# Online Importance Weight Aware Updates

Nikos Karampatziakis John Langford

July 17th 2011

#### What this talk is about

- Importance weights encode relative importance of examples
- They appear in many settings:
  - Boosting
  - Covariate shift correction
  - Learning reductions
  - Active learning

#### What this talk is about

- Importance weights encode relative importance of examples
- They appear in many settings:
  - Boosting
  - Covariate shift correction
  - Learning reductions
  - Active learning
- Online gradient descent popular, sound optimizer

#### What this talk is about

- Importance weights encode relative importance of examples
- They appear in many settings:
  - Boosting
  - Covariate shift correction
  - Learning reductions
  - Active learning
- Online gradient descent popular, sound optimizer
- Interplay between importance weights and OGD

#### Online Gradient Descent - Linear Model

• Loss  $\ell(w_t^{\top} x_t, y_t)$ 

$$w_{t+1} = w_t - \eta_t \left. \frac{\partial \ell(p, y_t)}{\partial p} \right|_{p = w_t^\top x_t} x_t$$

### Online Gradient Descent - Linear Model

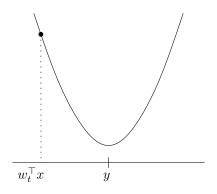
• Loss  $\ell(w_t^\top x_t, y_t)$ 

$$w_{t+1} = w_t - \eta_t \left. \frac{\partial \ell(p, y_t)}{\partial p} \right|_{p = w_t^\top x_t} x_t$$

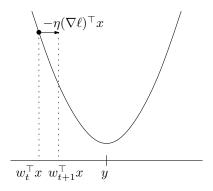
• Naive approach: define loss  $i_t \ell(w_t^\top x_t, y_t)$ 

$$w_{t+1} = w_t - \eta_t i_t \left. \frac{\partial \ell(p, y_t)}{\partial p} \right|_{p = w_t^\top x_t} x_t$$

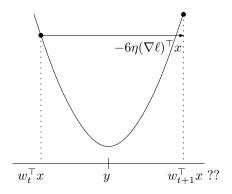
# Failure of Naive Approach



# Failure of Naive Approach



# Failure of Naive Approach



# Our principle

#### Principle

Having an example with importance weight *i* should be equivalent to having the example *i* times in the dataset.

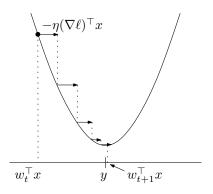
# Our principle

### Principle

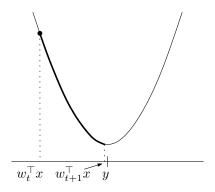
Having an example with importance weight *i* should be equivalent to having the example *i* times in the dataset.

- Present the t-th example  $i_t$  times in a row.
- Cumulative effect of this process?
- Limit of this process?

# Multiple updates



# Multiple updates



## Importance Invariant Updates

- Gradients point to the same direction  $\nabla \ell = \frac{\partial \ell(p, y_t)}{\partial p} x_t$
- $w_{t+1}$  is in span of  $w_t$  and  $x_t$ . Letting  $p = w_t^\top x_t$

$$w_{t+1} = w_t - s(p, i_t) x_t$$

## Importance Invariant Updates

- Gradients point to the same direction  $\nabla \ell = \frac{\partial \ell(p, y_t)}{\partial p} x_t$
- ullet  $w_{t+1}$  is in span of  $w_t$  and  $x_t$ . Letting  $oldsymbol{p} = oldsymbol{w}_t^ op x_t$

$$w_{t+1} = w_t - s(p, i_t) x_t$$

Scaling needs to satisfy:

$$\left. rac{\partial s}{\partial i} = \eta \left. rac{\partial \ell(
ho, y)}{\partial 
ho} 
ight|_{
ho = (w_t - s(
ho, i) imes)^ op x} \quad s(
ho, 0) = 0$$

Invariance:

$$s(p, a + b) = s(p, a) + s(p - s(p, a)||x||^2, b)$$

## Importance Invariant Updates

- Gradients point to the same direction  $\nabla \ell = \frac{\partial \ell(p, y_t)}{\partial p} x_t$
- ullet  $w_{t+1}$  is in span of  $w_t$  and  $x_t$ . Letting  $oldsymbol{p} = w_t^ op x_t$

$$w_{t+1} = w_t - s(p, i_t) x_t$$

Scaling needs to satisfy:

$$\left. \frac{\partial s}{\partial i} = \eta \left. \frac{\partial \ell(\rho, y)}{\partial \rho} \right|_{\rho = (w_t - s(\rho, i) \times)^{\top} \times} \quad s(\rho, 0) = 0$$

- Invariance:
  - $s(p, a + b) = s(p, a) + s(p s(p, a)||x||^2, b)$
- OGD: just an Euler integrator Paul Mineiro

## Closed Form for Many Losses

| Loss     | $\ell(p,y)$       | Update $s(p, i)$                                                                        |
|----------|-------------------|-----------------------------------------------------------------------------------------|
| Squared  | $(y-p)^2$         | $\frac{p-y}{x^{\top}x}\left(1-e^{-i\eta x^{\top}x}\right)$                              |
| Logistic | $\log(1+e^{-yp})$ | $\frac{W(e^{i\eta x^{\top} x + yp + e^{yp}}) - i\eta x^{\top} x - e^{yp}}{yx^{\top} x}$ |
| Hinge    | $\max(0, 1 - yp)$ | $-y \min \left(i\eta, \frac{1-yp}{x^{\top}x}\right)$                                    |

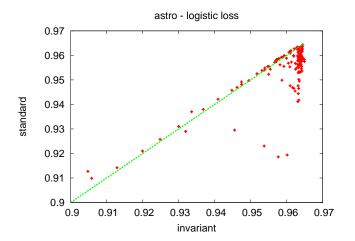
- Other losses with closed form updates: exponential, logarithmic, Hellinger,  $\tau$ -quantile, and others.
- Interesting even if i = 1 (satisfies regret guarantee)
- Safety: update never overshoots.

# Other ways of dealing with large importance weights

- Sampling: slow, inefficient
- Go through the data many times: very slow
- Solve  $w_{t+1} = \operatorname{argmin} \frac{1}{2} ||w w_t||^2 + i \eta \ell(w^\top x_t, y_t)$ 
  - Known as implicit updates
  - Qualitatively very similar
  - ► Safe, regret guarantee
  - Typically not closed form, not invariant
- Replace  $\ell$  above with quadratic approximation
  - works for some losses

## Experiments with small weights

Do the importance invariant updates help when  $i_t = 1$ ?



Almost eliminates search for good learning rate

# Experiments with Active Learning

## Importance Weighted Active Learning

$$w_1 = 0$$
  
for  $t = 1, \ldots, T$ 

- Receive unlabeled example  $x_t$ .
- **1** Choose a probability of labeling  $p_t$ .
  - ► Let  $w' = \operatorname{argmin}_{w:\operatorname{sign}(w^\top x_t) \neq \operatorname{sign}(w_t^\top x_t)} ||w w_t||^2$ .
  - Let  $\Delta_t$  be error rate difference between  $w_t$  and  $w'_t$ .
- With probability  $p_t$  get label  $y_t$ , and update  $w_t$  with  $(x_t, y_t, \frac{1}{p_t})$ . Otherwise  $w_{t+1} = w_t$

## Estimating Difference in Error Rates

- Suppose  $x_t$  doesn't have the label preferred by  $w_t$
- Let  $y_a = -\operatorname{sign}(w_t^\top x_t)$ .
- Find  $i_t$  s.t.  $w_{t+1} = w'_t$  after  $(x_t, y_a, i_t)$  update

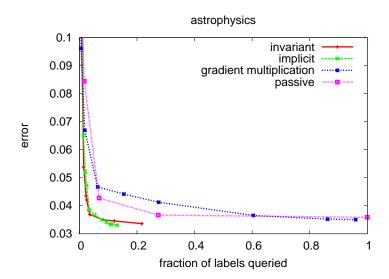
## Estimating Difference in Error Rates

- Suppose  $x_t$  doesn't have the label preferred by  $w_t$
- Let  $y_a = -\operatorname{sign}(w_t^\top x_t)$ .
- Find  $i_t$  s.t.  $w_{t+1} = w'_t$  after  $(x_t, y_a, i_t)$  update
- For example, for logistic loss with invariant updates

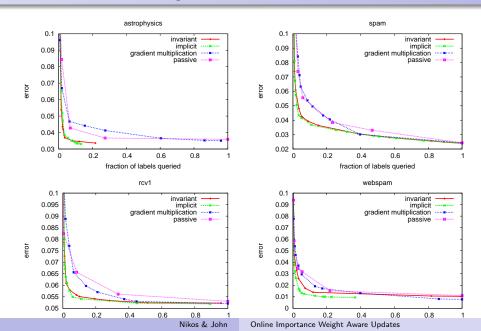
$$i_t = \frac{1 - e^{y_a w_t^\top x_t} - y_a w_t^\top x_t}{\eta_t}$$

• Then  $\Delta_t \approx i_t/t$ 

## Active Learning Results



# Active Learning Results



#### How fast is it?

Demo on RCV1 (≈780K docs 77 features/doc) . . .

#### How fast is it?

- Demo on RCV1 (≈780K docs 77 features/doc) . . .
- As fast as (passive) online gradient descent
  - Active learning takes 2.6 sec.
  - Passive online gradient descent takes 2.5 sec
  - ▶ 91K queries (11%)

#### Conclusions

- New updates from first principles
- You should use them because they
  - work well, even for i = 1
  - are robust w.r.t. learning rate
  - are fast (closed form)
  - have useful properties (invariance, safety)
  - are simple to code
- Check out implementation in Vowpal Wabbit http://github.com/JohnLangford/vowpal\_wabbit