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What is the next item in the sequence?

open(),read(),read(),. . .
G,A, T, T, A,C, . . .
+1,−1,+1,−1,+1, . . .
all,your,base,. . .

Formally, predict yt from y1, y2, . . . , yt−2, yt−1

yt = h(yt−1
1 ) yji := yi, . . . , yj

More general problem: p(yt|yt−1
1 )

Markovian Assumption
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Markov Models

Zero order: p(yt|yt−1
1 ) = p(yt)

First order:
yt−1

A C

︷ ︸︸ ︷
p(yt|yt−1 = G)

G T
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Markov Models

Second order:
yt−1

yt−2

A C G T

A

yt−2

A C

︷ ︸︸ ︷
p(yt|yt−1 = C, yt−2 = G)

G T

C

yt−2

A C G T

G

yt−2

A C G T

T

Third order, k-th order etc.
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Markov Models — Problems

How to select the best k?

Number of model parameters exponential in k.

Poor family of models. What if I want a model with 100
parameters?

What if yt does not depend on yt−2 if yt−1 = A but it depends
on it if yt−1 = T?

Prediction Suffix Trees address these problems.
[Willems et al., 1995, Ron et al., 1996, Helmbold & Schapire, 1997,

Pereira & Singer, 1999]
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Prediction Suffix Trees

Keep a model for each k. Use a weighted sum.

Prune useless branches and subtrees.

yt−1

yt−2

A C G T

A

yt−2

A C G T

C

yt−2

A C G T

G

yt−2

A C G T

T

Assumptions: p(yt|yt−1 = T, yt−2) = p(yt|yt−1 = T ),
p(yt|yt−1 = A, yt−2 = ¬A) = p(yt|yt−1 = A).
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Moving Away from Probabilistic Modeling

We just want to predict yt from yt−1
1

Assume yt ∈ {−1,+1}

Store a weight instead of a probability

Use the sign of a weighted sum of the values in the appropriate
path
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Example

True Sequence: −1,−1,+1,−1,−1,+1, . . .

Discounting: A node at depth d is discounted by 2−d

Tree:

0

−1

5

−1

−1

−2

+1

Input Sequence:

Decision:
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Example
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Example
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Remarks

Notation for the node values: gt,s

Discounting scheme in this work:

x+
t,s =

{
(1− ε)|s| if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise

The best value of ε will be determined (much) later.

Decision at time t: sign
(∑

s gt,sx
+
t,s

)
= sign(〈gt, x+

t 〉)
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Prediction Suffix Trees

Algorithm and Properties
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .

Focus on online setting

Algorithm maintains hypothesis wt. In each round:

The algorithm receives information xt.
It outputs ŷt = sign(〈wt, xt〉).
It receives the correct output yt.
It updates: wt+1 ← f(wt).

A mistake is made when yt〈wt, xt〉 ≤ 0.
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Perceptron

If a mistake is made at round t: wt+1 = wt + αytxt

α is a learning rate.

It is selected so that it optimizes various tradeoffs.
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Balanced Winnow

Balanced Winnow [Littlestone, 1989] Perceptron [Rosenblatt, 1958]

θ1 ← 0 θ1 ← 0
for t = 1, 2, . . . , T do for t = 1, 2, . . . , T do

wt,i ← eθt,i∑
j e

θt,j
wt ← θt

ŷt ← 〈wt, xt〉 ŷt ← 〈wt, xt〉
if ytŷt ≤ 0 if ytŷt ≤ 0
θt+1 ← θt + αytxt θt+1 ← θt + αytxt

else else
θt+1 ← θt θt+1 ← θt
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Balanced Winnow

Balanced Winnow [Littlestone, 1989] Perceptron [Rosenblatt, 1958]

θ1 ← 0 θ1 ← 0
for t = 1, 2, . . . , T do for t = 1, 2, . . . , T do

wt,i ← eθt,i∑
j e

θt,j
wt ← θt

ŷt ← 〈wt, xt〉 ŷt ← 〈wt, xt〉
if ytŷt ≤ 0 if ytŷt ≤ 0
θt+1 ← θt + αytxt θt+1 ← θt + αytxt

else else
θt+1 ← θt θt+1 ← θt

Important for Balanced Winnow:
xt = [x+

t ,−x+
t ] = [x+

t,1, . . . , x
+
t,d,−x

+
t,1, . . . ,−x+

t,d]

x+
t,s =

{
(1− ε)|s| if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise
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Advantages

Multiplicative updates — fast convergence.

Can cope with many features when few of them are relevant.

For our application it can track changes better.
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Where’s the catch?

Perceptron and Winnow don’t care about the sparsity of their
hypothesis.

Eventually, we have a feature for every substring of yT1 .

Implications:

Need to learn O(T 2) weights in T rounds /
Need to store O(T 2) numbers /

Naively, all weights affect the decision and must be stored.
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Does the decision depend on every feature?

Recall the specific form of features: xt = [x+
t , x

−
t ] = [x+

t ,−x+
t ].

Notation: wt = [w+
t , w

−
t ] θt = [θ+

t , θ
−
t ]. Recall wt,i = eθt,i∑

j e
θt,j

Easy inductive argument can show that θ−t = −θ+
t

Decision ŷt = 〈wt, xt〉 = 〈w+
t − w−t , x+

t 〉 =1

=
d∑
i=1

sinh(θ+
t,i)∑d

j=1 cosh(θ+
t,j)

x+
t,i ∝

d∑
i=1

sinh(θ+
t,i)x

+
t,i

Iff θ+
t,i = 0 the decision does not depend on feature i.

1sinh(x) = ex−e−x

2 and cosh(x) = ex+e−x

2
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Observations

If θt,s = 0 we don’t have to store it.

Initially θ1 = 0. The tree has only one node.

As mistakes are made, the tree grows.

Classic Winnow/Perceptron update quickly destroys sparsity.
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Illustration

Input Sequence: . . . ,−1,+1,−1,+1,−1, ?

x+
t,s =

{
2−|s| if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise

Tree:
0

1

−5

−1

−1

−2

+1

Decision:
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2−|s| if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise
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0
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t,s =

{
2−|s| if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise

Tree:
0

1

−5

−1

0

0

0
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−1

+1

−1

−2
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2
· sinh(1) > 0

sign→ +1
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Illustration

Input Sequence: . . . ,−1,+1,−1,+1,−1, − 1

x+
t,s =

{
2−|s| if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise

Tree:
0

1
2

−5

−1

− 1
4

− 1
8

− 1
16
...

+1

−1

+1

−1

−2

+1

Decision: 1
2
· sinh(1) > 0

sign→ +1
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Summary of the Problem

Mistake at time t: O(t) nodes are inserted in the tree.

x+
t,s is non-zero even when s is very long.

Bad idea: change the definition of x+
t,s to avoid this.

Need to learn a good θ while keeping it sparse.

Not all sparse vectors are equal.
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Better Update Rule

Adaptive bound dt on the length of the suffixes.

Same as the depth up to which the tree will grow on round t.

dt will be growing slowly if necessary.

New update:

θt+1,s =

{
θt,s + αytxt,s if |s| ≤ dt
θt,s otherwise

Equivalently:
θt+1 = θt + αytxt + αnt

where nt is a noise vector that cancels part of the update:

nt,s =

{
−ytxt,s if |s| > dt
0 otherwise
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Setting dt

ht = the length of the path from the root using yt−1, yt−2, . . ..

Jt is the subset of rounds 1, . . . , t in which a mistake was made.

Pt =
∑

i∈Jt
||ni||∞ =

∑
i∈Jt

(1− ε)(di+1).

dt will be the smallest integer such that Pt ≤ |Jt|2/3.

To guarantee that we can set

dt = max

{
ht,

⌈
log1−ε

(
3

√
P 3
t−1 + 2P

3/2
t−1 + 1− Pt−1

)
− 1

⌉}
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Algorithm Properties — Learning

Mistake Bound
If there exists a tree which over the input sequence
y1, y2, . . . , yT correctly predicts all items with confidence ≥ δ,
our algorithm’s mistakes will be at most

max

{
8 log T

δ2
,
64

δ3

}

Instead of assuming a perfect tree, assume a tree u that
attains a cumulative δ-hinge loss L > 0. The mistake bound
becomes:

max

{
2L

δ
+

8 log T

δ2
,
64

δ3

}
L =

∑T
t=1 `t(u) where `t(u) = max(0, δ − yt〈u, xt〉)
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Algorithm Properties — Resources

Let Mt be the number of mistakes up to round t

Set ε so that

x+
t,s =

{
2−|s|/3 if s = yt−1

t−i i = 1, . . . , t− 1
0 otherwise

Growth Bound
Our algorithm will not grow a tree deeper than log2MT−1 + 4
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How to go about proving the properties

Bounding how fast the tree grows is straightforward.

Mistake bound: show that each update contributes towards a
goal.

We need a goal and measure of progress.
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Measuring Progress

Goal: A fixed tree with good performance.

For example, a vector u such that yt〈u, xt〉 ≥ δ.

Our adaptive tree is represented by wt. Remember
∑

iwt,i = 1.

To be fair assume ui ≥ 0 and
∑

i ui = 1

Measure of progress: Relative entropy between u and wt

D(u||wt) =
∑
i

ui log
ui
wt,i

Potential function: Φ(wt) = D(u||wt) ≥ 0
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Proof Technique

Upper bound the initial potential.

Lower bound the change in the potential with each update.

Keep the total effect of noise bounded. [Dekel et al., 2004]
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Pictorially

Potential:
0Φ(w1)

Noise Pt :

Example Correct Prediction

x1

%

x2 %

x3 "

x4 %

x5 "

x6 %

Progress due to classic update
Effect of noise
Net progress
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length of −length of ≤ Φ(w1)

min size ·mistakes−mistakes2/3 ≤ Φ(w1)
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Multiclass extension

We maintain weights w(1), w(2), . . . , w(k)

Predict ŷt = argmaxi〈w(i), xt〉

In case of a mistake

θ
(ŷt)
t+1,s = θ

(ŷt)
t,s − αxt,s

θ
(yt)
t+1,s = θ

(yt)
t,s + αxt,s

for all s such that |s| ≤ dt.
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Data

120 sequences of system calls from Outlook, Excel and Firefox
(40 each).

The monitoring program records 23 different system calls.

A typical sequence contains hundreds of thousands of system
calls.
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Results

Averages over the 40 sequences
Outlook Perceptron Winnow
% Error 5.1 4.43

PST Size 41239 25679

Firefox Perceptron Winnow
% Error 14.86 13.88

PST Size 21081 12662

Excel Perceptron Winnow
% Error 22.68 20.59

PST Size 24402 15338

Moreover, Winnow made less mistakes and grew smaller trees
for all 120 sequences

“Perceptron” is the PST learning algorithm of
[Dekel et al., 2004].
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Related Work

Many learning algorithms assume an a priori bound on the tree’s
depth [Willems et al., 1995], [Ron et al., 1996],
[Pereira & Singer, 1999]. . .

[Dekel et al., 2004] present a perceptron algorithm similar to ours.

[Kivinen & Warmuth, 1997] show how to compete against vectors
u with ||u||1 ≤ U

Sparsifying Winnow is popular (e.g. [Blum, 1997]) but no
guarantees.
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Summary

Outlined the benefits of prediction suffix trees.

Introduced an online learning algorithm to learn PSTs.

It is competitive with the best fixed PST in hindsight.
The resulting trees grow slowly if necessary

On our task, it made less mistakes and grew smaller trees than
other state-of-the-art algorithms.
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