
Online Importance Weight Aware Updates

Nikos Karampatziakis∗

Department of Computer Science
Cornell University
nk@cs.cornell.edu

John Langford
Yahoo! Research
jl@yahoo-inc.com

Abstract

An importance weight quantifies the rela-
tive importance of one example over another,
coming up in applications of boosting, asym-
metric classification costs, reductions, and
active learning. The standard approach for
dealing with importance weights in gradient
descent is via multiplication of the gradient.
We first demonstrate the problems of this ap-
proach when importance weights are large,
and argue in favor of more sophisticated ways
for dealing with them. We then develop an
approach which enjoys an invariance prop-
erty: that updating twice with importance
weight h is equivalent to updating once with
importance weight 2h. For many important
losses this has a closed form update which
satisfies standard regret guarantees when all
examples have h = 1. We also briefly dis-
cuss two other reasonable approaches for han-
dling large importance weights. Empirically,
these approaches yield substantially superior
prediction with similar computational perfor-
mance while reducing the sensitivity of the
algorithm to the exact setting of the learning
rate. We apply these to online active learning
yielding an extraordinarily fast active learn-
ing algorithm that works even in the presence
of adversarial noise.

1 INTRODUCTION

Importance weights appear in boosting algorithms [9]
which assign a weight to each example depending on
how well this point has been classified in previous it-
erations, covariate shift algorithms [11] which assign a
weight to a training example according to how close

∗Research done while author was at Yahoo! Research

to the test distribution the example is, and active
learning algorithms [1, 2] where an adaptive rejec-
tion sampling scheme is applied to each example and
each retained example gets an importance equal to
the inverse probability of being retained. Importance
weights have become a de-facto language for specifying
the relative importance of prediction amongst exam-
ples.

When not concerned by computational constraints,
importance weights can be dealt with using either
black box techniques [19, 20] or direct modification of
existing algorithms such that an existing example with
importance weight h is treated as h examples. How-
ever, when computational constraints are significant
online gradient descent based algorithms are preferred.
Here the standard approach of treating an example
with importance weight h as h examples is typically
translated into practice via multiplying the gradient
by h. This is undesirable for large h because such an
example can cause an update that’s far beyond what’s
necessary to attain a small loss on it.

An important observation is that multiplying the gra-
dient by h is typically not equivalent to doing h up-
dates via gradient descent because all loss functions
of interest are nonlinear. The goal of this paper is
resolving this translation failure by investigating al-
ternate updates that gracefully deal with importance
weights, by taking into account the curvature of the
loss. Among these updates we mainly focus on a novel
set of updates that satisfies an additional invariance
property: for all importance weights of h, the update
is equivalent to two updates with importance weight
h/2. We call these updates importance invariant.

Even though the importance invariant updates will be
defined via an ordinary differential equation (ODE),
we were surprised to find that they are closed-form
for all common loss functions. We were also surprised
to discover that the importance weight invariant up-
date substantially improves the learned predictor even
when h = 1, both in terms of the quality of best pre-

dictor after a parameter search and in terms of the ro-
bustness to parameter search, effectively reducing the
desirability of searching over some schedule of learn-
ing rates. Upon inspection, the reason for this is that
an importance weight invariant update smoothly in-
terpolates between a very aggressive projection [10, 5]
algorithm and a less aggressive gradient multiplier de-
cay algorithm. All of these benefits come at near-zero
computational cost.

Among the other algorithms we consider, implicit up-
dates [14, 15] turn out to coincide with importance
invariant ones for piecewise linear losses and provide
qualitatively similar updates for other losses, implying
that our derivation is an alternative way to motivate
this style of algorithm. For most other loss functions
implicit updates require a root-finding algorithm.

Finally, another reasonable way to handle importance
is related to [6], who analyze it for the logistic and
exponential losses. Here, a second order Taylor ex-
pansion at the current prediction and in the direction
of the update is used to approximate the loss. These
updates coincide with implicit updates for squared loss
(since the quadratic approximation is exact) and are
not applicable to piecewise linear losses. We won’t
discuss these updates any further since they have only
been analyzed for very specific loss functions.

In section 2 we define the problem and describe some
obvious but unsatisfactory approaches. Next, we pro-
pose the importance invariant solution and present a
general framework for deriving importance invariant
updates for many loss functions, in section 3. We
subsequently discuss some important properties of the
proposed updates, such as safety, in section 4. Sec-
tion 5 briefly covers how implicit updates can han-
dle importance weights. In section 6 we empirically
demonstrate the merits of not linearizing the loss on
problems with and without importance weights. Sec-
tion 7 states our conclusions.

2 PROBLEM SETTING

We assume access to a training set of triplets
(xt, yt, ht), t = 1, . . . , T where xt ∈ Rd is a vector
of d features, ht ∈ R+ is an importance weight, and
yt ∈ R is a label. We are also given a loss function
`(p, y) where p is the prediction of our model and y
is the actual label. Depending on the loss function, y
may take values in a restricted set, such as {−1,+1}
or {0, 1}. In this paper we focus on linear models i.e.
p = w>x where w ∈ Rd is a vector of weights. Our
goal is to find

w = argmin
w

T∑
t=1

ht`(w
>xt, yt), (1)

Algorithm 1 Online Gradient Descent

w1 ← 0
for t = 1 to T do

wt+1 ← wt − ηt∇w`(w>t xt, yt)
done

using online gradient descent. When examples do not
have importance weights the online gradient descent
algorithm is shown in Algorithm 1. The notation
∇w`(w>t xt, yt) means the gradient of the loss with re-
spect to w evaluated at the t-th prediction and label.

When examples have importance weights, we would
like to adhere to the following principle: An example
with importance weight h should be treated as if it is
a regular example that appears h times in the dataset.
This is a statement of both mathematical and seman-
tic correctness. Mathematically, (1) states exactly the
same thing. Semantically an example of importance
h is just a convenient encoding of h identical exam-
ples. For now we assume importance weights are inte-
gers and the learning rate sequence is constant ηt = η.
These assumptions are only for ease of exposition and
are lifted in section 3.

2.1 Some Unsatisfactory Approaches

A first approach would be to loop through the data
enough epochs, with epoch i using only those exam-
ples whose importance is greater than i. While this
is a valid approach, it is very inefficient. Ideally each
example should be presented once to the learner.

Another tempting approach is multiplying the update
by the importance weight:

wt+1 = wt − htη∇w`(w>t xt, yt).

However, this update rule does not respect the princi-
ple of the previous section. To see this, consider the
case ht = 2. The above rule should be equivalent to

v = wt − η∇w`(w>t xt, yt)
wt+1 = v − η∇w`(v>xt, yt)

which is not true in general. Furthermore, the quality
of this update gets worse as the importance weight gets
larger since the first order approximation of the loss is
invalid far away from its expansion point.

Another approach with good computational character-
istics is rejection sampling accoding to h/hmax. How-
ever, this approach generally decreases performance
due to throwing out samples. Rejection sampling can
be repaired by learning multiple predictors based upon
different rejection sampled datasets [20], but this of
course increases computation substantially.

2.2 An Efficient Invariant Approach

To achieve invariance and efficiency we will focus on
the cumulative effect of presenting an example h times
in a row. This scheme respects our correctness prin-
ciple and considers each example once. The only re-
maining question is whether the cumulative effect of
h presentations in a row can be computed faster than
explicitly doing so. In the next section we explain why
this is possible and how to compute it.

3 A FRAMEWORK FOR
DERIVING STEP SIZES

Given a loss of the form `(p, y) where p is the predic-
tion and assuming a linear model p = w>x we have
that ∇w` = ∂`

∂px. Therefore all gradients of a given
example point to the same direction and only differ
in magnitude. Hence computing the cumulative effect
of presenting the example h times in a row amounts
to computing a global scaling for x that aggregates
the effects of all the gradients. We begin with a sim-
ple lemma that formalizes this in the case of integer
importance weights.

Lemma 1. Let h ∈ N. Presenting example (x, y) h
times in a row is equivalent to the update

wt+1 = wt − s(h)x (2)

where the scaling factor s(h) has this recursive form:

s(h+ 1) = s(h) + η
∂`

∂p

∣∣∣∣
p=(wt−s(h)x)>x

(3)

s(0) = 0 (4)

Proof. By induction on h. The base case is obvious.
Now the effect of presenting the example (x, y) h +
1 times can be computed by performing a gradient
update on the vector v that results from presenting
the example h times. By the induction hypothesis this
intermediate vector is

v = wt − s(h)x

and the gradient descent step is

wt+1 = v − η∇w`(w>x, y)|w=v.

Expanding this using the induction hypothesis we get

wt+1 = wt − s(h)x− η ∂`

∂p

∣∣∣∣
p=v>x

x

= wt −

(
s(h) + η

∂`

∂p

∣∣∣∣
p=(wt−s(h)x)>x

)
x

Given a loss function, one could try to find a closed
form solution to the recurrence defined by (3),(4). For
example for squared loss `(p, y) = 1

2 (p− y)2 the recur-
rence is

s(h+ 1) = s(h) + η((wt − s(h)x)>x− y).

A simple inductive argument can then verify that

s(h) =
w>t x− y
x>x

(1− (1− ηx>x)h) (5)

Note that when ηx>x < 1, s(h) asymptotes to the
quantity that would make w>t+1x = y. This behavior
is more desirable than that of multiplying the gradient
with the importance weight.

Notwithstanding the significance of such an update, it
is restricted to integer importance weights. Moreover
other loss functions do not yield a recurrence with a
closed form solution. To overcome these problems, we
use (5) as a starting point to think about the con-
sequences of presenting an example many times. To
compensate, we will also need to adjust the learning
rate we use everytime we present an example. Suppose
that we present an example a factor of n times more
using a learning rate that is smaller by a factor of n.
This can be simulated in constant time using (5) with
hn and η

n in place of h and η respectively. Letting n
grow large, we are interested in

lim
n→∞

w>t x− y
x>x

(
1−

(
1− ηx>x

n

)nh)

Using that limn→∞(1 + z/n)n = ez we have that

s(h) =
w>t x− y
x>x

(
1− exp(−hηx>x)

)
. (6)

The key in the above derivation is using the limit of the
gradient descent process as the learning rate becomes
infinitesimal. We now generalize this idea to derive
updates for other loss functions.

Theorem 1. The limit of the gradient descent pro-
cess as the learning rate becomes infinitesimal for an
example with importance weight h ∈ R+ is equal to the
update

wt+1 = wt − s(h)x

where the scaling factor s(h) satisfies the differential
equation:

s′(h) = η
∂`

∂p

∣∣∣∣
p=(wt−s(h)x)>x

, s(0) = 0 (7)

The proof is in the full version of the paper [13]. This
theorem is our framework for deriving updates for

many loss functions. Plugging a loss function in (7)
gives an ODE whose solution is the result of a contin-
uous gradient descent process. The ODE can be easily
solved by separation of variables.

As a sanity check for squared loss, ∂`∂p = p−y, (7) gives

s′(h) = η((wt − s(h)x)>x− y), s(0) = 0

a linear ODE, whose solution exactly rederives (6).

3.1 Other Loss Functions

Using (7) as our framework, we can derive step sizes for
many popular loss function as summarized in table 1.

For the logistic loss, the solution involves the Lambert
W function: W (z)eW (z) = z, and the solution can be

verified using W ′(z) = W (z)
z(1+W (z)) . The exponential

loss also fits nicely into our framework.

For the logarithmic loss the ODE has no explicit form
for all y ∈ [0, 1]. The table presents the common case
y ∈ {0, 1}. In this case each value of y gives rise to
an ODE whose solution has an explicit form. Note
that here the ODE solutions satisfy a second degree
equation and hence each branch has two solutions. We
have selected the one satisfying s′(0) = η ∂`∂p . To avoid
an infinite loss, we can clip the predictions away from
0 and 1 (and update using min(h, h′) where h′ is the
importance weight that hits the clipping point) or use
a link function such as tanh. In the full version [13]
we show updates for this latter case.

A similar situation arises for the Hellinger loss. The
solution to (7) has no simple form for all y ∈ [0, 1] but
for y ∈ {0, 1} we get the expressions in table 1.

3.1.1 Hinge Loss and Quantile Loss

Two other commonly used loss function are the hinge
loss and the τ -quantile loss where τ ∈ [0, 1] is a pa-
rameter. These are differentiable everywhere except
at one point where the subdifferential contains zero.

Hence, for the hinge loss, a valid expression for (7) is

s′(h) =

{
−ηy y(w − s(h)x)>x < 1

0 y(w − s(h)x)>x ≥ 1

The first branch (together with s(0) = 0) gives s(h) =
−yhη for y(w + yhηx)>x < 1. Otherwise, i.e. when

h ≥ hhinge = 1−yw>x
ηx>x

, s(h) is a constant. Here hhinge is
the importance weight that would make the updated
prediction lie at the hinge. To maintain continuity at
hhinge we set s(h) = −yhhingeη. In conclusion

s(h) = −ymin(h, hhinge)η

This matches the intuition when one thinks about the
limit of infinitely many infinitely small updates: For
large importance weights, the process will bring the
prediction up to y and make no further progress.

The quantile loss is similar and the update rule first
computes the importance weight h′ that would take
the updated prediction at the point of nondifferentia-
bility and then multiplies the gradient by min(h, h′).

3.2 Variable Learning Rate

To handle a decaying learning rate ηt, we just need to
slightly modify (7). Let ηt(u) be the value of the learn-
ing rate u timesteps after time t. Then (7) becomes

s′(h) = ηt(h)
∂`

∂p

∣∣∣∣
p=(wt−s(h)xt)>xt

, s(0) = 0

The solutions in this case are not qualitatively any
different from the solutions of (7). We just need to

replace the occurrences of hη with
∫ h
0
ηt(u)du. Again

for popular choices of learning rate such as ηt(u) =
1

(t+u)p with p = 1
2 or p = 1, this has a closed form.

3.3 Regularization

Theorem 1 can be modified to handle losses of the form
`(w>x, y) + λ

2 ||w||
2 where ||w|| is the Euclidean norm

of w. However, the resulting differential equation is
considerably harder and we have only been able to ob-
tain a solution for the case of squared loss. Therefore
we describe an alternative way of incorporating reg-
ularization based on a splitting approach [8]. First
perform h unconstrained steps using the closed form
solution, then compute the effect of regularization:

wt+1 = argmin
w

1

2
||w − (wt − s(h)x)||2 +

hηλ

2
||w||2.

Note that we apply all h regularizers at once. The
solution to the above optimization problem is

wt+1 =
wt − s(h)xt

1 + hηλ

This approach can also handle other regularizers such
as λ||w||1 leading to a truncated gradient update [17].

4 PROPERTIES OF THE UPDATES

4.1 Invariance

First we show that the invariance property we men-
tioned in the introduction holds. It is convenient to
explicitly state the dependence on the prediction p, by
writing s(p, h) instead of s(h). The following theorem

Table 1: Importance Invariant and Imp2 (cf. section 5) Updates for Various Loss Functions
Loss `(p, y) Invariant Update s(h) Imp2 Update

Squared 1
2 (y − p)2 p−y

x>x

(
1− e−hηx>x

)
hη(p−y)
1+hηx>x

Logistic log(1 + e−yp) W (ehηx
>x+yp+eyp)−hηx>x−eyp

yx>x
for y ∈ {−1, 1} Not Closed

Exponential e−yp py−log(hηx>x+epy)
x>xy

for y ∈ {−1, 1} Not Closed

Logarithmic y log y
p + (1− y) log 1−y

1−p
if y = 0

p−1+
√

(p−1)2+2hηx>x

x>x

if y = 1
p−
√
p2+2hηx>x

x>x

Not Closed

Hellinger 2(1−√py −
√

(1− p)(1− y))
if y = 0

p−1+ 1
4 (12hηx

>x+8(1−p)3/2)2/3

x>x

if y = 1
p− 1

4 (12hηx
>x+8p3/2)2/3

x>x

Not Closed

Hinge max(0, 1− yp) −ymin
(
hη, 1−yp

x>x

)
for y ∈ {−1, 1} Same

τ -Quantile
if y > p τ(y − p)
if y ≤ p (1− τ)(p− y)

if y > p −τ min(hη, y−p
τx>x

)
if y ≤ p (1− τ) min(hη, p−y

(1−τ)x>x
)

Same

states that an update with an importance weight a+ b
is equivalent to an update with importance a immedi-
ately followed by an update with importance b.

Theorem 2. Let s(p, h) be the solution of

∂s

∂h
= η

∂`

∂p

∣∣∣∣
p=w>x−s(p,h)x>x

, s(p, 0) = 0

where ` is a continuously differentiable loss. Then

s(p, a+ b) = s(p, a) + s(p− s(p, a)x>x, b)

The proof is in the full version [13] and uses the Exis-
tence and Uniqueness Theorem for ODEs.

4.2 Safety

For some loss functions such as squared loss, hinge loss
and quantile loss the residual w>t xt−yt tells us whether
the learner is overestimating or underestimating the
target. We call an update safe if

w>t+1xt − yt
w>t xt − yt

≥ 0

whenever (w>t xt−yt) 6= 0. Since the residual does not
change sign after a safe update, it leads to sane results
even when the learning rate is very aggressive.

Standard gradient descent is not safe, and importance
invariant step sizes always are. This should be obvious
for the hinge loss and the quantile loss because they
use the minimum necessary step. For squared loss:

w>t+1x− y
w>t x− y

=
w>t x+

y−w>
t x

x>x

(
1− e−hηx>x

)
x>x− y

w>t x− y

= e−hηx
>x > 0

hence the update is safe.

4.3 Fallback Regret Analysis

Here we provide a fallback analysis for the case ht = 1.
For simplicity we only show the results for squared loss
and ||xt|| = 1 for all t. However, this can be extended
to other losses as a Taylor expansion of each update
around η = 0 shows that to first order, it is equivalent
to online gradient descent. Hence we expect a regret
analysis similar to the one achieved by the underly-
ing learning rate schedule. A proof of the following
theorem is in the full version [13].

Theorem 3. If `(p, y) = (p−y)2 and ||xt|| = 1 for all
t then the importance invariant update attains a regret
of O(

√
T) when ηt = 1√

t
, and a regret of O(log(T))

when ηt = 1
t .

5 IMPLICIT IMPORTANCE
WEIGHT UPDATES

Implicit updates, first proposed in [14] and recently an-
alyzed in [15] provide an alternative way for handling
importance weights. An implicit update sets:

wt+1 = argmin
1

2
||w − wt||2 + λ`(w>x, y)

where λ is a free parameter similar to the learning rate
in interpretation. Finding the minimizing w generally
requires an iterative root-finding algorithm which is
perhaps an order of magnitude more expensive than
the closed form updates we derive above, although of-
ten easily amortized by the update itself. For squared
loss and hinge loss closed-form solutions have been
known. In the full version [13] we show how to derive
these as well as a closed form implicit update for quan-
tile loss which, to the best of our knowledge, is new.
To adapt implicit updates for importance weights we

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2 0.4 0.6 0.8 1

er
ro

r

fraction of labels queried

astrophysics

invariant
implicit

gradient multiplication
passive

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2 0.4 0.6 0.8 1

er
ro

r

fraction of labels queried

spam

invariant
implicit

gradient multiplication
passive

 0.05

 0.055

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0 0.2 0.4 0.6 0.8 1

er
ro

r

fraction of labels queried

rcv1

invariant
implicit

gradient multiplication
passive

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2 0.4 0.6 0.8 1

er
ro

r

fraction of labels queried

webspam

invariant
implicit

gradient multiplication
passive

Figure 1: Test error vs. fraction of queried labels for each dataset

simply use λt = ηht (or λt =
∫ ht
0
ηt(u)du as in sec-

tion 3.2) yielding an algorithm we call Imp2. Imp2

has qualitatively similar properties, satisfying Safety
and Regret, but not Invariance or a Closed form up-
date. In fact, Imp2 for hinge and quantile is precisely
equivalent to the importance invariant update.

6 EXPERIMENTS

We present empirical results on four text classification
datasets: ‘rcv1’ is a modified version [16] of RCV1
[18], ‘astro’ is from [12], ‘spam’ was created from the
TREC 2005 spam public corpora, and ‘webspam’ is
from the PASCAL large scale learning challenge. In all
experiments we did a single pass through the training
set and we report the error on the test set. We try all

learning rate schedules of the form ηt = µ
x>
t xt

(
τ
t+τ

)p
with (µ, τ, p) ∈ {2i}10i=0 × {10i}8i=0 × {0.5, 1}.

In the first set of experiments, large importance
weights will inevitably appear. In particular, we treat
all four datasets as active learning tasks and apply
the algorithm in [2]. At each timestep t this algorithm
computes a probability of querying the label of a point
based on a quantity Gt that measures the difference in

error rates between two hypotheses. The empirical risk
minimizing (ERM) hypothesis and an alternative hy-
pothesis that minimizes the empirical risk subject to
predicting a different label than the ERM hypothesis.
In our case the hypothesis we are learning with online
gradient descent acts as the ERM hypothesis. To get
a handle on Gt we estimate t · Gt by the importance
weight that the example would need to have in order
for an update with the alternative hypothesis’s pref-
ered label to cause the classification of the example to
become the alternative label. In the full version [13]
we derive the relevant importance weights for invari-
ant and implicit updates. Once we have an estimate
for Gt we can compute the query probability Pt and, if
we query the label, we add the example to our dataset
with importance weight 1/Pt to keep things unbiased.
The query probabilities turn out to be proportional
to the learning rate ηt and hence the algorithm will
generate importance weights of order O(η−1t) grow-
ing at least as fast as Ω(

√
t). Notice that importance

weights are used for two different tasks: estimating Gt
and preserving unbiasedness. Our linear model (with
a link function σ(p) = max(0,min(1, p))) is optimizing
squared loss. Details are in the full version [13].

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97

st
an

da
rd

invariant

astro - logistic loss

Figure 2: Scatter plot showing test accuracy with two
different updates for various datasets and losses

In Figure 1 we summarize the results of the active
learning experiments. Each combination of learning
rate schedule and setting of the parameter C0 in the
active learning algorithm (C0 ∈ {10−8, 10−7, . . . , 101})
is an experiment that can be represented in the graph
by a point whose x-coordinate is the fraction of labels
queried by the active learning algorithm and whose
y-coordinate is the test error of the learned hypothe-
sis. To summarize this set of points, the figures plot
part of its convex hull. The points on the convex
hull (sometimes called a Pareto frontier) are experi-
ments which represent optimal tradeoffs between gen-
eralization and label complexity, for some setting of
this tradeoff. When a curve stops sooner than the size
of the dataset it means that there were no experiments
in which using more queries gave better generalization.
We have also included the results from a typical good
run of a passive learner. The graphs show very con-
vincingly the value of having an update that handles
importance weights correctly. Doing so yields better
generalization and lower label complexity, than those
attainable by multiplying the gradient with the impor-
tance weight. In fact, table 2 which lists the ratio of
labels between passive and active learning to achieve
a given accuracy, shows that linearization can make
active learning need more labels than passive learning.

In the second set of experiments we used the same
datasets but treated all examples as having an impor-
tance weight of one. We compare standard online gra-
dient, vs. invariant and implicit updates on four loss
functions: squared, logistic, hinge and quantile(τ =
0.5) loss. The purpose of these experiments is to high-
light the robustness of the invariant updates: they
yield good generalization with little search for a good
learning rate schedule (also noted in [15] for implicit
updates). However, we begin with table 3 which shows
the test accuracy of the hypotheses learned by each up-

Table 2: Reduction in label complexity
Dataset astro rcv1 spam web

Desired Accuracy 0.963 0.943 0.967 0.986
Multiplication 0.45 1.59 1.28 0.54

Implicit 5.12 6.55 1.88 4.33
Invariant 7.56 6.55 2.13 1.82

Table 3: Test accuracies (grid search over schedules)
Dataset Loss Invariant Imp2 Standard

astro hinge 0.96626 Same 0.96694
logistic 0.96494 0.96485 0.96432
quantile 0.96629 Same 0.96703
squared 0.96463 0.96429 0.96469

rcv1 hinge 0.94872 Same 0.94838
logistic 0.94704 0.94682 0.94743
quantile 0.94846 Same 0.94859
squared 0.94769 0.94799 0.94790

spam hinge 0.97626 Same 0.97411
logistic 0.96676 0.97982 0.97603
quantile 0.97524 Same 0.97484
squared 0.97609 0.97614 0.97563

web hinge 0.98936 Same 0.99142
logistic 0.99094 0.99038 0.9923
quantile 0.98908 Same 0.99088
squared 0.98960 0.98966 0.99218

date after exhaustively searching over the learning rate
schedule. For astro and rcv1 the differences are very
small. The spam dataset is not TF-IDF processed,
and there we see a substantial improvement with ei-
ther new update. The results on the webspam dataset
were initially puzzling, but we have verified that this
is not a failure to optimize well; on the contrary the
proposed updates attain smaller progressive validation
loss [3] than standard online gradient descent on the
training data. Since progessive validation loss deviates
like a test set, this is evidence that the webspam test
set has a different distribution from the training set.1

To illustrate robustness we present the results in two
ways. First, in Figure 2 we show a scatterplot where
each point is a learning rate schedule and its coordi-
nates are the accuracy of the learned hypothesis with
and without the proposed updates. Scatter plots for
other loss functions and datasets look very similar and
are included in the full version [13]. The plot only
shows the cases when both learning rates achieve ac-
curacy above 0.9 and there are virtually no schedules
for which one update is superior by more than 0.1.
Among these cases the vast majority of experiments
are clustered under the y = x line and towards the

1The test set consists of the last 50000 examples of the
original training set. The real test labels are not public.

Table 4: Fraction of schedules with near optimal error
Loss Invariant Standard
hinge 0.337 0.039

logistic 0.109 0.050
quantile 0.361 0.053
squared 0.306 0.031

extreme values of the x-axis. Consequently, when us-
ing the importance invariant update many schedules
provide excellent performance.

To make this more clear we present a second way of
viewing this result. In table 4 we report the fraction
of learning rate schedules that achieve generalization
accuracy within 0.001 of the best learning rate sched-
ule, on average across all four datasets. For loss func-
tions for which there is a notion of overshooting and
can benefit from a safe update we observe an order
of magnitude improvement in the number of schedules
that converge to near optimal performance.

7 CONCLUSIONS

We tuned online gradient descent learning algorithms
for various losses so they efficiently incorporate im-
portance weight information, as is needed for appli-
cations in boosting, active learning, transfer learning,
and learning reductions. The essential lesson here is
that taking into account the curvature of the loss func-
tion can be done cheaply and provides great benefits
in dealing with importance weights.

Motivated by an invariance property we proposed new
updates that improve the standard update rule even
for the baseline importance weight 1 case, yielding bet-
ter prediction performance while simultaneously re-
ducing the value of learning rate parameter search.
Experiments not reported here show that it even im-
proves the performance of adaptive gradient descent
methods such as [4, 7]. Since this tuned update rule is
computationally “free” we expect wide use.

Acknowledgements

We thank Robert Kleinberg for help with the proof of
Theorem 2 and Alex Strehl for insightful discussions.

References

[1] A. Beygelzimer, S. Dasgupta, and J. Langford. Im-
portance weighted active learning. In ICML, 2009.

[2] A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang.
Agnostic Active Learning Without Constraints. NIPS,
2010.

[3] A. Blum, A. Kalai, and J. Langford. Beating the
holdout: Bounds for kfold and progressive cross-
validation. In COLT, 1999.

[4] H. Brendan McMahan and M. Streeter. Adaptive
Bound Optimization for Online Convex Optimization.
2010.

[5] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. Online passive-aggressive algorithms.
The Journal of Machine Learning Research, 7:551–
585, 2006.

[6] O. Dekel, S. Shalev-Shwartz, and Y. Singer. Smooth ε-
Insensitive Regression by Loss Symmetrization. Jour-
nal of Machine Learning Research, 6:711–741, 2005.

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive sub-
gradient methods for online learning and stochastic
optimization. 2010.

[8] J. Duchi and Y. Singer. Efficient online and batch
learning using forward backward splitting. The Jour-
nal of Machine Learning Research, 10:2899–2934,
2009.

[9] Y. Freund and R. Schapire. A decision-theoretic gen-
eralization of on-line learning and an application to
boosting. In Computational learning theory. Springer,
1995.

[10] M. Herbster. Learning additive models online with
fast evaluating kernels. In Computational Learning
Theory. Springer, 2001.

[11] J. Huang, A.J. Smola, A. Gretton, K.M. Borgwardt,
and B. Scholkopf. Correcting sample selection bias
by unlabeled data. Advances in neural information
processing systems, 19, 2007.

[12] T. Joachims. Training linear SVMs in linear time. In
Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining.
ACM, 2006.

[13] Nikos Karampatziakis and John Langford. Im-
portance weight aware gradient updates. CoRR,
abs/1011.1576, 2010.

[14] J. Kivinen and M.K. Warmuth. Exponentiated Gra-
dient versus Gradient Descent for Linear Predictors.
Informatics and Computation, 132:1–64, 1997.

[15] B. Kulis and P. Bartlett. Implicit Online Learning. In
ICML 2010, 2010.

[16] J. Langford, L. Li, and A. Strehl. Vow-
pal wabbit online learning project, 2007.
http://hunch.net/?p=309.

[17] J. Langford, L. Li, and T. Zhang. Sparse online learn-
ing via truncated gradient. The Journal of Machine
Learning Research, 10:777–801, 2009.

[18] D.D. Lewis, Y. Yang, T.G. Rose, and F. Li. Rcv1:
A new benchmark collection for text categorization
research. The Journal of Machine Learning Research,
5:361–397, 2004.

[19] Robert E. Schapire. The strength of weak learnability.
Machine Learning, 5:197–227, 1990.

[20] B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive
learning by cost-proportionate example weighting. In
ICDM. IEEE, 2003.

