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Online Learning Some Experiments with Local Updates

» Learner gets the next example x¢, makes a prediction py, Itaining & Combining Sharding & Training
receives actual label y¢, suffers loss £(pt, yt), updates itself g T . — 1 g 1 —
» Simple and fast predictions and updates > o8| e T Lr " ]
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> Online gradient descent asymptotically attains optimal regret £ 027 squaredloss —— 11 2 02 F-squared foss —+— -
» Online learning scales well . . . =0 T 2 4 8 = ° T 2 4

shard count shard count

Improvement due to nonlinearity o

Parallel Online Learning
»...but it's a sequential algorithm

» What if examples arrive very fast? Global Updates
» What if we want to train on huge datasets? » Unfortunately, local updates can also hurt performance.

» We investigate ways of distributing predictions, and updates »Improved representatign POWET by global training.
while minimizing communication. » Slightly more communication, some delay.

» Delayed global training
» Each node predicts but doesn’t immediately train on y.

Delay » Later it receives global prediction y and trains as if it predicted that.
~ Parallelizing online learning leads to delay problems. >DTer!a3t/ed baclb<p:rc])p " etk
L . . . » The tree can be thought as a neural networ
» This Is ex.acerbated In a setting with temporally correlated or . Lockstep backpropagation would be slow
adV.ersa”a.l examples. » Each node trains locally, sends prediction after training.
» We investigate no delay and bounded delay schemes. » Later it receives global gradient from parent uses chain rule as in

backprop.
» Delay fixed (helps stability, development and debugging)

Tree Architectures

Experiments with Global (and Local) Updates
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Each node has f + 1 weights where f is the node’s fan-in.
Bottom nodes use subsets of raw features. Others use
predictions of their children.
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» Computes its prediction p;; based on its weights and inputs 091 | X ; : 6 X ; ; : 6
»Sends y; i = o(pj;) to its parent? Pass number Pass number
» Updates its weights based on V{(p;, y)
No delay | | Vowpal Wabbit
centralized linear model. http://hunch.net/~vw
9The nonlinearity introduced by o has an interesting effect : : :
d d ° Fork it from http://github.com/JohnLangford/vowpal wabbit
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