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Abstract
We address the problem of learning in an on-
line setting where the learner repeatedly ob-
serves features x, selects among K actions,
and receives reward r for the action taken.
We provide the first efficient algorithm with
an optimal regret. Our algorithm uses an or-
acle which returns an optimal policy given
rewards for all actions for each x. The al-
gorithm has running time polylog(N), where
N is the number of policies that we compete
with. This is exponentially faster than all
previous algorithms that achieve optimal re-
gret in this setting. Our formulation also en-
ables us to create an algorithm with regret
that is additive rather than multiplicative in
feedback delay as in all previous work.

1. Introduction

The contextual bandit setting consists of the following
loop repeated indefinitely: 1) The world presents con-
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text as features x. 2) The learner chooses an action a.
3) The world presents a reward r for the action.

The key difference between the contextual bandit set-
ting and standard supervised learning is that only the
reward of the chosen action is revealed. The contex-
tual bandit setting essentially captures the difficulty of
exploration while avoiding the difficulty of credit as-
signment as in general reinforcement learning settings.

The contextual bandit setting is a half-way point be-
tween standard supervised learning and full-scale rein-
forcement learning. Many natural settings satisfy this
half-way point, motivating the investigation of con-
textual bandit learning. For example, the problem
of choosing interesting news articles or ads for users
by internet companies can be naturally modeled as
a contextual bandit setting. In the medical domain
where discrete treatments are tested before approval,
the process of deciding which patients are eligible for
a treatment takes context into account.

In the i.i.d. setting, the world draws (x,~r) from some
unknown distribution D, revealing x in Step 1 and the
reward r(a) of the chosen action a in Step 3. Given a
set of policies Π = {π : X → A}, the goal is to create
an algorithm for Step 2 which competes with the set
of policies. We compare the algorithm’s cumulative
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reward to the expected cumulative reward of the best
policy in the set.

All existing algorithms for this setting either achieve a
suboptimal regret (Langford & Zhang, 2007) or require
computation linear in the number of policies (Auer
et al., 2002b; Beygelzimer et al., 2010). Herein, we
give the first optimization-based algorithm for the con-
textual bandit setting. Given an oracle optimizer for
supervised cost-sensitive learning (Beygelzimer et al.,
2009), our algorithm runs in time only polylog(N)
while achieving regret O(

√
TK lnN). We achieve this

efficiency in a modular way, so any improvement in
cost-sensitive learning immediately applies here.

All previous optimal approaches are measure based—
they work by updating a measure over policies, which
is linear in the number of policies. In contrast, regret
guarantees scale only logarithmically in the number
of policies. If not for this computational bottleneck,
these regret guarantees imply that we could dramat-
ically increase performance in contextual bandit set-
tings using more expressive policies. We overcome the
computational bottleneck using an optimization-based
algorithm which works by choosing optimal policies
rather than keeping track of a measure over policies.

1.1. Previous Work and Motivation

In a more difficult version of contextual bandits, an ad-
versary chooses (x,~r) given knowledge of the learning
algorithm (but not any random numbers). All known
regret-optimal solutions in this setting are variants the
EXP4 algorithm (Auer et al., 2002b). EXP4 achieves
the same regret rate as our algorithm: O

(√
KT lnN

)
,

where T is the number of time steps, K is the number
of available actions, and N is the number of policies.

Why not use EXP4 in the i.i.d. setting? For exam-
ple, it is known that the algorithm can be modified
to succeed with high probability (Beygelzimer et al.,
2010), and also for VC classes when the adversary is
constrained to i.i.d. sampling. There are two main
benefits one may hope to gain from an i.i.d. argument.

The first is computational tractability. Even when
the reward vector is fully known, regrets scale as
O
(√

lnN
)
while computation scales as O(N) in gen-

eral. One attempt to get around this is the follow-the-
perturbed-leader algorithm (Kalai & Vempala, 2005)
which provides a computationally tractable solution in
certain special-case structures. This algorithm has no
mechanism for efficient application to arbitrary policy
spaces, even given an optimization oracle over the poli-
cies. An efficient optimization oracle has been shown

effective in transductive settings (Kakade & Kalai,
2005). Furthermore, the regret achieved there is sub-
stantially worse than for EXP4.

The second main benefit is improved rates. When the
world is i.i..d., it’s possible to achieve substantially
lower regrets than with algorithms for the adversarial
setting. For example, in supervised learning, regrets
scaling as O(log(T )) with a problem dependent con-
stant are possible. When the feedback is delayed by τ
rounds, lower bounds imply that the regret in the ad-
versarial setting increases by a multiplicative

√
τ while

in the i.i.d. setting, an additive regret of τ is possible.

In the i.i.d. setting, the previous-best were ε-greedy
and epoch greedy algorithms (Langford & Zhang,
2007) whose worst-case regret scales as O(T 2/3).

There have also been many special-case analyses.
For example, the context-free setting is well under-
stood (Lai & Robbins, 1985; Auer et al., 2002a; Even-
Dar et al., 2006). Similarly when rewards are linear in
the features (Auer, 2002) or Gaussian (Srinivas et al.,
2010), good algorithms are known.

1.2. What We Prove

In Section 3 we state the Policy_Elimination algo-
rithm, and prove the following regret bound for it.
Theorem 4. For all distributions D over K actions
and features, for all sets of N policies Π, with probabil-
ity at least 1− δ, the regret of the Policy_Elimination
algorithm (Algorithm 1) over T rounds is at most

16
√

2TK ln(4T 2N/δ).

This result forms the simplest method we have of ex-
hibiting the new analysis.

The main new element of this algorithm is a mecha-
nism for constructing a distribution over actions via
a distribution over policies which achieves both small
expected regret and small variance in the estimated
value of every policy. The key insight boils down to a
game between an adversary and the algorithm.

The Policy_Elimination algorithm is computationally
intractable and also requires the learner to have knowl-
edge of the unlabeled data distribution. We show how
to address these issues in Section 4 using an algorithm,
Randomized_UCB. Namely, we prove the following.
Theorem 5. For all distributions D over K actions
and features, for all sets of N policies Π, with proba-
bility at least 1−δ, the regret of the Randomized UCB
algorithm (Algorithm 2) over T rounds is at most

O
(√

TK log (TN/δ) +K log(NK/δ)
)
.
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Randomized_UCB’s analysis is substantially more
complex, with a key subroutine being an application
of the ellipsoid algorithm on an optimization oracle
(described in Section 5). The Randomized_UCB al-
gorithm also works with its own existing history of un-
labeled data points and, unlike Policy_Elimination,
does not have access to the unlabeled data distribu-
tion. Modifying the proof in this manner requires a
covering argument over the distributions over policies
which uses the probabilistic method. The net result is
an algorithm with a similar analysis that has only a
logarithmic dependence on the number of policies.
Theorem 11. In each time step t, the
Randomized UCB algorithm makes at most
O(poly(t,K, log(1/δ), logN)) calls to an optimization
oracle, and requires additional O(poly(t,K, logN))
processing time.

Another key advantage of this style of analysis is the
ability to prove tighter results than for adversarial set-
tings. We provide one example of this for the common
setting where reward feedback is delayed by τ rounds
in Section 6. Here, a straightforward modification of
the Policy_Elimination algorithm yields a regret only
τ larger than in the delay-free setting, namely:
Theorem 12. For all distributions D over K actions
and features, for all sets of N policies Π, and all delay
factors τ , with probability at least 1− δ, the regret of
the Delayed Policy Elimination algorithm is at most

16
√

2K ln(4T 2N/δ)
(
τ +
√
T
)
.

2. The Setting and Definitions

2.1. The Setting

Let A be the set of K actions, X be the domain of
contexts xt, let D be any joint distribution on (x,~r).
DX denotes the marginal distribution of D over X

We denote Π to be a finite set of policies {π : X → A},
as in each policy π, predicts according to π(xt), where
xt is the context available in round t. N denotes |Π|.
Let ~rt ∈ [0, 1]K be the vector of rewards, where rt(a)
is the reward of action a on round t.

In the i.i.d. setting, on each round t = 1 . . . T , the
world chooses (xt, ~rt) i.i.d. according to D and reveals
xt to the learner. Then the learner, having access to
Π, chooses action at ∈ {1, . . . ,K}. Finally, the world
reveals reward rt(at) (which we call rt for short), and
this game proceeds to the next round. The number of
rounds T is not known in advance to the learner.

The goal of the learner is to minimize its regret to Π.
This notion is defined in Equation 2.1.

2.2. Expected and Empirical Rewards

Let the expected instantaneous reward of a policy
π ∈ Π be denoted by

ηD(π)
.
= E

(x,~r)∼D
[r(π(x))].

The best policy πmax ∈ Π maximizes ηD(π):

πmax
.
= argmax

π∈Π
ηD(π).

We can define ht to be the history at time t that the
learner has seen. Specifically

ht =
⋃

t′=1...t

(xt′ , at′ , rt′(at′), p),

where p is the a priori probability of the algorithm
having taken its chosen action at at time t. If we want
to choose x u.a.r. from the x’s in history h, we denote
this by x ∼ h.

We can also define the empirical (importance-
weighted) value of a policy as:

ηt(π)
.
=

1

t

∑
(x,a,r,p)∈ht

rI(π(x) = a)

p
.

We denote πt to be the best policy measured at time t

πt
.
= argmax

π∈Π
ηt(π).

2.3. Regret

Our is to obtain a learner that has small regret to the
expected performance of πmax over T rounds, which is

T∑
t=1

(ηD(πmax)− rt) . (2.1)

We say that the regret of the learner over T rounds is
bounded by ε with probability at least 1− δ, if

Pr

[
T∑
t=1

(ηD(πmax)− rt(at)) ≤ ε

]
≥ 1− δ.

The probability is taken w.r.t. (xt, ~rt) ∼ D, as well as
any internal randomness used by the learner.

We can also define notions of regret for policies π. Let

∆D(π)
.
= ηD(πmax)− ηD(π),

∆t(π)
.
= ηt(πt)− ηt(π).

Our algorithms work by choosing distributions over
policies, which in turn then induce distributions over
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actions. For any distribution P over policies Π, let
WP (x, a) denote the induced conditional distribution
over actions a given the context x:

WP (x, a)
.
=

∑
π∈Π:π(x)=a

P (π). (2.2)

In general, we shall use W,W ′ and Z as probability
distributions over the actions A, namely

{W,W ′, Z : X ×A→ p(A)}.

W ′ can be thought of as a dampened version of W
with a minimum probability of µ, s.t. ∀x ∈ X, a ∈ A

W ′(x, a) = (1−Kµ)W (x, a) + µ.

We can now define notions of regret also for probability
distributions W (and W ′, Z, etc.). Let

∆D(W )
.
= ηD(πmax)− ηD(W ),

∆t(W )
.
= ηt(πt)− ηt(W ).

with
ηD(W )

.
= E

(x,~r)∼D
[~r ·W (x)],

ηt(W )
.
=

1

t

∑
(x,a,r,p)∈ht

rW (x, a)

p
.

3. Policy Elimination

We present Algorithm 1, Policy_Elimination, which
demonstrates the basic ideas behind our approach.

The insight which allows this algorithm to work is
Step 1, which finds a distribution over policies which
induces low variance in the estimates of the value of
all policies. We prove that this is always possible using
a minimax theorem. How to find this distribution is
discussed in Section 5.

Step 2 then projects this distribution over actions, to-
gether with the uniform distribution mixed in. Finally,
Step 5 eliminates the policies that have been deter-
mined to be w.h.p. suboptimal.

Algorithm Analysis

The following minimax theorem considers randomized
policies, i.e. maps W : X × A → [0, 1] where W (x, a)
is the probability of choosing action a on a context x.
Lemma 1. Let C be a compact and convex set of ran-
domized policies. Let µ ∈ (0, 1/K] and for any W ∈ C,
W ′(x, a)

.
= (1−Kµ)W (x, a) + µ. Then for all distri-

butions D,

min
W∈C

max
Z∈C

E
x∼DX

E
a∼Z(x,·)

[
1

W ′(x, a)

]
≤ K

1−Kµ
.

Algorithm 1 Policy_Elimination(Π,δ,K,DX)
Let Π0 = Π and history h0 = ∅

Define: δt
.
= δ / 4Nt2

Define: bt
.
= 2

√
2K ln(1/δt)

t

Define: µt
.
= min

{
1

2K
,

√
ln(1/δt)

2Kt

}
For each timestep t = 1 . . . T , observe xt and do:

1. Choose distribution Pt over Πt−1 s.t. ∀ π ∈ Πt−1:

E
x∼DX

[
1

(1−Kµt)WPt(x, π(x)) + µt

]
≤ 2K

2. LetW ′t (a) = (1−Kµt)WPt
(xt, a)+µt for all a ∈ A

3. Choose at ∼W ′t

4. Observe reward rt

5. Let Πt =
{
π ∈ Πt−1 : ηt(π) ≥ max

π′∈Πt−1

ηt(π
′)−2bt

}
6. Let ht = ht−1 ∪ (xt, at, rt,W

′
t (at))

Proof. Let f(W,Z)
.
= Ex∼DX Ea∼Z(x,·)[1/W

′(x, a)]
denote the inner expression of the minimax problem.
Note that f(W,Z) is: everywhere defined, linear in Z,
and convex inW . Hence, by Sion’s Minimax Theorem,

min
W∈C

max
Z∈C

f(W,Z) = max
Z∈C

min
W∈C

f(W,Z) .

The right-hand side can be further upper-bounded by
maxZ∈C f(Z,Z), which is upper-bounded by

f(Z,Z) = E
x∼DX

∑
a∈A

[
Z(x, a)

Z ′(x, a)

]
≤ E
x∼DX

∑
a∈A

[
Z(x, a)

(1−Kµ)Z(x, a)

]
=

K

1−Kµ

Corollary 2. The set of distributions satisfying con-
straints of Step 1 is non-empty.

Lemma 1 and Corollary 2 establish existence of a dis-
tribution Pt in Step 1. As we will see below, the con-
straints in Step 1 ensure low variance of the policy
value estimator ηh(π) for all π ∈ Πt−1. The small
variance is in turn used to ensure accuracy of policy
elimination in Step 5 as quantified as follows:
Lemma 3. W.p. at least 1−δ, for all t: 1) πmax ∈ Πt

and 2) ηD(πmax)− ηD(π) ≤ 4bt for all π ∈ Πt



Efficient Optimal Learning for Contextual Bandits

Proof. We will show that for any policy π ∈ Πt−1, the
probability that ηt(π) deviates from ηD(π) by more
that bt is at most δt. Taking the union bound over all
policies and all time steps we find that w.p. ≥ 1− δ,

|ηt(π)− ηD(π)| ≤ bt (3.1)

for all t and all π ∈ Πt−1. Then by triangle inequality
the lemma follows.

It remains to show Eq. (3.1). We fix the policy π ∈ Π
time t, and show that the deviation bound is violated
with probability at most δt. Our argument rests on
Freedman’s inequality. Let

yt =
rtI(π(xt) = at)

W ′t (at)
.

Let Et denote the conditional expectation E[ · |ht−1].
To use Freedman’s inequality, we need to bound the
range of yt and its conditional second moment Et[y2

t ].
Since rt ∈ [0, 1] and W ′t (at) ≥ µt, we have 0 ≤ yt ≤
1/µt

.
= Rt . Next,

Et[y2
t ] = E

(xt,~rt)∼D
E

at∼W ′t

[
y2
t

]
= E

(xt,~rt)∼D
E

at∼W ′t

[
r2
t I(π(xt) = at)

W ′t (at)
2

]
≤ E

(xt,~rt)∼D

[
W ′t (π(xt))

W ′t (π(xt))2

]
≤ 2K . (3.2)

Eq. (3.2) follows from rt being bounded and the con-
straints in Step 1. Hence,

∑t
t′=1 Et′ [y2

t′ ] ≤ 2Kt
.
= Vt .

Since K ≥ 2 and (ln t)/t is decreasing for t ≥ 3, we
obtain that µt is non-decreasing. Let t0 be the first
t such that µt < 1/2K. Note that bt ≥ 4Kµt, so for
t < t0, bt ≥ 2. and Πt = Π. Hence, the deviation
bound holds for t < t0.

Let t ≥ t0. For t′ ≤ t, by the monotonicity of µt

Rt′ = 1/µt′ ≤ 1/µt =

√
2Kt

ln(1/δt)
=

√
Vt

ln(1/δt)
.

We can now apply a version of Freedman’s inequal-
ity (Beygelzimer et al., 2010, Theorem 1),

Pr [|ηt(π)− ηD(π)| ≥ bt] ≤ δt .

The union bound over π and t yields Eq. (3.1).

This immediately implies the following regret bound
T∑
t=1

(ηD(πmax)− rt) ≤ 8

√
2K ln

4NT 2

δ

T∑
t=1

1√
t

≤ 16

√
2TK ln

4T 2N

δ
(3.3)

and gives us the following theorem.

Theorem 4. For all distributions D over K actions
and features, for all sets of N policies Π, with probabil-
ity at least 1− δ, the regret of the Policy_Elimination
algorithm (Algorithm 1) over T rounds is at most

16
√

2TK ln(4T 2N/δ).

4. The Randomized UCB Algorithm

Policy Elimination is the simplest exhibition of the
minimax argument, but it has some drawbacks:

1. The algorithm keeps explicit track of all the good
policies and is thereby computationally expensive.

2. If the optimal policy is mistakenly eliminated by
chance, the algorithm can never recover.

3. The algorithm requires perfect knowledge of the
distribution DX over contexts.

These difficulties are addressed by the Randomized
UCB (RUCB) algorithm. The idea here is to have
a UCB style algorithm where instead of choosing the
highest UCB, we randomize over choices according to
the value of their empirical performance. The algo-
rithm has the following properties:

1. The optimization required by the algorithm al-
ways considers the full set of policies (i.e., instead
of explicitly tracking of the set of good policies),
and thus it can be efficiently implemented using
an ERM-type oracle. We discuss this in Section 5.

2. Suboptimal policies are implicitly used with de-
creasing frequency by using a non-uniform vari-
ance constraint that depends on a policy’s esti-
mated regret. A consequence of this is a bound on
the value of the optimization, stated in Lemma 6.

3. The history of previously seen contexts is used as a
surrogate for the distribution over contexts in the
optimization. We discuss this in Subsection 4.2.

Randomized UCB has the following guarantee.

Theorem 5. For all distributions D over K actions
and features, for all sets of N policies Π, with proba-
bility at least 1− δ, the regret of the Randomized UCB
algorithm (Algorithm 2) over T rounds is at most

O
(√

TK log (TN/δ) +K log(NK/δ)
)
.
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Algorithm 2 RUCB(Π,δ,K)
Let h0

.
= ∅ be the initial history.

Define the following quantities:

Ct
.
= 2 log

(
Nt

δ

)
and µt

.
= min

{
1

2K
,

√
Ct

2Kt

}
.

For each timestep t = 1 . . . T , observe xt and do:

1. Let Pt be a distribution over Π that approxi-
mately solves the optimization problem

min
P

∑
π∈Π

P (π)∆t−1(π) s.t. for all distr. Q over Π :

E
π∼Q

[
1

t− 1

t−1∑
i=1

1

(1−Kµt)WP (xi, π(xi)) + µt

]

≤ max

{
4K,

(t− 1)∆t−1(WQ)2

180Ct−1

}
(4.1)

so that the objective value at Pt is within εopt,t =

O(
√
KCt/t) of the optimal value, and so that

each constraint is satisfied with slack ≤ K.

2. ∀a ∈ A, let W ′t be the following distribution on A

W ′t (a)
.
= (1−Kµt)WPt(xt, a) + µt

3. Choose at ∼W ′t .

4. Observe reward rt.

5. Let ht
.
= ht−1 ∪ (x, at, rt,W

′
t (at)).

4.1. Overview of the Analysis

Central to the analysis is the following lemma that
bounds the value of the optimization in each round.
Lemma 6. If OPTt is the value of the optimization
problem (4.1) in round t, then

OPTt ≤ O
(√

K log(Nt/δ)/t
)
.

This lemma implies that the algorithm is always able
to select a distribution over the policies that focuses
mostly on the policies with low estimated regret.
Moreover, the variance constraints ensure that good
policies never appear too bad, and that only bad poli-
cies are allowed to incur high variance in their reward
estimates. Hence, minimizing the objective in (4.1) is
an effective surrogate for minimizing regret.

The analysis mostly consists of analyzing the variance
of the reward estimates ηt(π), and showing how they

relate to their actual expected rewards ηD(π).

4.2. Empirical Variance Estimates

For a distribution P over policies Π and a particular
policy π ∈ Π, define

VP,π,t = E
x∼DX

[
1

(1−Kµt)WP (x, π(x)) + µt

]
V̂P,π,t =

1

t− 1

t−1∑
i=1

1

(1−Kµt)WP (xi, π(xi)) + µt
.

The first quantity VPπ,t bounds the variance incurred
by an importance-weighted estimate of reward in
round t using the action distribution induced by P ,
and the second quantity V̂P,π,t is an empirical estimate
of VP,π,t using the finite sample {x1, . . . , xt−1} ⊆ X
drawn from DX . We show that for all distributions P
and all π ∈ Π, V̂P,π,t is close to VP,π,t w.h.p.

Theorem 7. For any ε ∈ (0, 1), w.p. ≥ 1− δ,

VP,π,t ≤ (1 + ε) · V̂P,π,t + 7500/ε3 ·K

for all distributions P over Π, all π ∈ Π, and all t ≥
16K log(8KN/δ).

5. Using an Oracle Directly

Assume that we have access to an arg-max oracle,
which when supplied with a set of examples consist-
ing of contexts and rewards, returns the policy that
maximizes the expected reward.

Definition 1. There is an algorithm, AMO, which
when given any history h = (X × Rk)∗, computes

AMO(h) := arg max
π∈Π

E
(x,~r)∼h

[r(π(x))].

(x,~r) ∼ h is used to denote a u.a.r. draw from h.

We now show that there is an algorithm running in
polynomial time independent1 of the number of poli-
cies, which make queries to AMO to compute a distri-
bution over policies suitable for the optimization step
of Algorithm 2.

This algorithm relies on the ellipsoid method. The el-
lipsoid method is a general technique for solving con-
vex programs equipped with a separation oracle. A
separation oracle is defined as follows:

Definition 2. Let S be a convex set in Rn. A sepa-
ration oracle for S is an algorithm that, given a point

1Or rather dependent only on logN , the representation
complexity of a policy.
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x ∈ Rn, either declares correctly that x ∈ S, or pro-
duces a hyperplane H such that x and S are on oppo-
site sides of H.

For a point x ∈ Rn and r ≥ 0, B(x, r) denotes the `2
ball of radius r centered at x.

Lemma 8. Suppose we are required to decide whether
a convex set S ⊆ Rn is empty. Assume that we are
given a separation oracle for S. Assume further that
we are given two numbers R and r, s.t. S ∈ B(0, R)
and if S is non-empty, then there is a point x? s.t.
S ⊇ B(x?, r). Then there is an iterative algorithm
with at most O(n2 log(Rr )) iterations, each involving
one call to the separation oracle and additional O(n2)
processing time, that decides if S is empty or not.

We now write a convex program whose solution is the
required distribution, and show how to solve it using
the ellipsoid method by giving a separation oracle for
its feasible set using AMO.

Fix a time period t. Let Xt−1 be the set of all con-
texts seen so far, i.e. Xt−1 = {x1, x2, . . . , xt−1}. We
embed all policies π ∈ Π in R(t−1)K , with coordinates
identified with (x, a) ∈ Xt−1 × A. Abusing notation,
a policy π is represented by the vector π with coordi-
nate π(x, a) = 1 if π(x) = a and 0 otherwise. Let C be
the convex hull of all policy vectors π. Recall that a
distribution P over policies corresponds to a point in-
side C. Also define βt = t−1

180Ct−1
. In the following, we

use the notation x ∼ ht−1 to denote a context drawn
uniformly at random from Xt−1.

Consider the convex program to minimize s s.t.

∆t−1(W ) ≤ s (5.1)
W ∈ C (5.2)

∀Z ∈ C : E
x∼ht−1

[∑
a

Z(x, a)

W ′(x, a)

]
≤ max{4K,βt∆t−1(Z)2}, (5.3)

It is not difficult to see that this program is equivalent
to the RUCB optimization problem (4.1), up to finding
an explicit distribution over policies which corresponds
to the optimal solution.

For a fixed value of s, the constraints (5.1, 5.2, 5.3)
define a feasibility problem, denoted by A.

We now give a sketch of how we construct a separa-
tion oracle for the feasible region of A. The details
of the algorithm are a bit complicated due to the fact
that we need to ensure that the feasible region, when
non-empty, has a non-negligible volume (recall the re-
quirements of Lemma 8). This necessitates having a

small error in satisfying the constraints of the program.
Modulo these details, the construction of the separa-
tion oracle essentially implies that we can solve A.

Before giving the construction of the separation ora-
cle, we first show that AMO allows us to do linear
optimization over C efficiently:

Lemma 9. Given a vector w ∈ R(t−1)K , we can com-
pute arg maxZ∈C w ·Z using one invocation of AMO.

The following lemma explains how to get a separating
hyperplane for violations of convex constraints:

Lemma 10. For x ∈ Rn, let f(x) be a convex function
of x, and define the convex set K by K = {x : f(x) ≤
0}. Suppose we have a point y such that f(y) > 0. Let
∇f(y) be a subgradient of f at y. Then the hyperplane
f(y) +∇f(y) · (x− y) = 0 separates y from K.

Now given a candidate point W , a separation oracle
can be constructed as follows. We check whether W
satisfies the constraints of A. If any constraint is vi-
olated, then we find a hyperplane separating W from
all points satisfying the constraint.

1. First, for constraint (5.1), note that ηt−1(W ) is
linear inW , and so we can compute maxπ ηt−1(π)
via AMO as in Lemma 9. We can then compute
ηt−1(W ) and check if the constraint is satisfied. If
not, then the constraint, being linear, automati-
cally yields a separating hyperplane.

2. Next, we consider constraint (5.2). To check if
W ∈ C, we use the perceptron algorithm. We
shift the origin to W , and run perceptron with
all points π ∈ Π as positive examples. Percep-
tron aims to find a hyperplane putting all policies
π ∈ Π on one side. In each iteration, we have a
candidate hyperplane, and then if there is a pol-
icy π that is on the wrong side of the hyperplane,
we can find it by running a linear optimization
over C in the negative normal vector direction as
in Lemma 9. IfW /∈ C, then in a bounded number
of iterations we obtain a separating hyperplane.

3. Finally, we consider constraint (5.3). We
first rewrite ηt−1(W ) as ηt−1(W ) = w · W ,
where w is a vector defined as w(x, a) =

1
t−1

∑
(x′,a′,r,p)∈ht: x′=x,a′=a

r
p . Thus, ∆t−1(Z) =

v−w ·Z, where v = maxπ′ ηt−1(π′) = maxπ′ w ·π′
which can be computed by using AMO once.

Next, using the candidate point W , compute the
vector u defined as u(x, a) = nx/t

W ′(x,a) , where nx
is the number of times x appears in ht−1, so that

Ex∼ht−1

[∑
a
Z(x,a)
W ′(x,a)

]
= u · Z. Now, the problem
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reduces to finding a policy Z ∈ C which violates
the constraint: u · Z ≤ max{4K,βt(w · Z − v)2}.
Define f(Z) = max{4K,βt(w·Z−v)2}−u·Z. Note
that f is convex function of Z. Finding a point Z
that violates the above constraint is equivalent to
solving the following (convex) program:

f(Z) ≤ 0 (5.4)
Z ∈ C (5.5)

To do this, we again apply the ellipsoid method.
For this, we need a separation oracle for the pro-
gram. A separation oracle for the constraints (5.5)
can be constructed as in Step 2 above. For the
constraints (5.4), if the candidate solution Z has
f(Z) > 0, then we can construct a separating hy-
perplane as in Lemma 10. Thus we can solve the
program by the ellipsoid method.

Suppose that after solving the program, we get
a point Z ∈ C such that f(Z) ≤ 0, i.e. W vio-
lates the constraint (5.3) for Z. Then since con-
straint (5.3) is convex in W , we can construct a
separating hyperplane as in Lemma 10.

Working out the details carefully gives the following.
Theorem 11. There is an iterative algorithm with at
most O(t5K4 log2( tKδ )) iterations, each involving one
call to AMO and O(t2K2) processing time, that either
outputs an explicit distribution P over policies in Π
such that WP satisfies

∀Z ∈ C :

E
x∼ht−1

[∑
a

Z(x, a)

W ′P (x, a)

]
≤ max{4K,βt∆t−1(Z)2}+ 5ε

∆t−1(W ) ≤ s+ 2γ,

where ε = 8δ
µ2
t
and γ = δ

µt
, or declares correctly that A

is infeasible.

6. The Delayed Feedback Setting

In a delayed feedback setting, we observe rewards with
a τ step delay according to:

1. The world presents features xt.

2. The learner chooses an action at ∈ {1, ...,K}.

3. The world presents a reward rt−τ for the action
at−τ given the features xt−τ .

It is not difficult to suitably modify Algorithm 1 to
incorporate the delay factor τ by updating the history

and policy sets with the delay. We call this the Delayed
Policy Elimination algorithm. The modification to the
proof is minor and yields the following.
Theorem 12. For all distributions D over K actions
and features, for all sets of N policies Π, and all delay
factors τ , with probability at least 1 − δ, the regret of
the Delayed Policy Elimination algorithm is at most

16
√

2K ln(4T 2N/δ)
(
τ +
√
T
)
.
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