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Motivation

Monitoring of applications in a computer system
System calls

Prediction model
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Motivation

Monitoring of applications in a computer system
System calls
Prediction model

Some assumptions
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What is the next item in the sequence?

open(),read(),read(),. . .
G,ATTAC,...
+1,—1,+1,—1,+1,...
all,your,base,. ..
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What is the next item in the sequence?

open(),read(),read(),. . .
G,ATTAC,...
+1,—1,+1,—1,+1,...
all,your,base,. ..

Formally, predict v; from yi,yo, ..., yr 2, Yr 1
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What is the next item in the sequence?

open(),read(),read(),. . .
G,ATTAC,...
+1,—1,+1,—1,+1,...
all,your,base,. ..

Formally, predict y; from y1,yo, ..., yi—2, Ys_1

vy =hyi™)  yl=wi,.y
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What is the next item in the sequence?

open(),read(),read(),. . .

G,ATT AC,...

+1,—1,+1,—1,+1, ...

all,your,base,. ..

Formally, predict y; from y1,yo, ..., yi—2, Ys_1

vy =hyi™)  yl=wi,.y

More general problem: p(y;|yi™")
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What is the next item in the sequence?

open(),read(),read(),. . .

G,ATTAC,...

+1,—1,+1,—1,+1, ...

all,your,base,. ..

Formally, predict y; from y1,yo, ..., yi—2, Ys_1
ye=nhy™")  yl=wyn.y

More general problem: p(y;|yi™")

Markovian Assumption
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Zero order: p(y,|yt ™) = p(y:)
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Markov Models

Zero order: p(y,|yt™) = p(ye)

First order:
t—1

—
p(elye—1 = G)
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Markov Models

Second order:

)//\
HG\/G\/G\/H

P(yelye—1 =C -2 =G
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Markov Models

Second order:

)//\
ACG\/G\/G\/GT

P(yelye—1 =C -2 =G

Third order, k-th order etc.
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How to select the best k7?7
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Markov Models — Problems

How to select the best k7?7

Number of model parameters exponential in k.
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Markov Models — Problems

How to select the best k7?
Number of model parameters exponential in k.

Poor family of models. What if | want a model with 100
parameters?
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Markov Models — Problems

How to select the best k7?
Number of model parameters exponential in k.

Poor family of models. What if | want a model with 100
parameters?

What if y; does not depend on y;_» if y;_1 = A but it depends
onitify,_,=1T7
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Markov Models — Problems

How to select the best k7?
Number of model parameters exponential in k.

Poor family of models. What if | want a model with 100
parameters?

What if y; does not depend on y;_» if y;_1 = A but it depends
onitify,_,=1T7

Prediction Suffix Trees address these problems.
[Willems et al., 1995, Ron et al., 1996, Helmbold & Schapire, 1997,
Pereira & Singer, 1999]
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Prediction Suffix Trees

ﬂ\\
AN /N /N

Nikos Karampatziakis, Dexter Kozen Online Learning of Prediction Suffix Trees



Prediction Suffix Trees

Keep a model for each k. Use a weighted sum.

P(yt\yt 1, Yt— 2
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Prediction Suffix Trees

Keep a model for each k. Use a weighted sum.

Prune useless branches and subtrees.

N

p(yeA) p(y:|C) p(y:|G) p(ye|T)

A A/ C A/ C| G

p(yt‘yt—la yt—Q)
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Prediction Suffix Trees

Keep a model for each k. Use a weighted sum.

Prune useless branches and subtrees.

N

p(yi|A) p(y:|O) p(yt|G) p(y:|T)

/A A

yt\yt 1, Yt— 2)

Assumptions: p(yi|yi—1 = T, y1—2) = p(ye|ye—1 =T,
P(Wlyi—1 = A yp2 = —A) = p(ylye—1 = A).
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Moving Away from Probabilistic Modeling

We just want to predict 7, from 3!
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Moving Away from Probabilistic Modeling

We just want to predict 7, from 3!

Assume y, € {—1,+1}
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Moving Away from Probabilistic Modeling

We just want to predict 7, from 3!
Assume y, € {—1,+1}

Store a weight instead of a probability
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Moving Away from Probabilistic Modeling

We just want to predict 7, from 3!
Assume y, € {—1,+1}
Store a weight instead of a probability

Use the sign of a weighted sum of the values in the appropriate
path
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence:

Decision:
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: o, —1,—1
Decision: 0
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: R e |
Decision: 0—5-1
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: oo, —1,-1
Decision: 0—31-14+1-5
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: oo, —1,-1
Decision: 0—3-1+1.5=3%3"41
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: |
Decision: 0
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: T e |
Decision: 0—5-1
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: T e |
Decision: 0—3-1=-3""-1
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: oo+l
Decision: 0
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: |
Decision: 0—5-2
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Example

True Sequence: —1,—1,+1,—1,—1,+1,...
Discounting: A node at depth d is discounted by 27¢
Tree:

Input Sequence: |

sign

Decision: 0—1.2=—-12" 1
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Notation for the node values: g; ,
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Remarks

Notation for the node values: g

Discounting scheme in this work:

L=l s=ylt i=1, -1
0 otherwise

The best value of e will be determined (much) later.
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Remarks

Notation for the node values: g

Discounting scheme in this work:

L=l s=ylt i=1, -1
0 otherwise

The best value of e will be determined (much) later.

Decision at time ¢: sign (3°, gr.s27,) = sign((g¢, z;"))
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Prediction Suffix Trees

Algorithm and Properties

Results
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SVMs, logistic regression,. . .
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .

Focus on online setting
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .
Focus on online setting

Algorithm maintains hypothesis w;. In each round:
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .
Focus on online setting

Algorithm maintains hypothesis w;. In each round:
The algorithm receives information x;.
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .
Focus on online setting

Algorithm maintains hypothesis w;. In each round:

The algorithm receives information x;.
It outputs §; = sign({wy, zy)).
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .
Focus on online setting

Algorithm maintains hypothesis w;. In each round:

The algorithm receives information x;.
It outputs §; = sign({wy, zy)).
It receives the correct output y;.
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .
Focus on online setting

Algorithm maintains hypothesis w;. In each round:
The algorithm receives information x;.
It outputs §; = sign({wy, zy)).
It receives the correct output y;.
It updates: wyy1 «— f(wy).
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Algorithms for Linear Prediction

SVMs, logistic regression,. . .
Focus on online setting

Algorithm maintains hypothesis w;. In each round:
The algorithm receives information x;.
It outputs §; = sign({wy, zy)).
It receives the correct output y;.
It updates: wyy1 «— f(wy).

A mistake is made when y,(w;, z;) < 0.
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If a mistake is made at round ¢: w1 = wy + oy,
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If a mistake is made at round ¢: w1 = wy + oy,

a is a learning rate.
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Perceptron

If a mistake is made at round t: w1 = wy + oy,
« is a learning rate.

It is selected so that it optimizes various tradeoffs.
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Balanced Winnow

Balanced Winnow |Littlestone, 1989]

Perceptron [Rosenblatt, 1958]

91<—0
fort=1,2,...,7T do

04,
0,5

Wy 5 <
;e
Up <wt, ZCt>
if 5. <0
Or 11 — 0 + aypzy
else
9t+1 — 0,

(91<—0
fort=1,2,...,T do

wt<—9t

G < (W, T)
if y:0: <0

Or11 — 0 + oy,
else

01— 0,
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Balanced Winnow

Balanced Winnow |[Littlestone, 1989] Perceptron [Rosenblatt, 1958]

61 «—0 (91 «— 0
fort=1,2,...,7T do fort=1,2,...,T do
(]
wm — tbt - Wy <— Qt
>, e
Up <wt, xt> Up <wt>$t>
if 4,0, <0 if 4,9 <0
0141 «— 0 + ayrxy 0141 — 0 + gy
else else
01 «— 0, 041 — 0,

Important for Balanced Winnow:
— [t o + + +
Ty = (v, —x ] = [xt,h L DR 8 PR _xt,d]

o = (1—ebl if s=9~1 di=1,....t-1
ts 1 0 otherwise
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Multiplicative updates — fast convergence.
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Advantages

Multiplicative updates — fast convergence.

Can cope with many features when few of them are relevant.
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Advantages

Multiplicative updates — fast convergence.
Can cope with many features when few of them are relevant.

For our application it can track changes better.
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Where's the catch?

Perceptron and Winnow don't care about the sparsity of their
hypothesis.
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Where's the catch?

Perceptron and Winnow don't care about the sparsity of their
hypothesis.

Eventually, we have a feature for every substring of y.
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Where's the catch?

Perceptron and Winnow don't care about the sparsity of their
hypothesis.

Eventually, we have a feature for every substring of y.

Implications:

Need to learn O(T?) weights in T rounds @
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Where's the catch?

Perceptron and Winnow don't care about the sparsity of their
hypothesis.

Eventually, we have a feature for every substring of y.

Implications:

Need to learn O(T?) weights in T rounds @

Need to store O(7?) numbers
Naively, all weights affect the decision and must be stored.
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Does the decision depend on every feature?

Recall the specific form of features: z; = [z}, z; | = [z}, —2;].
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Does the decision depend on every feature?

Recall the specific form of features: z; = [z}, z; | = [z}, —2;].
i o + p- efri
Notation: w; = [w; ,w; | 6, = [0;,6;]. Recall w;; = i

J
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Does the decision depend on every feature?

Recall the specific form of features: z; = [z}, z; | = [z}, —2;].

. + o s
Notation: w; = [wt , Wy } 0; = [9t vet ] Recall Wi = Pt
J

Easy inductive argument can show that §; = —0;
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Does the decision depend on every feature?

Recall the specific form of features: z; = [z}, z; | = [z}, —2;].

. + o s
Notation: w; = [wt , Wy } 0; = [9t vet ] Recall Wi = Pt
J

Easy inductive argument can show that §; = —0;

Decision §; = (wy, x) = (w, —w; , ;) =t

smh
+
= E cosh(€+ i X E sinh(0;;)x
] 1

Lsinh(z) = €= and cosh(z) = €
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Does the decision depend on every feature?

Recall the specific form of features: z; = [z}, z; | = [z}, —2;].

. + o s
Notation: w; = [wt , Wy } 0; = [9t vet ] Recall Wi = Pt
J

Easy inductive argument can show that §; = —0;

Decision §; = (wy, x) = (w, —w; , ;) =t

smh
+
= E cosh(€+ i X E sinh(0;;)x
] 1

Iff 7, = 0 the decision does not depend on feature i.

Lsinh(z) = €= and cosh(z) = €
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If 8,5 = 0 we don't have to store it.
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If 8,5 = 0 we don't have to store it.

Initially 8; = 0. The tree has only one node.
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Observations

If 0, = 0 we don't have to store it.
Initially 8; = 0. The tree has only one node.

As mistakes are made, the tree grows.
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Observations

If 0, = 0 we don't have to store it.
Initially 8; = 0. The tree has only one node.
As mistakes are made, the tree grows.

Classic Winnow/Perceptron update quickly destroys sparsity.
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Input Sequence: ..., —1,+1,—1,+1,—-1,7
o 27l if s=yi7t =1, -1
s 0 otherwise

Decision:
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[llustration

Input Sequence: ..., —1,+1,—1,+1,—-1,7
Ll s=yT i=1, -1
0 otherwise

Decision: 1 - sinh(1)
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[llustration

Input Sequence: ..., —1,+1,—1,+1,—-1,7
Ll s=yT i=1, -1
0 otherwise

Decision: 1 -sinh(1) >0
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[llustration

Input Sequence: ..., —1,+1,—1,+1,—-1,7
Ll s=yT i=1, -1
0 otherwise

sign

Decision: 1 -sinh(1) >0 = +1
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[llustration

Input Sequence: ..., —1,+1,—1,+1,—1, — 1

L e s=gyltl i=1, =1
10 otherwise

sign

Decision: 1 -sinh(1) >0 = +1
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[llustration

Input Sequence: ..., —1,+1,—1,+1, -1, — 1
Ll s=yT i=1, -1
0 otherwise

sign

Decision: 1 -sinh(1) >0 = +1
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[llustration

Input Sequence: ..., —1,+1,—1,+1, -1, — 1
Ll s=yT i=1, -1
0 otherwise

sign

Decision: 1 -sinh(1) >0 = +1
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Mistake at time ¢: O(t) nodes are inserted in the tree.
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Summary of the Problem

Mistake at time ¢: O(t) nodes are inserted in the tree.

xzfs is non-zero even when s is very long.
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Summary of the Problem

Mistake at time ¢: O(t) nodes are inserted in the tree.

xzfs is non-zero even when s is very long.

Bad idea: change the definition of :ntfs to avoid this.
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Summary of the Problem

Mistake at time ¢: O(t) nodes are inserted in the tree.

xzfs is non-zero even when s is very long.

Bad idea: change the definition of xtfs to avoid this.

Need to learn a good 6 while keeping it sparse.
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Summary of the Problem

Mistake at time ¢: O(t) nodes are inserted in the tree.

xzfs is non-zero even when s is very long.

Bad idea: change the definition of xtfs to avoid this.
Need to learn a good 6 while keeping it sparse.

Not all sparse vectors are equal.
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Adaptive bound d; on the length of the suffixes.
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Better Update Rule

Adaptive bound d; on the length of the suffixes.
Same as the depth up to which the tree will grow on round ¢.
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Better Update Rule

Adaptive bound d; on the length of the suffixes.
Same as the depth up to which the tree will grow on round ¢.

d; will be growing slowly if necessary.
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Better Update Rule

Adaptive bound d; on the length of the suffixes.
Same as the depth up to which the tree will grow on round ¢.

d; will be growing slowly if necessary.

New update:

9 _ 01575 + QYT s if |S| S dt
b+l Oy 5 otherwise
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Better Update Rule

Adaptive bound d; on the length of the suffixes.
Same as the depth up to which the tree will grow on round ¢.

d; will be growing slowly if necessary.

New update:
9 o 01575 + QYT s if |S| S dt
ST 0, otherwise

Equivalently:
Oi1 = 0 + aypxy + any

where n; is a noise vector that cancels part of the update:

n = Yt if |s| > d;
ts 0 otherwise
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h; = the length of the path from the root using v;_1,y:_2,. . ..
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Setting d;

h; = the length of the path from the root using v;_1, 42, .. ..

J; is the subset of rounds 1, ..., ¢ in which a mistake was made.

Nikos Karampatziakis, Dexter Kozen Online Learning of Prediction Suffix Trees



Setting d;

h; = the length of the path from the root using v;_1, 42, .. ..

J; is the subset of rounds 1, ..., ¢ in which a mistake was made.

Pr= 3 Inillos = 2, (1= @H.
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Setting d;

h; = the length of the path from the root using v;_1, 42, . . ..

J; is the subset of rounds 1,...,¢ in which a mistake was made.

Pr= e Inilloe = 2, (1= Y.

d; will be the smallest integer such that P, < |J;|*/3.
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Setting d;

h; = the length of the path from the root using v;_1, 42, . . ..
J; is the subset of rounds 1,...,¢ in which a mistake was made.
Pyr=% e Inilloe = 22ie,,(1 = €)l D),

d; will be the smallest integer such that P, < |J;|*/3.

To guarantee that we can set

d; = max {ht, [log16 (:\S/Ptg_l + QPfﬁ +1- Pt—l) - 1—‘ }
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Algorithm Properties — Learning

Mistake Bound
If there exists a tree which over the input sequence
Y1, Y2, - - -, yr correctly predicts all items with confidence > 9,

our algorithm's mistakes will be at most

8logT 64
max T, ﬁ
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Algorithm Properties — Learning

Mistake Bound

If there exists a tree which over the input sequence
Y1, Y2, - - -, yr correctly predicts all items with confidence > 9,
our algorithm's mistakes will be at most

8logT 64
max T, ﬁ

Instead of assuming a perfect tree, assume a tree u that
attains a cumulative d-hinge loss L > 0. The mistake bound

becomes:
mn 2L n 8logT 64
i 52 0
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Algorithm Properties — Learning

Mistake Bound

If there exists a tree which over the input sequence
Y1, Y2, - - -, yr correctly predicts all items with confidence > 9,
our algorithm's mistakes will be at most

8logT 64
max T, ﬁ

Instead of assuming a perfect tree, assume a tree u that
attains a cumulative d-hinge loss L > 0. The mistake bound

becomes:
mn 2L n 8logT 64
i 52 0

L= Zthl 0 (u) where £;(u) = max(0, — y,(u, z;))

Nikos Karampatziakis, Dexter Kozen Online Learning of Prediction Suffix Trees



Algorithm Properties — Resources

Let M, be the number of mistakes up to round ¢
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Algorithm Properties — Resources

Let M, be the number of mistakes up to round ¢

Set € so that

o 2718 if s=gi7l =1, t—1
4. 0 otherwise
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Algorithm Properties — Resources

Let M, be the number of mistakes up to round ¢

Set € so that

o 2718 if s=gi7l =1, t—1
4. 0 otherwise

Growth Bound
Our algorithm will not grow a tree deeper than log, Mr_, + 4J
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How to go about proving the properties

Bounding how fast the tree grows is straightforward.
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How to go about proving the properties

Bounding how fast the tree grows is straightforward.

Mistake bound: show that each update contributes towards a
goal.
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How to go about proving the properties

Bounding how fast the tree grows is straightforward.

Mistake bound: show that each update contributes towards a
goal.

We need a goal and measure of progress.
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Measuring Progress

Goal: A fixed tree with good performance.
For example, a vector u such that y(u, z¢) > 9.

Our adaptive tree is represented by w;. Remember > w,, = 1.
To be fair assume u; > 0 and ) . u; =1

Measure of progress: Relative entropy between u and w;,

u||wt Zuzlog_
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Measuring Progress

Goal: A fixed tree with good performance.
For example, a vector u such that y(u, z¢) > 9.

Our adaptive tree is represented by w;. Remember > w,, = 1.

To be fair assume u; > 0 and ) . u; =1

Measure of progress: Relative entropy between u and w;,
D(ul|wy) = Z w; log —

Potential function: ®(w;) = D(u|jw;) >0
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Upper bound the initial potential.
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Proof Technique

Upper bound the initial potential.

Lower bound the change in the potential with each update.
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Proof Technique

Upper bound the initial potential.
Lower bound the change in the potential with each update.

Keep the total effect of noise bounded. [Dekel et al., 2004]
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Pictorially

Potential: |
®(wy)

Noise P, :

Example Correct Prediction
I

[ 1 Progress due to classic update
[ Effect of noise
[ Net progress
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Pictorially

Potential: [}
®(wy)
Noise P, : [

Example Correct Prediction
X1 X

X2

[ 1 Progress due to classic update
[ Effect of noise
[ Net progress
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Pictorially

Potential:
®(wy)
Noise P, : [

Example Correct Prediction

) X
9 X

[ 1 Progress due to classic update
[ Effect of noise
[ Net progress
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Pictorially

Potential: [0
@(wl)
Noise P, : [
Example Correct Prediction
X1 X
) X

[T Progress due to classic update
[ Effect of noise
7 Net progress
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Pictorially

Potential: [
@(wl)
Noise P, : [N
Example Correct Prediction
X1 X
) X
I3

[T Progress due to classic update
[ Effect of noise
7 Net progress
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Pictorially

Potential: [}
@(wl)
Noise P, : [N
Example Correct Prediction
T X
) X
I3 /

[T Progress due to classic update
[ Effect of noise
7 Net progress
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Pictorially

Potential: [}
®(wy)
Noise P, : [N

Example Correct Prediction

X1 X
) X
I3 /

Xy

[ 1 Progress due to classic update
[ Effect of noise
[ Net progress
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Pictorially

Potential: [T}

®(w)

Noise P, : [N

Example Correct Prediction

) X
9 X
3 4
24 X

[ 1 Progress due to classic update
[ Effect of noise
[ Net progress
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Pictorially

Potential: [TITTTH

(I>(w1)
Noise P, : [N
Example Correct Prediction
X1 X
) X
I3 /
Ty X

[T Progress due to classic update
[ Effect of noise
7 Net progress
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Pictorially

Potential: [}

(I>(w1)
Noise /- T
Example Correct Prediction
T X
) X
I3 /
Ty X
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[T Progress due to classic update
[ Effect of noise
7 Net progress

Nikos Karampatziakis, Dexter Kozen Online Learning of Prediction Suffix Trees




Pictorially

Potential: [}

(I>(w1)
Noise P, : [
Example Correct Prediction
X1 X
) X
I3 /
Ty X
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[T Progress due to classic update
[ Effect of noise
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Pictorially

Potential: [}
®(wy)

Noise I, : [EEH

Example Correct Prediction
T
T2
I3
Ty

N XN\ %%

Ts
T
[T Progress due to classic update

T Effect of noise
7 Net progress
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Pictorially
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Pictorially

Potential: [T
®(wy)

Noise I : [N

Example Correct Prediction

" X
@ X
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o X
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[T Progress due to classic update
[ Effect of noise
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length of B < D (w)
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length of B < ®(w,)

length of L1 —length of B < ®(w))
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length of B < ®(w,)
length of |:|/ —length of BRI < ®(w,)
>min O si;erx mistakes
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length of B < ®(w,)

>min O size X mistakes

length of |:|J — length of - < O(wy)

Smistakesz/ 3
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Proof

length of B < & (w))

1ength of :J —length of - < P(wy)

>min [J size x mistakes <mistakes2/3

min [ size - mistakes — mistakes?® < ®(w;)

Nikos Karampatziakis, Dexter Kozen Online Learning of Prediction Suffix Trees



Multiclass extension

We maintain weights w®, w®, ... w®
Predict ¢, = argmax,(w®, z,)

In case of a mistake

Qgrtl s 6)157?3;) — Ot s
6. = 6% +aw,

for all s such that |s| < d;.
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Data

120 sequences of system calls from Outlook, Excel and Firefox
(40 each).

The monitoring program records 23 different system calls.

A typical sequence contains hundreds of thousands of system
calls.
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Results

Averages over the 40 sequences

Outlook | Perceptron Winnow
% Error 5.1 4.43
PST Size 41239 25679

“Perceptron” is the PST learning algorithm of
[Dekel et al., 2004].
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Results
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Outlook | Perceptron Winnow
% Error 5.1 4.43
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% Error 14.86 13.88
PST Size 21081 12662
Excel Perceptron  Winnow

% Error 22.68 20.59
PST Size 24402 15338

“Perceptron” is the PST learning algorithm of
[Dekel et al., 2004].

Nikos Karampatziakis, Dexter Kozen Online Learning of Prediction Suffix Trees



Results

Averages over the 40 sequences
Outlook | Perceptron Winnow
% Error 5.1 4.43
PST Size 41239 25679

Firefox | Perceptron Winnow

% Error 14.86 13.88
PST Size 21081 12662
Excel Perceptron  Winnow

% Error 22.68 20.59
PST Size 24402 15338

Moreover, Winnow made less mistakes and grew smaller trees
for all 120 sequences

“Perceptron” is the PST learning algorithm of

[Dekel et al., 2004].
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Results

Total number of mistakes
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Results
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Related Work

Many learning algorithms assume an a priori bound on the tree's
depth [Willems et al., 1995], [Ron et al., 1996],
[Pereira & Singer, 1999]. ..

[Dekel et al., 2004] present a perceptron algorithm similar to ours.

[Kivinen & Warmuth, 1997] show how to compete against vectors
u with ||u]|, < U

Sparsifying Winnow is popular (e.g. [Blum, 1997]) but no
guarantees.
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Outlined the benefits of prediction suffix trees.
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Summary

Outlined the benefits of prediction suffix trees.
Introduced an online learning algorithm to learn PSTs.
It is competitive with the best fixed PST in hindsight.

The resulting trees grow slowly if necessary

On our task, it made less mistakes and grew smaller trees than
other state-of-the-art algorithms.
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