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We prove novel algorithmic guarantees for several online problems in the smoothed analysis model. In this

model, at each time step an adversary chooses an input distribution with density function bounded above

pointwise by
1

𝜎 times that of the uniform distribution; nature then samples an input from this distribution. Here,

𝜎 is a parameter that interpolates between the extremes of worst-case and average case analysis. Crucially, our

results hold for adaptive adversaries that can base their choice of an input distribution on the decisions of the

algorithm and the realizations of the inputs in the previous time steps. An adaptive adversary can nontrivially

correlate inputs at different time steps with each other and with the algorithm’s current state; this appears to

rule out the standard proof approaches in smoothed analysis.

This paper presents a general technique for proving smoothed algorithmic guarantees against adaptive

adversaries, in effect reducing the setting of an adaptive adversary to the much simpler case of an oblivious

adversary (i.e., an adversary that commits in advance to the entire sequence of input distributions). We apply

this technique to prove strong smoothed guarantees for three different problems:

(1) Online learning: We consider the online prediction problem, where instances are generated from

an adaptive sequence of 𝜎-smooth distributions and the hypothesis class has VC dimension 𝑑 . We

bound the regret by 𝑂̃
(√
𝑇𝑑 ln(1/𝜎) +𝑑 ln(𝑇 /𝜎)

)
and provide a near-matching lower bound. Our result

shows that under smoothed analysis, learnability against adaptive adversaries is characterized by the

finiteness of the VC dimension. This is as opposed to the worst-case analysis, where online learnability

is characterized by Littlestone dimension (which is infinite even in the extremely restricted case of

one-dimensional threshold functions). Our results fully answer an open question of Rakhlin et al. [64].

(2) Online discrepancy minimization: We consider the setting of the online Komlós problem, where the

input is generated from an adaptive sequence of 𝜎-smooth and isotropic distributions on the ℓ2 unit ball.

We bound the ℓ∞ norm of the discrepancy vector by 𝑂̃
(
ln
2
(
𝑛𝑇
𝜎

) )
. This is as opposed to the worst-case

analysis, where the tight discrepancy bound is Θ(
√
𝑇 /𝑛). We show such polylog(𝑛𝑇 /𝜎) discrepancy

guarantees are not achievable for non-isotropic 𝜎-smooth distributions.

(3) Dispersion in online optimization: We consider online optimization with piecewise Lipschitz functions

where functions with ℓ discontinuities are chosen by a smoothed adaptive adversary and show that the

resulting sequence is

(
𝜎/

√
𝑇 ℓ, 𝑂̃

(√
𝑇 ℓ

) )
-dispersed. That is, every ball of radius 𝜎/

√
𝑇 ℓ is split by 𝑂̃

(√
𝑇 ℓ

)
of the partitions made by these functions. This result matches the dispersion parameters of Balcan

et al. [13] for oblivious smooth adversaries, up to logarithmic factors. On the other hand, worst-case

sequences are trivially (0,𝑇 )-dispersed.1

CCS Concepts: • Theory of computation→Online learning algorithms;Regret bounds;Online learn-
ing theory.
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1 INTRODUCTION
Smoothed analysis. Kryptonite for worst-case analysis comes in the form of algorithms for which

almost all inputs are “easy” and yet rare and pathological inputs are “hard.” Perhaps the most

famous example is the simplex method for linear programming, which empirically always runs

quickly but requires exponential time in the worst case (for all of the common pivot rules) [56].

Equally misleading is the worst-case exponential running time of many popular local search

algorithms, such as the 𝑘-means clustering algorithm [8] and the 2-OPT heuristic for the traveling

salesman problem (TSP) [67]; such behavior is literally never observed for these algorithms in

practice.
2
Taken literally, worst-case analysis recommends against using the simplex method to

solve linear programs or local search as a heuristic for the TSP, flatly contradicting decades of

real-world experience. Thus, for some important problems and algorithms, a more nuanced analysis

framework is called for.

But if not worst-case analysis, then what? Outside of applications with a stable and well-

understood input distribution, average-case analysis is far too specific an approach. Spielman

and Teng [69] introduced smoothed analysis, a novel interpolation between worst- and average-case

analysis that is ideally suited for the analysis of algorithms that almost always perform well. In its

original formulation, an adversary chooses an arbitrary (worst-case) input, which is then perturbed

slightly by nature. Appealingly, the framework makes no assumptions about the input other than a

small amount of uncertainty (e.g., due to measurement errors).

In the more modern and general formulation of smoothed analysis, an adversary directly chooses

an input distribution from a family of permissible distributions; nature then samples an input from

the adversary’s distribution. An algorithm is evaluated by its worst-case (over the adversarially

chosen input distribution) expected (over the distribution) performance. Performance guarantees

in this model (e.g., on the expected running time of an algorithm) are generally parameterized by

the “degree of anti-concentration” enjoyed by the allowed input distributions. The holy grail in

smoothed analysis is to prove guarantees on algorithm performance that, assuming only a low level

of anti-concentration in the possible input distributions, are far closer to average-case guarantees

than worst-case guarantees.

Online learning, discrepancy minimization, and optimization. Smoothed analysis makes sense for

any numerical measure of algorithm performance, but to date the vast majority of work on the topic

concerns the running time of algorithms for offline problems, as in the famous examples above.

Our work here focuses on online problems—online learning, online discrepancy minimization, and

online optimization—in which the input arrives incrementally over time and an irrevocable decision

must be made at each time step. Online algorithms for these problems are traditionally assessed by

their solution quality or regret (with running time a secondary concern). In the smoothed analysis

version of these problems, the adversary is forced to choose each piece of the input—a point from a

domain, a vector, or a function—from a distribution with non-negligible anti-concentration.

The analysis of online algorithms traditionally distinguishes between oblivious adversaries who

choose the entire input sequence up front (with knowledge only of the algorithm to be used) and

2
Note that in all of these examples, the problem of constructing a hard instance is challenging enough to justify its own
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adaptive adversaries that can condition each part of the input on the past. In the worst-case model,

this distinction is relevant only for randomized algorithms, in which case adaptive adversaries

choose each part of the input as a function of the algorithm’s previous decisions.When the adversary

itself is forced to randomize, as in the smoothed analysis model, the distinction between oblivious

and adaptive adversaries takes on new meaning: while an oblivious adversary must choose a

sequence of input distributions up front, an adaptive adversary can base its current choice of an

input distribution on the decisions of the algorithm and the realizations of the inputs in previous

time steps.

Online learning, discrepancy minimization and optimization play integral roles in a wide range

of fields and applications, such as algorithm design [3, 7], game theory [29, 33], differential privacy

[32, 44, 46], control theory [1, 2], design of medical trials [47], and robust statistics [50]. In these

cases, adversary’s adaptiveness both serves as a natural abstraction for correlations between past

and present and is an essential piece of the technical analyses (such as algorithmic reductions) that

make these methods widely applicable.

The challenge of adaptive adversaries. A basic question is: For which online problems are adaptive

adversaries fundamentally more powerful than oblivious ones? In the smoothed analysis model,

there is strong intuition about why a guarantee against oblivious adversaries might not extend to,

or at least would be significantly harder to prove for, adaptive adversaries. A key to any smoothed

analysis is, of course, to determine how to leverage the assumed anti-concentration properties of

the permissible input distributions. With an oblivious adversary, the input distributions at each

time step are independent of each other and of the algorithm’s current state, and the assumed

anti-concentration can typically be directly and separately exploited at each time step. An adaptive

adversary, on the other hand, has the power to correlate inputs at different time steps with each

other and with the algorithm’s current state. This dependence seems to rule out the standard proof

approaches in smoothed analysis.

Our approach: preserving anti-concentration through a coupling-based reduction. We introduce a

general technique for reducing smoothed analysis with adaptive adversaries to the much simpler

setting of oblivious adversaries. We consider adaptive adversaries that at each time step choose

an input distribution with density function bounded above pointwise by
1

𝜎
times that of the

uniform. The crux of our approach is a coupling argument, namely a joint distribution that connects

𝑇 random variables (𝑋1, . . . , 𝑋𝑇 ) generated by an adaptive smooth adversary with 𝑘𝑇 random

variables 𝑍
(𝑡 )
𝑖

for 𝑖 ∈ [𝑘] and 𝑡 ∈ [𝑇 ] that are generated i.i.d. from the uniform distribution. A

key aspect of this coupling is a monotonicity property, that for 𝑘 = Θ̃(1/𝜎), with high probability,

{𝑋1, . . . , 𝑋𝑇 } ⊆
{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘] , 𝑗 ∈ [𝑇 ]
}
.

The properties of this coupling allow us to translate typical algorithms and proofs from the

setting of oblivious adversaries to that of adaptive adversaries. For example, consider an algorithm

that fails only when 𝑋1, . . . , 𝑋𝑇 “concentrate,” roughly meaning that many of the 𝑋𝑖 ’s land in an a

priori chosen set of small measure (this is a recurring theme in the smoothed analysis of algorithms).

After substituting in

{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑇 ]
}
⊇ {𝑋1, . . . , 𝑋𝑇 }, the likelihood of this event only

increases. (See Section 2.2 for precise statements.) On the other hand, i.i.d. uniform random variables

(the 𝑍
( 𝑗)
𝑖

’s) have ideal anti-concentration properties for a smoothed analysis.

The power of our coupling technique is in its versatility. To demonstrate this, we apply our

coupling approach to applications of online learning, online discrepancy minimization, and dis-

persion in online optimization. In each of these problems, we show that existing analyses for

oblivious adversaries fundamentally boil down to a suitable anti-concentration result. For online

learning — where our work resolves an open problem of Rakhlin et al. [64] — what matters is the

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2024.
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Worst Case Stochastic/ Oblivious Adaptive Smoothed

Online Learning Θ̃
(√
𝑇 · LDim

)
Θ̃

(√
𝑇 · 𝑑

)
Θ̃

(√
𝑇 · 𝑑 log

(
1/𝜎

) )
[23] [39] Theorem 3.1

Online Discrepancy Ω
(√

𝑇 /𝑛
)

𝑂
(
log (𝑛𝑇 )

)
[5] 𝑂̃

(
log

2
(
𝑛𝑇 /𝜎

) )
[68] 𝑂

(
log

4 (𝑛𝑇 )
)
[18] Theorem 4.1 (also isotropic)

Dispersion (𝑤,𝑇 ℓ)
(
𝜎 (𝑇 ℓ)𝛼−1,𝑂

(
(𝑇 ℓ)𝛼

) ) (
𝜎 (𝑇 ℓ)𝛼−1, 𝑂̃

(
(𝑇 ℓ)𝛼

) )
∀𝑤 ; (trivial) [13] Theorem 5.1

Table 1. This table compares and summarizes the results of this paper and those from previous works. In this
table, 𝑇 is the time horizon, 𝜎 is the smoothness parameter, 𝑑 is the VC dimension of the hypothesis class in
online learning, 𝑛 is the dimension of the space for online discrepancy, ℓ is the number of discontinuities of
piecewise Lipschitz functions in online optimization, and 𝛼 ∈ [0.5, 1] is arbitrary.

anti-concentration of the input instances in the symmetric difference between a hypothesis and

its nearest neighbor in a finite cover of the hypothesis class. For online discrepancy minimization,

what matters is the anti-concentration of correlations between discrepancy vectors and inputs. For

dispersion, what matters is the anti-concentration of function discontinuities in small intervals.

After isolating these key steps, we prove that the coupling approach can be used to lift them (and

the algorithmic guarantees that they lead to) to the general case of adaptive adversaries.

1.1 Overview of our Results
Throughout this paper we consider 𝜎-smooth adaptive adversaries. A 𝜎-smooth distribution D is a

distribution whose densities are bounded by 1/𝜎 times the density of the uniform distribution over

a domain. Formally this definition is captured as follows.

Definition 1.1 (𝜎-smoothness). Let X be a domain that supports a uniform distribution U.
3
A

measure 𝜇 on X is said to be 𝜎-smooth if for all measurable subsets 𝐴 ⊂ X, we have 𝜇 (𝐴) ≤ U(𝐴)
𝜎

.

This parameterized definition of “sufficiently anti-concentrated” is the standard one that has

been used in smoothed analysis over the past decade, for example in all analyses of the smoothed

running time of local search heuristics [60]. It prevents an adversary from concentrating most of

its probability mass near a specific worst-case input (as is necessary for any interesting results)

without resorting to any parametric assumptions.

We focus on smoothed analysis of adaptive adversaries that at time 𝑡 pick a 𝜎-smooth distribution

D𝑡 after having observed earlier instances 𝑥1 ∼ D1, . . . , 𝑥𝑡−1 ∼ D𝑡−1 and algorithmic choices. We

denote an adaptive sequence of 𝜎 distributions by𝒟𝒟𝒟. We use𝒟𝒟𝒟 to model smoothed analysis of

online learning, online discrepancy, and online optimization with an adaptive adversary.

Online Learning. We work with the setting of smoothed online adversarial (and full-information)

learning. In this setting, a learner and an adversary play a repeated game over 𝑇 time steps. For a

labeled pair 𝑠 = (𝑥,𝑦) and a hypothesis ℎ ∈ H , I
[
ℎ(𝑥) ≠ 𝑦

]
indicates whether ℎ makes a mistake

on 𝑠 . In every time step 𝑡 ∈ [𝑇 ] the learner picks a hypothesis ℎ𝑡 and adversary picks a distribution

D𝑡 whose marginal on X is 𝜎-smooth and then draws 𝑠𝑡 ∼ D𝑡 . The learner then incurs penalty

of I
[
ℎ(𝑥𝑡 ) ≠ 𝑦𝑡

]
. We consider an adaptive 𝜎-smooth adversary and denote it by𝒟𝒟𝒟, where D𝑡 is

selected by an adversary that knows the algorithm and has observed 𝑠1, . . . , 𝑠𝑡−1 and ℎ1, . . . , ℎ𝑡−1.

3
Such as X that is finite or has finite Lebesgue measure. The definition makes sense for arbitrary domains and fixed measures

𝜇 but for the sake of presentation, we restrict to the case of uniform distributions.
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Our goal is to design an online algorithmA such that expected regret against an adaptive adversary,

E[Regret(A,𝒟𝒟𝒟)]:= E
𝒟𝒟𝒟


𝑇∑
𝑡=1

I
[
ℎ𝑡 (𝑥𝑡 ) ≠ 𝑦𝑡

]
−min

ℎ∈H

𝑇∑
𝑡=1

I
[
ℎ(𝑥𝑡 ) ≠ 𝑦𝑡

] (1)

is sublinear in 𝑇 . This is the most well-studied domain for the application of our techniques.

In the worst case (without smoothness), Ben-David et al. [23] showed that the optimal regret

in online learning is characterized by finiteness of a combinatorial quantity known as the Little-

stone dimension, more formally, it is Regret = Θ̃
(√

LDim (F )𝑇
)
. Unfortunately, the Littlestone

dimension can be large even for classes where the VC dimension is small. Rakhlin et al. [64],

Haghtalab [39], and Haghtalab et al. [41] considered the smoothed analysis of online learning

and asked whether regret bounds that are characterized by finiteness of VCDim(H) are possible.
For the oblivious smooth adversaries, Haghtalab [39] answered this in the positive. However, for

adaptive smooth adversaries their best-known bounds are Θ̃
(√

𝑇 · logN[ ]
)
where N[ ] denotes

the bracketing number which can be infinite even when VCDim(H) is constant.
In this paper, we bridge the gap between smoothed analysis of online learning with adaptive

and non-adaptive adversaries, answer an open problem of Rakhlin et al. [64] and Haghtalab [39],

and show that regret bounds against an adaptive smooth adversary are nearly the same as those in

agnostic offline learning.

Theorem 3.1 (Informal). LetH be a hypothesis class of VC dimension 𝑑 . There is an algorithm A
such that for any adaptive sequence of 𝜎-smooth distributions𝒟𝒟𝒟 achieves a regret of

E[Regret(A,𝒟𝒟𝒟)] ∈ 𝑂̃
©­«
√
𝑇𝑑 ln

(
𝑇

𝑑𝜎

)
+ 𝑑 ln

(
𝑇

𝑑𝜎

)ª®¬ . (2)

We complement this by a nearly matching lower bound as follows.

Theorem 3.2 (Informal). For every 𝑑 and 𝜎 such that 𝑑𝜎 ≤ 1, there exists a hypothesis class H with

VC dimension 𝑑 such that for any algorithm A there is a sequence of 𝜎-smooth distributions D where

E[Regret(A,D)] ∈ Ω
©­«
√
𝑇𝑑 log

(
1

𝜎𝑑

)ª®¬ . (3)

Online Discrepancy. Our starting point is the Komlós problem. In this online discrepancy problem,

we are given an online sequence of vectors 𝑣1, . . . , 𝑣𝑇 with ∥𝑣𝑖 ∥2 ≤ 1. Upon seeing 𝑣𝑖 we need to

immediately and irrevocably assign sign 𝜖𝑖 ∈ {−1, +1} to 𝑣𝑖 . Our goal is to keep the following

discrepency vector small

max

𝑡 ∈[𝑇 ]






 𝑡∑
𝑖=1

𝜖𝑖𝑣𝑖







∞
.

This problem is interesting for various norms on the inputs and the discrepancy, here we restrict

ourselves to ℓ2 and ℓ∞ norms, respectively.

It is not hard to see that in the fully adaptive setting, the adversary can pick a vector orthogonal

to the current discrepancy vector leading to the ℓ∞ discrepancy norm growing as 𝑂

(√
𝑇

)
. To

overcome this, stochastic versions of this problem have been considered where vectors 𝑣𝑖 are picked

from a fixed and known distribution over a set of vectors with ∥𝑣𝑖 ∥ ≤ 1. Bansal et al. [18] uses a

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2024.
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potential-based approach to obtain a bound of 𝑂

(
log

4 (𝑛𝑇 )
)
for the stochastic setting. Alweiss

et al. [5] strengthens these results to hold for any sequence of inputs that is chosen by an oblivious

(even deterministic) adversary and obtains 𝑂
(
log (𝑛𝑇 )

)
on the discrepancy.

We consider adversaries that pick a 𝜎-smooth distribution D𝑡 at time 𝑡 after having observed

the earlier instances 𝑣1, . . . , 𝑣𝑡−1 and their assigned signs 𝜖1, . . . , 𝜖𝑡−1 and then draw 𝑣𝑡 ∼ D𝑡 . We

bound the discrepancy of this setting by 𝑂
(
log

2 (𝑛𝑇 )
)
.

Theorem 4.1 (Informal). Let 𝑣1, . . . , 𝑣𝑇 be chosen from an adaptive sequence of 𝜎-smooth and isotropic

distributions𝒟𝒟𝒟. Then, there is an online algorithm for deciding the sign 𝜖𝑖 of 𝑣𝑖 , such that with high

probability

max

𝑡 ≤𝑇






 𝑡∑
𝑖=1

𝜖𝑖𝑣𝑖







∞
≤ 𝑂

(
log

2

(
𝑇𝑛

𝜎

))
.

We note that our adaptive isotropic assumption is mild, as even for the case of stochastic uniform

inputs (which are isotropic) the first polylog(𝑛𝑇 ) bound was introduced by Bansal et al. [21] in

STOC 2020. Proving discrepancy lower bounds for isotropic adaptive distributions is an interesting

problem for future work. Our next theorem further justifies the use of isotropic distributions by

showing that smoothness alone is not enough to achieve a polylog(𝑛𝑇 /𝜎) bound on discrepancy

in presence of adaptive adversaries.

Theorem 4.2 (Informal). For any online algorithm, there is an adaptive sequence of

(
1

20𝑛2𝑇 2

)
-smooth

distributions on the unit ball such that, we have





 𝑇∑
𝑖=1

𝜖𝑖𝑣𝑖








∞

≥ Ω

(√
𝑇

𝑛

)
with probability 1 − exp

(
− 𝑇

12

)
.

Dispersion in Online Optimization. In the online optimization setting, an adversary chooses a

sequence of loss functions 𝑢1, . . . , 𝑢𝑇 and at each time step the learner picks an instance 𝑥𝑡 in order

to minimize regret

𝑇∑
𝑡=1

𝑢𝑡 (𝑥𝑡 ) −min

𝑥

𝑇∑
𝑡=1

𝑢𝑡 (𝑥).

Balcan et al. [13] studied this problem for piecewise Lipschitz functions and showed that regret

is characterized by a quantity called dispersion. At a high level, a sequence of functions is called

dispersed if no ball of small width intersects with discontinuities of many of these functions.

Definition 1.2 (Dispersion, [13]). Let 𝑢1, . . . , 𝑢𝑇 : [0, 1] → R be a collection of functions such that

𝑢𝑖 is piecewise Lipschitz over a partition P𝑖 of [0, 1]. We say that a partition P𝑖 splits a set 𝐴 if

𝐴 intersects with at least two sets in P𝑖 . The collection of functions is called (𝑤,𝑘)-dispersed if

every interval of width𝑤 is split by at most 𝑘 of the partitions P1, . . . ,P𝑇 . This definition naturally

extends to loss functions over R𝑑 as well.

Additionally, Balcan et al. [13] showed that when an oblivious 𝜎-smooth adversary picks the

discontinuities of piecewise Lipschitz functions, the resulting sequence is with high probability(
𝜎 (𝑇 ℓ)𝛼−1,𝑂

(
(𝑇 ℓ)𝛼

) )
-dispersed, where 𝛼 can be any value in [0.5, 1] where ℓ is the number of

discontinuities. We extend this result to the case of adaptive smooth adversaries and recover almost

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2024.
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matching bounds on dispersion parameters. Our work shows that adaptive smooth adversaries gen-

erate dispersed sequences in online optimization. This allows us to extend the power of algorithms

designed for dispersed sequences, such as efficient online and private batch optimization [13], to

the larger setting of adaptive adversaries.

Theorem 5.1 (Informal). Let 𝑢1 . . . 𝑢𝑇 be functions from [0, 1] → R that are piecewise Lipschitz with

ℓ discontinuities each picked by a 𝜎-smooth adaptive adversary. Then, for any 𝛼 ≥ 0.5, the sequence of

functions 𝑢1 . . . 𝑢𝑇 is (𝜎 (𝑇 ℓ)𝛼−1, 𝑂̃
(
(𝑇 ℓ)𝛼

)
)-dispersed.

1.2 Related Work
In this section, we will survey other work related to the question that we study in this paper.

Online learning. Similar models of smoothed online learning have been considered in prior work.

Generally, previous works have focused on oblivious adversaries, more stylized noise distributions,

or the performance of specific algorithms rather than aiming for characterizing the statistical

complexity of the learning problem. Rakhlin et al. [64] consider online learning when the adversary

is constrained in a general way and introduce constrained versions of sequential Rademacher

complexity for analyzing the regret. Theyworkwith general technique of sequential symmetrization

and tangent sequences adapted to the constrained setting and show that the regret in the constrained

setting is bounded by the constrained sequential Rademacher complexity. While this notion is

general enough to capture our setting and has been applied successfully in other constrained

adversary settings [57], the bound in terms of the constrained sequential Rademacher complexity

is not explicit, and it was not clear prior to our work how to relate this notion to the statistical

complexities of the learning problem such as the VC dimension (except in the special case of

halfspaces with additive noise).

Gupta and Roughgarden [38] consider smoothed online learning when looking at problems

in online algorithm design. They prove that while optimizing parameterized greedy heuristics

for Maximum Weight Independent Set imposes regret growing linear in 𝑇 in the worst-case, in

the presence of smoothing (oblivious version of 𝜎-smoothed adversary model in our paper) this

problem can be learned with non-trivial sublinear regret (as long they allow per-step runtime that

grows with 𝑇 ). Cohen-Addad and Kanade [35] consider the same problem with an emphasis on

the per-step runtime being logarithmic in 𝑇 . The models in these works differs from ours in the

obliviousness of the smoothed adversaries.

Smoothed analysis has also been used in a number of other online settings. For linear contextual

bandits, Kannan et al. [55] use smoothed analysis with Gaussian perturbations to show that the

greedy algorithm achieves sublinear regret even though in the worst case it can have linear regret.

Raghavan et al. [62] work in a Bayesian version (again with Gaussian perturbation) of this setting

and achieve improved regret bounds for the greedy algorithm. The results considered in the above

papers are focussed on the regret of particular algorithms rather than the statistical complexity of

the learning problem as in our case.

Generally, our work is also related to a line of work on online learning in presence of additional

assumptions modelling properties exhibited by real life data. Rakhlin and Sridharan [63] consider

settings where the learner has additional information available in terms of an estimator for future

instances. They achieve regret bounds that are in terms of the path length of these estimators and

can beat Ω(
√
𝑇 ) if the estimators are accurate. Dekel et al. [36] also considers the importance of

incorporating side information in the online learning framework and show that regrets of𝑂 (log(𝑇 ))
in online linear optimization maybe possible when the learner has access to vectors that are weakly

correlated with the future instances.
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More broadly, our work is among a growing line of work on beyond the worst-case analysis

of algorithms [66]. Examples of this in machine learning mostly include improved runtime and

approximation guarantees of supervised (e.g., [9–11, 37, 53, 54]), and unsupervised settings (e.g.,

[6, 12, 14, 24, 25, 45, 59, 61, 70]).

Discrepancy. Discrepancy is well-studied area in computer science and combinatorics with rich

connections to various areas. For a general overview of the area see [34]. Many classical settings such

as the Spencer problem, Komlós problem, Tusnandy problem and the Beck-Fiala problem continue

to inspire active research. A recent line of work has been developing algorithmic techniques for

many new settings that were previously only dealt with non-constructively and were even believed

to be non-tractable [15–17, 58, 65].

A setting that has also recently received attention is the online discrepancy setting. Bansal and

Spencer [22] consider the setting where the inputs are all uniform on {−1, 1}𝑛 and get a𝑂
(√

𝑛 log𝑇

)
bound for the ℓ∞ discrepancy. Motivated by questions in envy minimization, Bansal et al. [21] and

Jiang et al. [52], consider the stochastic problem with general distributions, along with several

geometric discrepancy problems such as the Tusnady problem. Bansal et al. [21] gives a𝑂
(
𝑛2 log𝑇

)
discrepancy in the ℓ∞ norm algorithm when the input is in [−1, 1]𝑛 . As discussed earlier, Bansal

et al. [18] provide a

√
𝑛 log4 (𝑛𝑇 ) in the same setting. They also consider various other settings

such as the online Banaszczyk problem and a weighted multicolor discrepancy problem. Alweiss

et al. [5] consider a non-stochastic version of the problem where the vectors are obliviously picked

from [−1, 1]𝑛 and propose a beautiful randomized algorithm that achieves

√
𝑛 log (𝑛𝑇 ) bound.

Subsequent Work. Following the original publication of this paper [42, 43], several works have

appeared that further contribute to the framework of smoothed analysis in online settings. A pair of

works (concurrent to one another) by Block et al. [26], Haghtalab et al. [40] study the computational

complexity of online learning in the smoothed setting. Their main motivation is to understand

whether smoothed analysis can be used to circumvent strong impossibility results for oracle-efficient

online learning [49]. Block et al. [26], Haghtalab et al. [40] answer this question in the affirmative

and show that there are oracle-efficient algorithms that achieve regret depending only on the VC

dimension, similar to our Theorem 3.1, albeit with worse dependence on the smoothness parameter

𝜎 . To achieve some of their results, Haghtalab et al. [40] and Block et al. [26] use and, indeed,

strengthen our probability coupling approach in different ways. Their results bring a computational

lens to the statistical problem studied in this work. Together, their works demonstrate that online

learning is computationally as easy as offline learning, as our work establishes that that it is

statistically as easy as offline learning.

Block and Simchowitz [28] also study computational complexity of online learningwith smoothed

adversaries for generalized linear functions in the realizable and construct algorithms that achieve

optimal dependence on the smoothness parameter, bridging the statistical-computational gap

between our work and those of Haghtalab et al. [40] and Block et al. [26] in this special case.

Haghtalab et al. [40] studies several other constrained and classical adversarial model, such as

existing and new variants of transductive online learning and prediction in small domains. They

show, through a more detailed perspective, that the probability coupling approach introduced in

our work can be used to draw parallels between several different lines of work on online learning,

beyond the classical worst-case setting.

Bansal et al. [19] study the problem of prefix discrepancy problem for unit vectors under

a smoothed analysis setting. They show that for smoothed instances a discrepancy bound of√
log𝑑 + log log𝑇 where 𝑑 is the dimension and 𝑇 is the time horizon which improves the de-

pendence on the time horizon compared to known bounds for worst-case instances. Bansal et al.
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[20] study the offline Komlós setting (balancing ℓ2 unit vectors in the ℓ∞ norm) in the smoothed

analysis setting. They show that, for sufficiently large number of vectors, the discrepancy of

smoothed instances inversely polynomial in the dimension, resolving the Komlós conjecture for

such instances.

Janardhan Kulkarni and Rothvoss [51] study the online discrepancy problem against oblivious

adversaries and show (nonconstructively) that there is an algorithm that assigns signs to the vectors

𝑣𝑖 , with ∥𝑣𝑖 ∥2 ≤ 1, presented online, such that

∑
𝑖≤𝑡 𝜖𝑖𝑣𝑖 is 10-subguassian for all 𝑡 . This gives a

discrepancy bound of 𝑂

(√
log𝑇

)
i.e.



∑𝑡
𝑖=1 𝜖𝑖𝑣𝑖



 ≤ 𝑂

(√
log𝑇

)
at all times 𝑡 , matching the lower

bound for the online discrepancy problem for oblivious adversaries.

2 OVERVIEW OF THE TECHNIQUES AND ANALYSIS
We introduce a general technique for reducing smoothed analysis with adaptive adversaries to the

much simpler setting of oblivious adversaries. Our main general technique is a coupling argument

between random variables that are generated by an adaptive smooth adversary and those that are

generated i.i.d. from a uniform distribution. This coupling, that is a joint distribution between two

random processes, demonstrates structural properties that are ideal for preserving and analyzing

anti-concentration properties of smooth adversaries. This allows us to tap into existing techniques

and algorithms that are designed for oblivious smooth adversaries and only rely on some anti-

concentration properties of the input.

We first give an overview of our coupling technique and its analysis in Section 2.1 and then in

Section 2.2 we give a general framework for applying coupling for smoothed analysis with adaptive

adversaries.

2.1 Coupling Definition and Theorem statement
In this section, we will give an overview of the coupling between smooth adaptive adversaries

and the uniform distribution. A coupling is a joint distribution between two random variables,

or random processes, such that the marginals of this coupling are distributed according to the

specified random variables. A more formal definition of a coupling is as follows.

Definition 2.1 (Coupling). Let 𝜇 and 𝜈 be two probability measures on the probability space

(X,ℱ) respectively. Then, a coupling between 𝜇 and 𝜈 is a measure 𝛾 on (X × X,ℱ ⊗ ℱ) such
that for all 𝐴 ∈ ℱ, we have 𝛾 (𝐴 × 𝑋 ) = 𝜇 (𝐴) and 𝛾 (𝑋 ×𝐴) = 𝜈 (𝐴) . This definition can be

generalized in a natural way to multiple measures.

Our main coupling theorem states that given any adaptive sequence of 𝜎-smooth distributions,

𝒟𝒟𝒟, there is a coupling between a random sequence (𝑋1, . . . , 𝑋𝑇 ) ∼ 𝒟𝒟𝒟 and uniformly distributed

random variables𝑍
(𝑡 )
𝑖

such that (with high probability) the set of uniform random variables includes

the set of adaptively generated 𝜎-smooth variables.

Theorem 2.1. Let𝒟𝒟𝒟 be an adaptive sequence of 𝜎-smooth distribution on X. Then, for each 𝑘 > 0,

there is a coupling Π such that

(
𝑋1, 𝑍

(1)
1

, . . . , 𝑍
(1)
𝑘

, . . . , 𝑋𝑡 , 𝑍
(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

)
∼ Π satisfy

a. 𝑋1, . . . , 𝑋𝑡 is distributed according to𝒟𝒟𝒟.

b. 𝑍
( 𝑗)
𝑖

are uniformly and independently distributed on X.

c.

{
𝑍
( 𝑗)
𝑖

| 𝑗 ≥ 𝑡, 𝑖 ∈ [𝑘]
}
are uniformly and independently distributed onX, conditioned on𝑋1, . . . , 𝑋𝑡−1.

d. With probability at least 1 − 𝑡 (1 − 𝜎)𝑘 , {𝑋1, . . . , 𝑋𝑡 } ⊆
{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘] , 𝑗 ∈ [𝑡]
}
.
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The key aspect of this theorem is the monotonicity property {𝑋1, . . . , 𝑋𝑡 } ⊆
{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘] , 𝑗 ∈
[𝑡]

}
that holds with high probability. This monotonicity and the fact that 𝑍

(𝑡 )
𝑖

are uniform are the

crucial properties that allow us to reduce algorithm design and analysis against online adaptive

adversaries to those designed against oblivious stochastic adversaries. We will give examples of

how this coupling will be used in Section 2.2.

In the remainder of this section, we give an overview of the construction of this coupling and the

proof sketch for Theorem 2.1. For ease of exposition, we give a proof that combines elements of

two subsequent works by Haghtalab et al. [40] and Block et al. [26] that generalized and simplified

our original proof of this lemma appearing in [42], Here, we restrict our proof overview to the

finite universe X = [𝑛] and defer the fully general case to Appendix B.

Let us first consider a single round of coupling between a random variable that is uniformly

distributed over 𝑆 ⊆ [𝑛] of size 𝜎𝑛, and the uniform random variables over [𝑛]. At a high level,

this is done via rejection sampling. For a more detailed exploration of the connection to rejection

sampling, see [27]. Let D be a smooth distribution i.e. D(𝑥) ≤ U(𝑥)
𝜎

= 1

𝑛𝜎
where D(𝑥) is the

probability of 𝑥 under D. Draw 𝑘 samples 𝑌1, . . . , 𝑌𝑘 from the uniform distribution on [𝑛]. Initialize
a set 𝑆 that is empty. For each 𝑖 , add 𝑌𝑖 to 𝑆 with probability 𝑛𝜎D(𝑌𝑖 ). Note that crucially this is a

well-defined probability due to smoothness, that is, smoothness implies 𝜎𝑛D(𝑌𝑖 ) ≤ 1 which allows

it to be used as a probability. If 𝑆 is non-empty, let 𝑋 be a uniform sample from 𝑆 . Else, let 𝑋 be

sampled according to D independent of 𝑌1, . . . , 𝑌𝑘 .

First, let us show that the distribution of 𝑋 is indeed D. In the case when 𝑆 is empty, 𝑋 is

distributed according D since it is independently sampled from the distribution. When 𝑆 is non-

empty, let us consider the distribution of 𝑌𝑖 conditioned on the event that they were added to set 𝑆 .

We call this event “𝑌𝑖 being accepted”. The probability that 𝑌𝑖 is accepted is

Pr[𝑌𝑖 is accepted] =
∑
𝑥 ∈[𝑛]

Pr[𝑌𝑖 = 𝑥] · Pr[𝑌𝑖 is accepted |𝑌𝑖 = 𝑥] =
∑
𝑥 ∈[𝑛]

1

𝑛
· 𝑛𝜎D(𝑥) = 𝜎.

Thus, we have

Pr

[
𝑌𝑖 = 𝑥 |𝑌𝑖 is accepted

]
=

1

𝜎
· Pr[𝑌𝑖 = 𝑥] · Pr[𝑌𝑖 is accepted|𝑌𝑖 = 𝑥] = 1

𝜎
· 1
𝑛
· 𝑛𝜎D(𝑥) = D(𝑥).

Thus, any𝑌𝑖 is distributed according toD. Furthermore, we set𝑍𝑖 = 𝑌𝑖 , which gives the independent

uniform distribution.

It remains to show the monotonicity property. Note that we have 𝑋𝑖 ∈ {𝑍1, . . . , 𝑍𝑘 } whenever 𝑆
is non-empty. As we saw above 𝑌𝑖 ∈ 𝑆 with probability 𝜎 independently of 𝑌𝑗 for 𝑖 ≠ 𝑗 . Thus, we

have that the probability that 𝑆 is empty is given by (1 − 𝜎)𝑘 . This establishes that𝑋𝑖 ∈ {𝑍1, . . . , 𝑍𝑘 }
with probability 1 − (1 − 𝜎)𝑘 as required.

Next, we create a coupling for adaptive 𝜎-smooth distributions𝒟𝒟𝒟. Recall that in this setting an

adaptive sequence corresponds to𝑋𝜏 being sampled uniformly from a distribution𝒟𝒟𝒟𝜏 (𝑋1, . . . , 𝑋𝜏−1),
i.e., the distribution at time 𝜏 is adaptively chosen given the earlier realizations. We construct the

coupling inductively using the same ideas discussed for the single round coupling, but at each step

using𝒟𝒟𝒟𝜏 (𝑋1, . . . , 𝑋𝜏−1). Formally, the coupling is as below:

• For 𝑗 = 1 . . . 𝑡 ,

– Draw 𝑘 samples 𝑌
( 𝑗)
1

, . . . , 𝑌
( 𝑗)
𝑘

from the uniform distribution.

– Let 𝑆 𝑗 = ∅.
– For each 𝑌

( 𝑗)
𝑖

, add 𝑌
( 𝑗)
𝑖

to 𝑆 𝑗 with probability 𝜎𝑛 ·𝒟𝒟𝒟𝑗

(
𝑋1, . . . , 𝑋 𝑗−1

) (
𝑌

( 𝑗)
𝑖

)
.
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– If 𝑆 𝑗 ≠ ∅, then sample 𝑋 𝑗 uniformly from 𝑆 𝑗 .

– Else, sample 𝑋 𝑗 from𝒟𝒟𝒟𝑗

(
𝑋1, . . . , 𝑋 𝑗−1

)
.

– Set 𝑍
( 𝑗)
𝑖

= 𝑌
( 𝑗)
𝑖

for all 𝑖 .

• Output

(
𝑋1, 𝑍

(1)
1

, . . . , 𝑍
(1)
𝑘

, . . . , 𝑋𝑡 , 𝑍
(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

)
.

We prove that this coupling works inductively. Fixing 𝑋1, . . . , 𝑋𝜏−1, we get𝒟𝒟𝒟𝜏 (𝑋1, . . . , 𝑋𝜏−1).
Note that the coupling in stage 𝜏 is similar to the single round coupling. From a similar argument, we

get that𝑋𝜏 is distributed according to𝒟𝒟𝒟𝜏 (𝑋1, . . . , 𝑋𝜏−1). Similarly, one can argue that 𝑍
(𝜏)
1

, . . . , 𝑍
(𝜏)
𝑘

are independent and uniform. The monotonicity property follows from the monotonicity in each

stage and a union bound.

The final main property that needs to be argued is that 𝑍
(𝜏)
1

, . . . , 𝑍
(𝜏)
𝑘

are independent of all

the past random variables 𝑋1, . . . , 𝑋𝜏−1 and

{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘] , 𝑗 ≤ 𝜏 − 1

}
. The key property needed

here is that in the single-round coupling, the distribution of 𝑍𝑖 is oblivious to the choice of the

distribution D. We prove this formally in Appendix B. This ensures that

{
𝑍
( 𝑗)
𝑖

| 𝑗 ≥ 𝑡, 𝑖 ∈ [𝑘]
}
are

uniform and independent of the past.

2.2 The General Framework for applying the Coupling
In most applications where smoothed analysis has led to significant improvements over the worst-

case analysis, these improvements hinge on the proof techniques and algorithmic approaches

that leverage the anti-concentration properties of the smoothed input. However, as the process of

creating an input becomes more and more adaptive, that is, as the adversary correlates the distribu-

tion of the current input with the realizations of earlier inputs and decisions the randomness and

anti-concentration properties of the input and the state of the algorithm may weaken. Additionally,

correlations between future and past instances present novel challenges to the methodology used

against oblivious smooth adversaries, which often rely heavily on the independence of the input.

Our coupling approach overcomes these challenges in two ways. First, by coupling an adaptive

smooth process with a non-adaptive uniform process, it implicitly shows that anti-concentration

properties of the input and the algorithm do not weaken significantly in presence of adaptive adver-

saries. Second, it allow us to lift algorithmic ideas and proof techniques that have been designed for

oblivious smooth or stochastic adversaries to design and analyze algorithms that have to interact

with adaptive smooth adversaries.

An important property of our coupling is itsmonotonicity, i.e., with high probability, {𝑋1, . . . , 𝑋𝑡 } ⊆{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑡]
}
. This monotonicity property paired with the fact that 𝑍

(𝑡 )
𝑖

are i.i.d uniform

variables are especially useful for lifting algorithms and proof techniques from the oblivious world

that rely on anti-concentration. That is, if an algorithm’s failure mode is only triggered when

𝑋1, . . . , 𝑋𝑡 concentrate, then replacing in

{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘], 𝑗 ∈ [𝑡]
}
⊇ {𝑋1, . . . , 𝑋𝑡 } can only increase

the likelihood of hitting the failure mode. On the other hand, i.i.d. uniform random variables

𝑍
(𝑡 )
𝑖

s demonstrate excellent anti-concentration properties that are superior to most other offline

stochastic or oblivious smooth distributions. This shows that existing techniques and algorithms

that work well in the stochastic or oblivious smooth settings will continue to work well for adaptive

smooth adversaries.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:12 Haghtalab, Roughgarden, and Shetty

As a general blueprint for using our coupling for smoothed analysis with adaptive adversaries,

first consider how you would handle smooth oblivious or stochastic adversaries and identify steps

that rely on an anti-concentration property. Sometimes, this is more easily done by identifying

where existing approaches rely on the obliviousness and stochasticity of the adversaries and

then finding concentration properties, potential functions, or other monotone set functions that

implicitly measure concentration of some measure. Next, apply the coupling to replace 𝑇 adaptive

smooth random variables with 𝑇𝑘 i.i.d uniform random variables and show that the previous

anti-concentration (or other monotone properties) are only moderately affected by the fact that

we have a larger number of random variables. Finally, use the original algorithm or technique for

leveraging anti-concentration and complete the proof.

In the remainder of this section, we show how the above blueprint can be applied to three

important examples from online learning, discrepancy, and optimization.

Online Learning. One key property that enables learnability in the offline agnostic, offline PAC,

and oblivious smooth online setting is that a hypothesis classH can be approximated via a finite

cover H ′
and algorithms such as ERM and Hedge can be run on H ′

without incurring a large

error [39, 41]. This is due to the fact that the performance of the best hypothesis inH is closely

approximated by the performance of the best hypothesis in H ′
when instances are drawn from an

offline stochastic or an oblivious sequence of smooth distributions. At the heart of this property is an

anti-concentration of measure in the class of symmetric differences between hypotheses ℎ ∈ H and

their proxies ℎ′ ∈ H ′
. More formally, for a fixed distribution D, such as the uniform distribution,

consider H ′ ⊆ H that is an 𝜖-cover of H with respect to D so that for every hypothesis ℎ ∈ H
there is a proxy ℎ′

ℎ
∈ H ′

with PrD [ℎ(𝑥) ≠ ℎ′
ℎ
(𝑥)] ≤ 𝜖 . The set H ′

is a good approximation for H
under distribution D if not too many instances fall in any symmetric difference, that is, if with

high probability,

∀ℎ ∈ H ,
1

𝑇

𝑇∑
𝑡=1

I
[
ℎ(𝑥𝑡 ) ≠ ℎ′

ℎ
(𝑥𝑡 )

]
≲ 𝜖.

In the offline or oblivious smooth online setting this is done by leveraging the independence

between 𝑥𝑡 s and using techniques from the VC theory to show that each function ℎΔℎℎ′ is close to
its expectation.

We note that maxℎ∈H
∑

𝑥 ∈𝑆 I
[
ℎ(𝑥) ≠ ℎ′

ℎ
(𝑥)

]
, which measures concentration, is a monotone set

function that only increases when replacing random variables 𝑋1, . . . , 𝑋𝑇 with random variables

{𝑍 (𝑡 )
𝑖

| 𝑖 ∈ [𝑘], 𝑡 ∈ [𝑇 ]} ⊇ {𝑋1, . . . , 𝑋𝑇 }. This shows that the concentration of measure over a

𝑇 -step adaptive smooth sequence of distributions𝒟𝒟𝒟 is bounded by the concentration of measure

over a 𝑘𝑇 draws from the uniform distribution. We can now use the anti-concentration properties

of i.i.d. uniform random variables and techniques from the VC theory (which were used for the

oblivious smooth and stochastic case) to show that each function ℎΔℎℎ′ is close to its expectation.

Online Discrepancy. Most existing approaches for designing low discrepancy algorithms, such

as [18, 21] control and leverage anti-concentration properties of the discrepancy vector and its

correlations. In particular, Bansal et al. [18] introduces a potential functionΦ𝑡 that, roughly speaking,

is exp(𝜆𝑑⊤𝑡 𝑊 ) where𝑊 is a mixture of the future random variables and test directions. They use the

fact that 𝑋𝑡 s are generated i.i.d from a fixed and known distribution to bound the tail probabilities

for exp(𝜆𝑑⊤𝑡−1𝑋𝑡 ) > Φ𝑡−1.
Note that the event exp(𝜆𝑑⊤𝑡−1𝑋𝑡 ) > Φ𝑡−1 is monotone, i.e.,∑

𝑖∈[𝑘 ]
exp(𝜆𝑑⊤𝑡−1𝑍

(𝑡 )
𝑖

) ≥ exp(𝜆𝑑⊤𝑡−1𝑋𝑡 ),
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when 𝑋𝑡 ∈ {𝑍 (𝑡 )
𝑖

| 𝑖 ∈ [𝑘]}. Therefore, the coupling argument allows us to bound the tail

probability of crossing the threshold 𝑘Φ𝑡−1. In other words, we bound the tail probabilities of

having large correlation with an adaptive 𝜎-smooth variable 𝑋𝑡 in terms of the tail probability of

having correlations with at least one of 𝑘 i.i.d. uniform random variables.

With these tail bounds in place, we now have a high probability event that exp

(
𝜆𝑑⊤𝑡−1𝑋𝑡

)
≤ 𝑘Φ𝑡−1.

Then, as Bansal et al. [18] argues, when Φ𝑡−1 is large and as result 𝜆𝑑⊤𝑡−1𝑋𝑡 by comparison cannot

be large, there will be only a small increase in the potential function. Since Φ𝑡 s also measure

correlations with the test vectors, an upper bound on Φ𝑡 s also bounds the discrepancy.

It is important to note that discrepancy itself is not a monotone set function as additional vectors

can significantly reduce the discrepancy and stop it from growing it large over time. However,

anti-concentration techniques that are at the core of analyzing discrepancy are monotone and

therefore can be easily used with our coupling.

Dispersion. At its core, dispersion is an anti-concentration property for the number of function

discontinuities that fall in any sufficiently small interval. Existing results of Balcan et al. [13] lever-

ages anti-concentration of oblivious smooth adversaries, who generate independently distributed

discontinuities, and argues that the resulting sequence is dispersed with high probability. That is,

when the 𝑗th discontinuity of the 𝑡 th function, 𝑑𝑡, 𝑗 , is drawn independently, with high probability

for all intervals 𝐽 with small width,

∑
𝑡, 𝑗 I

[
𝑑𝑡, 𝑗 ∈ 𝐽

]
is small. Balcan et al. [13] proves this using the

independence between 𝑑𝑡, 𝑗 s and the fact that VC dimension of the class of intervals is a constant.

In an approach that mirrors our online learning analysis, we emphasize that

max

𝐽

𝑇∑
𝑑𝑡,𝑗 ∈𝑆

I
[
𝑑𝑡, 𝑗 ∈ 𝐽

]
that measures concentration of function discontinuities is a monotone set function over 𝑆 and only

increases when replacing random variables 𝑑𝑖,𝑡 s with random variables {𝑍 (𝑡, 𝑗)
𝑖

| 𝑖 ∈ [𝑘], 𝑡 ∈ [𝑇 ], 𝑗 ∈
[ℓ]} ⊇ {𝑑𝑡, 𝑗 | 𝑗 ∈ [ℓ], 𝑡 ∈ [𝑇 ]}. This shows that the concentration of discontinuities over a 𝑇 ℓ-step

adaptive smooth sequence of distributions𝒟𝒟𝒟 is bounded by the concentration of discontinuities

from a 𝑘𝑇 ℓ-step uniform distribution. We can now use the anti-concentration properties of uniform

and independent random variables and the fact that the VC dimension of intervals is small to show

that adaptive smooth adversaries also create dispersed sequences.

3 REGRET BOUNDS AGAINST SMOOTH ADAPTIVE ADVERSARY
In this section, we obtain regret bounds against adaptive smooth adversaries that are solely defined

in terms of VC dimension of the hypothesis class and the smoothness parameter.

Recall that an adaptive adversary at every time step 𝑡 ∈ [𝑇 ] chooses D𝑡 based on the actions of

the learner ℎ1, . . . , ℎ𝑡−1 and the realizations of the previous instances (𝑥1, 𝑦1), . . . , (𝑥𝑡−1, 𝑦𝑡−1) and
then samples (𝑥𝑡 , 𝑦𝑡 ) ∼ D𝑡 . Our main result in this section is as follows.

Theorem 3.1 (Regret upper bound). Let H be a hypothesis class of VC dimension 𝑑 . There is an

algorithm A that, for any adaptive sequence of 𝜎-smooth distributions𝒟𝒟𝒟, achieves a regret of

E[Regret(A,𝒟𝒟𝒟)] ≤ 𝑂̃
©­«
√
𝑇𝑑 ln

(
𝑇

𝑑𝜎

)
+ 𝑑 ln

(
𝑇

𝑑𝜎

)ª®¬ .
In the above 𝑂̃ hides factors that are loglog

(
𝑇/𝑑𝜎

)
.
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We complement this result by providing nearly matching lower bounds. We show that Theo-

rem 3.1 is tight up to a multiplicative polylog(𝑇 ) and polyloglog(1/𝜎𝑑) factors and an additive

𝑑 log
(
𝑇/𝑑𝜎

)
term. We provide a proof of Theorem 3.2 in Section 3.4.

Theorem3.2 (Regret lower bound). For every𝑑 and𝜎 such that𝑑𝜎 ≤ 1, there exists a hypothesis class

H with VC dimension 𝑑 such that for any algorithm A there is a sequence of 𝜎-smooth distributions

D where

E[Regret(A,D)] ∈ Ω
©­«
√
𝑑𝑇 log

(
1

𝜎𝑑

)ª®¬ .
In order to prove Theorem 3.1, we follow the general approach for using our coupling theorem

(Theorem B.2) as outlined in Section 2.2. That is, in Section 3.1, we first review the algorithmic result

of Haghtalab [39] for obtaining regret bounds against non-adaptive smooth adversaries and identify

steps for which non-adaptivity is crucial for that approach. In Section 3.2, we then alter those

steps to work for adaptive smooth adversaries via the coupling argument. Lastly, in Section 3.3, we

combine the steps to complete the proof of Theorem 3.1.

3.1 Overview of Existing Approaches and their Need for Obliviousness
Haghtalab [39], Haghtalab et al. [41] considered regret-minimization problem against non-adaptive

smooth adversaries. This approach considered an algorithm A that uses Hedge or any other

standard no-regret algorithm on a finite setH ′
.H ′

is chosen to be an 𝜖-cover ofH with respect to

the uniform distribution. It is not hard to see (e.g., [41, Equation (1)]) that regret of algorithm A
decomposes to the regret of Hedge on the cover H ′

and the error caused by approximating H by

its coverH ′
as follows:

E[Regret(A,𝒟𝒟𝒟)] ≤ 𝑂

(√
𝑇 ln( |H ′ |)

)
+ E𝒟𝒟𝒟

max

ℎ∈H
min

ℎ′∈H′

𝑇∑
𝑡=1

1

(
ℎ(𝑥𝑡 ) ≠ ℎ′(𝑥𝑡 )

) . (4)

Given that any hypothesis classH has an 𝜖-cover of size (41/𝜖)VCDim(H)
(see [48] or [30, Lemma

13.6]) the first term of Equation 4 can be directly bounded by 𝑂

(√
𝑇 VCDim(H) ln(1/𝜖)

)
. To

bound the second term of Equation 4, for any ℎ ∈ H consider the ℎ′ ∈ H ′
that is the proxy for

ℎ. Then, define 𝑔ℎ,ℎ′ = ℎ ⊕ ℎ′
where ℎ ⊕ ℎ′

is the function that is 1 if exactly one of ℎ or ℎ′
is 1.

Note that E𝑥∼𝑈 [𝑔ℎ,ℎ′ (𝑥)] ≤ 𝜖 , where 𝑈 is the uniform distribution over X. Let G = {𝑔ℎ,ℎ′ | ∀ℎ ∈
H and the corresponding proxy ℎ′ ∈ H ′}. Note that,

E
𝒟𝒟𝒟

supℎ∈H
inf

ℎ′∈H′

𝑇∑
𝑡=1

1

(
ℎ(𝑥𝑡 ) ≠ ℎ′(𝑥𝑡 )

) ≤ E
𝒟𝒟𝒟

sup𝑔∈G

𝑇∑
𝑡=1

𝑔 (𝑥𝑡 )
 . (5)

Note that for any fixed 𝑔ℎ,ℎ′ ∈ G and even an adaptive sequence of 𝜎-smooth distributions,

E𝒟𝒟𝒟 [∑𝑇
𝑡=1 𝑔ℎ,ℎ′ (𝑥𝑡 )] ≤ 𝜎−1 EU [∑𝑇

𝑡=1 𝑔ℎ,ℎ′ (𝑥𝑡 )] ≤ 𝑇𝜖/𝜎 .
Up to this point, the above approach applies equally to adaptive and non-adaptive adversaries. It

remains to establish that with small probability over all (infinitely many) functions in G, the realized

value of 𝑔 is close to its expected value. This is where existing approaches rely on obliviousness of

the adversary. When the adversary is non-adaptive, instances 𝑥𝑡 ∼ D𝑡 are independently (but not

necessarily identically) distributed. Existing approaches such as [39] leverage the independence

between the instances. Though the instances are not identically distributed, the independence

allows one to adapt standard techniques such as symmetrization to establish uniform convergence.
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Formally, previous work establishes that when𝒟 is a non-adaptive sequence of smooth distributions,

E
𝒟

sup𝑔∈G

𝑇∑
𝑡=1

𝑔 (𝑥𝑡 )
 ≤ 𝑇𝜖

𝜎
+𝑂 ©­«

√
𝑇𝑑 ln

(
𝑇

𝜎

)ª®¬ . (6)

Using 𝜖 = 𝜎𝑇 −1/2
in Equation 6 and Equation 4 gives an upper bound on the regret against

an oblivious smooth adversary that only depends on VC dimension of H and the smoothness

parameters.

3.2 Reducing Adaptivity to Obliviousness via the Coupling
We emphasize that Equation 6 is the only step in existing approach that relies on the obliviousness

of the adversary. In this section, we show how the coupling lemma can be used to obtain an upper

bound analogous to the Equation 6 for adaptive adversaries. The main result of this section is as

follows,

Lemma 3.3. Let G be defined as described in Section 3.1, 𝑑 = VCDim(H), and let𝒟𝒟𝒟 be an adaptive

sequence of 𝜎-smooth distributions. We have

E
𝒟𝒟𝒟

sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑥𝑖 )
 ≤ 𝑂

(√
𝜖

𝜎
𝑇 ln(𝑇 ) 𝑑 ln

(
1/𝜖

)
+𝑇 ln(𝑇 ) 𝜖

𝜎

)

for any 𝜖 >
𝜎𝑑 log(4𝑒2/𝜖)

5𝑇 ln(𝑇 ) .

Proof of Lemma 3.3. Here we bound the value of a𝑇 -step adaptive process. To prove this lemma,

we use the coupling described in Section 2.1 to reduce the problem of bounding the value of a

𝑇 -step adaptive process by the value of the a 𝑂̃ (𝑇 /𝜎)-step uniform process. We then bound the

value of the uniform process using the fact that uniform process is an oblivious process.

Claim 3.4. Let 𝛼 = 10 ln(𝑇 ) and 𝑘 = 𝛼/𝜎 , and letU denote the uniform distribution over the domain.

We have

E
𝒟𝒟𝒟

sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑥𝑖 )
 ≤ 𝑇 2 (1 − 𝜎)

𝛼
𝜎 + E

U


sup

𝑔∈G

∑
𝑖∈[𝑘 ]
𝑗 ∈[𝑇 ]

𝑔

(
𝑍
( 𝑗)
𝑖

)
.

Proof of Claim 3.4. Consider the coupling 𝑋1, . . . 𝑋𝑇 , 𝑍
(1)
1

, . . . 𝑍
(𝑇 )
𝑘

described in Appendix B.2

for for 𝑘 = 𝛼/𝜎 and 𝛼 = 10 ln(𝑇 ). We will denote this by Π. First note that every 𝑔 ∈ G is positive,

since it is a symmetric difference between two functions ℎ and ℎ′
. Therefore, for any two sets 𝐴

and 𝐵, such that 𝐴 ⊆ 𝐵, we have

sup

𝑔∈G

∑
𝑥 ∈𝐴

𝑔(𝑥) ≤ sup

𝑔∈G

∑
𝑥 ∈𝐵

𝑔(𝑥)

Let E denote the event {𝑋1, . . . , 𝑋𝑇 } ⊈
{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘] , 𝑗 ∈ [𝑇 ]
}
. From Theorem 2.1, we know that

Pr [E] ≤ 𝑇 (1 − 𝜎)
𝛼
𝜎 . Moreover, from Theorem 2.1 we have that 𝑋1 . . . 𝑋𝑇 is distributed according
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to𝒟𝒟𝒟 and 𝑍
( 𝑗)
𝑖

are i.i.d according toU, thus

E
𝒟𝒟𝒟

sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑥𝑖 )
 = E

Π

sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑋𝑖 )
 and E

U


sup

𝑔∈G

∑
𝑖∈[𝑘 ]
𝑗 ∈[𝑇 ]

𝑔

(
𝑍
( 𝑗)
𝑖

)
= E

Π


sup

𝑔∈G

∑
𝑖∈[𝑘 ]
𝑗 ∈[𝑇 ]

𝑔

(
𝑍
( 𝑗)
𝑖

)
(7)

Next note that

E
Π

sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑋𝑖 )
 = E

Π

I (E) · sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑋𝑖 )
 + EΠ

I
(
E
)
· sup
𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑋𝑖 )


≤ 𝑇 2 (1 − 𝜎)
𝛼
𝜎 + E

Π

I
(
E
)
· sup
𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑋𝑖 )


≤ 𝑇 2 (1 − 𝜎)
𝛼
𝜎 + E

Π

I
(
E
)
· sup
𝑔∈G

∑
𝑖, 𝑗

𝑔

(
𝑍
( 𝑗)
𝑖

)
≤ 𝑇 2 (1 − 𝜎)

𝛼
𝜎 + E

Π

sup𝑔∈G

∑
𝑖, 𝑗

𝑔

(
𝑍
( 𝑗)
𝑖

) ,
where the second transition uses the fact that Pr [E] ≤ 𝑇 (1 − 𝜎)

𝛼
𝜎 and that sup𝑔∈G

∑𝑇
𝑖=1 𝑔 (𝑋𝑖 ) ≤ 𝑇

given that∀𝑔 ∈ G, 𝑔 (𝑥) ≤ 1. The third transition uses the fact that conditioned on E, {𝑋1, . . . , 𝑋𝑇 } ⊆{
𝑍
( 𝑗)
𝑖

| 𝑖 ∈ [𝑘] , 𝑗 ∈ [𝑇 ]
}
. Using Equation 7 completes the proof of Claim 3.4. □

Claim 3.5. For any 𝑘 and any 𝜖 >
120𝑑 log(4𝑒2/𝜖)

𝑇𝑘
, we have

E
U

sup𝑔∈G

∑
𝑖∈[𝑘 ], 𝑗 ∈[𝑇 ]

𝑔

(
𝑍
( 𝑗)
𝑖

) ≤ 72

√
𝜖 𝑇 𝑘 𝑑 log

(
1/𝜖

)
+𝑇 𝑘 𝜖.

Proof sketch of Claim 3.5. The crux of this proof is that random variables 𝑍
( 𝑗)
𝑖

are drawn

i.i.d. from the uniform distribution, therefore, standard VC theory arguments provide uniform

convergence bounds for them. We use Bernstein-style uniform convergence bound and leverage

the fact that for all 𝑔 ∈ G, EU [𝑔(𝑍 )] ≤ 𝜖 to get a variance that shrinks with 𝜖 . That is, in

Lemma A.2, we have that error grows as 𝑂̃

(√
𝜖𝑇𝑑

)
whereas if just a Hoeffding bound were used,

the error would grow as 𝑂̃

(√
𝑇𝑑

)
which would have resulted in a regret of 𝑂̃

(√
𝑇𝑑𝜎−1

)
instead

of 𝑂̃

(√
𝑇𝑑 log(1/𝜎)

)
. The proof of this claim follows from [30, Theorem 13.7] and is included in

Appendix A for completeness. □
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Combining Claim 3.4 and Claim 3.5, replacing in values of 𝛼 = 10 ln(𝑇 ), 𝑘 = 𝛼/𝜎 , and (1−𝜎)𝛼/𝜎 ≤
exp(−𝛼), we have that

E
𝒟𝒟𝒟

sup𝑔∈G

𝑇∑
𝑖=1

𝑔 (𝑥𝑖 )
 ≤ 𝑇 2

exp(−𝛼) +𝑂
(√

𝜖

𝜎
𝑇 ln(𝑇 )𝑑 log

(
1/𝜖

)
+𝑇 ln(𝑇 ) 𝜖

𝜎

)
≤𝑂

(√
𝜖

𝜎
𝑇 ln(𝑇 )𝑑 log

(
1/𝜖

)
+𝑇 ln(𝑇 ) 𝜖

𝜎

)
,

where the last transition is due to𝑇 2
exp(−10 ln(𝑇 )) ∈ 𝑜 (1). This completes the proof of Lemma 3.3.

□

3.3 Proof of Theorem 3.1
The proof of Theorem 3.1 follows the proof outline for oblivious smooth adversaries described with

Section 3.1 with the exception of using Lemma 3.3 that holds for adaptive smooth adversaries in

place of Equation 6 bound.

Let 𝑑 = VCDim(H). Using the regret decomposition from Equation (4), an upper bound on the

size of an 𝜖-cover such as |H | ≤ (41/𝜖)𝑑 (see [48] or [30, Lemma 13.6]), and Lemma 3.3, we have

E[Regret(A,𝒟𝒟𝒟)] ≤ 𝑂
©­«
√
𝑇𝑑 ln

(
1

𝜖

)ª®¬ + E𝒟𝒟𝒟
sup𝑔∈G

𝑇∑
𝑡=1

𝑔 (𝑥𝑡 )


≤ 𝑂
©­«
√
𝑇𝑑 ln

(
1

𝜖

)
+

√
𝜖

𝜎
𝑇 ln(𝑇 )𝑑 log

(
1/𝜖

)
+𝑇 ln(𝑇 ) 𝜖

𝜎

ª®¬ ,
Recall that we needed 𝜖 >

120𝑑𝜎 log(4𝑒2/𝜖)
𝑇 log𝑇

. This can be satisfied by setting 𝜖 = 𝑂

(
𝑑𝜎

𝑇 log𝑇
log

(
𝑇 log𝑇

𝑑𝜎

))
and we have that

E[Regret(A,𝒟𝒟𝒟)] ≤ 𝑂̃
©­«
√
𝑇𝑑 ln

(
𝑇

𝑑𝜎

)
+ 𝑑 ln

(
𝑇

𝑑𝜎

)ª®¬
as required.

3.4 Proof of Theorem 3.2
In this section, we provide a proof for the tightness of our regret bounds. In order to do this, we

first formally define the notion of Littlestone dimension of a class.

Definition 3.1 (Littlestone Dimension, [23]). Let X be an instance space and F be a hypothesis

class onX. A mistake tree is a full binary decision tree whose internal nodes are labelled by elements

of X. For every choice of labels {𝑦𝑖 }𝑑𝑖=1, Every root to leaf path in the mistake tree corresponds to a

sequence {
(
𝑥𝑖 , 𝑦𝑖

)
}𝑑𝑖=1 by associating a label 𝑦𝑖 to a node depending on whether it is the left or right

child of its parent. A mistake tree of depth 𝑑 is said to be shattered by a class F if for any root to

leaf path {
(
𝑥𝑖 , 𝑦𝑖

)
}𝑑𝑖=1, there is a function 𝑓 ∈ F such that 𝑓 (𝑥𝑖 ) = 𝑦𝑖 for all 𝑖 ≤ 𝑑 . The Littlestone

dimension of the class F denoted by LDim (F ) is the largest depth of a mistake tree shattered by

the class F .

As an example, the Littlestone dimension of the class of thresholds on {1, . . . , 𝑛} is log
2
(𝑛). The

following theorem shows that the Littlestone dimension captures the regret in the online learning
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game against a class. We will only need the lower bound but we will state the full theorem for

completeness.

Theorem 3.6 ([4, 23]). Let X be an instance space and F be a hypothesis class on X. Then, there

exists an online learning algorithm A such that

Regret (A) ≤ 𝑂

(√
LDim (F )𝑇

)
.

Furthermore, for any algorithm A ′
, we have that

Regret

(
A ′) ≥ Ω

(√
LDim (F )𝑇

)
.

Using the above theorem, we lower bound the regret in the online learning against smoothed

adversaries. We do this by reducing the smoothed case to the worst case for a related class and

lower bound the worst case regret using the above theorem.

Proof of Theorem 3.2. We will first construct a class on the domain

[
1/𝜎

]
=

{
1, . . . , 1

𝜎

}
with

VC dimension 𝑑 and Littlestone dimension Θ
(
𝑑 log

(
1/𝑑𝜎

) )
. For simplicity, assume 𝜎−1

and 𝑑 to

be powers of two. Divide

[
1/𝜎

]
into 𝑑 subsets each of equal size, denoted by 𝐴𝑖 . On each of these

subsets instantiate the class of thresholds, i.e., for each 𝛾 ∈ 𝐴𝑖 , ℎ𝛾 (𝑥) = I
[
𝑥 ≥ 𝛾

]
for 𝑥 ∈ 𝐴𝑖 and 0

for 𝑥 ∉ 𝐴𝑖 . For a 𝑑-tuple of thresholds

(
ℎ𝛾1 . . . ℎ𝛾𝑑

)
with 𝛾𝑖 ∈ 𝐴𝑖 , define the function

ℎ𝛾1,...,𝛾𝑑 (𝑥) =
𝑑∑
𝑖=1

I [𝑥 ∈ 𝐴𝑖 ] ℎ𝛾𝑖 (𝑥) .

This function can be seen as the union of the thresholds ℎ𝛾𝑖 . DefineH to be the class of all such

functions. Note that this class has VC dimension 𝑑 . The VC dimension is at most 𝑑 since if any

more than 𝑑 points would mean at least one of the 𝐴𝑖 must have two points but this cannot be

shattered by thresholds on 𝐴𝑖 . The VC dimension can be seen to be at least 𝑑 by taking one point

in each of the 𝐴𝑖 .

We claim that this class has Littlestone dimension Θ
(
𝑑 log

(
1/𝜎𝑑

) )
. At a high level, the Littlestone

dimension of the class of thresholds defined over 𝐴𝑖 is log2 (1/𝜎𝑑). Moreover, our definition of a

𝑑-tuple threshold is a disjoint union of 𝑑 thresholds. This allows us to combine the mistake trees

for 𝐴1, . . . , 𝐴𝑑 , by gluing a copy of the mistake tree for 𝐴𝑖+1 at each of the leaves of the mistake

tree for 𝐴𝑖 , recursively. This results in a mistake tree of depth Θ
(
𝑑 log

(
1/𝜎𝑑

) )
. For more detail, see

Lemma C.1.

Next consider the set [0, 1] and divide it into contiguous subintervals of length 𝜎 . We define the

projection function Π : [0, 1] →
[
1/𝜎

]
by Π (𝑥) = 𝑖 if 𝑥 is in the 𝑖th subinterval. Define the class

G on [0, 1] by composingH with Π, i.e., G =
{
𝑔 : 𝑔 = ℎ ◦ Π

}
. Note that the uniform distribution

on each subinterval is 𝜎-smooth. Thus, in a smoothed online learning game with the class G, an
adversary who plays only uniform distributions on the subintervals defined above corresponds to

an adversary in the worst-case online learning game on

[
1/𝜎

]
against classH . In particular, any

algorithm for G against such an adversary can be converted to an algorithm for H with the same

regret. From Theorem 3.6, we have that the regret against H is lower bounded by√
𝑇LDim (H) =

√
𝑑𝑇 log

(
1/𝜎𝑑

)
Thus, the regret in the smoothed online learning game for G is lower bounded by

√
𝑑𝑇 log

(
1/𝜎𝑑

)
as

required. We note that this reduction goes through even for non-adaptive smooth adversaries. □
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4 DISCREPANCY
In this section, we consider the online vector balancing problem with adaptive smooth adversaries

and achieve bounds that are almost as small as the stochastic setting where instances are drawn

from the uniform distributions.

Recall that in the online vector balancing or discrepancy problem, at every round 𝑡 the algorithm

see a new vector 𝑋𝑡 with bounded norm and has to assign a sign 𝜖𝑡 ∈ {−1, 1} to it. The goal of the

algorithm is to ensure that for all 𝑡 ≤ 𝑇 , 




 𝑡∑
𝑖=1

𝜖𝑖𝑋𝑖







∞

is small. This problem is studied under different choice of norms, but we restrict our our discussion to

the infinity norm. In the adaptive adversarial model, where the adversary’s choice of vector𝑋𝑡 could

depend on the past choices of the algorithm and the adversary, i.e., 𝜖1, . . . , 𝜖𝑡−1 and 𝑋1, . . . , 𝑋𝑡−1, no

algorithm can obtain discrepancy bound of 𝑂

(√
𝑇

)
. On the other hand, recent works of Bansal

et al. [18] and Alweiss et al. [5] have shown that polylog(𝑛𝑇 ) discrepancy bounds are achievable

when 𝑋𝑡 s are drawn from a fixed distribution or are fixed by an oblivious adversary in advance.

We consider the online discrepancy problem under against an adaptive 𝜎-smooth adversary.

That is, the adversary chooses a 𝜎-smooth distribution for 𝑋𝑡 after having observed 𝜖1, . . . , 𝜖𝑡−1
and 𝑋1, . . . , 𝑋𝑡−1. We also restrict our attention to the isotropic case where the covariance matrix

E𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡

]
= 𝑐𝐼 for some 𝑐 .

In this section, we give discrepancy bounds that smoothly interpolate between the stochastic

and adaptive cases.

Theorem 4.1. Let𝒟𝒟𝒟 be an adaptive sequence of 𝜎-smooth distributions, such that the distribution

of 𝑋𝑖 , with ∥𝑋𝑖 ∥ ≤ 1, at time 𝑖 is decided after observing 𝑋1, . . . , 𝑋𝑖−1, 𝜖1, . . . , 𝜖𝑖−1. Furthermore, let

E𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡

]
= 𝑐𝐼 for some some 𝑐 ∈ [0, 1/𝑛]. Then, there is an online algorithm for deciding the sign

𝜖𝑖 of 𝑋𝑖 such that with probability 1 −𝑇 −4
for all 𝑡 ≤ 𝑇




 𝑡∑

𝑖=1

𝜖𝑖𝑋𝑖






 ≤ 𝑂

(
log

2

(
𝑇𝑛

𝜎

))
.

We complement this upper bound by showing that we cannot get the logarithmic dependence on

smoothness parameter 𝜎 , 𝑛 and 𝑇 simultaneously without further assumptions on the distribution

such as isotropy.

Theorem 4.2. For any online algorithm, there is an adaptive sequence of

(
1/20𝑛2𝑇 2

)
-smooth distribu-

tions on the unit ball such that, we have





 𝑇∑
𝑖=1

𝜖𝑖𝑣𝑖








∞

≥ Ω

(√
𝑇

𝑛

)
with probability 1 − exp

(
−𝑇/12

)
.

4.1 Overview of Existing Approaches and their Need for Obliviousness
Bansal et al. [18] consider various versions of the online discrepancy problem where the vectors are

chosen stochastically from a fixed known distribution. One such problem is the stochastic online

variant of the Komlós problem, where the input vectors come from a fixed distribution supported on
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the unit Euclidean ball, and the algorithms goal is to minimize the infinity norm of the discrepancy

vector, i.e., ∥𝑑𝑡 ∥∞. To do this, Bansal et al. [18] introduced the following potential function

Φ𝑡 = E
𝑊 ∼𝑝

[
cosh

(
𝜆𝑑⊤𝑡 𝑊

) ]
,

where 𝑝 denotes a mixture between sampling from the fixed distribution the vectors are drawn

from and the basis vectors 𝑒𝑖s. This potential can be seen as the exponential moment of the random

variable 𝑑⊤𝑡−1𝑊 that both bounds 𝜆𝑑⊤𝑡−1𝑋𝑡 ≤ 𝑂
(
log (𝑇Φ𝑡−1)

)
and induces an anti-concentration

constraint on the correlations of the discrepancy vector 𝑑𝑡−1. [18] then uses an algorithm that

at time 𝑡 observes 𝑋𝑡 and picks the sign 𝜖𝑡 that minimizes the increase in the potential function

Φ𝑡 −Φ𝑡−1, that is ΔΦ = E𝑊 ∼𝑝
[
cosh

(
𝜆(𝑑𝑡−1 + 𝜖𝑡𝑋𝑡 )⊤𝑊

) ]
−E𝑊 ∼𝑝

[
cosh

(
𝜆𝑑⊤𝑡−1𝑊

) ]
. At the heart of

the analysis of [18] is to show that in expectation over the choice of𝑋𝑡 from the fixed distribution,

ΔΦ remains small at every time step. It is not hard to see that once the expected increase in the

potential is upper bounded, standard martingale techniques can be used to bound the potential and

thus the discrepancy at every time step.

To bound ΔΦ, Bansal et al. [18] considers Taylor expansion of the potential function as follows

ΔΦ ≲ 𝜖𝑡𝜆 E
𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑋⊤
𝑡 𝑊

]
+ 𝜆2 E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� ·𝑊 ⊤𝑋𝑡𝑋
⊤
𝑡 𝑊

]
. (8)

Bansal et al. [18] leverages the the obliviousness of the adversary, i.e., the fact that 𝑋𝑡 arrive from a

fixed distribution, and isotropy of 𝑋 to directly bound the linear and quadratic terms of the Taylor

expansion as follows.

The second term of Equation 8 is bounded using the isotropy of the vector 𝑋𝑡 as follows

𝜆2 E
𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��𝑊 ⊤𝑋𝑡𝑋
⊤
𝑡 𝑊 ≤ 1

𝑛
𝜆2 E

𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� .
As for the first term of Equation 8, note that since the algorithm picks 𝜖𝑡 to minimize the potential

rise, it is sufficient to upper bound E𝑋𝑡

[
−
��𝜆 E𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑋⊤
𝑡 𝑊

] ��] . Since the potential is
the exponential moment of the 𝜆𝑑⊤𝑡−1𝑋𝑡 and 𝑋𝑡 s are drawn from an oblivious distribution, we have

that 𝜆𝑑⊤𝑡−1𝑋𝑡 ≤ 𝑂
(
log (𝑇Φ𝑡−1)

)
with high probability. Thus, we get

E
𝑋𝑡

[����𝜆 E𝑊 ∼𝑝
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑋⊤
𝑡 𝑊

����] ≳ 1

ln(𝑇Φ𝑡−1)
E
𝑋𝑡

[
𝜆2 E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑑⊤𝑡−1𝑋𝑡𝑋

⊤
𝑡 𝑊

] ]
≳

𝜆

𝑛 ln(𝑇Φ𝑡−1)
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� − 2

]
.

using the fact that 𝑎 sinh(𝑎) ≥
��
sinh (𝑎)

��− 2 and the isotopy of the distribution. Summing these two

terms, we get

ΔΦ ≲ − 𝜆

𝑛 ln(𝑇Φ𝑡−1)
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� − 2

]
+ 1

𝑛
𝜆2 E

𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��
≲ 2.

We get we choose 𝜆 such that 𝜆−1 ≤ log (𝑇Φ𝑡−1) if Φ ≤ poly (𝑇 ). This tells us that that if the
potential is small, then the change in the potential is small as required.

Let us now review the steps where the obliviousness of the adversary was crucial for the analysis

of Bansal et al. [18]. The main step is the definition and the interpretation of the potential function,

that controls the moments of 𝑑⊤𝑡−1𝑋𝑡 assuming that 𝑋𝑡 comes from a fixed distribution and the

future vector that are represented in𝑊 ∼ 𝑝 . That is, obliviousness is primarily used to show that

𝜆𝑑⊤𝑡−1𝑋𝑡 ≤ 𝑂 (ln(𝑇Φ𝑡−1)). In an adaptive (smooth) setting where the distribution of 𝑋𝑡 and the

future vectors differ and are unknown an adversary can correlate 𝑋𝑡 and the future vectors with
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𝑑𝑡−1. It is not immediately clear how to directly adapt the potential function to account for the an

evolving sequence of distributions. A possible approach for directly altering the potential function

is to work with worst-case evolution of smooth distribution across a single time step. This seems

both algorithmically challenging to deal with and as we see next unnecessary.

4.2 From Adaptive to Oblivious through Coupling
We emphasize that the main step in which Bansal et al. [18] leveraged the obliviousness of the

adversary is to show that their potential function defined over random 𝑋𝑡 and a random𝑊 ∼ 𝑝

that balances between future observations and the standard basis has the property that 𝜆𝑑⊤𝑡−1𝑋𝑡 ≤
𝑂 (ln(𝑇Φ𝑡−1)). We use the coupling argument to show that a similarly defined potential function in

our case also demonstrate the same bounds. The main observation that allows us to move from the

oblivious adversary to the adaptive adversary is that the coupling discussed in Section 2.1 gives us

a way to upper bound the probability that 𝑑⊤𝑡−1𝑋𝑡 is large under an adaptive sequence of smooth

distributions in terms of the probability under the uniform distribution.

Let us start by defining the algorithm that obtains our results of Theorem 4.1 analogously to

the algorithm of Bansal et al. [18] for the uniform distribution. At step 𝑡 , our algorithm observes

vectors the discrepancy vector 𝑑𝑡−1 (which is a function of 𝜖1 . . . , 𝜖𝑡−1 and the previous vectors) and
receives a new vector 𝑋𝑡 that is to be colored. Let 𝜖𝑡 denote the sign that our algorithm will assign

to 𝑋𝑡 and let 𝑑𝑡 = 𝑑𝑡−1 + 𝜖𝑡𝑋𝑡 . Let 𝑝 denote the following distribution.{
𝑍 ∼ U with probability

1

2

𝑒𝑖 where 𝑒𝑖 ∼ 𝑝basis with probability
1

2

,

where 𝑝basis is the uniform distribution on the standard basis vectors (with both positive and

negative signs). Defined the potential function

Φ𝑡 = E
𝑊 ∼𝑝

[
cosh

(
𝜆𝑑⊤𝑡 𝑊

) ]
,

for 𝜆 = 1000 ln (𝑘𝑛𝑇 ) where 𝑘 is a parameter to be set later. At step 𝑡 observing 𝑋𝑡 our algorithm

greedily picks the 𝜖𝑡 minimizes the potential difference, that is

Φ𝑡 − Φ𝑡−1 = E
𝑊 ∼𝑝

[
cosh

(
𝜆(𝑑𝑡−1 + 𝜖𝑡𝑋𝑡 )⊤𝑊

) ]
− E

𝑊 ∼𝑝

[
cosh

(
𝜆𝑑⊤𝑡−1𝑊

) ]
.

The following lemma uses the coupling argument to bound the probability tails of 𝑑⊤𝑡−1𝑋𝑡 .

Lemma 4.3. Consider any fixed 𝑑𝑡−1 vector and 𝑋𝑡 that is sampled from an arbitrary 𝜎-smooth

distribution. Then,

Pr

𝑋𝑡

[
𝜆𝑑⊤𝑡−1𝑋𝑡 ≥ 4 ln

(
4𝑘Φ𝑡−1

𝛿

)]
≤ (1 − 𝜎)𝑘 + 𝛿.

Proof. We will use the coupling from Appendix B. In particular, we can use a single-step

coupling from Lemma B.1 that shows that there exists a coupling Π on

(
𝑋𝑡 , 𝑍

(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

)
such

that 𝑋𝑡 has the same distribution as 𝑋𝑡 , 𝑍
(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

are uniformly and independently distributed

and with probability at most (1 − 𝜎)𝑘 , we have 𝑋𝑡 ∉

{
𝑍

(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

}
. Let E denote the event where
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𝑋𝑡 ∉

{
𝑍

(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

}
. Then, for any 𝜃

Pr

𝑋𝑡

[
𝜆𝑑⊤𝑡−1𝑋𝑡 ≥ 𝜃

]
= Pr

[
exp

(
𝜆𝑑⊤𝑡−1𝑋𝑡

)
≥ exp(𝜃 )

]
= Pr

Π

[
E ∧

{
exp

(
𝜆𝑑⊤𝑡−1𝑋̃𝑡

)
≥ exp(𝜃 )

}]
+ Pr

Π

[
E ∧

{
exp

(
𝜆𝑑⊤𝑡−1𝑋̃𝑡

)
≥ exp(𝜃 )

}]

≤ (1 − 𝜎)𝑘 + Pr

Π

E ∧


𝑘∑
𝑖=1

exp

(
𝜆𝑑⊤𝑡−1𝑍

(𝑡 )
𝑖

)
≥ exp(𝜃 )




≤ (1 − 𝜎)𝑘 + Pr

Π


𝑘∑
𝑖=1

exp

(
𝜆𝑑⊤𝑡−1𝑍

(𝑡 )
𝑖

)
≥ exp(𝜃 )


≤ (1 − 𝜎)𝑘 + exp(−𝜃 ) E

Π


𝑘∑
𝑖=1

exp

(
𝜆𝑑⊤𝑡−1𝑍

(𝑡 )
𝑖

) (By Markov inequality)

≤ (1 − 𝜎)𝑘 + 2 exp(−𝜃 ) E
Π


𝑘∑
𝑖=1

cosh

(
𝜆𝑑⊤𝑡−1𝑍

(𝑡 )
𝑖

) (By exp(𝑥) ≤ 2 cosh(𝑥))

≤ (1 − 𝜎)𝑘 + 4 exp(−𝜃 )
𝑘∑
𝑖=1

E
𝑊 ∼𝑝

[
cosh

(
𝜆𝑑⊤𝑡−1𝑊

) ]
(𝑝 is w.p. 0.5 uniform)

≤ (1 − 𝜎)𝑘 + 4𝑘Φ𝑡−1 exp(−𝜃 ),

Setting 𝜃 = ln

(
4𝑘Φ𝑡−1

𝛿

)
completes the proof. □

4.3 Proof of Theorem 4.1
Our proof follows the same approach as that of Bansal et al. [18] outlined in Section 4.1 and aims

to bound E𝑋𝑡
[Φ𝑡 ] − Φ𝑡−1 at every time step. The main technical challenge is to upperbound the

linear term E𝑋𝑡
[−|𝐿(𝑋𝑡 ) |] in ΔΦ𝑡 as a function of the correlation between 𝑑𝑡−1 and 𝑋𝑡 drawn from

a 𝜎-smooth distribution. We then use our Lemma 4.3 that controls this correlation to bound the

linear term.

Recall from Section 4.2 that our algorithm observes 𝑋𝑡 and picks the 𝜖𝑡 that minimizes the

potential difference, that is

Φ𝑡 − Φ𝑡−1 = E
𝑊 ∼𝑝

[
cosh

(
𝜆(𝑑𝑡−1 + 𝜖𝑡𝑋𝑡 )⊤𝑊

) ]
− E

𝑊 ∼𝑝

[
cosh

(
𝜆𝑑⊤𝑡−1𝑊

) ]
.

The next lemma shows that when the potential at time 𝑡 − 1 is small, the expected increase in Φ𝑡

over the choice of 𝑋𝑡 is small.

Lemma 4.4. At any time 𝑡 , if Φ𝑡−1 ≤ 𝑇 6
, then E𝑋𝑡

[Φ𝑡 ] − Φ𝑡−1 ≤ 2.

Proof. Denote ΔΦ = Φ𝑡 − Φ𝑡−1. As in [18], we decompose this as

ΔΦ (𝑋𝑡 ) = E
𝑊 ∼𝑝

[
cosh

(
𝜆(𝑑⊤𝑡−1 + 𝜖𝑡𝑋𝑡 )𝑊

) ]
− E

𝑊 ∼𝑝

[
cosh

(
𝜆(𝑑⊤𝑡−1)𝑊

) ]
≤ 𝜖𝑡𝜆 E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑋⊤
𝑡 𝑊

]
+ 𝜆2 E

𝑊 ∼𝑝

[ ��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��𝑊 ⊤𝑋𝑡𝑋
⊤
𝑡 𝑊

]
+ 𝜆2 E

𝑊 ∼𝑝

[
𝑊 ⊤𝑋𝑡𝑋

⊤
𝑡 𝑊

]
.
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Using notation similar to that of Bansal et al. [18], we will denote the first term in last equation as

𝜖𝑡𝐿 (𝑋𝑡 ), the second as𝑄 (𝑋𝑡 ) and the third as𝑄∗ (𝑋𝑡 ). We need to upper bound E𝑋𝑡

[
ΔΦ(𝑋𝑡 )

]
and

thus it suffices to bound these three quantities.

Our approach for upper bounding E𝑋𝑡

[
𝑄 (𝑋𝑡 )

]
and E𝑋𝑡

[
𝑄∗ (𝑋𝑡 )

]
is similar to that of Bansal

et al. [18] and uses that fact that the distribution of 𝑋 is isotropic (without the need to bring in

smoothness). We state these bounds in the following claim and include the proof of them for

completeness in Appendix D.

Claim 4.5. Let 𝑄 and 𝑄∗ be defined as above. Then,

E
𝑋𝑡

[
𝑄 (𝑋𝑡 )

]
≤ 𝑐𝜆2 E

𝑊 ∼𝑝

[ ��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� ]
and E

𝑋𝑡

[
𝑄∗ (𝑋𝑡 )

]
≤ 𝑐𝜆2

𝑛
.

To upper bound E[𝜖𝑡𝐿(𝑋𝑡 )], we need to use both the smoothness of 𝑋𝑡 and their isotropic nature.

First note that since 𝜖𝑡 is chosen to minimize the potential drop, we can bound E𝑋𝑡

[
𝜖𝑡𝐿 (𝑋𝑡 )

]
≤

−E𝑋𝑡

[ ��𝐿 (𝑋𝑡 )
��]
. So it’s sufficient to lower bound E𝑋𝑡

[��𝐿(𝑋𝑡 )
��]
.

Claim 4.6. Let 𝐿 be defined as above. Then,

E
𝑋𝑡

[ ��𝐿 (𝑋𝑡 )
��] ≥ 𝑐𝜆

ln

(
4𝑘Φ𝑡−1/𝛿

) E
𝑊 ∼𝑝

[ ��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��] − 1

Proof of Claim 4.6. Let 𝐵 = ln

(
4𝑘Φ𝑡−1/𝛿

)
and let 𝐺 be the event that 𝜆

��𝑑⊤𝑡−1𝑋𝑡

�� ≤ 𝐵. Note that��𝐿 (𝑋𝑡 )
�� ≥ 𝐿 (𝑋𝑡 ) · 𝑓 (𝑋𝑡 ) /



𝑓 

∞ for any function 𝑓 . We will use the function 𝑓 (𝑋𝑡 ) = 𝑑⊤𝑡−1𝑋𝑡 ·
I [𝑋𝑡 ∈ 𝐺] and note that



𝑓 

∞ ≤ 𝐵/𝜆. This allows us to decompose |𝐿 | further as follows.

E
𝑋𝑡

[��𝐿 (𝑋𝑡 )
��] ≥ E

𝑋𝑡

[
𝜆2

𝐵
E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑑⊤𝑡−1𝑋𝑡𝑋

⊤
𝑡 𝑊 · I (𝑋𝑡 ∈ 𝐺)

] ]
=
𝜆2

𝐵
E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑑⊤𝑡−1 E

𝑋𝑡

[𝑋𝑡𝑋
⊤
𝑡 ]𝑊

]
− 𝜆2

𝐵
E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑑⊤𝑡−1 E

𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡 I (𝑋𝑡 ∉ 𝐺)

]
𝑊

]
.

Looking at the second term in the above equation and using the fact that𝑋 is an isotropic distribution

and Lemma 4.3 (which used the smoothness of 𝑋 ), we have



E𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡 I (𝑋𝑡 ∉ 𝐺)

]




op

≤ Pr [𝑋𝑡 ∉ 𝐺] ≤ (1 − 𝜎)𝑘 + 𝛿.

Ensuring that 𝑘 >> 𝜎−1
ln

(
1/𝛿

)
by 𝑘 = 100𝜎−1

ln

(
𝑇 ln (𝑇 )

)
and noting that ∥𝑑𝑡−1∥ ≤ 𝑇

𝑑⊤𝑡−1 E
𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡 I (𝑋𝑡 ∉ 𝐺)

]
𝑊 ≤ 2𝛿𝑇 .

Picking 𝛿−1 = 2𝜆Φ𝑡−1𝑇 , we get

𝜆

����𝑑⊤𝑡−1 E𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡 I (𝑋𝑡 ∉ 𝐺)

]
𝑊

���� ≤ Φ−1
𝑡−1.

Now let us consider the first term of the above decomposition. Using the fact that 𝑋 is an isotropic

random variable, we have

𝜆2

𝐵
E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝑑⊤𝑡−1 E

𝑋𝑡

[𝑋𝑡𝑋
⊤
𝑡 ]𝑊

]
=
𝑐𝜆

𝐵
E

𝑊 ∼𝑝

[
sinh

(
𝜆𝑑⊤𝑡−1𝑊

)
𝜆𝑑⊤𝑡−1𝑊

]
≥ 𝑐𝜆

𝐵
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� − 2

]
,
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where the last inequality used the fact that 𝑎 sinh (𝑎) ≥
��
sinh(𝑎)

�� − 2. Putting the inequalities

together, we get

E
𝑋𝑡

[��𝐿 (𝑋𝑡 )
��] ≥ 𝑐𝜆

𝐵
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) �� − 2

]
− 𝑐𝜆

𝐵
Φ−1
𝑡−1 E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��]
≥ 𝑐𝜆

𝐵
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��] − 2𝑐𝜆

𝐵
− 𝜆

𝐵

≥ 𝑐𝜆

𝐵
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��] − 1,

where the second transition is by the definition of Φ𝑡−1 and the third transition is by the values

of 𝜆−1 = 1000 ln(𝑘𝑛𝑇 ), 𝐵 = ln(8𝜆𝑘𝑇Φ2

𝑡−1), and the assumption that Φ𝑡−1 ≤ 𝑇 6
. This completes the

proof of Claim 4.6.

□

We now use Claim 4.5 and Claim 4.5 to finish the proof of Lemma 4.4 as follows

E
𝑋𝑡

[
ΔΦ (𝑋𝑡 )

]
≤ E

𝑋𝑡

[
−|𝐿 | +𝑄 +𝑄∗

]
≤ −𝑐𝜆

𝐵
E

𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��] + 1 + 𝑐𝜆2 E
𝑊 ∼𝑝

[��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��] + 𝑐𝜆2

𝑛

≤ 2

Here, we use the fact that 𝜆 ≤ 𝐵−1
which follows from 𝜆−1 = 1000 ln(𝑘𝑛𝑇 ), 𝐵 = ln(8𝜆𝑘𝑇Φ2

𝑡−1), and
the assumption that Φ𝑡−1 ≤ 𝑇 6

. This completes the proof of Lemma 4.4. □

Note that the above argument gives us E𝑋𝑡

[
ΔΦ|Φ𝑡−1

]
≤ 2 given that Φ𝑡−1 ≤ 𝑇 6

. We truncate Φ𝑡

at 𝑇 6
, i.e. setting Φ̃𝑡 = Φ𝑡 till Φ𝑡 ≤ 𝑇 6

and Φ̃𝑡 = 𝑇 6
afterwards. Using this and the Doob maximal

martingale inequality, it follows that Φ𝑡 ≤ 𝑇 6
with probability 1 −𝑇 4

as required.

Next, we will see why bounding the potential suffices to bound the discrepancy. Recall that

the potential was defined as Φ𝑡 = E𝑊 ∼𝑝
[
cosh

(
𝜆𝑑⊤𝑡 𝑊𝑖

) ]
. Since with probability 1/2, 𝑝 sam-

ples uniformly from the set of basis vectors 𝑝𝑏𝑎𝑠𝑖𝑠 and given that exp(𝑥) ≤ 2 cosh(𝑥), we have
exp

(
𝜆
��𝑑⊤𝑡 𝑒𝑖 ��) ≤ ∑𝑛

𝑖=1 exp

(
𝜆
��𝑑⊤𝑡 𝑒 𝑗 ��) ≤ 8𝑛Φ𝑡 for all basis vectors 𝑒 𝑗 . Thus, we have

∥𝑑𝑡 ∥∞ =






 𝑡∑
𝑖=1

𝜖𝑖𝑋𝑖






 ≤ 𝜆−1 ln (4𝑛Φ𝑡 ) .

Recall that 𝜆−1 = 1000 ln

(
𝑛𝑇 ln(𝑇 )

𝜎

)
, which gives us that




 𝑡∑

𝑖=1

𝜖𝑖𝑋𝑖






 ≤ 𝑂̃

(
ln

2

(
𝑛𝑇

𝜎

))
as required.

4.4 Proof of Theorem 4.2
Here, we show that the isotropy condition is required for our online discrepancy upper bound.

Recall that the worst-case adversary for discrepancy generated vectors that were orthogonal to the

current discrepancy vector at each time. The idea for this proof is that even with the smoothness

requirements, the adversary can generate vectors such that the inner products are concentrated near

zero, leading to high discrepancy. Let the discrepancy vector at time 𝑡 be denoted by 𝑑𝑡 . Consider

the set 𝑆𝑡 =
{
𝑥 : ∥𝑥 ∥

2
≤ 1,

��⟨𝑥, 𝑑𝑡−1⟩�� ≤ 𝑛−2𝑇 −2∥𝑑𝑡−1∥2
}
. Note that the uniform distribution on 𝑆𝑡 is
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𝑐𝑛−2𝑇 −2
smooth for some constant 𝑐 . To see this, let U denote the uniform distribution on the unit

ball and let 𝑉𝑛 denote the volume of the unit ball in 𝑛 dimensions. Then,

Pr

𝑋∼U
[𝑋 ∈ 𝑆𝑡 ] =

1

𝑉𝑛

∫ 𝑛−2𝑇 −2

−𝑛−2𝑇 −2

(
1 − 𝑥2

) 𝑛−1
2

𝑉𝑛−1𝑑𝑥

≥ 1

𝑉𝑛

∫ 𝑛−2𝑇 −2

−𝑛−2𝑇 −2

(
1 − 1

𝑛4𝑇 4

) 𝑛−1
2

𝑉𝑛−1𝑑𝑥

≥ 𝑉𝑛−1
𝑉𝑛

· 1

2𝑛2𝑇 2

≥ 1

20𝑛2𝑇 2
.

The second inequality follows by noting that

(
1 − 𝑛−4𝑇 −4) 𝑛−1

2 ≥ 1/4. With this, we describe the

adversary’s strategy. At time 𝑡 , the adversary picks 𝑣𝑡 uniformly from 𝑆𝑡 . We will measure the

squared 2-norm of the discrepancy vector.

∥𝑑𝑡 ∥22 = ∥𝜖𝑡𝑣𝑡 + 𝑑𝑡−1∥22
= 𝜖2𝑡 ∥𝑣𝑡 ∥22 +∥𝑑𝑡−1∥22 + 2 ⟨𝑣𝑡 , 𝑑𝑡 ⟩

≥ ∥𝑣𝑡 ∥22 +∥𝑑𝑡−1∥22 −
2∥𝑑𝑡−1∥2
𝑛2𝑇 2

≥ ∥𝑣𝑡 ∥22 +∥𝑑𝑡−1∥22 −
2

𝑛2𝑇

≥
𝑡∑
𝑖=1

∥𝑣𝑖 ∥22 −
2𝑡

𝑛2𝑇
.

Note that Pr

[
∥𝑣𝑖 ∥2 ≤ 1/2

]
≤ 2

−(𝑛−1)
. This can be seen by noting that the probability can be computed

with an integral similar to the one above but with ball of radius 1/2 instead of the ball of radius

1. Also, note that the lengths ∥𝑣𝑖 ∥2 are independent across 𝑖 (even though 𝑣𝑖 themselves are not

independent). Denote 𝑧𝑖 as a random variable which is 1 if ∥𝑣𝑖 ∥ ≥ 1/2 and 0 otherwise. Then,

𝑡∑
𝑖=1

∥𝑣𝑖 ∥22 ≥
1

4

𝑡∑
𝑖=1

𝑧𝑖 .

Applying a Chernoff bound to 𝑧𝑖 , we get

Pr

[
𝑡∑
𝑖=1

∥𝑣𝑖 ∥22 ≤
𝑡

8

(
1 − 2

−(𝑑−1)
)]

≤ 𝑒−
𝑡
12 .

Thus with probability 1 − 𝑒−
𝑡
12 ,

∥𝑑𝑡 ∥22 ≥
𝑡

16

− 2𝑡

𝑛2𝑇
≥ 𝑡

20

.

We get the desired result by relating the 2-norm and ∞-norm.

This shows that we cannot get the logarithmic dependence on smoothness parameter 𝜎 , 𝑛 and 𝑇

simultaneously without further assumptions on the distribution such as isotropy.

5 ADAPTIVE SMOOTH ADVERSARIES AND DISPERSED SEQUENCES
In this section, we consider the problem of online optimization and show that adaptive smooth

adversaries create dispersed sequences. Recall that in the online optimization settings, an adversary

chooses a sequence of functions 𝑢1, . . . , 𝑢𝑇 such that 𝑢𝑡 : X → [0, 1] and the learner responds
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by taking instances 𝑥1, . . . , 𝑥𝑇 ∈ X with a goal of minimizing the regret. The main theorem of

this section shows that when 𝑢𝑖s are piecewise Lipschitz functions and are chosen by an adaptive

smooth adversary in such a way that the discontinuities of these functions are is smoothed, the

resulting sequence of functions is dispersed.

Theorem 5.1 (Adaptive Smoothness leads to Dispersion). Let 𝑢1, . . . , 𝑢𝑇 be functions from [0, 1] →
R that are piecewise Lipschitz with ℓ discontinuities each. Let 𝑑𝑖, 𝑗 denote the discontinuities of 𝑢𝑖 and

that are sampled from an adaptive sequence of 𝜎-smooth distributions. Then, for any 𝛼 ≥ 0.5, with

probability 1 − 𝛿 the sequence of functions 𝑢1 . . . 𝑢𝑇 is (𝑤,𝑘)-dispersed for

𝑤 = 𝜎 (𝑇 ℓ)𝛼−1 and 𝑘 = 𝑂̃

(
(𝑇 ℓ)𝛼 ln

(
1

𝛿

)
+ ln

(
1

𝜎

))
.

5.1 Overview of Balcan et al. [13] and the need for Obliviousness
Balcan et al. [13, Lemma 13] showed a similar result to Theorem 5.1 but for sequences that are

generated by an oblivious smooth adversary. The crux of their argument is showing that for the

number of points that can lie in any ball of small radius is small when these points are drawn

independently from a non-adaptive sequence of 𝜎-smooth distributions. More formally, they show

that ℓ points are picked from a non-adaptive sequence of 𝜎-smooth distributions over [0, 1], then
with probability 1 − 𝛿 , any interval of width𝑤 contains at most

𝑂
©­«𝑇 ℓ𝑤𝜎 +

√
𝑇 ℓ log

(
1

𝛿

)ª®¬ (9)

points. Setting 𝑤 = 𝜎 (𝑇 ℓ)𝛼−1 for an 𝛼 ≥ 0.5 then [13] showed that for a non-adaptive smooth

adversary, with probability 1 − 𝛿 , 𝑢1 . . . 𝑢𝑇 is

(
𝜎 (𝑇 ℓ)𝛼−1,𝑂

(
(𝑇 ℓ)𝛼 ln( 1

𝛿
)
) )
-dispersed.

The only step in the existing analysis that requires the adversary to be non-adaptive is that of

proving Equation (9). Here, Balcan et al. [13] relies on the obliviousness of the adversary an uses

the fact that points drawn from a non-adaptive sequence of smooth distributions are independently

(but not identically) distributed. Their approach leverages this independence between the instances

and the fact that VC dimension of intervals is 2 to use the double sampling and symmetrization

tricks from VC theory and establish a uniform convergence property on the number of instances

that can fall in any interval of width𝑤 .

5.2 Reducing Adaptivity to Obliviousness for Dispersion via the Coupling
We emphasize that Equation (9) is the only step in the existing approach that relies on the oblivi-

ousness of the adversary. In this section, we show how the coupling lemma can be used to obtain

(almost) the same upper bound as of Equation (9) for adaptive adversaries. Our approach is essen-

tially the same as the proof of Lemma 3.3 used for regret minimization, where we had to bound the

expected maximum number of smooth adaptive instances that can fall in any function 𝑔 ∈ G of

bounded VC dimension. In this case, we can apply the same results to the class of intervals, which

has a VC dimension of 2, and bound the number of discontinuities than fall in any interval. We

make another small change to our previous approach to achieve high probability bounds instead of

bounds on the expectation.

Lemma 5.2. Let J be the set of all intervals of width at most𝑤 over [0, 1]. For 𝑖 ∈ [𝑇 ] and 𝑗 ∈ [ℓ],
let 𝑑𝑖, 𝑗 be drawn from a 𝑇 ℓ-step adaptive sequence of 𝜎-smooth random variables over [0, 1]. Then,
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with probability 1 − 𝛿 ,

max

𝐽 ∈J

∑
𝑖∈[𝑇 ]
𝑗 ∈[ℓ ]

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
<
𝑇 ℓ𝑤

𝜎
ln

(
2𝑇 ℓ

𝛿

)
+ 10

√
𝑇 ℓ𝑤

𝜎
ln

(
2𝑇 ℓ

𝛿

)
ln

(
1

𝛿

)
+ 10 log

(
10𝑇 ℓ log

(
2𝑇 ℓ/𝛿

)
𝜎𝛿

)

Proof. Let𝒟𝒟𝒟 represent the 𝑇 ℓ-step adaptive sequence of 𝜎-smooth distributions from which

𝑑𝑖, 𝑗 s are drawn. Let 𝑘 =
ln(2𝑇 ℓ/𝛿)

𝜎
and consider the coupling Π described in Appendix B.2 over(

𝑑𝑖, 𝑗 , 𝑍
(𝑖, 𝑗)
1

. . . 𝑍
(𝑖, 𝑗)
𝑘

)
𝑖∈[𝑇 ], 𝑗 ∈[ℓ ]

, where𝑑𝑖, 𝑗 s are distributed according to𝒟𝒟𝒟 and𝑍
(𝑖, 𝑗)
𝑚 s are distributed

according to the uniform distribution over [0, 1]. Let E be the event

{
𝑑𝑖, 𝑗 | ∀𝑖 ∈ [𝑇 ], 𝑗 ∈ [ℓ]

}
⊈{

𝑍
(𝑖, 𝑗)
𝑚 | ∀𝑚 ∈ [𝑘], 𝑖 ∈ [𝑇 ], 𝑗 ∈ [ℓ]

}
. By Theorem 2.1, Pr[E] ≤ 𝑇 ℓ (1 − 𝜎)𝑘 .

We now bound the probability that the number of instances 𝑑𝑖, 𝑗 s that fall in any interval of size

𝑤 is bigger than a threshold 𝜃 , using the coupling argument. We have

Pr

𝒟𝒟𝒟

max

𝐽 ∈J

∑
𝑖, 𝑗

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
≥ 𝜃

 = Pr

Π

max

𝐽 ∈J

∑
𝑖, 𝑗

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
≥ 𝜃


= Pr

Π

E ∧max

𝐽 ∈J

∑
𝑖, 𝑗

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
≥ 𝜃

 + Pr

Π

E ∧max

𝐽 ∈J

∑
𝑖, 𝑗

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
≥ 𝜃


≤ 𝑇 ℓ (1 − 𝜎)𝑘 + Pr

Π

E ∧max

𝐽 ∈J

∑
𝑖, 𝑗

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
≥ 𝜃


≤ 𝑇 ℓ (1 − 𝜎)𝑘 + Pr

Π

E ∧max

𝐽 ∈J

∑
𝑖, 𝑗,𝑚

I
[
𝑍

(𝑖, 𝑗)
𝑚 ∈ 𝐽

]
≥ 𝜃


≤ 𝑇 ℓ (1 − 𝜎)𝑘 + Pr

Π

max

𝐽 ∈J

∑
𝑖, 𝑗,𝑚

I
[
𝑍

(𝑖, 𝑗)
𝑚 ∈ 𝐽

]
≥ 𝑡

 .
Now, using uniform convergence bounds (see e.g. [31, Page 201]) for J , which has a VC dimension

of 2 and the fact that for any 𝐽 ∈ J , Pr

[
𝑍
(𝑖, 𝑗)
𝑚 ∈ 𝐽

]
≤ 𝑤 , we have that

Pr

U

max

𝐽 ∈J

∑
𝑖, 𝑗,𝑚

I
[
𝑍

(𝑖, 𝑗)
𝑚 ∈ 𝐽

]
≥ 𝑇 ℓ𝑘𝑤 + 10

√
𝑇 ℓ𝑤𝑘 ln(𝑇 ℓ𝑘/𝛿) + 10 log

(
10𝑇 ℓ𝑘/𝛿

) ≤ 𝛿

2

.

Replacing in values of 𝑘 =
ln(2𝑇 ℓ/𝛿)

𝜎
and using the result of the above coupling, we have

Pr

max

𝐽 ∈J

∑
𝑖, 𝑗

I
[
𝑑𝑖, 𝑗 ∈ 𝐽

]
≥ 𝑇 ℓ𝑤

𝜎
log

(
2𝑇 ℓ

𝛿

)
+ 10

√
𝑇𝑤ℓ

𝜎
log

(
2𝑇 ℓ

𝛿

)
ln

(
1

𝛿

)
+ 10 log

(
10𝑇 ℓ log

(
2𝑇 ℓ/𝛿

)
𝜎𝛿

) ≤ 𝛿

as required. □
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5.3 Proof of Theorem 5.1
The proof of this theorem follows directly from Lemma 5.2 and by setting 𝑤 = 𝜎 (𝑇 ℓ)𝛼−1 for

𝛼 ≥ 0.5. □
We note that Theorem 5.1 shows that even adaptive smooth adversaries generate sequence of

functions that are sufficiently dispersed. This result enables us to directly tap into the results and

algorithms of Balcan et al. [13] that show that online optimizing on any dispersed sequence enjoys

improved runtime and regret bounds.
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A UNIFORM CONVERGENCE BOUNDS UNDER INDEPENDENCE
Lemma A.1 (Lemma 13.5 and Theorem 13.7 in [30]). Let A be a countable class of measurable

subsets of X with VCDim (A) = 𝑑 . Let 𝑍1, . . . 𝑍𝑛 be independent random variables taking values in

X. Assume that Pr [𝑋𝑖 ∈ 𝐴] ≤ 𝜖 for all 𝐴 ∈ A. Let

𝑄 =
1

√
𝑛
sup

𝐴∈A

𝑛∑
𝑖=1

(
I [𝑋𝑖 ∈ 𝐴] − Pr [𝑋𝑖 ∈ 𝐴]

)
.

Then,

E
[
𝑄

]
≤ 72

√
𝜖𝑑 log

(
4𝑒2

𝜖

)
whenever 𝜖 ≥

120𝑑 log

(
4𝑒2

𝜖

)
𝑛

.

We use the above theorem to get the required bound for the expected maximum of the process

indexed by a VC class under our coupling.

Lemma A.2. Let G be a class with VCDim (G) = 𝑑 and 𝑔 ∈ G, E𝑔(𝛾) ≤ 𝜖 where 𝛾 is uniformly

distributed. Then, for

{
𝛾𝑖

}
𝑖∈[𝑇𝑘 ] independetly and uniformly distributed,

E

[
sup

𝑔∈G

∑
𝑖

𝑔
(
𝛾𝑖

) ]
≤ 72

√
𝜖𝑇𝑘𝑑 log

(
1/𝜖

)
+𝑇𝑘𝜖

for 𝜖 >
120𝑑 log(4𝑒2/𝜖)

𝑇𝑘
.

Proof. Consider the random variable 𝑄 = 1√
𝑇𝑘

[
sup𝑔∈G

∑𝑇𝑘
𝑖=1 𝑔

(
𝛾𝑖

)
− E

[
𝑔

(
𝛾𝑖

) ] ]
where 𝛾𝑖 are

independent uniform random variables. Note that E
[
𝑔

(
𝛾𝑖

) ]
≤ 𝜖 . Note that this satisfies the

conditions of Lemma A.1 Thus,

E
[
𝑄

]
≤ 72

√
𝜖𝑑 log

(
4𝑒2

𝜖

)
,

whenever 𝜖 ≥
120𝑑 log

(
4𝑒2

𝜖

)
𝑇𝑘

. Thus, we have

E

sup𝑔∈G

𝑇𝑘∑
𝑖=1

𝑔
(
𝛾𝑖

)
− E

[
𝑔

(
𝛾𝑖

) ] ≤ 72

√
𝜖𝑇𝑘𝑑 log

(
4𝑒2

𝜖

)
.

Recalling that E
[
𝑔

(
𝛾𝑖

) ]
≤ 𝜖 , we get the desired result. □

B COUPLING ARGUMENT
In this section, we will produce a coupling between a adaptive sequence of 𝜎-smooth distributions

𝒟𝒟𝒟 and independent draws from the uniform distribution. In fact, we will prove the argument

for a more general setting where smoothness is defined with respect to a general measure 𝜇 over

the domain X. This proof is based on a generalization and simplification by Block et al. [26] and

Haghtalab et al. [40] of our original coupling argument that appeared in [42].

That is, a distribution D is 𝜎-smooth with respect to 𝜇 if for any 𝑆 ⊆ X, we have D(𝑆) ≤ 𝜇 (𝑆)
𝜎

.

Using the Radon-Nikodym theorem, we can prove that this is equivalent to

𝑑D
𝑑𝜇

≤ 1

𝜎
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where
𝑑D
𝑑𝜇

represents the Radon-Nikodym derivative of D with respect to 𝜇. For readers unfamilar

with measure-theoretic notation, it suffices to think of
𝑑D
𝑑𝜇

as the ratio of either the probability den-

sity functions or the probability mass functions of D and 𝜇. In particular, for uniform distributions

this corresponds to Definition 1.1.

B.1 Warm-Up: Coupling for a Single Round
As a warm-up, let us look at the coupling for a single smooth distributionD. Consider the following

coupling

• Draw 𝑘 samples 𝑌1 . . . 𝑌𝑘 from 𝜇.

• Initialize 𝑆 = ∅.
• For each 𝑖 , add 𝑌𝑖 to 𝑆 with probability 𝜎 · 𝑑D

𝑑𝜇
.

• If 𝑆 is non-empty, pick 𝑋1 randomly from 𝑆 . Else, then sample 𝑋1 independently from D.

• Output (𝑋1, 𝑍1, . . . 𝑍𝑘 ).

The key thing to note is that the above algorithm is well-defined due to smoothness. That is,

smoothness implies 𝜎 𝑑D
𝑑𝜇

≤ 1 which allows it to be used as a probability. In the following lemma,

we capture the required properties of the coupling.

Lemma B.1. Let (𝑋1, 𝑍1, . . . 𝑍𝑘 ) be as above. Then,
a. 𝑋1 is distributed according to D.

b. 𝑍𝑖 are distributed according to 𝜇.

c. Furthermore, 𝑍𝑖 are independent.

d. With probability 1 − (1 − 𝜎)𝑘 , 𝑋1 ∈ {𝑍1, . . . , 𝑍𝑘 }.

Proof. For any set 𝐴 ⊂ X, we have

Pr [𝑋1 ∈ 𝐴] = Pr[𝑆 is empty] Pr
[
𝑋1 ∈ 𝐴|𝑆 is empty

]
+ Pr

[
𝑋1 ∈ 𝐴|𝑆 is non-empty

]
· Pr[𝑆 is non-empty]

= Pr[𝑆 is empty]D(𝐴) + Pr

[
𝑌𝑖 ∈ 𝐴|𝑌𝑖 ∈ 𝑆

]
· Pr[𝑆 is non-empty]

= Pr[𝑆 is empty]D(𝐴) +
Pr

[
𝑌𝑖 ∈ 𝑆 |𝑌𝑖 ∈ 𝐴

]
· Pr[𝑌𝑖 ∈ 𝐴] · Pr[𝑆 is non-empty]
Pr[𝑌𝑖 ∈ 𝑆]

= Pr[𝑆 is empty]D(𝐴) +

∫
𝐴
𝜎 𝑑D

𝑑𝜇
𝑑𝜇 · Pr[𝑆 is non-empty]

Pr[𝑌𝑖 ∈ 𝑆]

= Pr[𝑆 is empty]D(𝐴) +

∫
𝐴
𝜎 𝑑D

𝑑𝜇
𝑑𝜇 · Pr[𝑆 is non-empty]∫

X 𝜎 𝑑D
𝑑𝜇

𝑑𝜇

= Pr[𝑆 is empty]D(𝐴) + Pr[𝑆 is non-empty]D(𝐴)
= D(𝐴).

This proves that the distribution of 𝑋1 is D. The distribution 𝑍𝑖 according to 𝜇 and their indepen-

dence follows from that of 𝑌𝑖 .

Finally, note that 𝑋1 ∉ {𝑍1, . . . , 𝑍𝑘 } only if 𝑆 is empty. For each 𝑌𝑖 , we saw above that the

Pr[𝑌𝑖 ∈ 𝑆] =
∫
X 𝜎 𝑑D

𝑑𝜇
𝑑𝜇 = 𝜎 . Thus, the probability that 𝑆 is empty is bounded by (1 − 𝜎)𝑘 as

required. □
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B.2 Adaptive Coupling
Moving to the case of a sequence of distributions, given a smooth sequence of distribution𝒟𝒟𝒟, we

would like to find a coupling with a sequence of independent samples from the uniform distribution.

We first note that an adaptively chosen sequence of distribution𝒟𝒟𝒟 corresponds to a sequence of

distributions𝒟𝒟𝒟𝑖 such that 𝑋𝑖 ∼ 𝒟𝒟𝒟𝑖 where𝒟𝒟𝒟𝑖 depends on the instantiations of 𝑋 𝑗 for 𝑗 < 𝑖 . To

make this dependence explicit will denote this as𝒟𝒟𝒟𝑖 (𝑋1, . . . 𝑋𝑖−1). We would like to construct a

coupling similar to the one in Appendix B.1. Consider the following coupling.

• For 𝑗 = 1 . . . 𝑡 ,

– Draw 𝑘 samples 𝑌
( 𝑗)
1

, . . . , 𝑌
( 𝑗)
𝑘

from 𝜇.

– Initialized 𝑆 𝑗 = ∅.
– For each 𝑖 , add 𝑌

( 𝑗)
𝑖

to 𝑆 𝑗 with probability 𝜎 · 𝑑𝒟𝒟𝒟𝑗 (𝑋1,...,𝑋 𝑗−1)
𝑑𝜇

.

– If 𝑆 𝑗 is non-empty, pick 𝑋 𝑗 randomly from 𝑆 𝑗 . Else, then sample 𝑋 𝑗 independently

from𝒟𝒟𝒟𝑗

(
𝑋1, . . . , 𝑋 𝑗−1

)
.

– Set 𝑍
( 𝑗)
𝑖

= 𝑌
( 𝑗)
𝑖

.

• Output

(
𝑋1, 𝑍

(1)
1

, . . . , 𝑍
(1)
𝑘

, . . . , 𝑋𝑡 , 𝑍
(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

)
.

Theorem B.2. Let
(
𝑋1, 𝑍

(1)
1

, . . . , 𝑍
(1)
𝑘

, . . . , 𝑋𝑡 , 𝑍
(𝑡 )
1

, . . . , 𝑍
(𝑡 )
𝑘

)
be as above. Then,

a. 𝑋1, . . . , 𝑋𝑡 is distributed according𝒟𝒟𝒟.

b. 𝑍
( 𝑗)
𝑖

are distributed independently according to 𝜇.

c. Furthermore,

{
𝑍
( 𝑗)
𝑖

| 𝑗 ≥ 𝑡, 𝑖 ∈ [𝑘]
}
are independently distributed as 𝜇, conditioned on𝑋1, . . . , 𝑋𝑡−1.

d. With probability at least 1 − 𝑡 (1 − 𝜎)𝑘 , {𝑋1, . . . , 𝑋𝑡 } ⊆
{
𝑍
( 𝑗)
𝑖

}
𝑖∈[𝑘 ], 𝑗 ∈[𝑡 ]

.

Proof. To see that 𝑋1 . . . 𝑋𝑡 is distributed according to𝒟𝒟𝒟, note that from the construction and

Lemma B.1, we have that conditioned on𝑋1 . . . 𝑋 𝑗−1,𝑋 𝑗 is distributed according to𝒟𝒟𝒟𝑗 (𝑋1, . . . , 𝑋𝑖−1)
as required.

Note that 𝑍
( 𝑗)
𝑖

= 𝑌
( 𝑗)
𝑖

, and their distribution does not depend on 𝑋1 . . . 𝑋 𝑗−1, we have that 𝑍
( 𝑗)
𝑖

are independently distributed according to 𝜇 even conditioned on 𝑋1 . . . 𝑋 𝑗−1.

As in Lemma B.1, we have that the probability that 𝑋 𝑗 ∉ {𝑍 ( 𝑗)
𝑖

} is bounded by (1 − 𝜎)𝑘 . By the

union bound, we have

Pr

[
∃ 𝑗 : 𝑋 𝑗 ∉ {𝑍 ( 𝑗)

𝑖
}
]
≤ 𝑡 · (1 − 𝜎)𝑘

as required. □

C PROOFS FROM SECTION 3
Lemma C.1. LetH be the class defined on

[
1/𝜎

]
as the disjoint union of 𝑑 thresholds as in Section 3.4.

Then, the Littlestone dimension of H is lower bounded by Ω

(√
𝑑 log

(
1/𝑑𝜎

) )
.

Proof. In order to prove this associate to each string {0, 1}𝑑 log(1/𝜎𝑑)
a function in H as follows.

Partition the string into blocks of size
1

𝜎𝑑
. We think of each of these blocks as forming a binary
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search tree for the subset𝐴𝑖 by associating 1 to the right child of a node and 0 to the left child. Thus,

every path on this tree corresponds to a threshold by associating it with the threshold consistent

with the labels along the path. Doing this association separately for each block, we can associate

the set of strings {0, 1}𝑑 log(1/𝜎𝑑)
with a binary search tree with the leaves labeled by elements in

H . Also, note that this forms a fully shattered tree as required by the definition of the Littlestone

dimension. Thus, the Littlestone dimension of H is 𝑑 log
(
1/𝜎𝑑

)
. □

D PROOFS FROM SECTION 4
Lemma D.1 ([18]).

E
𝑋𝑡

[
𝑄 (𝑋𝑡 )

]
≤ 𝑐𝜆2 E

𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��
and

E
𝑋𝑡

[
𝑄∗ (𝑋𝑡 )

]
≤ 𝑐𝜆2

𝑛

Proof.

E
𝑋𝑡

[
𝑄 (𝑋𝑡 )

]
= E

𝑋𝑡

[
𝜆2 E

𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��𝑊 ⊤𝑋𝑡𝑋
⊤
𝑡 𝑊

]
= 𝜆2 E

𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��𝑊 ⊤ E
𝑋𝑡

[
𝑋𝑡𝑋

⊤
𝑡

]
𝑊

= 𝑐𝜆2 E
𝑊 ∼𝑝

��
sinh

(
𝜆𝑑⊤𝑡−1𝑊

) ��
Similarly,

E
𝑋𝑡

[
𝑄∗ (𝑋𝑡 )

]
= E

𝑋𝑡

[
𝜆2 E

𝑊 ∼𝑝
𝑊 ⊤

𝑗 𝑋𝑡𝑋
⊤
𝑡 𝑊

]
≤ 𝑐

𝑛
𝜆2

as required. □
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