. The proof is by induction on the derivation.

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:52 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

𝐼 ⊢𝑚 ⟨𝜑1 ⟩ 𝐶 ⟨𝜓1 ⟩ 𝐼 ⊢𝑚 ⟨𝜑2 ⟩ 𝐶 ⟨𝜓2 ⟩

𝐼 ⊢𝑚 ⟨𝜑1 ∨ 𝜑2 ⟩ 𝐶 ⟨𝜓1 ∨𝜓2 ⟩
Disj

𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ 𝑋 ∉ vars(𝜓, 𝐼)
𝐼 ⊢𝑚 ⟨∃𝑋 . 𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

Exists2

𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

𝐼 [𝐸/𝑋] ⊢𝑚 ⟨𝜑 [𝐸/𝑋] ⟩ 𝐶 ⟨𝜓 [𝐸/𝑋] ⟩
Subst

Fig. 12. Additional Inference Rules

• Skip.

𝐼 ⊢𝑚 ⟨𝜑 ⟩ skip ⟨𝜑 ⟩
Skip

Suppose that P′ ∈ P ⋄𝑚 P𝐹 , P′ ⪯ 𝜇, and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉. By Zilberstein et al. [2025a, Lemma 5.2], we have:

LL𝐼MΓ (JskipK)† (𝜇) = 𝜂† (𝜇) = {𝜇 }

So, letting Q = P and Q′ = P′, clearly Q′ ∈ Q ⋄𝑚 P𝐹 and Q′ ⪯ 𝜇 and Γ, Q ⊨ 𝜑 ∗ ⌈𝐼 ⌉.
• Seq.

𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶1 ⟨𝜗 ⟩ 𝐼 ⊢𝑚 ⟨𝜗 ⟩ 𝐶1 ⟨𝜓 ⟩

𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶1 #𝐶2 ⟨𝜓 ⟩
Seq

Suppose that P′ ∈ P ⋄𝑚 P𝐹 , P′ ⪯ 𝜇, and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉. By Zilberstein et al. [2025a, Lemma 5.2], we have:

LL𝐼MΓ (J𝐶1 #𝐶2K)† (𝜇) = LL𝐼MΓ (J𝐶1K # J𝐶2K)† (𝜇)

= LL𝐼MΓ (J𝐶2K)† (LL𝐼MΓ (J𝐶1K† (𝜇))

=
⋃

𝜇′∈LL𝐼MΓ (J𝐶1K)† (𝜇)

LL𝐼MΓ (J𝐶2K)† (𝜇′)

So, for every 𝜈 ∈ LL𝐼MΓ (J𝐶1 #𝐶2K)† (𝜇) , there is a 𝜇′ ∈ LL𝐼MΓ (J𝐶1K)† (𝜇) such that 𝜈 ∈ LL𝐼MΓ (J𝐶2K)† (𝜇′) . By the
induction hypotheses, we know there exist Q1 and Q′

1 ∈ Q1 ⋄𝑚 P𝐹 such that Q′
1 ⪯ 𝜇′ and Γ, Q1 ⊨ 𝜗 ∗ ⌈𝐼 ⌉. By the

induction hypothesis again, we get that there exist Q and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉.
• IfT.

𝜑 ⇒ ⌈𝑏 ↦→ true⌉ 𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶1 ⟨𝜓 ⟩

𝐼 ⊢𝑚 ⟨𝜑 ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨𝜓 ⟩
IfT

Suppose that P′ ∈ P ⋄𝑚 P𝐹 , P′ ⪯ 𝜇, and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉. We therefore know that J𝑏K
Test

(𝜎) = true for all 𝜎 ∈ supp(𝜇) .
So, by Zilberstein et al. [2025a, Lemma 5.2], we get that:

LL𝐼MΓ (Jif 𝑏 then𝐶1 else𝐶2K)† (𝜇) = LL𝐼MΓ (guard(𝑏, J𝐶1K , J𝐶2K))† (𝜇)

=

(
𝜆𝜎.

{
LL𝐼MΓ (J𝐶1K) (𝜎) if J𝑏K

Test
(𝜎) = true

LL𝐼MΓ (J𝐶2K) (𝜎) if J𝑏K
Test

(𝜎) = false

)†
(𝜇)

= LL𝐼MΓ (J𝐶1K)† (𝜇)

So any 𝜈 ∈ LL𝐼MΓ (Jif 𝑏 then𝐶1 else𝐶2K)† (𝜇) must also be in LL𝐼MΓ (J𝐶1K)† (𝜇) , and thereforewe can use the induction
hypothesis to conclude that there is a Q and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉.

• IfF. Symmetric to the IfT case.
• Assign.

𝜑 ⇒ ⌈𝑒 ↦→ 𝐸 ⌉ ∧ (𝜓 ∗ ⌈own(𝑥) ⌉)
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝑥 B 𝑒 ⟨𝜓 ∗ ⌈𝑥 ↦→ 𝐸 ⌉ ⟩

Assign

We prove only the𝑚 = s case, as the𝑚 = w case follows from the soundness of the Weakening rule. Suppose that
P ⊗ P𝐹 ⪯ 𝜇 and Γ, P ⊨ 𝜑 ∗ ⌈𝑥 ↦→ 𝐸 ⌉ ∗ ⌈𝐼 ⌉. Let 𝑆 be the set of variables such that 𝜇 ∈ D(Mem[𝑆]) . Since 𝜑 ⇒ ⌈𝑒 ↦→ 𝐸 ⌉,
we know that J𝑒K

Exp
(𝜎) = J𝐸K

LExp
(Γ) for all 𝜎 ∈ supp(𝜇) . Now take any 𝜈 ∈ LL𝐼MΓ (J𝑥 B 𝑒K)† (𝜇) . We know from

Zilberstein et al. [2025a, Lemma 5.2] that:

LL𝐼MΓ (J𝑥 B 𝑒K)† (𝜇) = LL𝐼MΓ (⟨𝑥 B 𝑒 ⟩)† (𝜇)

=

(
J𝑥 B 𝑒KL𝐼MΓ

Act

)†
(𝜇)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:53

From the premise of the rule, we know that 𝑥 B 𝑒 does not depend on vars(𝐼) , so the invariant sensitive semantics is the
same as the regular semantics.

= J𝑥 B 𝑒K†
Act

(𝜇)

=


∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) · 𝜈𝜎

��� ∀𝜎. 𝜈𝜎 ∈ J𝑥 B 𝑒K
Act

(𝜎)


=


∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) · 𝛿𝜎 [𝑥BJ𝑒K

Exp
(𝜎)]


=


∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) · 𝛿𝜎 [𝑥BJ𝐸K

LExp
(Γ)]


Now, since 𝜑 ⇒ 𝜓 ∗ ⌈own(𝑥) ⌉, we get that Γ, P ⊨ 𝜓 ∗ ⌈own(𝑥) ⌉ ∗ ⌈𝐼 ⌉, so there exist P1, P2, and P3 such that
P1 ⊗ P2 ⊗ P3 ⪯ P and Γ, P1 ⊨ 𝜓 and Γ, P2 ⊨ ⌈own(𝑥) ⌉ and Γ, P3 ⊨ ⌈𝐼 ⌉. Since ⌈own(𝑥) ⌉ is precise, let P′

2 be the
unique smallest probability space such that Γ, P′

2 ⊨ ⌈own(𝑥) ⌉, and note that P′
2 ⪯ P2 and ΩP′

2
= Mem[{𝑥 }]. So, by

Lemma B.4, we have:
P1 ⊗ P′

2 ⊗ P3 ⊗ P𝐹 ⪯ P1 ⊗ P2 ⊗ P3 ⊗ P𝐹 ⪯ P ⊗ P𝐹 ⪯ 𝜇
From above, we know that 𝜈 =

∑
𝜎∈supp(𝜇) 𝜇 (𝜎) · 𝛿𝜎 [𝑥BJ𝐸′K

LExp
(Γ)] , so it is easy to see that 𝜋𝑆\{𝑥 } (𝜈) = 𝜋𝑆\{𝑥 } (𝜇) ,

therefore:
P1 ⊗ P3 ⊗ P𝐹 ⪯ 𝜋𝑆\{𝑥 } (𝜇) = 𝜋𝑆\{𝑥 } (𝜈)

Let Q be the trivial probability space that satisfies ⌈𝑥 ↦→ 𝐸 ⌉, so that ΩQ = Mem[{𝑥 }] all events in FQ have probability
0 or 1, and Q ⪯ 𝜋{𝑥 } (𝜈) . So, clearly Γ, P1 ⊗ Q ⊗ P3 ⊨ 𝜓 ∗ ⌈𝑥 ↦→ 𝐸 ⌉ ∗ ⌈𝐼 ⌉ and: (P1 ⊗ Q ⊗ P3) ⊗ P𝐹 ⪯ 𝜈 .

• Samp.
𝜑 ⇒ ⌈𝑒 ↦→ 𝐸 ⌉ ∧ (𝜓 ∗ ⌈own(𝑥) ⌉

𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝑥 :≈ 𝑑 (𝑒) ⟨𝜓 ∗ (𝑥 ∼ 𝑑 (𝐸) ⟩
Samp

We prove only the𝑚 = s case, as the𝑚 = w case follows from the soundness of the Weakening rule. Suppose that
P ⊗ P𝐹 ⪯ 𝜇 and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉, where 𝜇 ∈ D(Mem[𝑆]) . Since 𝜑 ⇒ ⌈𝑒 ↦→ 𝐸 ⌉, we know that J𝑒K

Exp
(𝜎) = J𝐸K

LExp
(Γ)

for all 𝜎 ∈ supp(𝜇) . Now take any 𝜈 ∈ LL𝐼MΓ (J𝑥 :≈ 𝑑 (𝑒)K)† (𝜇) . We know that:

LL𝐼MΓ (J𝑥 :≈ 𝑑 (𝑒)K)† (𝜇) =
(
J𝑥 :≈ 𝑑 (𝑒)KL𝐼MΓ

Act

)†
(𝜇)

From the premise of the rule, we know that 𝑥 :≈ 𝑒 does not depend on vars(𝐼) , so the invariant sensitive semantics is the
same as the regular semantics.

= J𝑥 :≈ 𝑑 (𝑒)K†
Act

(𝜇)

=


∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) · 𝜈𝜎

��� ∀𝜎. 𝜈𝜎 ∈ J𝑥 :≈ 𝑑 (𝑒)K
Act

(𝜎)


=


∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) ·

∑︁
𝑣∈Val

𝑑 (J𝑒K
Exp

(𝜎)) (𝑣) · 𝛿𝜎 [𝑥B𝑣]


=


∑︁
𝑣∈Val

𝑑 (J𝐸K
LExp

(Γ)) (𝑣) ·
∑︁

𝜎∈supp(𝜇)
𝜇 (𝜎) · 𝛿𝜎 [𝑥B𝑣]


Let 𝜈𝑣 =

∑
𝜎∈supp(𝜇) 𝜇 (𝜎) · 𝛿𝜎 [𝑥B𝑣] , therefore 𝜈 =

∑
𝑣∈Val 𝑑 (J𝐸K

LExp
(Γ)) (𝑣) · 𝜈𝑣 . Note also that 𝜋𝑆\{𝑥 } (𝜇) = 𝜋𝑆\{𝑥 } (𝜈) .

Since 𝜑 ⇒ 𝜓 ∗ ⌈own(𝑥) ⌉, we know that Γ, P ⊨ 𝜓 ∗ ⌈own(𝑥) ⌉ ∗ ⌈𝐼 ⌉, so there exist P1, P2, and P3 such that Γ, P1 ⊨ 𝜓 ,
Γ, P2 ⊨ ⌈own(𝑥) ⌉, and Γ, P3 ⊨ ⌈𝐼 ⌉. This gives us:

P1 ⊗ P3 ⊗ P𝐹 ⪯ 𝜋𝑆\{𝑥 } (𝜇) = 𝜋𝑆\{𝑥 } (𝜈) = 𝜋𝑆\{𝑥 } (𝜈𝑣)

Now, let Q𝑣 be the trivial probability space such thatΩQ𝑣 = {𝜎 ∈ Mem[{𝑥 }] | 𝜎 (𝑥) = 𝑣 } and Γ [𝑋 B 𝑣], Q𝑣 ⊨ ⌈𝑥 ↦→ 𝑋 ⌉.
By Construction:

P1 ⊗ ext(Q𝑣) ⊗ P3 ⊗ P𝐹 = (P1 ⊗ P3 ⊗ P𝐹) ⊗ ext(Q𝑣) ⪯ 𝜋𝑆\{𝑥 } (𝜈𝑣) ⊗ 𝜋{𝑥 } (𝜈𝑣) = 𝜈𝑣

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:54 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Let 𝜉 = 𝑑 (J𝐸K
LExp

(Γ)) and Q = P1 ⊗ (
⊕

𝑣∼𝜉 Q𝑣) ⊗ P3, then using Lemmas B.3 and B.5 we get:

Q ⊗ 𝑃𝐹 = P1 ⊗ ©­«
⊕
𝑣∼𝜉

Q𝑣
ª®¬ ⊗ P3 ⊗ P𝐹 =

⊕
𝑣∼𝜉

P1 ⊗ Q𝑣 ⊗ P3 ⊗ P𝐹 ⪯
∑︁

𝑣∈supp(𝜉)
𝜉 (𝑣) · 𝜈𝑣 = 𝜈

By construction, we also have Γ, Q ⊨ 𝜓 ∗ (𝑥 ∼ 𝑑 (𝐸)) ∗ ⌈𝐼 ⌉.
• Par.

𝐼 ⊢ ⟨𝜑1 ⟩ 𝐶1 ⟨𝜓1 ⟩ 𝐼 ⊢ ⟨𝜑2 ⟩ 𝐶2 ⟨𝜓2 ⟩ precise(𝜓1,𝜓2)
𝐼 ⊢ ⟨𝜑1 ∗ 𝜑2 ⟩ 𝐶1 ∥ 𝐶2 ⟨𝜓1 ∗𝜓2 ⟩

Par

Since we are using a strong triple, suppose that P1 ⊗ P2 ⊗ P𝐼 ⊗ P𝐹 ⪯ 𝜇 such that Γ, P1 ⊨ 𝜑1 and Γ, P2 ⊨ 𝜑2 and
Γ, P𝐼 ⊨ ⌈𝐼 ⌉. Without loss of generality, suppose that P𝐼 is minimal. To complete the proof, we need to establish the
premise of Lemma C.6. Since𝜓1 and𝜓2 are precise, let Q1 and Q2 be the unique smallest probability spaces that satisfy
them under Γ (note that if𝜓1 or𝜓2 is unsatisfiable, then the premise of the rule is false, so the claim holds vacuously).
Take any 𝜇1 such that P1 ⊗ P𝐼 ⪯ 𝜇1 and any 𝜈1 ∈ LL𝐼MΓ (J𝐶1K)† (𝜇1) . By the premise of the Par rule, we know that
there is a Q′

1 ⪯ 𝜈1 such that Γ, Q′
1 ⊨ 𝜓1 ∗ ⌈𝐼 ⌉, therefore Q1 ∗ P𝐼 ⪯ Q′

1, and therefore we have shown that:

∀𝜇1 . P1 ⊗ P𝐼 ⪯ 𝜇1 =⇒ ∀𝜈1 ∈ LL𝐼MΓ (J𝐶1K)† (𝜇1) . Q1 ⊗ P𝐼 ⪯ 𝜈1
Wenow perform a nearly identical argument for𝐶2, but we also handle the frame. Take any 𝜇2 such that P2⊗P𝐼 ⊗P𝐹 ⪯ 𝜇2
and any 𝜈2 ∈ LL𝐼MΓ (J𝐶2K)† (𝜇2) . By the second premise of the Par rule, we get that there is a Q′

2 such that Q′
2 ⊗ P𝐹 ⪯ 𝜈2

and Γ, Q′
2 ⊨ 𝜓2 ∗ ⌈𝐼 ⌉. Due to precision, we know that Q2 ∗ P𝐼 ⪯ Q′

2 and so by Lemma B.4, Q2 ⊗ P𝐼 ⊗ P𝐹 ⪯ Q′
2 ⊗ P𝐹 ⪯ 𝜈2,

so we have shown that:

∀𝜇2 . P2 ⊗ P𝐼 ⊗ P𝐹 ⪯ 𝜇2 =⇒ ∀𝜈2 . LL𝐼MΓ (J𝐶2K)† (𝜇2) . Q2 ⊗ P𝐼 ⊗ P𝐹 ⪯ 𝜈2
Now, by Lemma C.6, Q1 ⊗ Q2 ⊗ P𝐼 ⊗ P𝐹 ⪯ 𝜈 for all 𝜈 ∈ LL𝐼MΓ (J𝐶1K ∥ J𝐶2K)† (𝜇) . Let Q = Q1 ⊗ Q2 ⊗ P𝐼 . So
Q ⊗ P𝐹 ⪯ 𝜈 and since Γ, Q1 ⊨ 𝜓1 and Γ, Q2 ⊨ 𝜓2, we get that Γ, Q ⊨ 𝜓1 ∗𝜓2 ∗ ⌈𝐼 ⌉, so we are done.

• Atom.
𝐽 ⊢𝑚 ⟨𝜑 ∗ ⌈𝐼 ⌉ ⟩ 𝑎 ⟨𝜓 ∗ ⌈𝐼 ⌉ ⟩

𝐼 ∗ 𝐽 ⊢𝑚 ⟨𝜑 ⟩ 𝑎 ⟨𝜓 ⟩
Atom

Suppose that P′ ∈ P ⋄𝑚 P𝐹 , P′ ⪯ 𝜇, and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ∗ 𝐽 ⌉. This means that there exist P1 and P2 such that
P1 ⊗ P2 ⊗ P3 ⪯ P and Γ, P1 ⊨ 𝜑 and Γ, P2 ⊨ ⌈𝐼 ∗ 𝐽 ⌉. Let P𝐼 and P𝐽 be the trivial probability spaces that satisfy ⌈𝐼 ⌉
and ⌈𝐽 ⌉, respectively, so clearly P𝐼 ⊗ P𝐽 ⪯ P2. Now, take any 𝜈 ∈ LL𝐼∗𝐽 MΓ (J𝑎K)† (𝜇) and note that:

LL𝐼∗𝐽 MΓ (J𝑎K)† (𝜇) = (J𝑎KL𝐼∗𝐽 MΓ
Act

)† (𝜇)

=

((
check

L𝐼∗𝐽 MΓ
)†

◦ J𝑎K†
Act

◦
(
replace

L𝐼∗𝐽 MΓ
)†

◦
(
check

L𝐼∗𝐽 MΓ
))†

(𝜇)

=

(
check

L𝐼MΓ∗L𝐽 MΓ
)† (

J𝑎K†
Act

((
replace

L𝐼MΓ∗L𝐽 MΓ
)† ((

check
L𝐼MΓ∗L𝐽 MΓ

)†
(𝜇)

)))
=

(
check

L𝐼MΓ
)† (

LL𝐽 MΓ (J𝑎K)†
((
replace

L𝐼MΓ
)† ((

check
L𝐼MΓ

)†
(𝜇)

)))
Since we already assumed that 𝜇 satisfies 𝐼 ∗ 𝐽 , the first check does nothing.

=

(
check

L𝐼MΓ
)† (

LL𝐽 MΓ (J𝑎K)†
((
replace

L𝐼MΓ
)†

(𝜇)
))

Therefore, we know that 𝜈 = (checkL𝐼MΓ)† (𝜈′) for some 𝜈′ ∈ LL𝐽 MΓ (J𝑎K)† (𝜇′) and 𝜇′ ∈ (replaceL𝐼MΓ)† (𝜇)) . We know
that P1 ⊗ P𝐼 ⊗ P𝐽 ⪯ P1 ⊗ P2 ⪯ P, so there must be a P′′ ∈ (P1 ⊗ P𝐼 ⊗ P𝐽) ⋄𝑚 P𝐹 such that P′′ ⪯ P′ and therefore
P′′ ⪯ 𝜇. Since P′′ only contains trivial information about 𝐼 , and 𝜇 and 𝜇′ differ only in the states that satisfy 𝐼 , then
P′′ ⪯ 𝜇′ too. Therefore, by the induction hypothesis, there must be Q and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈′ and
Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉ ∗ ⌈𝐽 ⌉. This implies that Γ, 𝜈′ ⊨ ⌈𝐼 ⌉, and therefore 𝜈 = 𝜈′, since the check operation does nothing. Therefore,
we get that Q′ ⪯ 𝜈′ = 𝜈 , and so we are done.

• Share.
𝐼 ∗ 𝐽 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ finitary(𝐼)

𝐽 ⊢𝑚 ⟨𝜑 ∗ ⌈𝐼 ⌉ ⟩ 𝐶 ⟨𝜓 ∗ ⌈𝐼 ⌉ ⟩
Share

Suppose that P′ ∈ P ⋄𝑚 P𝐹 , P′ ⪯ 𝜇, and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉ ∗ ⌈𝐽 ⌉. Now, take any 𝜈 ∈ LL𝐽 MΓ (J𝐶K)† (𝜇) . By Lemma 5.3, we
know that:

LL𝐼∗𝐽 MΓ (J𝐶K)† (𝜇) = LL𝐼MΓ∗L𝐽 MΓ (J𝐶K)† (𝜇) ⊑C LL𝐽 MΓ (J𝐶K)† (𝜇)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:55

And since ⊑C is equivalent to ⊇, then 𝜈 ∈ LL𝐼∗𝐽 MΓ (J𝐶K)† (𝜇) as well. Therefore, by the induction hypothesis, we know
that there exist Q and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ∗ 𝐽 ⌉. Since ⌈𝐼 ∗ 𝐽 ⌉ ⇔ ⌈𝐼 ⌉ ∗ ⌈𝐽 ⌉, we are done.

• Frame.
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

𝐼 ⊢𝑚 ⟨𝜑 ∗𝑚 𝜗 ⟩ 𝐶 ⟨𝜓 ∗𝑚 𝜗 ⟩
Frame

Suppose that P′ ∈ P ⋄𝑚 P𝐹 and P′ ⪯ 𝜇 and Γ, P ⊨ (𝜑 ∗𝑚 𝜗) ∗ ⌈𝐼 ⌉. That means that there exist P1 and P𝐼 such
that P1 ⊗ P𝐼 ⪯ P and Γ, P1 ⊨ 𝜑 ∗𝑚 𝜗 , and Γ, P𝐼 ⊨ ⌈𝐼 ⌉, and without loss of generality, suppose that P𝐼 is the trivial
probability space that satisfies 𝐼 . We also know that P1 ∈ P2 ⋄𝑚 P3 where Γ, P2 ⊨ 𝜑 and Γ, P3 ⊨ 𝜗 . Since P𝐼 is a
trivial probability space, then P2 ⋄𝑚 P𝐼 = {P2 ⊗ P𝐼 }, so by associativity of projections, we get that there must be a
P′
𝐹
∈ P𝐹 ⋄𝑚 P3 such that P′ ∈ (P2 ⊗ P𝐼) ⋄𝑚 P′

𝐹
.

Now, take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . By the induction hypothesis, there exist Q and Q′ ∈ Q ⋄𝑚 P′
𝐹
such that Q′ ⪯ 𝜈

and Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉. So, there must be a Q′′ ∈ Q ⋄𝑚 P3 and Q′ ∈ Q′′ ⋄𝑚 P𝐹 , and by constructions Γ, Q′′ ⊨ (𝜓 ∗ ⌈𝐼 ⌉) ∗𝑚 𝜗 .
Since ⌈𝐼 ⌉ is a pure assertion, this also means that Γ, Q′′ ⊨ (𝜓 ∗𝑚 𝜗) ∗ ⌈𝐼 ⌉.

• Weaken.
𝐼 ⊢ ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

𝐼 ⊢w ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩
Weaken

Immediate from the induction hypothesis, letting P𝐹 be the trivial probability space on Mem[∅], and Lemma E.9.
• Strengthen.

𝐼 ⊢w ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ precise(𝜓)
𝐼 ⊢ ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

Strengthen

Suppose that P ⊗ P𝐹 ⪯ 𝜇, and Γ, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉. This means that there exists a P′ such that Γ, P′ ⊨ 𝜑 and Γ, P𝐼 ⊨ ⌈𝐼 ⌉
where P𝐼 is the trivial probability space satisfying ⌈𝐼 ⌉ and P′ ⊗ P𝐼 ⪯ P. Since𝜓 is precise, let Q be the unique smallest
probability space such that Γ, Q ⊨ 𝜓 . From the premise of the rule, we know that:

∀𝜇1 . P′ ⊗ P𝐼 ⪯ 𝜇1 =⇒ ∀𝜈1 ∈ LL𝐼MΓ (J𝐶K)† (𝜇1) . Q ⊗ P𝐼 ⪯ 𝜈1

In addition, since LL𝐼MΓ (JskipK) = 𝜂 [Zilberstein et al. 2025a, Lemma 5.2] it is obvious that:

∀𝜇2 . P𝐹 ⊗ P𝐼 ⪯ 𝜇2 =⇒ ∀𝜈2 ∈ LL𝐼MΓ (JskipK)† (𝜇2) . P𝐹 ⊗ P𝐼 ⪯ 𝜈2

So, by Lemma C.6, we get that Q ⊗ P𝐹 ⊗ P𝐼 ⪯ 𝜈 for any 𝜈 ∈ LL𝐼MΓ (J𝐶K ∥ JskipK)† (𝜇) . But clearly LL𝐼MΓ (J𝐶K ∥
JskipK) = LL𝐼MΓ (J𝐶K) , so we are done.

• Split1.
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ 𝜓 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉ 𝑋 ∉ fv(𝐼)

𝐼 ⊢𝑚 ⟨
⊕

𝑋∼𝑑 (𝐸)
𝜑 ⟩ 𝐶 ⟨

⊕
𝑋∼𝑑 (𝐸)

𝜓 ⟩
Split1

We first prove the claim for the case where𝑚 = s. Suppose that P ⊗ P𝐹 ⪯ 𝜇 and Γ, P ⊨ (
⊕

𝑋∼𝑑 (𝐸) 𝜑) ∗ ⌈𝐼 ⌉. This means
that (

⊕
𝑣∼𝜉 P𝑣) ⊗ P𝐼 ⪯ P such that Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 for each 𝑣 and 𝜉 = 𝑑 (J𝐸K

LExp
(Γ)) and P𝐼 is the trivial

probability space satisfying ⌈𝐼 ⌉. By Lemmas B.3 and B.4 we have:⊕
𝑣∼𝜉

(P𝑣 ⊗ P𝐼 ⊗ P𝐹) =
©­«
⊕
𝑣∼𝜉

P𝑣
ª®¬ ⊗ P𝐼 ⊗ P𝐹 ⪯ P ⊗ P𝐹 ⪯ 𝜇

Now, for each 𝑣 ∈ supp(𝜉) , let 𝜇𝑣 (𝜎) ≜ 1
𝜉 (𝑣) · 𝜇 (𝜎) if 𝜎 ∈ ΩP𝑣 ∗ΩP𝐼 ∗ΩP𝐹 , which clearly gives us P𝑣 ⊗ P𝐼 ⊗ P𝐹 ⪯ 𝜇𝑣

and 𝜇 =
∑
𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜇𝑣 . Now, take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . We know that:

LL𝐼MΓ (J𝐶K)† (𝜇) = LL𝐼MΓ (J𝐶K)† (
∑︁

𝑣∈supp(𝜉)
𝜈 (𝑣) · 𝜇𝑣)

=


∑︁

𝑣∈supp(𝜉)
𝜉 (𝑣) · 𝜈𝑣

��� ∀𝑣. 𝜈𝑣 ∈ LL𝐼MΓ (J𝐶K)† (𝜇𝑣)


So 𝜈 =
∑
𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜈𝑣 where 𝜈𝑣 ∈ LL𝐼MΓ (J𝐶K)† (𝜇𝑣) for each 𝑣. Note that 𝑋 ∉ fv(𝐼) , so L𝐼MΓ = L𝐼MΓ [𝑋B𝑣] , and

therefore by the induction hypothesis, we get that there exists Q𝑣 such that Q𝑣 ⊗ P𝐹 ⪯ 𝜈𝑣 and Γ [𝑋 B 𝑣], Q𝑣 ⊨ 𝜓 ∗ ⌈𝐼 ⌉.
Since𝜓 ⇒ ⌈𝑒 = 𝑋 ⌉, we can restrict the Q𝑣s to disjoint probability spaces Q′

𝑣 such that ext(Q′
𝑣) ⊗ P𝐼 ⪯ Q𝑣 .

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:56 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Therefore
⊕

𝑣∼𝜈 Q′
𝑣 exists and Γ,

⊕
𝑣∼𝜉 Q′

𝑣 ⊨
⊕

𝑣∼𝑑 (𝐸) 𝜓 . So, we get that:©­«
⊕
𝑣∼𝜉

Q′
𝑣
ª®¬ ⊗ P𝐼 ⊗ P𝐹 =

⊕
𝑣∼𝜉

(
Q′
𝑣 ⊗ P𝐼 ⊗ P𝐹

)
⪯

∑︁
𝑣∈supp(𝜉)

𝜉 (𝑣) · 𝜈𝑣 = 𝜈

The case where𝑚 = w follows immediately from Lemma E.9 using the proof above with P𝐹 being the trivial probability
space on empty memories.

• NSplit1.
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ 𝜓 ⇒ ⌈𝑒 ↦→ 𝑋 ⌉ 𝑋 ∉ fv(𝐼)

𝐼 ⊢𝑚 ⟨&
𝑋 ∈𝐸

𝜑 ⟩ 𝐶 ⟨&
𝑋 ∈𝐸

𝜓 ⟩
NSplit1

Suppose that P′ ∈ P ⋄𝑚 P𝐹 and P′ ⪯ 𝜇 and Γ, P ⊨ (&𝑋 ∈𝐸 𝜑) ∗ ⌈𝐼 ⌉. This means that there is some 𝜉 ∈ D(J𝐸K
LExp

(Γ))
such that Γ, P ⊨ (

⊕
𝑋∼𝜉 𝜑) ∗ ⌈𝐼 ⌉. Now take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . Using the Split1 rule, we get that there exists a Q

and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ, Q ⊨ (
⊕

𝑋∼𝜉 𝜓) ∗ ⌈𝐼 ⌉. This immediately implies that Γ, Q ⊨ (&𝑋 ∈𝐸 𝜓) ∗ ⌈𝐼 ⌉.
• Split2.

𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ convex(𝜓) 𝑋 ∉ vars(𝐼 ,𝜓)

𝐼 ⊢𝑚 ⟨
⊕

𝑋∼𝑑 (𝐸)
𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

Split2

We start with the case where𝑚 = s. Suppose that P ⊗ P𝐹 ⪯ 𝜇 and Γ, P ⊨ (
⊕

𝑋∼𝑑 (𝐸) 𝜑) ∗ ⌈𝐼 ⌉ and let 𝜉 = 𝑑 (J𝐸K
LExp

(Γ)) .
Since 𝑋 ∉ vars(𝐼) , then Γ, P ⊨

⊕
𝑋∼𝑑 (𝐸) 𝜑 ∗ ⌈𝐼 ⌉ and so there exists a family of P𝑣 such that

⊕
𝑣∼𝜉 P𝑣 ⪯ P and

Γ [𝑋 B 𝑣], ext(P𝑣) ⊨ 𝜑 ∗ ⌈𝐼 ⌉ for all 𝑣 ∈ supp(𝜉) . By Lemmas B.3 and B.5, we also have that:⊕
𝑣∼𝜉

(P𝑣 ⊗ P𝐹) =
©­«
⊕
𝑣∼𝜉

P𝑣
ª®¬ ⊗ P𝐹 ⪯ P ⊗ P𝐹 ⪯ 𝜇

Now, for each 𝑣 ∈ supp(𝜉) , let 𝜇𝑣 (𝜎) ≜ 1
𝜉 (𝑣) · 𝜇 (𝜎) if 𝜎 ∈ ΩP𝑣 , which clearly gives us ext(P𝑣) ⊗ P𝐹 ⪯ 𝜇𝑣 and

𝜇 =
∑
𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜇𝑣 . Now, take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . We know that:

LL𝐼MΓ (J𝐶K)† (𝜇) = LL𝐼MΓ (J𝐶K)† (
∑︁

𝑣∈supp(𝜉)
𝜈 (𝑣) · 𝜇𝑣)

=


∑︁

𝑣∈supp(𝜉)
𝜉 (𝑣) · 𝜈𝑣

��� ∀𝑣. 𝜈𝑣 ∈ LL𝐼MΓ (J𝐶K)† (𝜇𝑣)


So 𝜈 =
∑
𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜈𝑣 where 𝜈𝑣 ∈ LL𝐼MΓ (J𝐶K)† (𝜇𝑣) for each 𝑣. Note that 𝑋 ∉ vars(𝐼) , so L𝐼MΓ = L𝐼MΓ [𝑋B𝑣] ,

and therefore by the induction hypothesis, we get that there exist a family of Q𝑣 such Q𝑣 ⊗ P𝐹 ⪯ 𝜈𝑣 and Γ [𝑋 B
𝑣], Q𝑣 ⊨ 𝜓 ∗ ⌈𝐼 ⌉. Since 𝑋 ∉ vars(𝜓) , we can remove the update of 𝑋 to conclude that Γ, Q𝑣 ⊨ 𝜓 ∗ ⌈𝐼 ⌉. Since 𝜓 is
convex, then we can presume that there exists 𝑈 , F, and 𝑆 such that Q𝑣 = ⟨Mem[𝑈], F, 𝜉𝑣 ⟩ for some 𝜉𝑣 ∈ 𝑆 . Now,
let Q = ⟨Mem[𝑈], F,∑𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜉𝑣 ⟩. Since ∑

𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜉𝑣 is a convex combinations of elements of 𝑆 , then∑
𝑣∈supp(𝜉) 𝜉 (𝑣) · 𝜉𝑣 ∈ 𝑆 and therefore by construction Γ,𝑄 ⊨ 𝜓 ∗ ⌈𝐼 ⌉. We now complete the proof by showing that

Q ⊗ P𝐹 ⪯ 𝜈 . Take any 𝐴 ∈ FQ and 𝐵 ∈ FP𝐹 , and let𝑉 be the set such that ΩP𝐹 = Mem[𝑉]:
𝜇Q⊗P𝐹 (𝐴 ∗ 𝐵) = 𝜇Q (𝐴) · 𝜇P𝐹 (𝐵)

=
©­«

∑︁
𝑣∈supp(𝜉)

𝜉 (𝑣) · 𝜉𝑣 (𝐴)
ª®¬ · 𝜇P𝐹 (𝐵)

=
∑︁

𝑣∈supp(𝜉)
𝜉 (𝑣) · 𝜉𝑣 (𝐴) · 𝜇P𝐹 (𝐵)

=
∑︁

𝑣∈supp(𝜉)
𝜉 (𝑣) · 𝜇Q𝑣 (𝐴) · 𝜇P𝐹 (𝐵)

Since Q𝑣 ⊗ P𝐹 ⪯ 𝜈𝑣 :
=

∑︁
𝑣∈supp(𝜉)

𝜉 (𝑣) · 𝜋𝑈∪𝑉 (𝜈𝑣) (𝐴 ∗ 𝐵)

= 𝜋𝑈∪𝑉 (𝜈) (𝐴)
The case where𝑚 = w follows from Lemma E.9 using the same reasoning as above, but where P𝐹 is the trivial probability
space on Mem[∅].

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:57

• NSplit2.
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ convex(𝜓) 𝑋 ∉ fv(𝐼 ,𝜓)

𝐼 ⊢𝑚 ⟨&
𝑋 ∈𝐸

𝜑 ⟩ 𝐶 ⟨𝜓 ⟩
NSplit2

Suppose that P′ ∈ P ⋄𝑚 P𝐹 and P′ ⪯ 𝜇 and Γ, P ⊨ (&𝑋 ∈𝐸 𝜑) ∗ ⌈𝐼 ⌉. This means that there is some 𝜉 ∈ D(J𝐸K
LExp

(Γ))
such that Γ, P ⊨ (

⊕
𝑋∼𝜉 𝜑) ∗ ⌈𝐼 ⌉. Now take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . Using the Split2 rule, we get that there exists a

Q and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉.
• Exists.

𝐼 ⊢w ⟨&𝑋 ∈𝐸 ⌈𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩ ⌈𝑃 ⌉ ⇒ ⌈𝑒 ↦→ 𝑋 ⌉
𝐼 ⊢w ⟨ ⌈∃𝑋 ∈ 𝐸. 𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩

Exists

By Lemma E.9, it suffices to show that the claim holds without frame preservation. Suppose that Γ, 𝜇 ⊨ ⌈∃𝑋 ∈ 𝐸.𝑃 ⌉ ∗ ⌈𝐼 ⌉.
Without loss of generality, suppose that 𝑋 is not free in 𝐼 (if not, then we could 𝛼-rename 𝑋 in 𝑃 to obtain an equivalent
assertion, i.e., ⌈∃𝑋 ∈ 𝐸. 𝑃 ⌉ ⇔ ⌈∃𝑌 ∈ 𝐸. 𝑃 [𝑌/𝑋] ⌉ where 𝑌 is some fresh variable). So, we get that Γ, 𝜇 ⊨ ⌈∃𝑋 ∈
𝐸. 𝑃 ∗ 𝐼 ⌉, which means that for every 𝜎 ∈ supp(𝜇) there exists 𝑣𝜎 ∈ J𝐸K

LExp
(Γ) such that Γ [𝑋 B 𝑣𝜎], 𝜎 ⊨ 𝑃 ∗ 𝐼 . Let

𝜉 ≜
∑
𝜎∈supp(𝜇) 𝜇 (𝜎) · 𝛿𝑣𝜎 , so 𝜉 (𝑣) is the probability that Γ [𝑋 B 𝑣] is the context that satisfies 𝑃 . Also, let:

𝜇𝑣 (𝜎) ≜
1

𝜉 (𝑣)

{
𝜇 (𝜎) if 𝑣 = 𝑣𝜎
0 if 𝑣 ≠ 𝑣𝜎

Clearly, by construction Γ [𝑋 B 𝑣], 𝜇𝑣 ⊨ ⌈𝑃 ⌉ ∗ ⌈𝐼 ⌉ for all 𝑣 ∈ supp(𝜉) . Also, since ⌈𝑃 ⌉ ⇒ ⌈𝑒 ↦→ 𝑋 ⌉, then J𝑒K
Exp

(𝜎) = 𝑣
for each 𝜎 ∈ supp(𝜇𝑣) , and so each 𝜇𝑣 = ext(𝜇′𝑣) where 𝜇′𝑣 has a restricted sample space to only be over states where
𝑒 evaluates to 𝑣. Thus, we clearly have

⊕
𝑣∼𝜉 𝜇

′
𝑣 ⪯ 𝜇, and therefore Γ, 𝜇 ⊨ (&𝑋 ∈𝐸 ⌈𝑃 ⌉) ∗ ⌈𝐼 ⌉. So, by the induction

hypothesis and Lemma E.9, Γ, 𝜈 ⊨ 𝜓 ∗ ⌈𝐼 ⌉ for all 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) .
• Conseqence.

𝜑′ ⇒ 𝜑 𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ 𝜓 ⇒ 𝜓 ′

𝐼 ⊢𝑚 ⟨𝜑′
⟩ 𝐶 ⟨𝜓 ′

⟩
Conseqence

Suppose that P′ ∈ (P ⊗ PL𝐼MΓ) ⋄𝑚 P𝐹 , P′ ⪯ 𝜇, and Γ, P ⊨ 𝜑′. Since𝜑′ ⇒ 𝜑 , then Γ, P ⊨ 𝜑 . By the induction hypothesis,
there exists Q and Q′ ∈ (Q ⊗ PL𝐼MΓ) ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓 for any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . Since𝜓 ⇒ 𝜓 ′,
then Γ, Q ⊨ 𝜓 ′, so we are done.

• BoundedRank. Subject to the following conditions:

(1) 𝜑 ⇒ ⌈ℓ ≤ 𝑅 ≤ ℎ⌉ (2) 𝜑 ∗ ⌈𝑅 = ℓ ⌉ ⇒ ⌈𝑏 ↦→ false⌉ (3) 𝜑 ∗ ⌈𝑅 > ℓ ⌉ ⇒ ⌈𝑏 ↦→ true⌉
(4) precise(𝜑 [ℓ/𝑅]) (5) 𝑁 ∉ vars(𝜑) (6) 0 < 𝑝 ≤ 1

The following inference is valid:

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑅 = 𝑁 > ℓ ⌉ ⟩ 𝐶 ⟨(&𝑁−1
𝑅=ℓ 𝜑) ⊕≥𝑝 (&ℎ𝑅=𝑁 𝜑) ⟩

𝐼 ⊢𝑚 ⟨&ℎ𝑅=ℓ 𝜑 ⟩ while 𝑏 do𝐶 ⟨𝜑 [ℓ/𝑅] ⟩
BoundedRank

We prove the rule without frame preservation, as frame preservation follows from Lemma E.9 if 𝑚 = w and the
Strengthen rule if𝑚 = s (since the postcondition is precise). Suppose that Γ, 𝜇 ⊨&ℎ𝑅=ℓ 𝜑 ∗ ⌈𝐼 ⌉. Let 𝜑′ =&ℎ𝑅=ℓ+1 𝜑 and
𝜓 = 𝜑 [ℓ/𝑅]. We first show that ⟨𝜑′,𝜓 ⟩ is an invariant pair for while 𝑏 do𝐶 under 𝐼 :
(1) 𝜑′ =&ℎ𝑅=ℓ+1 𝜑 ⇒&ℎ𝑅=ℓ+1 ⌈𝑏 ↦→ true⌉ ⇒ ⌈𝑏 ↦→ true⌉
(2) 𝜓 = 𝜑 [ℓ/𝑅] ⇒ ⌈𝑏 ↦→ false⌉
(3) We can weaken the postcondition of the premise of rule as follows:

(
𝑁−1

&
𝑅=ℓ

𝜑) ⊕≥𝑝 (
ℎ

&
𝑅=𝑁

𝜑) ⇒ (
𝑁−1

&
𝑅=ℓ

𝜑) & (
ℎ

&
𝑅=𝑁

𝜑) ⇒
ℎ

&
𝑅=ℓ

𝜑 ⇒ 𝜑′ &𝜓

So, after an application of NSplit2, we get that 𝐼 ⊨𝑚 ⟨𝜑′⟩ 𝐶 ⟨𝜑′ & 𝜓 ⟩. If𝑚 = s, Weaken can be used to obtain
𝐼 ⊨w ⟨𝜑′⟩ 𝐶 ⟨𝜑′ &𝜓 ⟩.

(4) By assumption, we have precise(𝜓) .
In addition, the premise of the rule implies that each iteration, the rank decreases by at least 1 with probability at least 𝑝 ,
so starting in any state satisfying 𝜑 , the loop will terminate with probability at least 𝑝ℎ−ℓ > 0. Therefore by Corollary D.3,
minterm(LL𝐼MΓ (Jwhile 𝑏 do𝐶K)† (𝜇)) = 1, i.e., the loop almost surely terminates.
Since 𝜑 [ℓ/𝑅] is precise, let Q be the unique smallest probability space such that Γ, Q ⊨ 𝜑 [ℓ/𝑅]. Take any event 𝐵 ∈ FQ .
By Lemma D.2, we get:

minProb

(
LL𝐼MΓ (Jwhile 𝑏 do𝐶K)† (𝜇), 𝐵 ∗ L𝐼MΓ

)
= minterm

(
LL𝐼MΓ (Jwhile 𝑏 do𝐶K)† (𝜇)

)
· 𝜇Q (𝐵) = 𝜇Q (𝐵)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:58 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

So, 𝜇Q (𝐵) ≤ 𝜈 (𝐵 ∗ L𝐼MΓ) for any 𝜈 ∈ LL𝐼MΓ (Jwhile 𝑏 do𝐶K)† (𝜇) . However, we already established that the loop almost
surely terminates, so 𝜈 (⊥) = 0, therefore 𝜈 (𝐵 ∗ L𝐼MΓ) = 1− 𝜈 (Mem[𝑉] \ (𝐵 ∗ L𝐼MΓ)) (where𝑉 is the domain of 𝜈), which
gives us:

𝜇Q (𝐵) ≤ 𝜈 (𝐵 ∗ L𝐼MΓ)
= 1 − 𝜈 (Mem[𝑉] \ (𝐵 ∗ L𝐼MΓ))
≤ 1 − 𝜇Q (Mem[𝑉] \ (𝐵 ∗ L𝐼MΓ))
= 1 − (1 − 𝜇Q (𝐵 ∗ L𝐼MΓ))
= 𝜇Q (𝐵)

Therefore 𝜇Q (𝐵) = 𝜈 (𝐵 ∗L𝐼MΓ) , and since this is true for any 𝐵 ∈ FQ , then Q ⊗ P𝐼 ⪯ 𝜈 where P𝐼 is the trivial probability
space satisfying 𝐼 . By definition, Γ, Q ⊨ 𝜑 [ℓ/𝑅], so we are done.

• Disj.
𝐼 ⊢𝑚 ⟨𝜑1 ⟩ 𝐶 ⟨𝜓1 ⟩ 𝐼 ⊢𝑚 ⟨𝜑2 ⟩ 𝐶 ⟨𝜓2 ⟩

𝐼 ⊢𝑚 ⟨𝜑1 ∨ 𝜑2 ⟩ 𝐶 ⟨𝜓1 ∨𝜓2 ⟩
Disj

Suppose that P′ ∈ P ⋄ P𝐹 and P′ ⪯ 𝜇 and Γ, P ⊨ (𝜑1 ∨ 𝜑2) ∗ ⌈𝐼 ⌉. This means that P1 ⊗ P2 ⪯ P such that
Γ, P1 ⊨ 𝜑1 ∨ 𝜑2 and Γ, P2 ⊨ ⌈𝐼 ⌉. Without loss of generality, suppose that Γ, P1 ⊨ 𝜑1, therefore Γ, P ⊨ 𝜑1 ∗ ⌈𝐼 ⌉. Now
take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . By the induction hypothesis, we know that there exists Q and Q′ ∈ Q ⋄𝑚 P𝐹 such that
Q′ ⪯ 𝜈 and Γ, Q ⊨ 𝜓1 ∗ ⌈𝐼 ⌉. We can weaken this to conclude that Γ, Q ⊨ (𝜓1 ∨𝜓2) ∗ ⌈𝐼 ⌉.

• Exists2.
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩ 𝑋 ∉ vars(𝜓, 𝐼)

𝐼 ⊢𝑚 ⟨∃𝑋 . 𝜑 ⟩ 𝐶 ⟨𝜓 ⟩
Exists2

Suppose that P′ ∈ P ⋄ P𝐹 and P′ ⪯ 𝜇 and Γ, P ⊨ (∃𝑋 .𝜑) ∗ ⌈𝐼 ⌉. This means that P1 ⊗ P2 ⪯ P such that Γ, P1 ⊨
∃𝑋 .𝜑 and Γ, P2 ⊨ ⌈𝐼 ⌉. Therefore, Γ [𝑋 B 𝑣], P1 ⊨ 𝜑 for some 𝑣 ∈ Val. Since 𝑋 ∉ vars(𝐼) , then we also have
that Γ [𝑋 B 𝑣], P ⊨ 𝜑 ∗ ⌈𝐼 ⌉. Now take any 𝜈 ∈ LL𝐼MΓ (J𝐶K)† (𝜇) . Since 𝐼 ∉ vars(𝐼) , then L𝐼MΓ [𝑋B𝑣] = L𝐼MΓ , so
𝜈 ∈ LL𝐼MΓ [𝑋B𝑣] (J𝐶K)† (𝜇) as well. By the induction hypothesis, we know that there exists Q and Q′ ∈ Q ⋄𝑚 P𝐹 such
that Q′ ⪯ 𝜈 and Γ [𝑋 B 𝑣], Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉. Since 𝑋 ∉ vars(𝜓, 𝐼) , then this implies that Γ, Q ⊨ 𝜓 ∗ ⌈𝐼 ⌉.

• Subst
𝐼 ⊢𝑚 ⟨𝜑 ⟩ 𝐶 ⟨𝜓 ⟩

𝐼 [𝐸/𝑋] ⊢𝑚 ⟨𝜑 [𝐸/𝑋] ⟩ 𝐶 ⟨𝜓 [𝐸/𝑋] ⟩
Subst

Suppose that P′ ∈ P ⋄𝑚 P𝐹 such that P′ ⪯ 𝜇 and Γ, P ⊨ 𝜑 [𝐸/𝑋] ∗ ⌈𝐼 [𝐸/𝑋] ⌉. Let Γ′ = Γ [𝑋 B J𝐸K
LExp

(Γ)], so by
construction Γ′, P ⊨ 𝜑 ∗ ⌈𝐼 ⌉, and L𝐼 [𝐸/𝑋]MΓ = L𝐼MΓ′ . Now, take any 𝜈′ ∈ LL𝐼 [𝐸/𝑋]MΓ (J𝐶K)† (𝜇) = LL𝐼MΓ′ (J𝐶K)† (𝜇) . By
the induction hypothesis, we know that there exist Q′ and Q′ ∈ Q ⋄𝑚 P𝐹 such that Q′ ⪯ 𝜈 and Γ′, Q ⊨ 𝜓 . This means
that Γ, Q ⊨ 𝜓 [𝐸/𝑋].

□

E.4 Derived Rules
Lemma E.10. The following inference rule is derivable:

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑋 = true⌉ ⟩ 𝐶1 ⟨𝜓 ⟩ 𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑋 = false⌉ ⟩ 𝐶2 ⟨𝜓 ⟩ 𝜑 ⇒ ⌈𝑏 ↦→ 𝑋 ⌉ 𝜓 ⇒ ⌈𝑏 ↦→ 𝑋 ⌉
𝐼 ⊢𝑚 ⟨

⊕
𝑋∼Ber(𝑝) 𝜑 ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨

⊕
𝑋∼Ber(𝑝) 𝜓 ⟩

If

Proof. Note in the proof below that true = 1 and false = 0.

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑋 = 1⌉ ⟩ 𝐶1 ⟨𝜓 ⟩

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑋 = 1⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨𝜓 ⟩
IfT

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑋 = 0⌉ ⟩ 𝐶2 ⟨𝜓 ⟩

𝐼 ⊢𝑚 ⟨𝜑 ∗ ⌈𝑋 = 0⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨𝜓 ⟩
IfF

···············
𝐼 ⊢𝑚 ⟨(𝜑 ∗ ⌈𝑋 = 1⌉) ∨ (𝜑 ∗ ⌈𝑋 = 0⌉) ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨𝜓 ∨𝜓 ⟩

Disj

𝐼 ⊢𝑚 ⟨
⊕

𝑋∼Ber(𝑝) (𝜑 ∗ ⌈𝑋 = 1⌉) ∨ (𝜑 ∗ ⌈𝑋 = 0⌉) ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨
⊕

𝑋∼Ber(𝑝) 𝜓 ∨𝜓 ⟩
Split1

𝐼 ⊢𝑚 ⟨
⊕

𝑋∼Ber(𝑝) 𝜑 ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨
⊕

𝑋∼Ber(𝑝) 𝜓 ⟩
Conseqence

□

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:59

Lemma E.11. The following inference rule is derivable:

𝐼 ⊢𝑚 ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 1⌉ ⟩ 𝐶1 ⟨ ⌈𝑄 ⌉ ⟩ 𝐼 ⊢𝑚 ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 0⌉ ⟩ 𝐶2 ⟨ ⌈𝑄 ⌉ ⟩ ⌈𝑃 ⌉ ⇒ ⌈𝑏 ∈ {0, 1}⌉
𝐼 ⊢𝑚 ⟨ ⌈𝑃 ⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩

IfPure

Proof. We only show the derivation of the weak version. The strong version can be easily derived using Strengthen,
since the postcondition is precise (e.g., see Lemma E.12). Let 𝑋 be some fresh logical variable such that 𝑋 ∉ vars(𝑃, 𝐼) .

𝐼 ⊢w ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 1⌉ ⟩ 𝐶1 ⟨ ⌈𝑄 ⌉ ⟩
𝐼 ⊢w ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 1⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩

IfT

𝐼 ⊢w ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 0⌉ ⟩ 𝐶2 ⟨ ⌈𝑄 ⌉ ⟩
𝐼 ⊢w ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 0⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩

IfF

···············
𝐼 ⊢w ⟨ ⌈𝑃 ∧ 𝑏 ↦→ 𝑋 ∧ (𝑋 = 0 ∨𝑋 = 1) ⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩

Disj

𝐼 ⊢w ⟨&𝑋 ∈{0,1} ⌈𝑃 ∧ 𝑏 ↦→ 𝑋 ∧ (𝑋 = 0 ∨𝑋 = 1) ⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩
NSplit2

𝐼 ⊢w ⟨ ⌈∃𝑋 . 𝑃 ∧ 𝑏 ↦→ 𝑋 ∧ (𝑋 = 0 ∨𝑋 = 1) ⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩
Exists

𝐼 ⊢w ⟨ ⌈𝑃 ⌉ ⟩ if 𝑏 then𝐶1 else𝐶2 ⟨ ⌈𝑄 ⌉ ⟩
Conseqence

□

Lemma E.12. The following inference rule is derivable:

𝐼 ⊢ ⟨&𝑋 ∈𝐸 ⌈𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩ ⌈𝑃 ⌉ ⇒ ⌈𝑒 ↦→ 𝑋 ⌉ precise(𝜓)
𝐼 ⊢ ⟨ ⌈∃𝑋 ∈ 𝐸. 𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩

ExistsStrong

Proof.
𝐼 ⊢ ⟨&𝑋 ∈𝐸 ⌈𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩

𝐼 ⊢w ⟨&𝑋 ∈𝐸 ⌈𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩
Weaken

⌈𝑃 ⌉ ⇒ ⌈𝑒 ↦→ 𝑋 ⌉
𝐼 ⊢w ⟨ ⌈∃𝑋 ∈ 𝐸. 𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩

Exists
precise(𝜓)

𝐼 ⊢ ⟨ ⌈∃𝑋 ∈ 𝐸. 𝑃 ⌉ ⟩ 𝐶 ⟨𝜓 ⟩
Strengthen

□

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:60 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

F
Ex

am
pl
es

In
th
is
se
ct
io
n,

w
e
pr
ov
id
e
de
riv

at
io
ns

th
at

w
er
e
om

itt
ed

in
th
e
m
ai
n
te
xt
.T

he
co
nt
en
ti
sr

ot
at
ed

to
ta
ke

ad
va
nt
ag
e
of

th
e
fu
ll
w
id
th

of
th
e
pa
ge
.

F.
1

C
on

di
ti
on

al
In
de

pe
nd

en
ce

Ex
am

pl
e

In
th
is
se
ct
io
n,

w
e
sh
ow

th
e
de
riv

at
io
n
fo
rt
he

pr
og

ra
m

th
at

w
as

in
tr
od

uc
ed

in
Se
ct
io
n
2.
Th

e
pr
og

ra
m

is
re
pe
at
ed

be
lo
w
:

𝑧
:≈

B
er

(1 2
) #

(𝑥
B
𝑧
∥𝑦
B

1
−
𝑧

)
Th

e
fir
st
st
ep

is
to

br
ea
k
up

th
e
se
qu

en
tia

lc
om

po
si
tio

n,
an
d
de
riv

e
a
sp
ec
ifi
ca
tio

n
fo
rt
he

sa
m
pl
in
g
op

er
at
io
n.

Th
is
is
si
m
pl
e
us
in
g
th
e
Se
q,

Fr
am

e,
an
d
Sa

m
p
ru
le
s.
H
ow

ev
er
,t
he

de
riv

at
io
n
fo
rt
he

se
co
nd

pa
rt
of

th
e
pr
og

ra
m

is
m
or
e
di
ffi
cu
lt,

an
d
w
ill

be
fil
le
d
in

sh
or
tly

w
he
re

th
e
(⋆

)a
pp

ea
rs
.

⟨o
w
n
(𝑧
)⟩
𝑧
:≈

B
er

(1
/2
)
⟨𝑧

∼
B
er

(1
/2
) ⟩

Sa
m
p

⟨o
w
n
(𝑥
,
𝑦
,𝑧
)⟩
𝑧
:≈

B
er

(1
/2
)
⟨o
w
n
(𝑥
,
𝑦
)∗
𝑧
∼
B
er

(1
/2
) ⟩

Fr
am

e
(⋆

)
⟨o
w
n
(𝑥
,
𝑦
,𝑧
)⟩
𝑧
:≈

B
er

(1
/2
) #

(𝑥
B
𝑧
∥
𝑦
B

1
−
𝑧
)
⟨
⊕ B

er
(1
/2
)⌈
𝑥
↦→
𝑍
⌉∗

⌈𝑦
↦→

1
−
𝑍
⌉∗

⌈𝑧
↦→
𝑍
⌉⟩

Se
q

W
e
no

w
sh
ow

th
e
(⋆

)d
er
iv
at
io
n.

Th
e
fir
st
st
ep

is
to

re
ar
ra
ng

e
th
e
pr
ec
on

di
tio

n
us
in
g
th
e
en
ta
ilm

en
tl
aw

sf
ro
m

Fi
gu

re
4
to

br
in
g
th
e
ou

tc
om

e
co
nj
un

ct
io
n
to

th
e
ou

ts
id
e,
so

th
at

w
e
ca
n
ap
pl
y
th
e
Co

nd
1
ru
le
.C

on
di
tio

ni
ng

m
ak
es
𝑧
de
te
rm

in
is
tic

,a
nd

th
er
ef
or
e
tr
iv
ia
lly

in
de
pe
nd

en
tf
ro
m

th
e
re
st
of

th
e
st
at
e,
so

w
e
ca
n
al
lo
ca
te

an
in
va
ria

nt
w
ith

th
e
Sh

ar
e

ru
le
.T

he
re
st
of

th
e
pr
oo

fi
ss

tr
ai
gh

tfo
rw

ar
d.

⟨o
w
n
(𝑥
)∗

⌈𝑧
↦→
𝑍
⌉⟩
𝑥
B
𝑧
⟨
⌈𝑥

↦→
𝑍
⌉∗

⌈𝑧
↦→
𝑍
⌉⟩

A
ss
ig
n

𝑧
↦→
𝑍

⊢
⟨o
w
n
(𝑥
)⟩
𝑥
B
𝑧
⟨
⌈𝑥

↦→
𝑍
⌉⟩

At
om

⟨o
w
n
(𝑦

)∗
⌈𝑧

↦→
𝑍
⌉⟩
𝑦
B

1
−
𝑧
⟨
⌈𝑦

↦→
1
−
𝑍
⌉∗

⌈𝑧
↦→
𝑍
⌉⟩

A
ss
ig
n

𝑧
↦→
𝑍

⊢
⟨o
w
n
(𝑦

)⟩
𝑦
B

1
−
𝑧
⟨
⌈𝑦

↦→
1
−
𝑍
⌉⟩

At
om

𝑧
↦→
𝑍

⊢
⟨o
w
n
(𝑥
,
𝑦
)⟩
𝑥
B
𝑧
∥
𝑦
B

1
−
𝑧
⟨
⌈𝑥

↦→
𝑍
⌉∗

⌈𝑦
↦→

1
−
𝑍
⌉⟩

Pa
r

⟨o
w
n
(𝑥
,
𝑦
)∗

⌈𝑧
↦→
𝑍
⌉⟩
𝑥
B
𝑧
∥
𝑦
B

1
−
𝑧
⟨
⌈𝑥

↦→
𝑍
⌉∗

⌈𝑦
↦→

1
−
𝑍
⌉∗

⌈𝑧
↦→
𝑍
⌉⟩

Sh
ar

e

⟨
⊕ B

er
(1
/2
)
o
w
n
(𝑥
,
𝑦
)∗

⌈𝑧
↦→
𝑍
⌉⟩
𝑥
B
𝑧
∥
𝑦
B

1
−
𝑧
⟨
⊕ B

er
(1
/2
)⌈
𝑥
↦→
𝑍
⌉∗

⌈𝑦
↦→

1
−
𝑍
⌉∗

⌈𝑧
↦→
𝑍
⌉⟩

Co
nd

1

⟨o
w
n
(𝑥
,
𝑦
)∗
𝑧
∼
B
er

(1
/2
) ⟩
𝑥
B
𝑧
∥
𝑦
B

1
−
𝑧
⟨
⊕ B

er
(1
/2
)⌈
𝑥
↦→
𝑍
⌉∗

⌈𝑦
↦→

1
−
𝑍
⌉∗

⌈𝑧
↦→
𝑍
⌉⟩

Co
ns

eq
en

ce

F.
2

A
lm

os
tS

ur
e
Te

rm
in
at
io
n
of

a
R
an

do
m

W
al
k

Re
ca
ll
th
e
fo
llo

w
in
g
ra
nd

om
w
al
k
pr
og

ra
m

fr
om

Se
ct
io
n
5.
4.

wh
il

e
𝑥
>
0
do
𝑏
:≈

B
er

(1 2
) #i

f
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:61

W
e
no

w
gi
ve

th
e
fu
ll
de
riv

at
io
n
fo
rt
hi
sp

ro
gr
am

.B
el
ow

in
(6
),
w
e
de
riv

e
a
sp
ec
ifi
ca
tio

n
fo
rt
he

sa
m
pl
in
g
op

er
at
io
n.

𝑦
∈
{0
,.
.
.,
5}

⊢
⟨
⌈o
w
n
(𝑏
)⌉
⟩
𝑏
:≈

B
er

(1 2
) ⟨𝑏

∼
B
er

(1 2
) ⟩

Sa
m
p

𝑦
∈
{0
,.
.
.,
5}

⊢
⟨
⌈o
w
n
(𝑏
)⌉

∗
⌈𝑥

↦→
𝑅
∗0

<
𝑅
=
𝑁

≤
5⌉

⟩
𝑏
:≈

B
er

(1 2
) ⟨𝑏

∼
B
er

(1 2
) ∗

⌈𝑥
↦→
𝑅
∗0

<
𝑅
=
𝑁

≤
5⌉

⟩
Fr
am

e

𝑦
∈
{0
,.
.
.,
5}

⊢
⟨
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)∗

0
<
𝑅
=
𝑁

≤
5⌉

⟩
𝑏
:≈

B
er

(1 2
) ⟨

⊕ 𝑋
∼B

er
(1 2

) ⌈𝑏↦→
𝑋

∗𝑥
↦→
𝑅
∗0

<
𝑅
=
𝑁

≤
5⌉

⟩
Co

ns
eq

en
ce

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)∗

0
<
𝑅
=
𝑁

≤
5⌉

⟩
𝑏
:≈

B
er

(1 2
) ⟨

⊕ 𝑋
∼B

er
(1 2

) ⌈𝑏↦→
𝑋

∗𝑥
↦→
𝑅
∗0

<
𝑅
=
𝑁

≤
5⌉

⟩
W
ea

ke
n

(6
)

N
ex
t,
in

(7
),
w
e
sh
ow

th
e
‘fa

ls
e’
br
an
ch

of
th
e
if
st
at
em

en
t.

⊢ w
⟨
⌈𝑏

↦→
f
a
l
s
e
∗𝑥

↦→
𝑁

∗
𝑦
↦→
𝑅
⌉⟩
𝑥
B
𝑦
⟨
⌈𝑥

↦→
𝑅
∗𝑏

↦→
f
a
l
s
e
∗
𝑦
↦→
𝑅
⌉⟩

A
ss
ig
n

⊢ w
⟨
&

5 𝑅
=
0
⌈𝑏

↦→
f
a
l
s
e
∗𝑥

↦→
𝑁

∗
𝑦
↦→
𝑅
⌉⟩
𝑥
B
𝑦
⟨
&

5 𝑅
=
0
⌈𝑥

↦→
𝑅
∗𝑏

↦→
f
a
l
s
e
∗
𝑦
↦→
𝑅
⌉⟩

N
Sp
li
t

⊢ w
⟨
⌈𝑏

↦→
f
a
l
s
e
∗𝑥

↦→
𝑁
⌉∗

⌈𝑦
∈
{0
,.
.
.,
5}

⌉⟩
𝑥
B
𝑦
⟨
(&

5 𝑅
=
0
⌈𝑥

↦→
𝑅
∗𝑏

↦→
f
a
l
s
e
⌉)

∗
⌈𝑦

∈
{0
,.
.
.,
5}

⌉⟩
Ex

is
ts
+C

on
se
q

en
ce

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
⌈𝑏

↦→
f
a
l
s
e
∗𝑥

↦→
𝑁
⌉⟩
𝑥
B
𝑦
⟨
&

5 𝑅
=
0
⌈𝑥

↦→
𝑅
∗𝑏

↦→
f
a
l
s
e
⌉⟩

At
om

(7
)

In
(8
),
w
e
gi
ve

th
e
fu
ll
if
st
at
em

en
t.

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
⌈𝑏

↦→
t
r
u
e
∗𝑥

↦→
𝑁
⌉⟩
𝑥
B
𝑥
−
1
⟨
⌈𝑥

↦→
𝑁

−
1
∗𝑏

↦→
t
r
u
e
⌉⟩

A
ss
ig
n

(7
)

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
⊕ 𝑋

∼B
er

(1 2

) ⌈𝑏↦→
𝑋

∗𝑥
↦→
𝑁
⌉⟩

if
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨
⌈𝑥

↦→
𝑁

−
1
∗𝑏

↦→
t
r
u
e
⌉
⊕

1 2
&

5 𝑅
=
0
⌈𝑥

↦→
𝑅
∗𝑏

↦→
f
a
l
s
e
⌉⟩

If

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨

⊕
𝑋
∼B

er
(1 2

)⌈𝑏
↦→
𝑋

∗𝑥
↦→
𝑅
∗0

<
𝑅
=
𝑁

≤
5⌉

⟩
if
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨

𝑁
−1 & 𝑅=0
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)⌉

⊕ ≥
1 2

5 & 𝑅=𝑁
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)⌉
⟩

Co
ns

eq
en

ce

(8
)

Fi
na
lly
,w

e
co
m
pl
et
e
th
e
de
riv

at
io
n
be
lo
w
.R

ec
al
lt
ha
tt
he

lo
op

in
va
ria

nt
us
ed

in
Bo

un
de

dR
an

k
is
𝜑
≜

⌈𝑥
↦→
𝑅
∗0

≤
𝑅

≤
5
∗o

w
n
(𝑏
)⌉
.

(6
)

(8
)

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)∗

0
<
𝑅
=
𝑁

≤
5⌉

⟩
𝑏
:≈

B
er

(1 2
) #i

f
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨
&
𝑁
−1

𝑅
=
0
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)⌉

⊕ ≥
1 2
&

5 𝑅
=
𝑁
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)⌉
⟩
Se
q

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
&

5 𝑅
=
0
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)⌉
⟩
wh

il
e
𝑥
>
0
do
𝑏
:≈

B
er

(1 2
) #i

f
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨
⌈𝑥

↦→
0
∗o

w
n
(𝑏
)⌉
⟩

Bo
un

de
dR

an
k

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
&

5 𝑅
=
0
⌈𝑥

↦→
𝑅
∗o

w
n
(𝑏
)⌉
⟩
wh

il
e
𝑥
>
0
do
𝑏
:≈

B
er

(1 2
) #i

f
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨
⌈𝑥

↦→
0⌉

⟩
Co

ns
eq

en
ce

𝑦
∈
{0
,.
.
.,
5}

⊢ w
⟨
⌈𝑥

∈
{0
,.
.
.,
5}

∗o
w
n
(𝑏
)⌉
⟩
wh

il
e
𝑥
>
0
do
𝑏
:≈

B
er

(1 2
) #i

f
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨
⌈𝑥

↦→
0⌉

⟩
Ex

is
ts

𝑦
∈
{0
,.
.
.,
5}

⊢
⟨
⌈𝑥

∈
{0
,.
.
.,
5}

∗o
w
n
(𝑏
)⌉
⟩
wh

il
e
𝑥
>
0
do
𝑏
:≈

B
er

(1 2
) #i

f
𝑏
th

en
𝑥
B
𝑥
−
1
el

se
𝑥
B
𝑦
⟨
⌈𝑥

↦→
0⌉

⟩
St

re
ng

th
en

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:62 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

F.
3

En
tr
op

y
M
ix
er

Re
ca
ll
th
e
fo
llo

w
in
g
en
tr
op

y
m
ix
er

pr
og

ra
m

fr
om

Se
ct
io
n
6.
1.

𝑦
B

0
#
(𝑥

1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)
∥
𝑦
B

1
)

W
e
w
ill

an
al
yz
e
th
is
pr
og

ra
m

us
in
g
th
e
in
va
ria

nt
𝑦
∈
{0
,1
},
an
d
co
nc
lu
de

in
th
e
en
d
th
at
𝑧
∼
B
er

(1 2
) .W

e
be
gi
n
by

an
al
yz
in
g
th
e
re
ad

fr
om

sh
ar
ed

st
at
e
in

th
e
fir
st
th
re
ad
.T

he
de
riv

at
io
n
is
gi
ve
n
be
lo
w
in

(9
).

⊢ w
⟨
⌈𝑦

↦→
𝑌
∗o

w
n
(𝑥

1)
⌉⟩
𝑥
1
B
𝑦
⟨
⌈𝑥

1
↦→
𝑌
∗
𝑦
↦→
𝑌
⌉⟩

A
ss
ig
n

⊢ w
⟨
&
𝑌
∈{

0,
1}
⌈𝑦

↦→
𝑌
∗o

w
n
(𝑥

1)
⌉⟩
𝑥
1
B
𝑦
⟨
&
𝑌
∈{

0,
1}
⌈𝑥

1
↦→
𝑌
∗
𝑦
↦→
𝑌
⌉⟩

N
Sp
li
t1

⊢ w
⟨
&
𝑌
∈{

0,
1}
⌈𝑦

↦→
𝑌
∗o

w
n
(𝑥

1)
⌉⟩
𝑥
1
B
𝑦
⟨
(&

𝑌
∈{

0,
1}
⌈𝑥

1
↦→
𝑌
⌉)

∗
⌈𝑦

∈
{0
,1
}⌉
⟩
Co

ns
eq

en
ce

⊢ w
⟨
⌈o
w
n
(𝑥

1)
⌉∗

⌈𝑦
∈
{0
,1
}⌉
⟩
𝑥
1
B
𝑦
⟨
(&

𝑌
∈{

0,
1}
⌈𝑥

1
↦→
𝑌
⌉)

∗
⌈𝑦

∈
{0
,1
}⌉
⟩

Ex
is
ts

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈o
w
n
(𝑥

1)
⌉⟩
𝑥
1
B
𝑦
⟨
&
𝑌
∈{

0,
1}
⌈𝑥

1
↦→
𝑌
⌉⟩

At
om

(9
)

Fi
rs
t,
At

om
is
ap
pl
ie
d
to

op
en

th
e
in
va
ria

nt
.N

ex
t,
w
e
us
e
Ex

is
ts

an
d
N
Sp
li
t1

to
ga
in

ac
ce
ss

to
th
e
va
lu
e
of
𝑦
,s
o
th
at

w
e
ca
n
ap
pl
y
th
e
A
ss
ig
n
ru
le
.T

he
ru
le
of

Co
ns

eq
en

ce
is

us
ed

to
w
ea
ke
n
th
e
in
fo
rm

at
io
n
ab
ou

t𝑦
an
d
m
ov
e
it
ou

to
ft
he

sc
op

e
of

th
e
&
,s
o
th
at

th
e
in
va
ria

nt
ca
n
be

cl
os
ed
.S
in
ce

th
e
po

st
co
nd

iti
on

at
th
is
st
ag
e
is
no

tp
re
ci
se
,w

e
ar
e
fo
rc
ed

to
us
e
a
w
ea
k
tr
ip
le
.W

e
no

w
m
ov
e
on

to
de
riv

e
a
sp
ec
ifi
ca
tio

n
fo
rt
he

w
rit
e
to
𝑧
be
lo
w
in

(1
0)
.

⟨
⌈𝑥

1
↦→
𝑋
⌉∗

⌈𝑥
2
↦→
𝑋

′ ⌉
∗
⌈o
w
n
(𝑧
)⌉
⟩
𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨
⌈𝑧

↦→
xo

r
(𝑋
,𝑋

′)
⌉⟩

A
ss
ig
n

⟨
⊕ 𝑋

′ ∼
B
er
(1
/2
)⌈
𝑥
1
↦→
𝑋
⌉∗

⌈𝑥
2
↦→
𝑋

′ ⌉
∗
⌈o
w
n
(𝑧
)⌉
⟩
𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨
⊕ 𝑋

′ ∼
B
er
(1
/2
)⌈
𝑧
↦→

xo
r
(𝑋
,𝑋

′)
⌉⟩

Sp
li
t1

⟨
⌈𝑥

1
↦→
𝑋
⌉∗

(𝑥
2
∼
B
er

(1
/2
))

∗
⌈o
w
n
(𝑧
)⌉
⟩
𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨𝑧
∼
B
er

(1
/2
) ⟩

Co
ns

eq
en

ce
(1
0)

A
tt
hi
sp

oi
nt
,w

e
ha
ve

th
at
𝑥
1
is
de
te
rm

in
ist
ic
an
d
𝑥
2
is
di
st
rib

ut
ed

ac
co
rd
in
g
to

a
Be

rn
ou

lli
di
st
rib

ut
io
n.

W
e
us
e
Sp
li
t1

to
do

ca
se

an
al
ys
is
on

th
e
re
su
lt
of

th
e
sa
m
pl
in
g
op

er
at
io
n,

at
w
hi
ch

po
in
tw

e
us
e
A
ss
ig
n
to

co
nc
lu
de

th
at
𝑧
↦→

xo
r
(𝑋
,𝑋

′)
.S
in
ce
𝑋

is
co
ns
ta
nt
,t
he
n
xo

r
(𝑋
,𝑋

′)
is
a
bi
je
ct
io
n
fr
om

{0
,1
}t
o
{0
,1
},
an
d
w
e
ca
n
th
er
ef
or
e
us
e
th
e
ru
le
of

Co
ns

eq
en

ce
to

co
nc
lu
de

th
at
𝑧
is
un

ifo
rm

ly
di
st
rib

ut
ed
.W

e
ca
n
no

w
co
m
po

se
th
is
in
fo
rm

at
io
n
w
ith

th
e
sa
m
pl
in
g
op

er
at
io
n
im

m
ed
ia
te
ly

be
fo
re
.

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈o
w
n
(𝑥

2)
⌉⟩
𝑥
2
:≈

B
er

(1
/2
)
⟨𝑥

2
∼
B
er

(1
/2
))
⟩
Sa

m
p

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈𝑥

1
↦→
𝑋
⌉∗

⌈o
w
n
(𝑥

2,
𝑧
)⌉
⟩
𝑥
2
:≈

B
er

(1
/2
)
⟨
⌈𝑥

1
↦→
𝑋
⌉∗

(𝑥
2
∼
B
er

(1
/2
))

∗
⌈o
w
n
(𝑧
)⌉
⟩
Fr
am

e
(1
0)

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈𝑥

1
↦→
𝑋
⌉∗

⌈o
w
n
(𝑥

2,
𝑧
)⌉
⟩
𝑥
2
:≈

B
er

(1
/2
) #
𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨𝑧
∼
B
er

(1
/2
) ⟩

Se
q

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈o
w
n
(𝑥

2,
𝑧
)⌉

∗ &
𝑌
∈{

0,
1}
⌈𝑥

1
↦→
𝑌
⌉⟩
𝑥
2
:≈

B
er

(1
/2
) #
𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨𝑧
∼
B
er

(1
/2
) ⟩

Co
ns

eq
en

ce
,N

Sp
li
t2

(1
1)

W
e
st
ar
tb

y
ap
pl
yi
ng

N
Sp
li
t2

in
or
de
rt
o
ga
in

ac
ce
ss

to
th
e
no

nd
et
er
m
in
ist
ic
va
lu
e
of
𝑥
1.
It
is
im

po
rt
an
tt
o
do

th
is
b
e
f
o
r
e
th
e
sa
m
pl
in
g
op

er
at
io
n,

sin
ce

w
e
ne
ed

to
en
su
re

th
at
𝑥
2
is

un
ifo

rm
ly

di
st
rib

ut
ed

gi
ve
n
an
y
fix

ed
va
lu
e
fo
r𝑥

1.
N
ex
t,
w
e
ap
pl
y
Se
q
an
d
de
riv

e
sp
ec
sf
or

th
e
in
di
vi
du

al
co
m
m
an
ds
.T

he
sa
m
pl
in
g
op

er
at
io
n
is
si
m
pl
e,
w
e
co
m
pl
et
e
th
e
pr
oo

f
w
ith

th
e
Fr
am

e
an
d
Sa

m
p
ru
le
s.
N
ow

,w
e
ca
n
de
riv

e
a
sp
ec
ifi
ca
tio

n
fo
rt
he

en
tir
e
fir
st
th
re
ad

in
(1
2)
.

(9
)

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉
⟩
𝑥
1
B
𝑦
⟨
⌈o
w
n
(𝑥

2,
𝑧
)⌉

∗ &
𝑌
∈{

0,
1}
⌈𝑥

1
↦→
𝑌
⌉⟩

Fr
am

e
(1
1)

𝑦
∈
{0
,1
}
⊢ w

⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉
⟩
𝑥
1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨𝑧
∼
B
er

(1 2
) ⟩

Se
q

𝑦
∈
{0
,1
}
⊢
⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉
⟩
𝑥
1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)

⟨𝑧
∼
B
er

(1 2
) ⟩

St
re
ng

th
en

(1
2)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:63

Th
is
st
ep

es
se
nt
ia
lly

ju
st
in
vo
lv
es

us
in
g
Se
q
an
d
Fr
am

e
to

co
m
po

se
th
e
tr
ip
le
st
ha
tw

e
pr
ev
io
us
ly

de
riv

ed
.A

tt
he

en
d,
w
e
al
so

us
e
St

re
ng

th
en

,s
in
ce

th
e
po

st
co
nd

iti
on

is
no

w
pr
ec
is
e.
Fi
na
lly
,w

e
co
m
pl
et
e
th
e
de
riv

at
io
n
fo
rt
he

w
ho

le
pr
og

ra
m
.

⊢
⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑦
,𝑧
)⌉
⟩
𝑦
B

0
⟨
⌈𝑦

↦→
0
∗o

w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉
⟩
A
ss
ig
n

(1
2)

⟨
⌈𝑦

∈
{0
,1
}⌉
⟩
𝑦
B

1
⟨
⌈𝑦

↦→
1⌉

⟩
A
ss
ig
n

⟨
⌈𝑦

∈
{0
,1
}⌉
⟩
𝑦
B

1
⟨
⌈𝑦

∈
{0
,1
}⌉
⟩
Co

ns
eq

en
ce

𝑦
∈
{0
,1
}
⊢
⟨
⌈t
r
u
e
⌉⟩
𝑦
B

1
⟨
⌈t
r
u
e
⌉⟩

At
om

𝑦
∈
{0
,1
}
⊢
⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉
⟩
𝑥
1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)

∥
𝑦
B

1
⟨𝑧

∼
B
er

(1 2
) ⟩

Pa
r

⊢
⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉

∗
⌈𝑦

∈
{0
,1
}⌉
⟩
𝑥
1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)

∥
𝑦
B

1
⟨
(𝑧

∼
B
er

(1 2
))∗

⌈𝑦
∈
{0
,1
}⌉
⟩
Sh

ar
e

⊢
⟨
⌈𝑦

↦→
0
∗o

w
n
(𝑥

1,
𝑥
2,
𝑧
)⌉
⟩
𝑥
1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)

∥
𝑦
B

1
⟨𝑧

∼
B
er

(1 2
) ⟩

Co
ns

eq
en

ce

· · · · · · · · · ·
⊢
⟨
⌈o
w
n
(𝑥

1,
𝑥
2,
𝑦
,𝑧
)⌉
⟩
𝑦
B

0
#
(𝑥

1
B
𝑦

#𝑥
2
:≈

B
er

(1 2
) #𝑧
B

xo
r
(𝑥

1,
𝑥
2)

∥
𝑦
B

1)
⟨𝑧

∼
B
er

(1 2
) ⟩

Se
q

A
fte

rc
on

cl
ud

in
g
th
at
𝑦
↦→

0
af
te
rt
he

fir
st
co
m
m
an
d,
w
e
ca
n
w
ea
ke
n
th
is
in
fo
rm

at
io
n
an
d
us
e
Sh

ar
e
to

m
ov
e
𝑦
in
to

th
e
in
va
ria

nt
.N

ex
t,
w
e
us
e
Pa

r
to

co
m
po

si
tio

na
lly

an
al
yz
e

th
e
tw

o
th
re
ad
s.
W
e
ha
ve

al
re
ad
y
se
en

th
e
pr
oo

fo
ft
he

fir
st
th
re
ad

ab
ov
e.
Th

e
se
co
nd

th
re
ad

ha
sa

si
m
pl
e
de
riv

at
io
n,

si
nc
e
𝑦
B

1
is
cl
ea
rly

at
om

ic
an
d
ob

ey
st
he

in
va
ria

nt
.

F.
4

C
on

cu
rr
en

tS
hu

ff
lin

g
Re

ca
ll
th
e
fo
llo

w
in
g
pr
og

ra
m

fr
om

Se
ct
io
n
6.
2
fo
rc

on
cu
rr
en
ts
hu

ffl
in
g
a
lis
tu

si
ng

tw
o
pa
ra
lle
lt
hr
ea
ds
.

𝑎
1
B

[]
#𝑎

2
B

[]
#𝑖
B

0
#

wh
il

e
𝑖
<
le

n
(𝑎
)d

o
(

𝑏
:≈

B
er

(1 2
) #

if
𝑏
th

en
𝑎
1
B
𝑎
1
++

[𝑎
[𝑖
]]

el
se
𝑎
2
B
𝑎
2
++

[𝑎
[𝑖
]]

#
𝑖
B
𝑖
+
1

)# sh
uf

fl
e 1

∥
sh

uf
fl

e 2
#

𝑎
B
𝑎
1
++
𝑎
2

sh
uf

fl
e 𝑘

:
𝑖 𝑘
B

le
n
(𝑎
𝑘
)−

1
#

wh
il

e
𝑖 𝑘

>
0
do

𝑗 𝑘
:≈

un
if
([
0,
.
.
.,
𝑖 𝑘
])

#
𝑎
𝑘
B

sw
ap

(𝑎
𝑘
,𝑖
𝑘
,
𝑗 𝑘
)#

𝑖 𝑘
B
𝑖 𝑘

−
1

W
e
no

w
gi
ve

th
e
co
m
pl
et
e
de
riv

at
io
n
of

th
e
co
rr
ec
tn
es
sp

ro
of
.W

e
be
gi
n
w
ith

th
e
sh

uf
fl

e 𝑘
pr
og

ra
m
.T

o
de
fin

e
th
e
lo
op

in
va
ria

nt
,w

e
fir
st
re
cu
rs
iv
el
y
de
fin

e
sw

ap
s
(𝑛
,ℓ
)w

hi
ch

gi
ve
s
th
e
se
to

fp
os
si
bl
e
lis
ts
ob
ta
in
ed

w
he
n
𝑖 𝑘

↦→
𝑛
.I
ti
s
ea
sy

to
se
e
th
at

sw
ap

s
(0
,ℓ
)
=
Π
(ℓ
),
si
nc
e
on

ce
𝑖
re
ac
he
s𝑛

,a
ll
pe
rm

ut
at
io
ns

of
th
e
el
em

en
ts
ab
ov
e
po

si
tio

n
𝑛
ar
e

ac
co
un

te
d
fo
r,
so

on
ce
𝑖
re
ac
he
s0

,a
ll
pe
rm

ut
at
io
ns

of
th
e
en
tir
e
lis
ta

re
ac
co
un

te
d
fo
r(
th
e
fin

al
po

si
tio

n
do

es
no

te
xp

lic
itl
y
ne
ed

to
be

ch
os
en
,s
in
ce

on
ly

on
e
el
em

en
tr
em

ai
ns
).

sw
ap

s
(𝑛
,ℓ
)=

{ {ℓ
}

if
𝑛
=
le

n
(ℓ
)−

1
{s
wa

p
(ℓ

′ ,
𝑛
+
1,
𝑗)

|ℓ
′
∈
sw

ap
s
(𝑛

+
1,
ℓ)
,
𝑗
∈
{0
,.
.
.,
𝑛
+
1}

}
if
0
≤
𝑛
<
le

n
(ℓ
)−

1

W
e
no

w
de
fin

e
th
e
lo
op

in
va
ria

nt
𝜑
in

us
in
g
sw

ap
s.
Th

e
ra
nk
𝑅
is
gi
ve
n
by
𝑖 𝑘
,w

hi
ch

is
bo

un
de
d
be
tw

ee
n
0
an
d
le

n
(𝐴

)−
1.
Th

e
fin

al
po

st
co
nd

iti
on
𝜑
[0
/𝑅

]c
an

al
so

be
sim

pl
ifi
ed

as
fo
llo

w
s.

𝜑
≜

⌈𝑖 𝑘
↦→
𝑅
∗0

≤
𝑅

≤
le

n
(𝐴

)−
1
∗o

w
n
(𝑗
𝑘
)⌉

∗
(𝑎
𝑘
∼
un

if
(s
wa

ps
(𝑅
,𝐴

))
)

𝜑
[0
/𝑅

]=
⌈𝑖 𝑘

↦→
0
∗o

w
n
(𝑗
𝑘
)⌉

∗
(𝑎
𝑘
∼
un

if
(Π

(𝐴
))
)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:64 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

W
e
no

w
sh
ow

th
e
de
riv

at
io
n
fo
rt
he

lo
op

bo
dy

as
a
de
co
ra
te
d
pr
og

ra
m
:

⟨𝜑
∗
⌈𝑅

=
𝑁

>
0⌉

⟩

Co
ns

eq
en

ce
⟨
⌈𝑖 𝑘

↦→
𝑁

∗0
<
𝑁

≤
le

n
(𝐴

)−
1
∗o

w
n
(𝑗
𝑘
)⌉

∗
(𝑎
𝑘
∼
un

if
(s
wa

ps
(l
en

(𝐴
)−

1
−
𝑁
,𝐴

))
)⟩

Sa
m
p

𝑗 𝑘
:≈

un
if
([
0,
.
.
.,
𝑖 𝑘
])

#
⟨
⌈𝑖 𝑘

↦→
𝑁

∗0
<
𝑁

≤
le

n
(𝐴

)−
1⌉

∗
(𝑎
𝑘
∼
un

if
(s
wa

ps
(𝑁
,𝐴

))
)∗

(𝑗
𝑘
∼
un

if
([
0,
.
.
.,
𝑁
])

⟩

Co
ns

eq
en

ce
⟨
⊕ 𝑋

∼u
ni
f(
sw
ap
s
(𝑁
,𝐴

))
⊕ 𝑌

∼u
ni
f(
[0
,.
..
,𝑁

])
⌈𝑖 𝑘

↦→
𝑁

∗0
<
𝑁

≤
le

n
(𝐴

)−
1
∗𝑎

𝑘
↦→
𝑋

∗
𝑗 𝑘

↦→
𝑌
⌉⟩

Sp
li
t1
,A

ss
ig
n

𝑎
𝑘
B

sw
ap

(𝑎
𝑘
,𝑖
𝑘
,
𝑗 𝑘
)#

⟨
⊕ 𝑋

∼u
ni
f(
sw
ap
s
(𝑁
,𝐴

))
⊕ 𝑌

∼u
ni
f(
[0
,.
..
,𝑁

])
⌈𝑖 𝑘

↦→
𝑁

∗0
<
𝑁

≤
le

n
(𝐴

)−
1
∗𝑎

𝑘
↦→

sw
ap

(𝑋
,𝑁
,𝑌

)∗
𝑗 𝑘

↦→
𝑌
⌉⟩

Co
ns

eq
en

ce
⟨
⌈𝑖 𝑘

↦→
𝑁

∗0
<
𝑁

≤
le

n
(𝐴

)−
1
∗o

w
n
(𝑗
𝑘
)⌉

∗
(𝑎
𝑘
∼
un

if
(s
wa

ps
(𝑁

−
1,
𝐴
))
)⟩

A
ss
ig
n

𝑖 𝑘
B
𝑖 𝑘

−
1

⟨
⌈𝑖 𝑘

↦→
𝑁

−
1
∗0

<
𝑁

≤
le

n
(𝐴

)−
1
∗o

w
n
(𝑗
𝑘
)⌉

∗
(𝑎
𝑘
∼
un

if
(s
wa

ps
(𝑁

−
1,
𝐴
))
)⟩

Co
ns

eq
en

ce
⟨
(&

𝑁
−1

𝑅
=
0
𝜑
)
⊕ 1

(&
le
n
(𝐴

)−
1

𝑅
=
𝑁

𝜑
)⟩

(1
3)

W
he
n
en
te
ri
ng

th
e
lo
op

bo
dy
,w

e
kn

ow
th
at

th
e
ta
il
of
𝑎
𝑘
is
al
re
ad
y
sh
uffl

ed
.A

fte
rp

er
fo
rm

in
g
th
e
sw

ap
of
𝑖 𝑘

an
d
𝑗 𝑘
,w

e
ex
te
nd

th
e
sh
uffl

ed
ta
il
by

on
e
po

si
tio

n.
C
le
ar
ly
,t
he

sh
uffl

es
re
m
ai
n
un

ifo
rm

ly
di
st
rib

ut
ed
,s
in
ce
𝑋

is
un

ifo
rm

ly
di
st
rib

ut
ed
,a
nd

th
e
el
em

en
ta

tp
os
iti
on
𝑁

is
al
so

ch
os
en

un
ifo

rm
ly
.N

ow
,w

e
gi
ve

th
e
re
m
ai
ni
ng

de
riv

at
io
n
of

sh
uf

fl
e 𝑘

,
w
hi
ch

is
qu

ite
m
ec
ha
ni
ca
lg

iv
en

th
e
de
riv

at
io
n
of

th
e
lo
op

bo
dy

ab
ov
e:

⊢
⟨
⌈𝑎
𝑘
↦→
𝐴
∗o

w
n
(𝑖 𝑘
,
𝑗 𝑘
)⌉
⟩
𝑖 𝑘
B

le
n
(𝑎
𝑘
)−

1
⟨
⌈𝑎
𝑘
↦→
𝐴
∗𝑖
𝑘
↦→

le
n
(𝐴

)−
1
∗o

w
n
(𝑗
𝑘
)⌉
⟩
A
ss
ig
n

· · · · · · · · · · · · · · · · · · · ·

(1
3)

⊢
⟨
&

le
n
(𝐴

)−
1

𝑅
=
0

𝜑
⟩
wh

il
e
𝑖 𝑘

>
0
do

(·
··
)
⟨
(𝑎
𝑘
∼
un

if
(Π

(𝐴
))
)∗

⌈𝑖 𝑘
↦→

0
∗o

w
n
(𝑗
𝑘
)⌉
⟩
Bo

un
de

dR
an

k

⊢
⟨
⌈𝑎
𝑘
↦→
𝐴
∗𝑖
𝑘
↦→

le
n
(𝐴

)−
1
∗o

w
n
(𝑗
𝑘
)⌉
⟩
wh

il
e
𝑖 𝑘

>
0
do

(·
··
)
⟨𝑎
𝑘
∼
un

if
(Π

(𝐴
))

⟩
Co

ns
eq

en
ce

⊢
⟨
⌈𝑎
𝑘
↦→
𝐴
∗o

w
n
(𝑖 𝑘
,
𝑗 𝑘
)⌉
⟩
𝑖 𝑘
B

le
n
(𝑎
𝑘
)−

1
#w

hi
le
𝑖 𝑘

>
0
do

(·
··
)
⟨𝑎
𝑘
∼
un

if
(Π

(𝐴
))

⟩
Se
q

(1
4)

W
e
no

w
m
ov
e
to

de
riv

in
g
th
e
sp
ec
ifi
ca
tio

n
fo
rt
he

m
ai
n
pr
og

ra
m
.T

o
an
al
yz
e
th
e
lo
op

,w
e
us
e
th
e
fo
llo

w
in
g
lo
op

in
va
ria

nt
,w

he
re
𝑀

=
le

n
(𝐴

).
Cl
ea
rly

,t
he

ra
nk
𝑅
is
bo

un
de
d

be
tw

ee
n
0
an
d
𝑀
,a
nd

w
he
n
𝑅
=
0
th
e
lo
op

m
us
tt
er
m
in
at
e
si
nc
e
𝑖
=
le

n
(𝑎
).

𝜓
=
⌈𝑖
↦→
𝑀

−
𝑅
∗0

≤
𝑅

≤
𝑀

∗𝑎
↦→
𝐴
∗o

w
n
(𝑏
)⌉

∗
⊕

𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑅
)⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:65

W
e
no

w
sh
ow

th
e
de
ri
va
tio

n
of

th
e
lo
op

bo
dy

as
a
de
co
ra
te
d
pr
og

ra
m
.T

he
ke
y
id
ea

is
to

m
er
ge

th
e
ne
w
ly

sa
m
pl
ed

va
lu
e
of
𝑏
in
to

th
e
⊕ ov

er
𝑋

to
ex
te
nd

th
e
le
ng

th
of

th
e

bi
t-
st
rin

g
on

ea
ch

ite
ra
tio

n. ⟨𝜓
∗
⌈𝑅

=
𝑁

>
0⌉

⟩

Co
ns

eq
en

ce

〈 ⌈𝑖
↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗o

w
n
(𝑏
)⌉

∗
⊕

𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
Sa

m
p

𝑏
:≈

B
er

(1 2
) #

〈 ⌈𝑖
↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
⌉∗

(𝑏
∼
B
er

(1 2
))∗

⊕
𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
If

if
𝑏
th

en
〈 ⌈𝑖

↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗𝑏

↦→
𝑌
∗𝑌

=
1⌉

∗
⊕

𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
A
ss
ig
n

𝑎
1
B
𝑎
1
++

[𝑎
[𝑖
]]

〈 ⌈𝑖
↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗𝑏

↦→
𝑌
∗𝑌

=
1⌉

∗
⊕

𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

++
[𝑌

]]
∗𝑎

2
↦→
𝐴
[¬

(𝑋
++

[𝑌
])
]⌉

〉
el

se 〈 ⌈𝑖
↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗𝑏

↦→
𝑌
∗𝑌

=
0⌉

∗
⊕

𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
A
ss
ig
n

𝑎
2
B
𝑎
2
++

[𝑎
[𝑖
]]

#
〈 ⌈𝑖

↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗𝑏

↦→
𝑌
∗𝑌

=
0⌉

∗
⊕

𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

++
[𝑌

]]
∗𝑎

2
↦→
𝐴
[¬

(𝑋
++

[𝑌
])
]+

+
𝐴
[𝑀

−
𝑁
]⌉

〉
〈 ⊕
𝑌
∼B

er
(1 2

)⌈𝑖
↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗𝑏

↦→
𝑌
⌉∗

⊕
𝑋
∼u

ni
f (

{0
,1
}𝑀

−𝑁
)⌈𝑎

1
↦→
𝐴
[𝑋

++
[𝑌

]]
∗𝑎

2
↦→
𝐴
[¬

(𝑋
++

[𝑌
])
]+

+
𝐴
[𝑀

−
𝑁
]⌉

〉

Co
ns

eq
en

ce

〈 ⌈𝑖
↦→
𝑀

−
𝑁

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗o

w
n
(𝑏
)⌉

∗
⊕

𝑋
∼u

ni
f({0

,1
}𝑀

−
(𝑁

−1
))⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
A
ss
ig
n

𝑖
B
𝑖
+
1

〈 ⌈𝑖
↦→
𝑀

−
(𝑁

−
1)

∗0
<
𝑁

≤
𝑀

∗𝑎
↦→
𝐴
∗o

w
n
(𝑏
)⌉

∗
⊕

𝑋
∼u

ni
f({0

,1
}𝑀

−
(𝑁

−1
))⌈𝑎

1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
Co

ns
eq

en
ce

⟨ 𝜓
[𝑁

−
1/
𝑅
]⟩

(1
5)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:66 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Fi
na
lly
,w

e
co
nc
lu
de

by
sh
ow

in
g
th
e
de
ri
va
tio

n
of

th
e
m
ai
n
pr
og

ra
m
,w

hi
ch

is
al
so

qu
ite

m
ec
ha
ni
ca
l.
Th

e
fin

al
co
ns
eq
ue
nc
e
re
lie
so

n
so
m
e
co
m
bi
na
to
ri
al
re
as
on

in
g,
w
hi
ch

is
ex
pl
ai
ne
d
in

Se
ct
io
n
6.
2.

⟨ ⌈
𝑎
↦→
𝐴
∗o

w
n
(𝑏
,𝑎

1,
𝑎
2,
𝑖,
𝑖 1
,𝑖
2,
𝑗 1
,
𝑗 2
)⌉
⟩

A
ss
ig
n

𝑎
1
B

[]
#

⟨ ⌈
𝑎
↦→
𝐴
∗𝑎

1
↦→

[]
∗o

w
n
(𝑏
,𝑎

2,
𝑖,
𝑖 1
,𝑖
2,
𝑗 1
,
𝑗 2
)⌉
⟩

A
ss
ig
n

𝑎
2
B

[]
#

⟨ ⌈
𝑎
↦→
𝐴
∗𝑎

1
↦→

[]
∗𝑎

2
↦→

[]
∗o

w
n
(𝑏
,𝑖
,𝑖
1,
𝑖 2
,
𝑗 1
,
𝑗 2
)⌉
⟩

A
ss
ig
n

𝑖
B

0
#

⟨ ⌈
𝑎
↦→
𝐴
∗𝑎

1
↦→

[]
∗𝑎

2
↦→

[]
∗𝑖

↦→
0
∗o

w
n
(𝑏
,𝑖
1,
𝑖 2
,
𝑗 1
,
𝑗 2
)⌉
⟩

Co
ns

eq
en

ce
⟨ 𝜓

[l
en

(𝐴
)/
𝑅
]⟩

Bo
un

de
dR

an
k,

(1
5)

wh
il

e
𝑖
<
le

n
(𝐴

)d
o
(·
··
)#

〈 ⌈𝑖
↦→

le
n
(𝐴

)∗
𝑎
↦→
𝐴
∗o

w
n
(·
··
)⌉

∗⊕ 𝑋
∼u

ni
f({0

,1
}l
en

(𝐴
)) ⌈𝑎 1

↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]⌉

〉
Co

ns
eq

en
ce

〈 ⊕ 𝑋
∼u

ni
f({0

,1
}l
en

(𝐴
)) ⌈𝑎 1

↦→
𝐴
[𝑋

]∗
𝑎
2
↦→

[𝐴
[¬
𝑋
]∗

o
w
n
(·
··
)⌉

〉
Sp
li
t1

⟨ ⌈
𝑎
1
↦→
𝐴
[𝑋

]∗
𝑎
2
↦→
𝐴
[¬
𝑋
]∗

o
w
n
(·
··
)⌉
⟩

Fr
am

e,
Pa

r,
(1
4)

© ­ ­ ­ «⟨ ⌈
𝑎
1
↦→
𝐴
[𝑋

]∗
o
w
n
(𝑖 1
,
𝑗 1
)⌉
⟩

⟨ ⌈
𝑎
2
↦→
𝐴
[¬
𝑋
]∗

o
w
n
(𝑖 2
,
𝑗 2
)⌉
⟩

sh
uf

fl
e 1

sh
uf

fl
e 2

⟨ 𝑎
1
∼
un

if
(Π

(𝐴
[𝑋

])
)⟩

⟨ 𝑎
2
∼
un

if
(Π

(𝐴
[¬
𝑋
])
)⟩

ª ® ® ® ¬#

⟨ 𝑎
1
∼
un

if
(Π

(𝐴
[𝑋

])
) ∗
𝑎
2
∼
un

if
(Π

(𝐴
[¬
𝑋
])
) ∗

o
w
n
(·
··
)⟩

〈 ⊕ 𝑋
∼u

ni
f({0

,1
}l
en

(𝐴
)) 𝑎 1∼

un
if
(Π

(𝐴
[𝑋

])
) ∗
𝑎
2
∼
un

if
(Π

(𝐴
[¬
𝑋
])
) ∗

⌈o
w
n
(𝑎
)⌉

〉
Co

ns
eq

en
ce

〈 ⊕ 𝑋
∼u

ni
f({0

,1
}l
en

(𝐴
))⊕ 𝐴

1∼
un

if
(Π

(𝐴
[𝑋

])
)
⊕ 𝐴

2∼
un

if
(Π

(𝐴
[¬
𝑋
])
)⌈
𝑎
1
↦→
𝐴
1
∗𝑎

2
↦→
𝐴
2
∗o

w
n
(𝑎
)⌉

〉
Sp
li
t1
,A

ss
ig
n

𝑎
B
𝑎
1
++
𝑎
2

〈 ⊕ 𝑋
∼u

ni
f({0

,1
}l
en

(𝐴
))⊕ 𝐴

1∼
un

if
(Π

(𝐴
[𝑋

])
)
⊕ 𝐴

2∼
un

if
(Π

(𝐴
[¬
𝑋
])
)⌈
𝑎
↦→
𝐴
1
++
𝐴
2⌉

〉
Co

ns
eq

en
ce

⟨ 𝑎
∼
un

if
(Π

(𝐴
))
⟩

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:67

F.
5

Pr
iv
at
e
In
fo
rm

at
io
n
R
et
ri
ev

al
Re

ca
ll
th
e
fo
llo

w
in
g
pr
iv
at
e
in
fo
rm

at
io
n
re
tr
ie
va
lp

ro
gr
am

fr
om

Se
ct
io
n
6.
3.

Pr
iv

Fe
tc

h
:

𝑞
1
:≈

un
if
({
0,
1}
𝑛
) #

𝑞
2
B

xo
r
(𝑞

1,
𝑥
)#

fe
tc

h 1
∥
fe

tc
h 2

#
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

fe
tc

h 𝑘
:

𝑖 𝑘
B

0
#𝑟
𝑘
B

0
#

wh
il

e
𝑖 𝑘

<
le

n
(𝑞
𝑘
)d

o
if
𝑞
𝑘
[𝑖 𝑘

]=
1
th

en
𝑟 𝑘
B

xo
r
(𝑟
𝑘
,𝑑

[𝑖 𝑘
])

#
𝑖 𝑘
B
𝑖 𝑘

+
1

W
e
no

w
gi
ve

th
e
co
m
pl
et
e
co
rr
ec
tn
es
sp

ro
of
,s
ho

w
in
g
th
at

Pr
iv

Fe
tc

h
co
rr
ec
tly

fe
tc
he
st
he

da
ta

en
tr
y
in
di
ca
te
d
by
𝑥
fr
om

th
e
da
ta
ba
se
.W

e
be
gi
n
w
ith

th
e
fe

tc
h 𝑘

pr
oc
ed
ur
e,

w
ho

se
pr
oo

fi
ss

ho
w
n
be
lo
w
in

(1
6)
.

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞
𝑘
↦→
𝑄

∗o
w
n
(𝑖 𝑘
,𝑟
𝑘
)⌉
⟩
𝑖 𝑘
B

0
⟨
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→

0
∗o

w
n
(𝑟
𝑘
)⌉
⟩
A
ss
ig
n

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→

0
∗o

w
n
(𝑟
𝑘
)⌉
⟩
𝑟 𝑘
B

0
⟨
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→

0
∗𝑟
𝑘
↦→

0⌉
⟩
A
ss
ig
n

(1
7)

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→

0
∗o

w
n
(𝑟
𝑘
)⌉
⟩
𝑟 𝑘
B

0
#w

hi
le
𝑖 𝑘

<
le

n
(𝑞
𝑘
)d

o
(·
··
)
⟨
⌈𝑟
𝑘
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉
⟩
Se
q

· · · · · · · · · · · · ·
𝑑
↦→
𝐷

⊢
⟨
⌈𝑞
𝑘
↦→
𝑄

∗o
w
n
(𝑖 𝑘
,𝑟
𝑘
)⌉
⟩
𝑖 𝑘
B

0
#𝑟
𝑘
B

0
#w

hi
le
𝑖 𝑘

<
le

n
(𝑞
𝑘
)d

o
(·
··
)
⟨
⌈𝑟
𝑘
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉
⟩

Se
q

(1
6)

Th
e
pr
oo

fa
bo

ve
is
qu

ite
m
ec
ha
ni
ca
l,
ju
st
us
in
g
Se
q
an
d
A
ss
ig
n
to

an
al
yz
e
th
e
in
iti
al
iz
at
io
n.

Th
e
ne
xt

st
ep

is
to

an
al
yz
e
th
e
lo
op

.T
o
do

so
,w

e
us
e
th
e
fo
llo

w
in
g
in
va
ria

nt
,w

hi
ch

st
at
es

th
at

af
te
r𝑖
𝑘
ite

ra
tio

ns
,𝑟
𝑘
ho

ld
sa

do
tp

ro
du

ct
of

th
e
fir
st
𝑖 𝑘

el
em

en
ts
of
𝐷

an
d
𝑄
.

𝜑
≜

⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑅
∗0

≤
𝑅

≤
𝑛
∗𝑟
𝑘
↦→

xo
r

0≤
𝑖
<
𝑛
−𝑅

:𝑄
[𝑖
]=
1
𝐷
[𝑖
]⌉

Th
e
ra
nk
𝑅
in
di
ca
te
st
he

re
m
ai
ni
ng

nu
m
be
ro

fi
te
ra
tio

ns
un

til
te
rm

in
at
io
n,

an
d
it
cl
ea
rly

bo
un

de
d
be
tw

ee
n
0
an
d
𝑛
.W

e
ca
n
al
so

sp
ec
ia
liz
e
𝜑
to

ob
ta
in

th
e
pr
e-

an
d
po

st
co
nd

iti
on

s
of

th
e
w
ho

le
lo
op

,s
ho

w
n
be
lo
w
: 𝜑
[𝑛
/𝑅

]=
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→

0
∗𝑟
𝑘
↦→

0⌉
𝜑
[0
/𝑅

]=
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑅
∗𝑟
𝑘
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉

A
na
ly
zi
ng

th
e
lo
op

is
si
m
pl
y
a
m
at
te
ro

fa
pp

ly
in
g
Bo

un
de

dR
an

k.

(1
8)

𝑑
↦→
𝐷

⊢
⟨
&
𝑛 𝑅
=
0
𝜑
⟩
wh

il
e
𝑖 𝑘

<
le

n
(𝑞
𝑘
)d

o
(·
··
)
⟨𝜑

[0
/𝑅

]⟩
Bo

un
de

dR
an

k

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→

0
∗𝑟
𝑘
↦→

0⌉
⟩
wh

il
e
𝑖 𝑘

<
le

n
(𝑞
𝑘
)d

o
(·
··
)
⟨
⌈𝑟
𝑘
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉
⟩
Co

ns
eq

en
ce

(1
7)

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:68 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

N
ow

,w
e
sh
ow

th
at

th
e
lo
op

bo
dy

up
ho

ld
st
he

in
va
ria

nt
.W

e
sh
ow

th
is
as

a
de
co
ra
te
d
pr
og

ra
m
.W

e
us
e
th
e
de
riv

ed
If
Pu

re
ru
le
to

an
al
yz
e
th
e
if
st
at
em

en
t,
w
hi
ch

is
si
m
ila
rt
o
th
e

ru
le
fo
ri
fs
ta
te
m
en
ts
in

H
oa
re

Lo
gi
c.
In

ea
ch

ca
se

of
th
e
if
st
at
em

en
t,
th
e
re
sp
ec
tiv

e
va
lu
e
of
𝑄
[𝑛

−
𝑁
]a

llo
w
su

st
o
ex
te
nd

th
e
do

tp
ro
du

ct
.

⟨ 𝜑
∗
⌈𝑅

=
𝑁

>
0⌉

⟩
Co

ns
eq

en
ce

〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
]⌉

〉
If
Pu

re
if
𝑞
𝑘
[𝑖 𝑘

]t
he

n

At
om

〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
]∗
𝑄
[𝑛

−
𝑁
]=

1⌉
〉

〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
]∗
𝑄
[𝑛

−
𝑁
]=

1⌉
∗
⌈𝑑

↦→
𝐷
⌉〉

A
ss
ig
n

𝑟 𝑘
=
xo

r
(𝑟
𝑘
,𝑑

[𝑖 𝑘
])

〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r
(xo

r 0
≤𝑖

<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
],
𝐷
[𝑛

−
𝑁
]) ∗𝑄

[𝑛
−
𝑁
]=

1⌉
∗
⌈𝑑

↦→
𝐷
⌉〉

〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r
(xo

r 0
≤𝑖

<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
],
𝐷
[𝑛

−
𝑁
]) ∗𝑄

[𝑛
−
𝑁
]=

1⌉
〉

Co
ns

eq
en

ce
〈 ⌈𝑞

𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−
(𝑁

−1
):𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉

〉
el

se 〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
]∗
𝑄
[𝑛

−
𝑁
]=

0⌉
〉

Sk
ip

sk
ip 〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−𝑁

:𝑄
[𝑖
]=
1
𝐷
[𝑖
]∗
𝑄
[𝑛

−
𝑁
]=

0⌉
〉

Co
ns

eq
en

ce
〈 ⌈𝑞

𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−
(𝑁

−1
):𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉

〉
〈 ⌈𝑞

𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
𝑁

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−
(𝑁

−1
):𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉

〉
A
ss
ig
n

𝑖 𝑘
B
𝑖 𝑘

+
1

〈 ⌈𝑞
𝑘
↦→
𝑄

∗𝑖
𝑘
↦→
𝑛
−
(𝑁

−
1)

∗𝑟
𝑘
↦→

xo
r 0

≤𝑖
<
𝑛
−
(𝑁

−1
):𝑄

[𝑖
]=
1
𝐷
[𝑖
]⌉

〉
Co

ns
eq

en
ce

⟨ 𝜑
[𝑁

−
1/
𝑅
]⟩

Co
ns

eq
en

ce
〈 (&

𝑁
−1

𝑅
=
0
𝜑
)
⊕ 1

(&
𝑛 𝑅
=
𝑁
𝜑
)〉

(1
8)

N
ow

w
e
m
ov
e
on

to
de
riv

in
g
th
e
sp
ec
ifi
ca
tio

n
fo
rt
he

m
ai
n
pr
og

ra
m
.U

lti
m
at
el
y,
th
e
po

st
co
nd

iti
on

st
at
es

th
at

⌈𝑟
↦→
𝐷
[𝐾

]⌉
,i
.e
.,
th
at

w
e
se
le
ct
ed

th
e
co
rr
ec
td

at
a
fr
om

th
e
da
ta
ba
se
.

⊢
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗o
w
n
(·
··
)⌉
⟩
𝑞
1
:≈

un
if
({
0,
1}
𝑛
)
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗o
w
n
(·
··
)⌉

∗
(𝑞

1
∼
un

if
({
0,
1}
𝑛
))
⟩
Sa

m
p

(1
9)

⊢
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗o
w
n
(·
··
)⌉
⟩
𝑞
1
:≈

un
if
({
0,
1}
𝑛
) #
𝑞
2
B

xo
r
(𝑞

1,
𝑥
)#

(f
et

ch
1
∥
fe

tc
h 2
)#
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝐾

]⌉
⟩

Se
q

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:69

A
fte

rd
isp

at
ch
in
g
th
e
fir
st
sa
m
pl
in
g
co
m
m
an
d,
w
e
m
ov
e
on

to
an
al
yz
e
th
e
re
m
ai
nd

er
of

th
e
pr
og

ra
m
.T

o
do

so
,w

e
m
us
td

o
ca
se

an
al
ys
is
on

th
e
sa
m
pl
ed

bi
t-s

tr
in
g
us
in
g
th
e
Sp
li
t2

ru
le
,a
ss

ho
w
n
be
lo
w
in

(1
9)
.

⊢
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗𝑞
1
↦→
𝑄

∗o
w
n
(·
··
)⌉
⟩
𝑞
2
B

xo
r
(𝑞

1,
𝑥
)
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗𝑞
1
↦→
𝑄

∗𝑞
2
↦→

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
∗o

w
n
(·
··
)⌉
⟩
A
ss
ig
n

· · · · · · · · · ·
(2
0)

⊢
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗𝑞
1
↦→
𝑄

∗o
w
n
(·
··
)⌉
⟩
𝑞
2
B

xo
r
(𝑞

1,
𝑥
)#

(f
et

ch
1
∥
fe

tc
h 2
)#
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝑋

]⌉
⟩

Se
q

⊢
⟨
⊕ 𝑄

∼u
ni
f(
{0
,1
}𝑛

)⌈
𝑥
↦→

on
eh

ot
(𝐾

)∗
𝑑
↦→
𝐷

∗𝑞
1
↦→
𝑄

∗o
w
n
(·
··
)⌉
⟩
𝑞
2
B

xo
r
(𝑞

1,
𝑥
)#

(f
et

ch
1
∥
fe

tc
h 2
)#
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝐾

]⌉
⟩
Sp
li
t2

⊢
⟨
⌈𝑥

↦→
on

eh
ot

(𝐾
)∗
𝑑
↦→
𝐷

∗o
w
n
(·
··
)⌉

∗
(𝑞

1
∼
un

if
({
0,
1}
𝑛
))
⟩
𝑞
2
B

xo
r
(𝑞

1,
𝑥
)#

(f
et

ch
1
∥
fe

tc
h 2
)#
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝐾

]⌉
⟩

Co
ns

eq
en

ce
(1
9)

N
ex
t,
w
e
an
al
yz
e
th
e
co
nc
ur
re
nt

fe
tc
h
co
m
m
an
ds
.S
in
ce

th
e
sh
ar
ed

st
at
e𝑑

is
de
te
rm

in
ist
ic
,i
ti
se

as
y
to

al
lo
ca
te

th
e
in
va
ria

nt
w
ith

Sh
ar

e.
Th

en
,w

e
us
e
Pa

r
an
d
th
e
de
riv

at
io
n
fo
r

fe
tc

h 𝑘
th
at

w
e
sh
ow

ed
pr
ev
io
us
ly
.I
n
th
e
se
co
nd

th
re
ad
,w

e
m
us
tu

se
th
e
Su

bs
t
ru
le
,s
in
ce

th
e
qu

er
y
is
no

t𝑄
,b
ut

ra
th
er

a
m
or
e
co
m
pl
ex

lo
gi
ca
le
xp

re
ss
io
n.

(1
6)

(1
6)

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞

2
↦→

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
∗o

w
n
(𝑖 2
,𝑟

2)
⌉⟩

fe
tc

h 2
⟨
⌈𝑟
2
↦→

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]⌉
⟩
Su

bs
t

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞

1
↦→
𝑄

∗o
w
n
(𝑖 1
,𝑟

1)
⌉∗

⌈𝑞
2
↦→

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
∗o

w
n
(𝑖 2
,𝑟

2)
⌉⟩

fe
tc

h 1
∥
fe

tc
h 2

⟨
⌈𝑟
1
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1𝐷
[𝑖
]⌉

∗
⌈𝑟
2
↦→

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]⌉
⟩
Pa

r

𝑑
↦→
𝐷

⊢
⟨
⌈𝑞

1
↦→
𝑄

∗𝑞
2
↦→

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
∗o

w
n
(·
··
)⌉
⟩
fe

tc
h 1

∥
fe

tc
h 2

⟨
⌈𝑟
1
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1𝐷
[𝑖
]∗
𝑟
2
↦→

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]∗

o
w
n
(𝑟
)⌉
⟩

Fr
am

e

⊢
⟨
⌈𝑑

↦→
𝐷

∗𝑞
1
↦→
𝑄

∗𝑞
2
↦→

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
∗o

w
n
(·
··
)⌉
⟩
fe

tc
h 1

∥
fe

tc
h 2

⟨
⌈𝑟
1
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1𝐷
[𝑖
]∗
𝑟
2
↦→

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]∗
𝑑
↦→
𝐷

∗o
w
n
(𝑟
)⌉
⟩

Sh
ar

e

· · · · · · · ·
(2
1)

⊢
⟨
⌈𝑑

↦→
𝐷

∗𝑞
1
↦→
𝑄

∗𝑞
2
↦→

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
∗o

w
n
(·
··
)⌉
⟩
(f
et

ch
1
∥
fe

tc
h 2
)#
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝐾

]⌉
⟩

Se
q

(2
0)

Fi
na
lly
,w

e
gi
ve

a
de
riv

at
io
n
fo
rt
he

fin
al
as
si
gn

m
en
t.

⊢
⟨
⌈𝑟
1
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1𝐷
[𝑖
]∗
𝑟
2
↦→

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]∗

o
w
n
(𝑟
)⌉
⟩
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝐾

]⌉
⟩
A
ss
ig
n

⊢
⟨
⌈𝑟
1
↦→

xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1𝐷
[𝑖
]∗
𝑟
2
↦→

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]∗
𝑑
↦→
𝐷

∗o
w
n
(𝑟
)⌉
⟩
𝑟
B

xo
r
(𝑟

1,
𝑟
2)

⟨
⌈𝑟

↦→
𝐷
[𝐾

]⌉
⟩
Co

ns
eq

en
ce

(2
1)

Be
lo
w
,w

e
sh
ow

w
hy

⌈x
or

(𝑟
1,
𝑟
2)

↦→
𝐷
[𝐾

]⌉
:

xo
r

(xo
r

0≤
𝑖
<
𝑛
:𝑄

[𝑖
]=
1
𝐷
[𝑖
],

xo
r

0≤
𝑖
<
𝑛
:x
or

(𝑄
,o
ne
ho
t
(𝐾

))
[𝑖
]=
1
𝐷
[𝑖
]) =

𝑛
−1

xo
r

𝑖=
0

     xo
r
(𝐷

[𝑖
],
𝐷
[𝑖
])

if
𝑄
[𝑖
]=

xo
r
(𝑄
,o
ne

ho
t
(𝐾

))
[𝑖
]=

1
𝐷
[𝑖
]

if
𝑄
[𝑖
]=

¬
xo

r
(𝑄
,o
ne

ho
t
(𝐾

))
[𝑖
]

0
ot
he
rw

is
e

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:70 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Si
nc
e
xo

r
(𝐷

[𝑖
],
𝐷
[𝑖
])

=
0,
w
e
ca
n
co
m
bi
ne

th
e
fir
st
an
d
la
st
ca
se
s.

=
𝑛
−1

xo
r

𝑖=
0

{ 𝐷[
𝑖
]

if
𝑄
[𝑖
]=

¬
xo

r
(𝑄
,o
ne

ho
t
(𝐾

))
[𝑖
]

0
ot
he
rw

is
e

𝑄
[𝑖
]=

¬
xo

r
(𝑄
,o
ne

ho
t
(𝐾

))
[𝑖
]o

cc
ur
so

nl
y
w
he
n
𝑖
=
𝐾
.

=
𝑛
−1

xo
r

𝑖=
0

{ 𝐷[
𝑖
]

if
𝑖
=
𝐾

0
ot
he
rw

is
e

Si
nc
e
xo

r
(𝑥
,0
)=

𝑥
,t
he
n
w
e
ca
n
dr
op

al
lt
he

ze
ro

te
rm

s.

=
𝐷
[𝐾

]

F.
6

Th
e
vo

n
N
eu

m
an

n
Tr

ic
k

Re
ca
ll
th
e
fo
llo

w
in
g
pr
og

ra
m

fr
om

Se
ct
io
n
6.
4,
w
hi
ch

si
m
ul
at
es

a
fa
ir
co
in

gi
ve
n
a
co
in

w
ho

se
bi
as

ca
n
be

al
te
re
d
by

a
pa
ra
lle
lt
hr
ea
d.

𝑥
B

0#
𝑦
B

0
#

wh
il

e
𝑥
=
𝑦
do

𝑝
′
B
𝑝

#
𝑥
:≈

B
er

(𝑝
′)

#
𝑦
:≈

B
er

(𝑝
′)

In
th
is
se
ct
io
n,

w
e
pr
ov
id
e
th
e
co
m
pl
et
e
de
riv

at
io
n
fo
rt
he

co
rr
ec
tn
es
so

ft
hi
sp

ro
gr
am

,s
ho

w
in
g
bo

th
th
at

it
al
m
os
ts
ur
el
y
te
rm

in
at
es
,a
nd

al
so

th
at
𝑥
is
di
st
rib

ut
ed

lik
e
a
fa
ir
co
in

fli
p
at

th
e
en
d
of

th
e
pr
og

ra
m

ex
ec
ut
io
n.

W
e
ar
e
go

in
g
to

us
e
th
e
re
so
ur
ce

in
va
ri
an
t𝐼
≜

(𝑝
∈
ℓ)
,w

he
re
ℓ
is
a
fin

ite
lis
to

fv
al
ue
sb

et
w
ee
n
𝜀
an
d
1
−
𝜀
,w

ith
0
<
𝜀
≤

1 2
.F
or

th
e

pu
rp
os
es

of
an
al
yz
in
g
th
e
w
hi
le
lo
op

,w
e
w
ill

us
e
th
e
lo
op

in
va
ria

nt
𝜑
be
lo
w
:

𝜑
≜
𝜑
0
∨
𝜑
1

𝜑
0
≜

⊕
𝑋
∼B

er
(1
/2
)

⌈𝑥
↦→
𝑋

∗
𝑦
↦→

¬𝑋
∗𝑅

=
0⌉

𝜑
1
≜

⌈𝑥
=
𝑦
↦→

t
r
u
e
∗𝑅

=
1
∗o

w
n
(𝑝

′)
⌉

N
ot
e
th
at

th
is
gi
ve
s
us
𝜑

⇒
⌈𝑥

=
𝑦

↦→
𝑅
⌉,
so

w
he
n
𝑅

=
0
th
e
lo
op

w
ill

te
rm

in
at
e.
C
le
ar
ly
,t
hi
s
al
so

im
pl
ie
s
th
at
𝑅
is
bo

un
de
d
be
tw

ee
n
0
an
d
1.

In
ad
di
tio

n,
𝜑
[0
/𝑅

]
=

⊕ 𝑋
∈B

er
(1
/2
)⌈
𝑥
↦→
𝑋

∗𝑦
↦→

¬𝑋
⌉a

nd
it
is
pr
ec
ise

.W
e
st
ar
tw

ith
th
e
de
riv

at
io
n
of

th
e
co
m
m
an
d
𝑝
B
𝑝
′ i
n
(2
2)
,w

hi
ch

re
ad
sa

va
lu
e
fr
om

sh
ar
ed

st
at
e.
Th

is
de
riv

at
io
n
pr
oc
ee
ds

by
us
in
g
th
e
At

om
ru
le
to

op
en

th
e
in
va
ria

nt
an
d
th
e
Ex

is
ts

ru
le
to

ge
tt
he

sp
ec
ifi
c
va
lu
e
of
𝑝
′
at

th
e
po

in
to

ft
he

re
ad
.

⊢ w
⟨
⌈𝑝

↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
,𝑝

′)
⌉⟩
𝑝
′
B
𝑝
⟨
⌈𝑝

′
↦→
𝑋

∗𝑝
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩
A
ss
ig
n’

⊢ w
⟨
&
𝑋
∈ℓ
⌈𝑝

↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
,𝑝

′)
⌉⟩
𝑝
′
B
𝑝
⟨
&
𝑋
∈ℓ
⌈𝑝

′
↦→
𝑋

∗𝑝
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩
N
Sp
li
t1

⊢ w
⟨
⌈𝑥

=
𝑦
↦→

t
r
u
e
∗𝑅

=
1
∗o

w
n
(𝑝

′)
⌉∗

⌈𝑝
∈
ℓ
⌉⟩
𝑝
′
B
𝑝
⟨
(&

𝑋
∈ℓ
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
)∗

⌈𝑝
∈
ℓ
⌉⟩

Ex
is
ts
+C

on
se
q

en
ce

𝑝
∈
ℓ
⊢ w

⟨
⌈𝑥

=
𝑦
↦→

t
r
u
e
∗𝑅

=
𝑁

=
1
∗o

w
n
(𝑝

′)
⌉⟩
𝑝
′
B
𝑝
⟨
&
𝑋
∈ℓ
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩

At
om

(2
2)

N
ex
t,
w
e
de
ri
ve

a
sp
ec
ifi
ca
tio

n
fo
rt
he

tw
o
sa
m
pl
in
g
op

er
at
io
ns

in
(2
4)
.F
ir
st
,t
he

N
Sp
li
t2

ru
le
is
us
ed

to
co
m
po

si
tio

na
lly

re
as
on

ab
ou

tt
he

no
nd

et
er
m
in
is
tic

ou
tc
om

es
.I
n
th
e

pr
em

is
e
of

th
at

ru
le
,t
he

va
lu
e
of
𝑝
′
is
de
te
rm

in
is
tic

,s
o
th
at

Sa
m
p
ca
n
be

us
ed

tw
ic
e
fo
rt
he

w
rit
es

to
𝑥
an
d
𝑦
.I
n
th
e
en
d,
𝑥
an
d
𝑦
ar
e
in
de
pe
nd

en
tly

an
d
id
en
tic

al
ly

di
st
rib

ut
ed

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

Probabilistic Concurrent Reasoning in Outcome Logic: Independence, Conditioning, and Invariants 9:71

ac
co
rd
in
g
to

B
er

(𝑋
) .
W
e
co
m
pl
et
e
th
e
pr
oo

fu
si
ng

th
e
ru
le
of

Co
ns

eq
en

ce
,w

ith
im

pl
ic
at
io
n
(2
3)
.

⌈𝑝
′
↦→
𝑋
⌉∗

(𝑥
∼
B
er

(𝑋
))

∗
(𝑦

∼
B
er

(𝑋
))

=
⇒

⌈𝑝
′
↦→
𝑋
⌉∗

(⊕ 𝑌
∼B

er
(𝑋

)⌈
𝑥
↦→
𝑌
⌉) ∗

(⊕ 𝑍
∼B

er
(𝑋

)⌈
𝑦
↦→
𝑍
⌉)

=
⇒

⊕ 𝑌
∼B

er
(𝑋

)
⊕ 𝑍

∼B
er
(𝑋

)⌈
𝑝
′
↦→
𝑋

∗𝑥
↦→
𝑌
∗
𝑦
↦→
𝑍
⌉

=
⇒

(⊕ 𝑌
∼B

er
(1
/2
)⌈
𝑝
′
↦→
𝑋

∗𝑥
↦→
𝑌
∗
𝑦
↦→

¬𝑌
⌉) ⊕ 2

𝑋
(1
−𝑋

)
⌈𝑥

=
𝑦
↦→

t
r
u
e
∗o

w
n
(𝑝

′)
⌉

=
⇒

𝜑
0
⊕ 2
𝑋

(1
−𝑋

)
𝜑
1

=
⇒

𝜑
0
⊕ ≥

2𝜀
(1
−𝜀

)
𝜑
1

(2
3)

N
ow

,t
he

de
riv

at
io
n
is
sh
ow

n
be
lo
w
.

𝐼
⊢ w

⟨
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩
𝑥
:≈

B
er

(𝑝′) ⟨
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑦

)⌉
∗
(𝑥

∼
B
er

(𝑋
))
⟩
Sa

m
p

𝐼
⊢ w

⟨
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑦

)⌉
∗
(𝑥

∼
B
er

(𝑋
))
⟩
𝑦
:≈

B
er

(𝑝′) ⟨
⌈𝑝

′
↦→
𝑋
⌉∗

(𝑥
∼
B
er

(𝑋
))

∗
(𝑦

∼
B
er

(𝑋
))
⟩
Sa

m
p

· · · · · · · · · ·
𝐼
⊢ w

⟨
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩
𝑥
:≈

B
er

(𝑝′) #𝑦
:≈

B
er

(𝑝′) ⟨
⌈𝑝

′
↦→
𝑋
⌉∗

(𝑥
∼
B
er

(𝑋
))

∗
(𝑦

∼
B
er

(𝑋
))
⟩

Se
q

𝐼
⊢ w

⟨
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩
𝑥
:≈

B
er

(𝑝′) #𝑦
:≈

B
er

(𝑝′) ⟨𝜑
0
⊕ ≥

2𝜀
(1
−𝜀

)
𝜑
1⟩

Co
ns

eq
en

ce
,(2
3)

𝐼
⊢ w

⟨
&
𝑋
∈ℓ
⌈𝑝

′
↦→
𝑋

∗o
w
n
(𝑥
,
𝑦
)⌉
⟩
𝑥
:≈

B
er

(𝑝
′)

#𝑦
:≈

B
er

(𝑝
′)

⟨𝜑
0
⊕ ≥

2𝜀
(1
−𝜀

)
𝜑
1⟩

N
Sp
li
t2

(2
4)

N
ot
e
th
at

th
e
us
e
of

N
Sp
li
t2

re
su
lts

in
a
w
ea
k
tr
ip
le
,a
nd

gi
ve
n
th
at

th
e
po

st
co
nd

iti
on

of
(2
4)

is
no

tp
re
ci
se
,i
ti
sn

ot
po

ss
ib
le
to

us
e
a
st
ro
ng

ve
rs
io
n
of

th
e
ru
le
.H

ow
ev
er
,a
fte

rt
he

lo
op

te
rm

in
at
es
,t
he

po
st
co
nd

iti
on

i
s
pr
ec
is
e,
an
d
so

w
e
ca
n
us
e
St

re
ng

th
en

la
te
r,
as

se
en

in
(2
5)
.N

ot
e
th
at

fo
rt
he

de
riv

at
io
n
of

th
e
lo
op

bo
dy
,t
he

on
ly

po
ss
ib
ili
ty

fo
r𝑅

>
0
is

𝑅
=
1,
so
𝜑
∗
⌈𝑅

=
𝑁

>
0⌉

is
eq
ui
va
le
nt

to
⌈𝑥

=
𝑦
↦→

t
r
u
e
∗o

w
n
(𝑝

′)
∗𝑅

=
𝑁

=
1⌉

=
𝜑
1
∗
⌈𝑁

=
1⌉
.N

ow
,l
et
tin

g
𝑝
=
2𝜀
(1

−
𝜀
)b

e
th
e
m
in
im

um
pr
ob
ab
ili
ty

th
at

th
e
ra
nk

de
cr
ea
se
s,

th
e
pr
em

is
e
of

Bo
un

de
dR

an
k
re
qu

ire
su

st
o
sh
ow

th
at
𝜑
0
oc
cu
rs

w
ith

pr
ob
ab
ili
ty

at
le
as
t𝑝

.T
hi
sd

er
iv
at
io
n
is
sh
ow

n
be
lo
w
.

(2
2)

(2
4)

𝐼
⊢ w

⟨𝜑
1
∗
⌈𝑁

=
1⌉

⟩
𝑝
′
B
𝑝

#𝑥
:≈

B
er

(𝑝′) #𝑦
:≈

B
er

(𝑝′) ⟨𝜑
0
⊕ ≥

2𝜀
(1
−𝜀

)
𝜑
1⟩

Se
q

𝐼
⊢ w

⟨
&
𝑅
∈{

0,
1}
𝜑
⟩
wh

il
e
𝑥
=
𝑦
do
𝑝
′
B
𝑝

#𝑥
:≈

B
er

(𝑝
′)

#𝑦
:≈

B
er

(𝑝
′)

⟨𝜑
0⟩

Bo
un

de
dR

an
k

𝐼
⊢
⟨
&
𝑅
∈{

0,
1}
𝜑
⟩
wh

il
e
𝑥
=
𝑦
do
𝑝
′
B
𝑝

#𝑥
:≈

B
er

(𝑝
′)

#𝑦
:≈

B
er

(𝑝
′)

⟨𝜑
0⟩

St
re
ng

th
en

𝐼
⊢
⟨
⌈𝑥

↦→
0
∗
𝑦
↦→

0
∗o

w
n
(𝑝

′)
⌉⟩

wh
il

e
𝑥
=
𝑦
do
𝑝
′
B
𝑝

#𝑥
:≈

B
er

(𝑝′) #𝑦
:≈

B
er

(𝑝′) ⟨𝑥
∼
B
er

(1
/2
) ⟩

Co
ns

eq
en

ce
(2
5)

Fi
na
lly
,w

e
in
cl
ud

e
th
e
in
iti
al
as
si
gn

m
en
ts
to
𝑥
an
d
𝑦
to

co
m
pl
et
e
th
e
pr
oo

f.

𝐼
⊢
⟨
⌈o
w
n
(𝑥
,
𝑦
,𝑝

′)
⌉⟩
𝑥
B

0
⟨
⌈𝑥

↦→
0
∗o

w
n
(𝑦
,𝑝

′)
⌉⟩

A
ss
ig
n

𝐼
⊢
⟨
⌈𝑥

↦→
0
∗o

w
n
(𝑦
,𝑝

′)
⌉⟩
𝑦
B

0
⟨
⌈𝑥

↦→
0
∗
𝑦
↦→

0
∗o

w
n
(𝑝

′)
⌉⟩

A
ss
ig
n

(2
5)

𝐼
⊢
⟨
⌈𝑥

↦→
0
∗o

w
n
(𝑦
,𝑝

′)
⌉⟩
𝑦
B

0
#w

hi
le
𝑥
=
𝑦
do
𝑝
′
B
𝑝

#𝑥
:≈

B
er

(𝑝′) #𝑦
:≈

B
er

(𝑝′) ⟨𝑥
∼
B
er

(1
/2
) ⟩

Se
q

· · · · · · · · · ·
𝐼
⊢
⟨
⌈o
w
n
(𝑥
,
𝑦
,𝑝

′)
⌉⟩
𝑥
B

0
#𝑦
B

0
#w

hi
le
𝑥
=
𝑦
do
𝑝
′
B
𝑝

#𝑥
:≈

B
er

(𝑝′) #𝑦
:≈

B
er

(𝑝′) ⟨𝑥
∼
B
er

(1
/2
) ⟩

Se
q

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

9:72 Noam Zilberstein, Alexandra Silva, and Joseph Tassarotti

Received 2025-07-02; accepted 2025-11-06

Proc. ACM Program. Lang., Vol. 10, No. POPL, Article 9. Publication date: January 2026.

	Abstract
	1 Introduction
	2 Overview: Familiar Reasoning Principles in a New Setting
	2.1 Concurrent Separation Logic meets Probabilistic Separation Logic
	2.2 Handling Randomized Shared State with Outcome Logic
	2.3 Taming Nondeterminism with Precise Assertions
	2.4 Weak Separation and Case Analysis over Shared State

	3 A Probabilistic and Concurrent Programming Language
	3.1 Preliminaries: Memories and the Convex Powerset
	3.2 Actions and Invariants
	3.3 Semantics of Randomized Concurrent Programs

	4 The Model of Probabilistic Assertions
	4.1 Pure Assertions
	4.2 Measure Theory and Probability Spaces
	4.3 Probabilistic Assertions
	4.4 Convex and Precise Assertions and Entailment Laws

	5 Probabilistic Concurrent Outcome Logic
	5.1 Rules for Sequential Commands
	5.2 Concurrent Separation Logic Rules
	5.3 Structural and Outcome Splitting Rules
	5.4 Loops and Almost Sure Termination

	6 Examples
	6.1 Entropy Mixer
	6.2 Concurrent Shuffle
	6.3 Private Information Retrieval
	6.4 The von Neumann Trick

	7 Related Work
	8 Conclusion
	References
	A Definition of Program Semantics
	A.1 Pomsets with Formulae
	A.2 Linearization

	B General Lemmas
	B.1 Measure Theory Lemmas
	B.2 The Convex Powerset

	C Concurrency Lemmas
	C.1 Invariant Sensitive Execution
	C.2 Parallel Composition

	D Almost Sure Termination
	E Logic and Rules
	E.1 Precise and Convex Assertions
	E.2 Entailment Rules
	E.3 Soundness of Inference Rules
	E.4 Derived Rules

	F Examples
	F.1 Conditional Independence Example
	F.2 Almost Sure Termination of a Random Walk
	F.3 Entropy Mixer
	F.4 Concurrent Shuffling
	F.5 Private Information Retrieval
	F.6 The von Neumann Trick

