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Abstract

Social and real-world considerations such as robustness, fairness, social welfare and multi-agent tradeoffs
have given rise to multi-distribution learning paradigms, such as collaborative [4], group distributionally
robust [27], and fair federated learning [20]. In each of these settings, a learner seeks to minimize its
worst-case loss over a set of n predefined distributions, while using as few samples as possible. In this
paper, we establish the optimal sample complexity of these learning paradigms and give algorithms that
meet this sample complexity. Importantly, our sample complexity bounds exceed that of the sample
complexity of learning a single distribution only by an additive factor of n log(n)

ε2
. These improve upon the

best known sample complexity of agnostic federated learning by Mohri et al. [20] by a multiplicative factor
of n, the sample complexity of collaborative learning by Nguyen and Zakynthinou [22] by a multiplicative
factor logn

ε3
, and give the first sample complexity bounds for the group DRO objective of Sagawa et al.

[27]. To achieve optimal sample complexity, our algorithms learn to sample and learn from distributions
on demand. Our algorithm design and analysis is enabled by our extensions of stochastic optimization
techniques for solving stochastic zero-sum games. In particular, we contribute variants of Stochastic
Mirror Descent that can trade off between players’ access to cheap one-off samples or more expensive
reusable ones.

1 Introduction
Pervasive needs for robustness, fairness, and multi-agent collaboration in learning have given rise to multi-
distribution learning paradigms (e.g., [4, 27, 20, 10]). In these settings, we seek to learn a model that performs
well on any distribution in a pre-defined set of interest. For fairness considerations, these distributions
may represent heterogeneous populations of different protected or socio-economic attributes; in robustness
applications, they may capture a learner’s uncertainty regarding the true underlying task; and in muti-agent
collaborative or federated applications, they may represent agent-specific learning tasks. In these applications,
the performance and optimality of a model is measured by its worst test-time performance on a distribution
in the set. We are concerned with this fundamental problem of designing sample-efficient multi-distribution
learning algorithms.

The sample complexity of multi-distribution learning differs from that of learning a single distribution
in several ways. On one hand, learning tasks of varying difficulty require different numbers of samples.
On the other hand, similarity or overlap among learning tasks may obviate the need to sample from some
distributions. This makes the use of a fixed per-distribution sample budget highly inefficient and suggests that
optimal multi-distribution learning algorithms should sample on demand. That is, algorithms should take
additional samples whenever they need them and from whichever distribution they want them. On-demand
sampling is especially appropriate when some population data may be scarce to start with (as in fairness
mechanisms in which samples are amended [24]); when the designer can actively perturb datasets towards
rare or atypical instances (such as in robustness applications [16, 34]); or when sample sets represent agents’
contributions to an interactive multi-agent system [20, 5].

∗Authors’ addresses: nika@berkeley.edu, jordan@cs.berkeley.edu, eric.zh@berkely.edu. Authors are ordered alphabet-
ically.
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Problem Sample Complexity Thm Best Previous Result

Collab. Learning UB ε−2
(
log |H|+ n log(n

δ
)
)

[4.1] ε−5 log
(
1
ε

)
log(n

δ
)(log |H|+ n) [22]

Collab. Learning LB ε−2(log |H|+ n log( k
δ
)) [4.3] ε−1n log(k/δ) [4]

GDRO/AFL UB ε−2
(
log |H|+ n log(n

δ
)
)

[4.1] ε−2
(
n log |H|+ n log(n

δ
)
)

[20]

GDRO/AFL UB ε−2
(
DH + n log(n

δ
)
)

[5.1] N/A

(Training error convg.) ε−2
(
DH + n log(n

δ
)
)

[5.2] ε−2DH (expected convergence only) [27]

Table 1: This table gives upper (UB) and lower bounds (LB) on the sample complexity of learning model class H
on n distributions. For the collaborative learning and AFL settings, the sample complexity upper bounds refer to
the problem of learning a randomized model of worst-case error OPT + ε or a deterministic classifier of worst-case
error 2OPT + ε. For the GDRO setting, sample complexity refers to learning a deterministic model with worst-case
error of R-OPT + ε, where R-OPT is the best worst-case error attainable in a convex compact model space H. DH
denotes the Bregman radius of H, and k = min {n, log |H|}. Sample complexity bounds of Collaborative and Agnostic
federated learning in existing works, extend to VC dimension and Rademacher complexity. Our results also extend to
VC dimension under some assumptions.

Blum et al. [4] demonstrated the benefit of on-demand sampling in the collaborative learning setting, where
all data distributions are realizable with respect to the same target classifier. This line of work established that
learning n distributions on-demand takes Õ (log(n)) times the sample complexity of learning a single realizable
distribution [4, 6, 22], whereas relying on batched uniform convergence takes Ω̃ (n) times that of learning a
single distribution [4]. However, beyond the realizable setting, the best known multi-distribution learning
results fall short of this promise: existing on-demand sample complexity bounds for agnostic collaborative
learning have highly suboptimal dependence on ε, requiring Õ

(
log(n)/ε3

)
times the sample complexity of

agnostically learning a single distribution [22]. On the other hand, agnostic federated learning bounds [20]
have been studied only on algorithms that sample in one large batch and thus require Ω̃ (n) times the sample
complexity of learning a single task. Moreover, the test-time performance of some key multi-distribution
methods, such as group distributionally robust optimization [27], have not been studied from a theoretical
perspective before.

In this paper, we give a general framework for obtaining optimal and on-demand sample complexity for
three multi-distribution learning settings. Table 1 summarizes our results. All three settings consider a set
D of n distributions and a model class H. They evaluate the performance of a model h (or a distribution
over models) by its worst-case performance, maxD∈D lossD(h). As a benchmark, they consider the worst-case
loss of the best model, i.e., OPT = minh∗∈H maxD∈D lossD(h∗). Importantly, all of our sample complexity
upper bounds demonstrate only an additive increase of ε−2n log(n/δ) over the sample complexity of learning
a single task, compared to the multiplicative factor increase required by existing works.

- Collaborative learning of Blum et al. [4]: For agnostic collaborative learning, our Theorem 4.1 gives a
randomized and a deterministic model that achieve performance guarantees of OPT + ε and 2OPT + ε,
respectively. Our algorithms have an optimal sample complexity of O

(
1
ε2 (log(|H|) + n log(nδ ))

)
. This

improves upon the work of Nguyen and Zakynthinou [22] in two ways. First, it provides error bounds of
OPT + ε for randomized classifiers, where only 2OPT + ε was previously established. Second, it improves
the upper bound of Nguyen and Zakynthinou [22] by a multiplicative factor of log(n)/ε3. In Theorem 4.3,
we give a matching lower bound on this sample complexity, thereby establishing the optimality of our
algorithms.

- Group distributionally robust learning (group DRO) of Sagawa et al. [27]: For group DRO, we consider
a convex and compact model space H. Our Theorem 5.1 studies a model that achieves an OPT + ε
guarantee on the worst-case test-time performance of the model with an on-demand sample complexity of
O
(

1
ε2 (DH + n log(nδ )

)
. Our results also imply a high-probability bound for the convergence of group DRO
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training error that improves upon the (expected) convergence guarantees of Sagawa et al. [27] by a factor
of n.

- Agnostic federated learning of [20]: For agnostic federated learning, we consider a finite class of hypotheses.
Our Theorems 4.1 and 5.1 show that on-demand sampling can accelerate the generalization of agnostic
federated learning by a factor of n compared to batch results established by Mohri et al. [20]. Our results
also imply matching high-probability bounds to Mohri et al. [20] on the convergence of the training error
in the batched setting.

To achieve these results, we contribute new insights and techniques for solving stochastic zero-sum games
with sources of randomization that differ in both cost and quality. We frame the multi-distribution learning
problems as a stochastic zero-sum game with uncertain payoffs and utilize stochastic mirror descent and a
variational perspective to solve the game. In this case, the maximizing player can be interpreted as a weight
vector for distributions D, specifying from which distributions future on-demand samples should be taken.
These on-demand samples form a stochastic gradient for the players. However, the quality of these estimators,
the number of samples needed for them, and whether they can be reused later on, differs between the two
players. We extend the Stochastic Mirror Descent framework to optimally trade off these asymmetric needs
for samples. In Section 3 we give an overview of this approach and its technical challenges and contributions.

1.1 Related Work
Learning models. Three independent lines of work study multi-distribution learning, with different
motivating applications. Collaborative learning interprets multiple distributions as players that each seek
to learn a model with low error on their data distributions [4, 22, 6]. Agnostic federated learning interprets
these distributions as clients in a federated learning system [20]. Group distributionally robust optimization
interprets these distributions as data attributes or sources that a learner should avoid linking spuriously to
labels [14, 27, 28]. Formally, these learning objectives are all equivalent but have been studied from different
points of view and with different technical tools.

Existing work on group DRO has assumed that data is pre-collected and has studied the convergence
of multi-distribution training error. The agnostic federated learning literature has studied a single-batch
approach and derived data-dependent generalization bounds that suggest how much of the batch should be
collected from each distribution. Finally, the collaborative learning literature has studied an on-demand
framework for collecting data from each distribution. This approach also relates to a line of work on
multi-source learning and domain adaptation [3, 18].

Stochastic game equilibria. Our approach relates to a line of research on using online algorithms to find
min-max equilibria by playing no-regret algorithms against one another [26, 12, 23, 7, 8]. One such method,
online mirror descent (OMD), can also approximate minima of convex functions with high probability using
noisy first-order information [25, 21, 2]. This allows OMD to efficiently find min-max equilibria even in
stochastic convex-concave zero-sum games [13]. We bring these online learning tools to bear on the problem
of finding equilibria in robust optimization formulations.

2 Preliminaries
Let X be an instance space, Y a label space, and Z = X × Y a space of datapoints. A data distribution D is
a joint probability distribution over Z. We consider a hypothesis class H of a subset of functions mapping
X to Y. We work with loss functions ℓ : H × Z → [0, 1] that measure the loss of hypothesis h on data
point z ∈ Z. When Y = {0, 1}, ℓ is the misclassification error. We denote the expected loss, i.e. risk, of a
hypothesis h ∈ H under a data distribution D ∈ D by:

RiskD(h) := E
(x,y)∼D

[ℓ (h, (x, y))] .

For a distribution over the hypothesis class, p ∈ ∆H, and a distribution over data distributions, q ∈ ∆D, we
refer to their expected loss by Riskq(p) := ED∼q [Eh∼p [RiskD(h)]].
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Collaborative Learning. We will use the collaborative PAC learning model of Blum et al. [4] and its
agnostic extensions by Nguyen and Zakynthinou [22]. The overall goal of this setting is to guarantee small
risk for every distribution in a collection of distributions. Formally, we consider a set of data distributions
D := {D1, . . . , Dn}. The goal of the learner is to learn a hypothesis h such that, with probability 1− δ,

max
D∈D

RiskD(h) ≤ OPT + ε, where OPT := min
h∈H

max
D∈D

RiskD(h). (1)

Group Distribution Robustness. We will also study the closely related setting of group distributionally
robust optimization (Group DRO) of Sagawa et al. [27]. Formally, the group DRO setting considers a model
set Θ that is a convex compact subset of the Euclidean space and a convex loss function ℓ : Θ×Z → [0, 1]
that is assumed to be differentiable over Θ. Given a set of data distributions D := {D1, . . . , Dn}, the learner
seeks a model θ ∈ Θ, such that, with probability 1− δ,

max
D∈D

E
(x,y)∼D

[ℓ(θ, (x, y))] ≤ R-OPT + ε, where R-OPT := min
θ∈Θ

max
D∈D

E
(x,y)∼D

[ℓ(θ, (x, y))] . (2)

There is a close relationship between the Group DRO setting and collaborative learning. In particular, when
Θ = ∆(H) and H is finite, the two goals are analogous but with two exceptions: first, the Group DRO could
return a distribution over functions while collaborative learning requires the solution to be a deterministic
function, and second, allowing for randomized hypothesis leads to R-OPT being potentially more competitive
than OPT. We note that the group DRO setting is equivalent to the agnostic federated learning framework
of [20], thus our results for DRO extend to that setting as well.

Sample complexity. We are interested in the design of algorithms that achieve the above goals while
using smallest number of samples from distributions D1, . . . , Dn. We formalize the sample complexity by the
total number of calls made to example oracles EX(Di). Each call EX(D) produces an i.i.d. sample from D.
We note that these example oracles also allow us to sample from any mixture distribution q ∈ ∆D, e.g., by
first selecting a Di according to the mixture and then calling EX(Di).

2.1 Technical Background
We will use tools and definitions from the literature on zero-sum games and no-regret learning throughout
the paper. This section provides a brief overview of these concepts.

Zero-Sum Games. A finite two-player zero-sum game is described by the tuple (A-, A+, ϕ) where A- =
{1, . . . , n} and A+ = {1, . . . ,m} are finite sets of actions and where ϕ : A- × A+ → [0, C]. In this
game, the players choose mixed strategies over actions sets. These are distributions that are denoted by
a vector of probabilities p ∈ ∆A- and q ∈ ∆A+. The expected payoff of mixed strategies is denoted by
ϕ(p, q) = Ei∼p,j∼q [ϕ(i, j)]. The goal of the minimizing player is to minimize this expected payoff and the
maximizer seeks to maximize the expected payoff; that is, to solve

min
p∈∆A-

max
q∈∆A+

ϕ(p, q).

A pair (p, q) that solves this optimization problem is called a min-max equilibrium. Similarly, a solution
is called an ε-min-max equilibrium if neither player can unilaterally improve their objective by more than
ε. Formally, (p, q) is an ε-min-max equilibrium if both players’ regrets are at most ε, i.e., Reg-Min(p, q) :=
ϕ(p, q)−mini∗∈A- ϕ(i

∗, q) ≤ ε and Reg-Max(p, q) := maxj∗∈A+ ϕ(p, j∗)− ϕ(p, q) ≤ ε. We will next describe
methods that find ε-min-max equilibria by finding solutions (p, q) for which Reg-Min(p, q) + Reg-Max(p, q)
is at most ε. We describe a more general formulation for convex-concave zero-sum games in Appendix A.1
which we will use for the Group DRO problem.

No-Regret Learning. We consider an online setting where an arbitrary set of operators, g(1), . . . g(T ) ∈ E∗,
is revealed sequentially to a learner who must choose a matching sequence of actions, w(1), . . . w(T ), from a
convex compact set Z ⊆ E . Here, E and E∗ respectively refer to an arbitrary Euclidean space and its dual.
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We focus on a setting where an online learner commits to action w(t) ∈ Z before seeing g(t), g(t+1), . . . and
aims to achieve vanishing variational error Errv(w(1:T )) defined by

Errv(w(1:T )) := max
w∗∈Z

1

T

T∑
t=1

〈
g(t), w(t) − w∗

〉
. (3)

We will denote no-regret algorithms by their update rule Q : {Z × E∗} → Z, where {Z × E∗} denotes the
space of arbitrary length sequences of action-operator pairs. Given a history sequence w(1), . . . , w(t) ∈ Z and
operator sequence g(1), . . . , g(t) ∈ E∗, the algorithm returns w(t+1) = Q

({
w(1), g(1)

}
, . . . ,

{
w(t), g(t)

})
. When

the history is clear from context, we write w(t+1) = Q
(
w(t), g(t)

)
as shorthand. For the particular case where

Z = ∆n is a probability simplex, one such algorithm is Exponential Gradient Descent (also known as Hedge):

Qhedge

({
w(1), g(1)

}
, . . . ,

{
w(t), g(t)

})
:=

w̃

∥w̃∥1
where w̃i := w

(t)
i exp

{
−ηg

(t)
i

}
, (4)

where η is a user-defined step size, and w1 is a user-defined initial iterate. By default, we take w1 =
[
1
n

]n.
The following lemma is a classical result on the variational error of exponential gradient descent.

Lemma 2.1 ([30]). Let g(1), . . . , g(T ) ∈ Rn and Z = ∆n. Further assume
∥∥g(t)∥∥∞ ≤ C for all timesteps

t = 1, . . . , T . Choosing η =
√
log n/T , after T iterations of exponential gradient descent, the output {w}Tt=1

satisfies,

Errv(w(1:T )) ≤ 3C

2

√
KL
(
w(T )||w(1)

)
T

.

3 Technical Overview of Our Approach
In this section, we provide an overview of our technical approach for addressing the sample complexity of
collaborative learning and group DRO problems. In later sections, we will refer to the approach outlined in
this section to sketch proofs and design algorithms. We will focus our exposition on collaborative learning
and briefly indicate how the same approach applies to the group DRO setting.

At a high level, we first frame collaborative learning as a zero-sum game with uncertain payoffs and
aim to use a variational perspective to learn its minmax equilibrium. We specifically choose the variational
perspective (instead of an arbitrary online learning approach), since it allows us to linearize the effect of
uncertain payoffs on the resulting error. We then use stochastic gradients to solve the variational problem.
Our stochastic gradients will rely on i.i.d. samples from the distributions to estimate gradients both with
respect to distributions over H and mixtures over D but with an asymmetric bound on the bias and variance of
the estimates. Along the way, we develop tools and formalisms that handle the asymmetric cost of stochastic
gradients and obtain optimal sample complexity results. We now address these steps in more detail.

Collaborative Learning as Zero-Sum Games. When the hypothesis class H is finite, the collaborative
learning problem with distribution set D corresponds to a zero-sum game (A-, A+, ϕ) with A- = H, A+ =
D, ϕ(i, j) = Riskj(i), such that the value of the min-max solution is equivalent to R-OPT. It is not hard to
see that any ε-min-max equilibrium (p, q) of this game corresponds to a 2ε collaborative learning solution,
i.e.,

E
h∼p

[
max
D∈D

RiskD(h)

]
≤ OPT + 2ε. (5)

This enables us to use tools that have been developed for solving zero-sum games in order to address
collaborative learning and group DRO settings. We will use a similar construction when hypothesis class H
has finite VC dimension, where A- will instead refer to an appropriate ε-cover of H.
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Using VI to deal with Payoff Uncertainty. A sufficient condition for minimizing regret, and thus
finding ε-min-max equilibrium, is minimizing the variational error (Equation 3). In particular, for any finite
zero-sum game (A-, A+, ϕ), defining Z = [∆A-,∆A+] and operators

g(t) =

[{
∂piϕ(p

(t), q(t))
}
i∈A-

,
{
−∂qjϕ(p

(t), q(t))
}
j∈A+

]
, (6)

ensures that variational error provides an upper bound on regret: Errv(w(1:T )) ≥ Reg-Min(p, q)+Reg-Max(p, q),
where w = (p, q) (see Fact B.1). In collaborative learning, when p(t) is the min-player’s distribution over
hypotheses and q(t) is max-player’s distribution over the mixtures, the gradient vectors refer to

g(t) = [g(t)- , g
(t)
+ ], g(t)- =

{
Riskq(t)(h)

}
h∈H , g

(t)
+ =

{
RiskD(p(t))

}
D∈D

. (7)

In the collaborative learning setting, we can only create noisy estimates ĝ for these gradients from samples.
This is where no-regret algorithms that minimize variational error become advantageous. By linearizing the
effect of noise, ε(t) := g(t) − ĝ(t), they decompose the variational error into the training and generalization
error as follows

Errv(w(1:T )) ≤ max
w∗∈∆n

1

T

T∑
t=1

〈
ĝ(t), w(t) − w∗

〉
+ max

w∗∈∆n

1

T

T∑
t=1

〈
ε(t), w(t) − w∗

〉
. (8)

In contrast, generic no-regret algorithms that do not solve the variational inequality (e.g., when one player
plays Hedge and another plays clairvoyant best-response as used in existing work in collaborative learning
due to Blum et al. [4], Nguyen and Zakynthinou [22], Chen et al. [6]) nest the generalization and training
errors which leads to a multiplicative increase in sample complexity.

Leveraging Noisy Stochastic Gradients. We will work with stochastic estimators of g. These are
functions ĝ : ξ ×∆A- ×∆A+ of some external source of randomness, ξ ∈ ξ, and a strategy profile of interest.
For collaborative learning, the randomness source ξ is an i.i.d.-sampled data point from an appropriate
mixture of distributions and the estimator ĝ is then the empirical loss on this sample, which is an unbiased
and bounded estimator in the range of the loss function, i.e., [0, 1].

Interestingly, estimators of these stochastic gradients have an asymmetric need for data. As seen in
Equation 7, the min-player’s gradient g-(p, q) includes the risk of every hypothesis h ∈ H for the same data
distribution q. Therefore, an unbiased estimator ĝ-(p, q) can be constructed from a single call to an example
oracle EX(q). We call this source of randomness ξq and say that its cost is r− = 1. While ξq costs 1 unit,
the randomness it provides is specialized to the point of inquiry, that is, it cannot be used for estimating
other ĝ-(p, q

′). We call this source of randomness and its associated unbiased estimation a locally unbiased
estimator.

On the other hand, the max-player’s gradient g+(p, q) includes the risk of the same hypothesis p on
every distribution D ∈ D. Therefore, an unbiased estimator ĝ+(p, q) requires n samples, i.e., a call to every
example oracle EX(Di). We call this source of randomness producing n samples ξp and say that its cost is
r+ = n. Importantly, while ξp costs n unit, the randomness it provides can be reused for estimating other
gradients, that is, it can provide an unbiased and bounded estimators for all ĝ+(p

′, q′). We call this source of
randomness and its associated unbiased estimator a globally unbiased estimator. To emphasize the fact that
this source of randomness is agnostic to (p, q) we refer to it by ξ⊥ hereafter. We refer the reader to Appendix
A.2 for a more formal definition and description of these asymmetries.

Minimizing Regret with Asymmetric Cost. With the goal of minimizing sample complexity in mind,
it is essential that we reuse randomness ξ⊥ across n time steps of variational algorithms. To do this, we
introduce a stochastic variational approach in Algorithm 1 that accommodates different sampling frequencies
for the minimizing and maximizing players. This will decouple the sample complexity of the minimizing
agent (who requires a time horizon of at least log(A-) ≈ log(H)) and the maximizing agent. This decoupling
will lead to additive n+ log(H) sample complexity instead of the multiplicative n log(H).

Algorithm 1 uses the same randomness ξ⊥(a) of cost r for estimating g+(p
t, qt) for all t ∈ [ar+1, . . . , a(r+1)].

On the other hand, the algorithm uses fresh randomness ξ(t) of cost 1 to estimate g-(p
t, qt) for every time
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Algorithm 1 Finding Equilibria in Finite Zero-Sum Games with Asymmetric Costs.
Output: Mixed strategy profile (p, q) ∈ ∆A- ×∆A+;
Input: Action sets A-, A+, cost r ∈ Z+, timesteps T , iterates p(1), q(1), gradient estimators ĝ-, ĝ+;
for a = 1, 2, . . . , ⌈T/r⌉ do

Realize ξ⊥
(a)

at cost r; // Sample datapoints from every distribution.
for t = ar + 1− r, . . . , ar do

Realize ξq
(t)

at cost 1; // Sample from adversary-selected distribution.

Estimate gradients: ĝ
(t)
+ = ĝ+

(
ξ⊥

(a)

, p(t), q(t)
)
, ĝ

(t)
- = ĝ-

(
ξq

(t)

, p(t), q(t)
)
;

Run Hedge updates: p(t+1) = Qhedge

(
p(t), ĝ

(t)
+

)
, q(t+1) = Qhedge

(
q(t), ĝ

(t)
+

)
;

end for
end for
Return the uniformly mixed strategies p = 1

T

∑T
t=1 p

(t) and q = 1
T

∑T
t=1 q

(t);

step t. We note that the total randomness cost of this algorithm is 2t because iteration of the outer loop
incurs 2r cost.

Lemma 3.1. Let (A-, A+, ϕ) be a finite zero-sum game. Assume there exists ξq
(t)

of cost 1 providing locally
unbiased estimates ĝ-(·) and there exists ξ⊥(a) of cost r providing globally unbiased estimates ĝ+(·). With
probability 1− δ, Algorithm 1 returns an ε-min-max equilibrium of the game, so long as

T ≥ 18

ε2

(
max

{
9 log |A-|

4
, 8 log

(
r + 1

δ

)}
+max

{
9 log |A+|

4
,
8r2

r + 1
log

(
r + 1

δ

)})
. (9)

Moreover, the total cost of randomness incurred by the algorithm is at most 2t.

Proof sketch. Our approach uses Equation 8 to decompose the variational error into training error and
generalization error. Since exponential gradient descent is known to bound the training error (as shown in
Lemma B.4), it only remains to bound the generalization error (the second term in Equation 3). We note
that in expectation each summand

〈
ε(t), w(t) − w∗〉 is zero. This is because ε(t) = g(t) − ĝ(t) and ĝ(t) are

unbiased estimators. Therefore, the sum of these terms has an intuitive martingale interpretation and could
be bounded by the Azuma-Hoeffding inequality.

There is a subtlety here, however. When we reuse the maximizing player’s randomness over r rounds, we
create correlations between these terms in the generalization error that cannot be directly accommodated
by a martingale. The trick here is to note that these correlations are entirely contained in r-length periods.
So, we can partition our sequence to r martingales and bound each one. This completes the proof. See
Appendix B.1 for detailed proof of this lemma.

Derandomization. The ε-min-max equilibria (p, q) returned by Exponentiated Gradient Descent gives a
probability distribution p over the hypothesis class that achieves the collaborative learning bound. To obtain
a deterministic hypothesis, we can instead work with hMaj

p whose predictions are p-weighted majority votes
over the hypotheses. As stated below, the error of this deterministic classifier is approximately bounded by
the expected error of p.

Lemma 3.2. For any p ∈ ∆H, maxD∈D RiskD(hMaj
p ) ≤ 2maxD∈D RiskD(p).

This lemma in particular implies that for any ε-min-max equilibria (p, q), we have

max
D∈D

RiskD(hMaj
p ) ≤ 2R-OPT + 4ε ≤ 2OPT + 4ε.

4 Collaborative Learning Bounds
In this section, we characterize the sample complexity of collaborative learning by providing tight upper and
lower bounds for this problem.
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Algorithm 2 On-Demand Agnostic Collaborative Learning.
Input: Hypothesis class H, distribution set D with n := |D|;
Initialize: p(1) = [1/ |H|]|H|, q(1) = [1/n]n, and iterations T = 36

ε2 (9 log (|H|) + 35n log(n/δ));
for a = 1, 2, . . . , ⌈T/n⌉ do

For all D ∈ D, sample datapoint zaD from EX(D) .
for t = an+ 1− n, . . . , an do

Sample z(t) from EX(q(t)) and estimate ĝ
(t)
- = [ℓ(h, z(t))]h∈H, ĝ

(t)
+ = [ℓ(p(t), zaD)]D∈D;

Run Hedge updates: p(t+1) = Qhedge

(
p(t), ĝ

(t)
-

)
, q(t+1) = Qhedge

(
q(t), ĝ

(t)
+

)
;

end for
end for
Return: probability distribution over H given by the uniform mixture 1

T

∑T
t=1 p

(t).

4.1 Sample Complexity Upper Bounds
We are now prepared to describe our collaborative learning algorithm and guarantees, using the tools we
developed in Section 3. Algorithm 2 is a direct application of Algorithm 1 to a zero-sum game with action
sets A- = H, A+ = D and payoff ϕ(h,D) = RiskD(h). Here, ξq

(t)

makes one call to EX(q(t)) and ξ⊥(a) makes
one call to EX(D) for each D ∈ D. In other words, Algorithm 2 constructs distributions p(t) ∈ ∆H and
q(t) ∈ ∆D by running the Hedge update. The gradient estimators used by Hedge are the empirical losses
on a set of independent random variables. In particular, the minimizing player uses gradients ℓ(h, z(t)) for
all h ∈ H for a single sample z(t) ∼ EX(q(t)) and the maximizing player uses gradients ℓ(p(t), zaD) for all
distributions D ∈ D where a single sample zaD ∼ EX(D) is drawn per distribution and is reused for all time
steps t ∈ [(a− 1)n+ 1, . . . , an].

Our main result in this section bounds the sample complexity of Algorithm 2.

Theorem 4.1. For any finite hypothesis class H and unknown set of distributions D, with probability 1− δ,
Algorithm 2 returns a distribution p ∈ ∆H such that

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

log|H|+n log(n/δ)
ε2

)
.

Proof sketch. By construction, Lemma 3.1 guarantees that with probability at least 1− δ, the pair (p, q) is an
ε/2-min-max equilibrium for the corresponding zero-sum game. As shown by Equation 5, p is a randomized
classifier that meets the collaborative learning objective, i.e., its expected worst-case error is OPT + ε. By
Lemma 3.2, the corresponding deterministic classifier hMaj

p has worst-case error of 2OPT + ε. This bounds
the error of the resulting classifier.

To bound the sample complexity, Lemma 3.1 shows that the randomness cost of Algorithm 1 is at most
2t. Since the cost of randomness is exactly the total number of samples we take from our example oracles,
the total sample complexity of Algorithm 2 is 2t ∈ O

(
log|H|+n log(n/δ)

ε2

)
.

A similar result holds for the case of infinite hypothesis classes of bounded VC dimension. In this case,
one can instead run Algorithm 2 with a hypothesis class H′ that is an ε-net with respect to every distribution
in D. We note that such ε-nets of size nε−2VCD(H) necessarily exist (see, e.g., [1]); for example, the union of
ε-nets with respect to each distribution D ∈ D. When such H′ is known in advance, we may run Algorithm 2
with H′ and incur a sample complexity that now replaces log(|H′|) = O (d log(1/ε)) in the sample complexity
of Theorem 4.1.

We remark that it is not strictly necessary to know an ε-net in advance. Instead, one can compute a net
from samples or from other information about distributions in D. In Appendix B.5, we explore a range of
assumptions that allow us to compute such an ε-net from samples, without incurring a significant increase in
the sample complexity of Theorem 4.1. As an example, here we mention two such assumptions. Assumption
1: we know the marginal distribution for all D ∈ D, or a weaker Assumption 2: we have access to n marginal
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distributions P1, . . . , Pn such that for all x ∈ X , di(A) ≤ pi(A)poly(1/ε,VCD(H), n) for all A ⊆ X , where pi
and di are the densities of Pi and Di, respectively. These assumptions allow one to construct ε-nets of small
size, e.g., by projecting H on a sufficiently large set of random feature vectors generated from distributions
Pi. We refer the reader to Appendix B.5 for more detail on how these assumptions can be used to construct
ε-nets.

Theorem 4.2. For any H of VC dimension d and unknown set of distributions D for which Assumption 1
or 2 is met, there is an algorithm that, with probability 1− δ, returns a distribution p ∈ ∆H with,

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

d log(dn/ε)+n log(n/δ)
ε2

)
.

We end this subsection with two remarks about our sample complexity upper bound.

Remark 4.1. Theorem 4.1 improves over the best-known sample complexity for agnostic collaborative learning
by Nguyen and Zakynthinou [22] in two ways. First, it provides OPT + ε for randomized classifiers whereas
Nguyen and Zakynthinou [22] gave a 2OPT + ε bound. Second, it improves their sample complexity of
O
(

1
ε5

(
log(n) log(|H|) log

(
1
ε

)
+ n log

(
n
δ

)))
by a multiplicative factor of 1

ε3 log (n) log
(
1
ε

)
.

Remark 4.2. For constants ε and δ, our sample complexity of O (log(|H|) + n log n) appears to violate the
lower bound of Ω(log(|H|) log n+ n log log |H|) due to Chen, Zhang, and Zhou [6]. This discrepancy is due
to a small error in the proof of that lower bound, which we have verified in private communications with the
authors. In the next subsection, we give lower bounds on the sample complexity of collaborative learning that
match our upper bounds.

4.2 Sample Complexity Lower Bound
We now provide matching lower bounds for agnostic collaborative learning. Our lower bounds hold for
collaborative learning algorithms obtaining error of R-OPT+ε, using a randomized or deterministic hypothesis.
We call an algorithm an (ε, δ)-collaborative learning algorithm if for any collaborative instances it attains an
error of R-OPT + ε with probability at least 1− δ.

Theorem 4.3. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm A. There
exists a collaborative learning problem (H,D) with |D| = n and |H| = 2d, on which A takes at least
Ω
(

1
ε2 (log |H|+ |D| log(min {|D| , log |H|} /δ))

)
samples.

Proof sketch. We defer the formal proof of this theorem to Appendix B.3 and sketch the main ideas here. We
use X = {1, . . . , d}, Y = {+,−}, and let H be the set of all functions X → Y . Our construction combines two
types of hard distributions. We describe the ideas for the case of n = d. First, we use a hard construction for
agnostic learning of hypothesis classes with VC dimension d as the distribution of one of the agents. This give
us the Ω

(
log(|H|)/ε2

)
part of the lower bound. Second, we construct n hard instances each of VC dimension

1 on n independent points. Since the learning algorithms has to solve each problem it has to incur a loss of
n log(n/δ)/ε2.

5 Group DRO and Agnostic Federated Learning
The results we describe in the collaborative learning setting can be generalized to the group DRO setting,
and equivalently, agnostic federated learning.

Theorem 5.1. Consider a group distributionally robust problem (Θ,D) with convex compact unit-diameter
parameter space Θ of Bregman radius DΘ (Definition A.11), and convex loss ℓ : Θ×Z → [0, C]. A variant
of Algorithm 2 (in particular Algorithm 4 in Appendix 4.1), returns θ ∈ Θ such that maxD∈D Ez∼D [ℓ(θ, z)] ≤
R-OPT + ε, using a number of samples that is O

(
DΘC2+nC2 log(n/δ)

ε2

)
.
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The proof of this lemma is deferred to Appendix 4.1 and is similar to the proof of Theorem 4.1 except
that it uses a generalization of Lemma 3.1 for general convex-concave games. This theorem establishes a
generalization bound for the problem of group distributionally robust optimization [27] and improves, by
a factor of n, existing sample complexity bounds for agnostic federated learning [20]. This improvement is
attained by sampling data on-demand, whereas [20] only chooses a fixed distribution over groups/clients to
sample from; this highlights the importance of adapting one’s sampling strategy on-the-fly when learning
robust models.

Another important question is how fast the training error of stochastic gradient descent converges for
the group DRO/AFL settings and was considered by Sagawa et al. [27]. We can transfer our generalization
guarantees for on-demand settings into batch settings and achieve the following corollary, which improves on
the convergence guarantees of Sagawa et al. [27] by a factor of n.

Corollary 5.2. Under the same assumptions of Theorem 5.1, we give a procedure (see Appendix 4.1) that
minimizes GDRO/AFL training error within ε of R-OPT with probability at least 1− δ in fewer samples than
O
(

DΘC2+nC2 log(n/δ)
ε2

)
.

6 Empirical Analysis of On-Demand Sampling for Group DRO
In this section, we empirically analyze an on-demand sampling approach to Group DRO [27].

While traditional Group DRO algorithms follow an approach similar to Algorithm 4—learning adversarial
weights over potential distributions using Hedge—group DRO uses the adversary weights to importance-weight
datapoints for an ERM learner. Our Corollary 5.2 proves that, by instead using adversarial weights to adjust
the sampling frequency of datapoints, we can accelerate convergence by a factor at least linear in n. In
other words, our on-demand sampling results suggest that Group DRO should resample not reweight rare
datapoints.

Interestingly, the advantage of resampling over reweighting has recently been studied for static distribution
weights [28]. Our results in this section can be interpreted as empirically demonstrating that resampling is
also preferable to reweighting for adversarially selected weights.

6.1 Experiment Results
We exactly replicate the Group DRO experiments of Sagawa et al. [27] and compare the performance of their
reweighting-based implementation of Group DRO with our resampling-based implementation. In particular,
we fine-tune Resnet-50 models (convolutional neural networks) [15] and BERT models (transformer-based
network) [9] on the image classification datasets Waterbirds [27, 31] and CelebA [17] and the natural
language dataset MultiNLI [32] respectively. For each dataset, we compare three methods of training their
respective neural network: traditional empirical risk minimization, traditional Group DRO (reweighting),
and resampling-based Group DRO.

Sagawa et al. [27] found that, while ERM has high average accuracy on these tasks, ERM has extremely
low worst-case accuracy on under-represented distributions. They further found that the use of Group DRO
allows for significantly higher worst-case accuracy, but that the method is extremely sensitive to regularization
parameters. We will show that resampling can further improve worst-case accuracy, and that resampling-based
GDRO does not suffer from the same regularization sensitivity as reweighting-based GDRO.

In our Table 2 and Figure 1, we replicate the Table 1 and Figure 2 of Sagawa et al. [27] respectively,
appending our additional results on resampling-based GDRO. These experiments were run identically to
their counterparts in Sagawa et al. [27]. They evaluate ERM, reweighting-based Group DRO (GDRO), and
resampling-based Group DRO (GDRO-R) in three settings: standard training, under significant weight decay
(ℓ-2) regularization, and under early stopping.

Resampling consistently outperforms reweighting. In every dataset and in almost every setting,
GDRO-R significantly outperforms GDRO and ERM in worst-case accuracy. Recall that worst-case accuracy,
not average accuracy, is the primary performance metric in distributionally robust optimization. We also
observe that while GDRO and ERM can have large gaps in worst-case and average accuracy, our GDRO-R
has extremely close worst-case and average accuracies. This indicates that resampling is more effective
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Figure 1: Training (light, dashed) and validation (dark, solid) accuracies for traditional reweighting-based
Group DRO (GDRO) and our proposed resampling-based Group DRO (GDRO-R) during training, plotted
on a log scale. Note that GDRO-R validation accuracy will be noisier than those of GDRO as we constrain
GDRO-R to limited samples (with replacement) from the validation set. In addition, in the left-most plot,
training accuracy for all groups except the blond male group (red) dips to zero due to lack of data—this is
because the blond male group (red) is the most challenging so the adversary eventually stops sampling from
other groups. Under standard regularization, the red-group accuracy drops off in GDRO while GDRO-R
maintains a high red-group accuracy by heavily sampling from the red group, as reflected in the near-perfect
red-group training error.
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Average Accuracy Worst-Case Accuracy

ERM GDRO GDRO-R ERM GDRO GDRO-R
St

an
da

rd
R

eg
.

Waterbirds 97.3 (0.2) 97.4 (0.2) 94.5 (0.3) 60.0 (1.9) 76.9 (1.7) 86.4 (1.4)

CelebA 94.8 (0.2) 94.7 (0.2) 92.3 (0.2) 41.1 (3.7) 41.7 (3.7) 88.9 (2.3)

MultiNLI 82.5 (0.1) 82.2 (0.1) 74.8 (0.1) 66.3 (1.6) 66.6 (1.6) 70.3 (1.5)

St
ro

ng
R

eg
.

Waterbirds 95.7 (0.3) 96.6 (0.2) 89.8 (0.4) 21.3 (1.6) 84.6 (1.4) 89.4 (1.2)

CelebA 95.8 (0.1) 93.5 (0.2) 90.0 (0.2) 37.8 (3.6) 86.7 (2.5) 88.8 (2.3)

E
ar

ly
St

op Waterbirds 93.8 (0.3) 93.2 (0.3) 92.7 (0.3) 6.7 (1.0) 85.8 (1.4) 87.1 (1.3)

CelebA 94.6 (0.2) 91.8 (0.2) 91.3 (0.2) 25.0 (3.2) 88.3 (2.4) 90.6 (2.2)

MultiNLI 82.8 (0.1) 81.4 (0.1) 61.4 (0.1) 66.0 (1.6) 77.7 (1.4) 43.1 (1.7)

Table 2: Average accuracy and worst-case accuracy (accuracy on lowest-accuracy group) percentages for
empirical risk minimization (ERM), traditional reweighting-based Group DRO (GDRO), and our proposed
resampling-based Group DRO (GDRO-R). Each method and dataset is evaluated in three settings: with
standard ERM hyperparameters (Standard Reg.), with inflated weight decay regularization (Strong Reg.),
and with early stopping (Early Stop). These accuracies reflect the testing split of their respective datasets.
Standard deviation of measurement is in parentheses. Our proposed GDRO-R consistently outperforms
GDRO in worst-case accuracy and performs reliably both with and without inflated regularization.

than reweighting at prioritizing learning on difficult groups. Although our theory (Theorem B.2) predicts
that GDRO-R should significantly outperform GDRO in an online setting, it is surprising that simulating
on-demand sampling is so effective in offline settings.

Resampling-based GDRO is effective even without strong regularization. The primary observation
made by Sagawa et al. [27] in their investigation of Group DRO is that strong regularization is critical for
the performance of Group DRO methods. Our experimental results challenge this view. In Table 2, we see
GDRO-R retains a high worst-case accuracy both with and without strong regularization. This suggests that
the sensitivity of traditional GDRO to hyperparameters is a consequence of reweighting—when a resampling
implementation is used, these issues no longer arise.

Resampling-based GDRO converges faster than ERM or reweighting-based GDRO. The GDRO-
R methods in Table 2 used a fraction of the training epochs that their GDRO counterparts used. The ratio
of GDRO-R to GDRO training epochs is 1:3, 2:5, 1:2 on the Waterbirds, CelebA, and MultiNLI datasets
respectively. This fast convergence rate is predicted by our theory, particularly Corollary 5.2.
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A Full Formulation
In this section, we formally describe our formulations of stochastic convex-concave games and multi-distribution
learning problems.

A.1 Convex-Concave Zero-Sum Game
In this subsection, we give a formal definition of a convex-concave zero-sum game and its min-max equilibria.
We also introduce assumptions on these games for efficiently finding saddle-points.

Definition A.1. A convex-concave two-player zero-sum game is described by the tuple (A-, A+, ϕ), where
A- ⊂ E- is a subset of Euclidian space E-, A+ ⊂ E+ is a subset of Euclidian space E+, and ϕ : A- ×A+ → R
is a Lipschitz continuous convex-concave function.

On a convex-concave two-player zero-sum game (A-, A+, ϕ), we can define both exact and approximate
notions of min-max equilibria in terms of player regrets.

Definition A.2. The minimizing and maximizing player’s regrets at a strategy profile (p, q) ∈ A- ×A+ are
denoted Reg-Min,Reg-Max respectively, and defined as,

Reg-Min(p, q) := ϕ(p, q)− min
p∗∈A-

ϕ(p∗, q), Reg-Max(p, q) := max
q∗∈A+

ϕ(p, q∗)− ϕ(p, q).

Definition A.3. A strategy profile (p, q) ∈ A- ×A+ is a min-max equilibrium if both players have zero regret:
Reg-Min(p, q) = 0 and Reg-Max(p, q) = 0. More weakly, (p, q) ∈ A- ×A+ is an ε-min-max equilibrium if both
players have at most ε regret: Reg-Min(p, q) ≤ ε and Reg-Max(p, q) ≤ ε.

In this paper, we may also impose the following assumptions on a convex-concave zero-sum game.

Assumption 1. The action sets A-, A+ are compact, convex, and have diameters R-, R+ respectively:

∀p, p′ ∈ A- : ∥p− p′∥ ≤ R-, ∀q, q′ ∈ A+ : ∥q − q′∥ ≤ R+.

Assumption 2. At any p, q ∈ A- × A+, the partial subdifferential of the payoff function ϕ is non-empty.
Furthermore, every partial subgradient vector has a bounded norm:

∥∂pϕ(p, q)∥E∗
-
≤ C-, ∥∂qϕ(p, q)∥E∗

+
≤ C+.

A.2 Stochastic Settings
In this subsection, we give a formal definition of an asymmetric stochastic setting for a zero-sum game.
Our formulation of stochastic first-order oracles observes the convention of representing all randomness in
stochastic oracles—and by extension, in any stochastic optimization process—in terms of an i.i.d. sequence of
random variables. One nuance our formulation addresses is how randomness can be re-used by stochastic
first-order oracles. We do this by formalizing our stochastic setting in terms of multiple i.i.d. sequences
of random variables, where the sequence to which a random variable belongs specifies how randomness
corresponding to the random variable can be used.

We begin by introducing the notion of a coupled random variable. In the context of a two-player game, a
random variable may be coupled to a minimizing player’s strategy profile, a maximizing player’s strategy
profile, neither or both. Our definition formalizes the notion that a random variable can only be interpreted
in the context of the mixed strategy to which it is coupled.

Definition A.4. For any p ∈ A-, we define a random variable η to be p-coupled if its range is a measurable
space Ep defined by p. Similarly, for any q ∈ A+, we define a random variable η to be q-coupled if it’s range
is a measurable space defined by q. A random variable η is (p, q)-coupled if it’s range is a measurable space
defined by (p, q).
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For convenience, we will denote p-coupled random variables with superscript ηp and, similarly, q-coupled
random variables with superscript ηq. Random variables that are not coupled will be denoted by η⊥ when
such clarification is necessary.

We will now define stochastic first-order oracles that express their randomness in terms of sequences of
i.i.d. coupled random variables.

Definition A.5. In a zero-sum two-player game, the minimizing player’s randomness source is defined as a
set ξ- ⊆ {ξq- | q ∈ A+

⋃
{⊥}}, where ξq- :=

{
ξq-;i
}
i∈Z is a sequence of i.i.d. random variables all coupled with

q ∈ A+. In addition, all random variables in all sequences in ξ- are independent.

Definition A.6. In a zero-sum two-player game, the maximizing player’s randomness source is defined as
a set ξ+ ⊆

{
ξp+ | p ∈ A-

⋃
{⊥}

}
, where ξp+ :=

{
ξp+;i

}
i∈Z is a sequence of i.i.d. random variables all coupled

with p ∈ A+. In addition, all random variables in all sequences in ξ+ are independent.

Definition A.7. For any q ∈ A+, consider the function ĝq- : Eq ×A- ×A+ → E∗
- . The minimizing player

has a locally unbiased first-order oracle if there exists, for all q ∈ A+, a ĝq- such that for all p ∈ A- and i ∈ Z:

E
ξq-;i

[
ĝq- (ξ

q
-;i, p, q)

]
= ∂pϕ(p, q).

We analogously define locally unbiased oracles for the maximizing player.

When q is clear from context, we write ĝq- as ĝ-. We can also define a globally unbiased oracle.

Definition A.8. For any q ∈ A+, consider the function ĝ⊥- : A- ×A+ → E∗
- . The minimizing player has a

globally unbiased first-order oracle if there exists ĝ⊥- where for all q ∈ A+ and p ∈ A- and i ∈ Z:

E
ξ⊥-;i

[
ĝ⊥- (ξ⊥-;i, p, q)

]
= ∂pϕ(p, q).

We analogously define globally unbiased first-order oracles for the maximizing player.

Finally, we may impose the following norm-bound assumption on the first-order oracles we discuss.

Assumption 3. Every globally unbiased first-order oracle has a range with bounded norm:
∥∥ĝ⊥- (·)

∥∥
E∗
-
≤ C-,∥∥ĝ⊥+(·)

∥∥
E∗
+
≤ C+. Furthermore, every locally unbiased first-order oracle also has a range with bounded norm:

for all p, q ∈ A-, A+, ∥ĝq- (·)∥E∗
-
≤ C-,

∥∥ĝp+(·)∥∥E∗
+
≤ C+,

A.3 Multi-Distribution Learning
In this subsection, we give a formal definition of multi-distribution learning that unifies the problem
formulations of collaborative learning [4], agnostic federated learning [20], and group DRO [27]. We further
introduce assumptions that characterize two special cases of multi-distribution learning: convex multi-
distribution learning and binary classifier multi-distribution learning.

We begin by reviewing some common definitions from convex optimization.

Definition A.9. Let Z be a convex compact subset of a Euclidian space E with norm ∥·∥. A distance
generating function on Z is a function ω : Z → R, where:

1. ω is continuous and strongly convex, modulus 1, w.r.t to ∥·∥ on Z.

2. There exists a non-empty subset Zo ⊂ Z where the subdifferential ∂ω is non-empty and ∂ω admits a
continuous selection on Zo.

Furthermore, the center of Z w.r.t. ω is defined as zc := argminz∈Zo ω(z).

Definition A.10. The prox function V : Zo × Z → R+ associated with a distance generating function
ω : Z → R is defined as:

V (z, u) := ω(u)− ω(z)− ⟨ω′(z), u− z⟩ .

The prox function is also known as the Bregman divergence.
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Definition A.11. Given a convex set Z with a distance generating function ω satisfying Definition A.9, the
Bregman radius is defined as maxu∈Z V (zc, u) ≤ DZ , where zc is the center of Z as defined in Definition A.9.

We state our most general formulation of multi-distribution learning as follows.

Definition A.12. Let Z = X × Y be a space of datapoints and D = {Di}ni=1 be a finite set of n joint
probability distributions over Z. Let Θ denote a set of parameters and ℓ : Θ×Z → [0, L] be a loss function.
Then the tuple (Θ,D, ℓ) describes a multi-distribution learning problem, w.r.t. X ,Y,Z.

One case of multi-distribution learning we study in this paper is convex multi-distribution learning, which
includes as special cases the problem formulations of Sagawa et al. [27] and Mohri et al. [20]. Convex
multi-distribution learning also encompasses the problem formulation of Blum et al. [4] for finite hypothesis
spaces, i.e., when |H| < ∞.

Definition A.13. The tuple (Θ,D, ℓ) describes a convex multi-distribution learning problem when Θ is
convex compact, ℓ is convex in Θ, and there exists a distance generating function ω : Θ → R on our parameter
space Θ.

Definition A.14. The diameter of the parameter space Θ is an RΘ > 0 satisfying:

∀θ, θ′ ∈ Θ : ∥θ − θ′∥ ≤ RΘ.

Assumption 4. Given a convex multi-distribution learning problem (Θ,D, ℓ), we assume that, for any
datapoint z in the supports of the distributions in D and any θ ∈ Θo, the partial subgradient of ℓ(θ, z) w.r.t. θ
has bounded norm:

∥∂θℓ(θ, z)∥E∗ ≤ C.

Assumption 5. Given a convex multi-distribution learning problem (Θ,D, ℓ), we assume there exists a
distance generating function ω where Θ has bounded Bregman radius DΘ.

Remark A.1. As ω is strongly convex modulus 1 by definition, any Θ satisfying Assumption 5 has a finite
diameter RΘ ≤ 2

√
2DΘ

Another important case of multi-distribution learning is binary classifier multi-distribution learning, which
includes the problem formulations of Blum et al. [4] both for finite hypothesis spaces (|H| < ∞) and finite
VC dimension hypothesis spaces (VCD(H) < ∞).

Definition A.15. The tuple (Θ,D) describes a binary classifier multi-distribution learning problem when
Z = X ×{0, 1}, Θ is the set of probability distributions over a set of binary classification rules H : X → {0, 1}
and ℓ(θ, (x, y)) := Eh∼θ [1[h(x) = y]].

Remark A.2. A binary classifier multi-distribution learning problem (Θ,D, ℓ) is equivalent to a convex
multi-distribution learning problem (Θ,D, ℓ) when the support of Θ is finite, i.e., Θ is a probability distribution
over a finite number of binary classification rules.

Finally, we can define a multi-distribution analogue to probably-approximately-correct learning [29].

Definition A.16. An example oracle EX(D) is an infinite set of i.i.d. samples from a probability distribution
D over datapoints. Colloquially, a “new call” to example oracle EX(D) refers to realizing a previously
unrealized sample in EX(D).

Definition A.17. A learning algorithm A is an (ε, δ) multi-distribution learning algorithm for a set of
multi-distribution learning problems V := {(Θi,Di, ℓi)}i if, given any problem (Θi,Di, ℓi) ∈ V, accessing only
the tuple (Θi, ℓi, {EX(D) | D ∈ ∆D}), A outputs a parameter θ ∈ Θi that satisfies, with probability at least
1− δ:

max
D∈D

RiskD(θ) ≤ inf
θ∗∈Θ

max
D∈D

RiskD(θ∗) + ε.

We use (ε, δ)-algorithm as a shorthand for (ε, δ) multi-distribution learning algorithm.

Definition A.18. A multi-distribution learning algorithm A has a sample complexity of N (or “takes N
samples”) on a set of multi-distribution learning problems V := {(Θi,Di, ℓi)}i if N is the smallest integer
such that, given any problem V ∈ V, the event that A takes more than N samples is measure-zero. If no such
N exists, we say A has infinite sample complexity.
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B Omitted Proofs

B.1 Proof of Lemma B.1 (Generalization of Lemma 3.1)

Algorithm 3 Finding Equilibria in Convex-Concave Zero-Sum Games with Asymmetric Costs.
Output: Mixed strategy profile (p, q) ∈ A- ×A+.
Input: Action sets A-, A+, cost r ∈ Z+, timesteps T , initial actions p(1), q(1), and no-regret learning
algorithms Q- : {A- × E∗

- } → A-, Q+ :
{
A+ × E∗

+
}
→ A+.

for t = 1, 2, . . . , T do
Realize randomness ξq

(t)

-;t and ξ⊥+;⌈ t
r ⌉

.

Take estimates ĝ
(t)
- := ĝ-

(
ξq

(t)

-;t , p(t), q(t)
)

and ĝ
(t)
+ := ĝ+

(
ξ⊥+;⌈ t

r ⌉
, p(t), q(t)

)
.

Run the no-regret updates:

p(t+1) = Q-

({
p(1), ĝ(1)-

}
, . . .

{
p(t), ĝ(t)-

})

q(t+1) = Q+

({
q(1), ĝ

(1)
+

}
, . . .

{
p(t), ĝ

(t)
+

})
end for
Return the uniformly mixed strategies p = 1

T

∑T
t=1 p

(t) and q = 1
T

∑T
t=1 q

(t).

We first recall the following lemma from Section 3.

Lemma 3.1. Let (A-, A+, ϕ) be a finite zero-sum game. Assume there exists ξq
(t)

of cost 1 providing locally
unbiased estimates ĝ-(·) and there exists ξ⊥(a) of cost r providing globally unbiased estimates ĝ+(·). With
probability 1− δ, Algorithm 1 returns an ε-min-max equilibrium of the game, so long as

T ≥ 18

ε2

(
max

{
9 log |A-|

4
, 8 log

(
r + 1

δ

)}
+max

{
9 log |A+|

4
,
8r2

r + 1
log

(
r + 1

δ

)})
. (9)

Moreover, the total cost of randomness incurred by the algorithm is at most 2t.

We will prove a more general result, Lemma B.1, that implies Lemma 3.1 as a special case. Lemma B.1
provides sample complexity upper bounds for Algorithm 3, an algorithm for approximating the saddle-point
of a convex-concave game with high-probability. Algorithm 3 is also a generalization of Algorithm 1.

Lemma B.1 (Generalization of Lemma 3.1). Let (A-, A+, ϕ) be a convex-concave game satisfying Definition
A.1 and Assumptions 1 and 2. Suppose the minimizing player has a locally unbiased first-order oracle ĝ- and
the maximizing player has a globally unbiased first-order oracle ĝ+, with both oracles satisfying Assumptions
3. Take Q- to be any no-regret algorithms with the guarantee that for, any sequence g(1), . . . , g(T ) ∈ E∗

- , if∥∥g(i)∥∥E∗
-
≤ C for all i ∈ [T ], the Q--learned sequence w(1), . . . , w(T ) satisfies:

Errv(p(1:T )) ≤
√

γ-(T,A-, C)

T
.

Take Q+ to be any no-regret algorithms with the guarantee that for, any sequence g(1), . . . , g(T ) ∈ E∗
+, if∥∥g(i)∥∥E∗

+
≤ C for all i ∈ [T ], the Q+-learned sequence w(1), . . . , w(T ) satisfies:

Errv(w(1:T )) ≤
√

γ+(T,A+, C)

T
.

Then, the mixed strategy profile (p, q) outputted by Algorithm 3 is an ε-min-max equilibrium with probability
at least 1− δ so long as:

T ≥ 9

ε2

(
γ-(T,A-, 2C-) + 8R2

-C
2
- log

(
r + 1

δ

)
+ γ+(T,A+, 2C+) +

8R2
+C

2
+r

2

r + 1
log

(
r + 1

δ

))
. (10)
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Moreover, exactly T elements of ξ- and ⌈T/r⌉ elements of ξ+ (defined in Definitions A.7 and A.8) will be
realized. This means that if sampling from ξ- incurs a unit cost and sampling from ξ+ incurs at most r unit
cost, total cost will be at most 2r⌈T/r⌉.

Before proving Lemma B.1, we review the following technical results.
First, we note an immediate consequence of working with a convex payoff function.

Fact B.1. Let ϕ : Z → R be a convex function on a convex compact domain Z and g(t) = ∂ϕ(w(t)) be a
partial subgradient of ϕ at w(t). Then, for any [w(t)]Tt=1 ∈ Z:

ϕ

(
T∑

t=1

w(t)

)
− min

w∗∈Z
ϕ(w∗) ≤ Errv(w(1:T )) := max

w∗∈Z

T∑
t=1

〈
g(t), w(t) − w∗

〉
.

Proof. Fix any w∗ ∈ Z. By our choice of g, we know that

T∑
t=1

〈
g(t), w(t) − w∗

〉
=

T∑
t=1

〈
∂w(t)ϕ(w(t)), w(t) − w∗

〉
.

By the convexity of ϕ, it follows that

T∑
t=1

〈
∂w(t)ϕ(w(t)), w(t) − w∗

〉
≥

T∑
t=1

ϕ(w(t))− ϕ(w∗) ≥ ϕ

(
T∑

t=1

w(t)

)
− ϕ(w∗).

with equality when ϕ is bilinear.

Fact B.2. Let ϕ : A- × A+ → R be a convex-concave function on convex compact domains A-, A+ and
define the operators g

(t)
- := ∂p(t)ϕ

(
p(t), q(t)

)
and g

(t)
+ := ∂q(t)ϕ

(
p(t), q(t)

)
. Given sequences p(1), . . . , p(T ) ∈ A-

and q(1), . . . , q(T ) ∈ A+, their ergodic averages p(1:T ) := 1
T

∑T
t=1 p

(t) and q(1:T ) := 1
T

∑T
t=1 q

(t) constitute an
ε-equilibrium if Errv(p(1:T )) ≤ ε and Errv(q(1:T )) ≤ ε.

Proof. By Fact B.1, when variational errors are bounded as Errv(p(1:T )) ≤ ε and Errv(q(1:T )) ≤ ε, we know
player regrets are bounded: Reg-Min(p(1:T ), q(1:T )) ≤ ε and Reg-Max(p(1:T ), q(1:T )) ≤ ε. This satisfies our
Definition A.3 for an ε-min-max equilibria.

We now claim concentration results for locally unbiased and globally unbiased first-order oracles.

Fact B.3. Let (A-, A+, ϕ) be a convex-concave game satisfying Definition A.1 and Assumptions 1 and 2.
Without loss of generality, let our player of interest be the minimizing player. Consider a play sequence{
p(t), q(t)

}T
t=1

with some complementary sequence
{
y(t)
}T
t=1

∈ A-. Suppose, at each timestep, the minimizing
player uses a random variable ĝ

(t)
- to estimate g

(t)
- := ∂p(t)ϕ

(
p(t), q(t)

)
. If the following assumptions hold:

1. For every t ∈ [T ], the subsequences
{
p(τ), q(τ), y(τ)

}t
τ=1

is independent of ĝ(t)- , . . . ĝ
(T )
- .

2. All estimates ĝ
(1)
- , . . . , ĝ

(T )
- are independent.

3. ĝ
(t)
- is an unbiased estimate of g(t)- and additionally satisfies Assumption 3.

We can then bound the error of the stochastic oracle, ε(t)- := g
(t)
- − ĝ

(t)
- , with respect to our play sequence as

follows. With probability at least 1− δ,

max
p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , p(t) − y(t)

〉
≤

√
8R2

-C
2
- log

(
1
δ

)
T

. (11)
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Proof. Define the filtration
{
F (t)

}T
t=0

as the sigma algebra generated by
{
ĝ
(t)
-

}T

t=1
, with F (0) being a singleton

containing only the superset of our sigma algebra. Observe that ε(t)- is independent of
{
p(τ)

}t
τ=1

and
{
y(τ)

}t
τ=1

by assumption. As ĝ-(·) is unbiased, for any t′ = 0, . . . , t− 1:

E
[〈

ε(t)- , p(t) − y(t)
〉
| F(t′)

]
= 0.

We can thus construct the Doob martingale:

U =

{
E

[
T∑

t=1

〈
ε(t)- , p(t) − y(t)

〉
| F(t′)

]
,F(t′)

}T

t′=0

,

and bound the difference sequence accordingly. For any t′ ∈ [T ], we have the deterministic bound:

E

[
T∑

t=1

〈
ε(t)- , p(t) − y(t)

〉
| F(t′)

]
− E

[
T∑

t=1

〈
ε(t)- , p(t) − y(t)

〉
| F(t′−1)

]

=

∣∣∣∣〈ε(t′)- , p(t
′) − y(t

′)
〉∣∣∣∣

≤
∥∥∥∥ε(t′)-

∥∥∥∥
∗

∥∥∥p(t′) − y(t
′)
∥∥∥ ,

where the final inequality is Holder’s. Since, by Assumption 1, the diameter of our action sets are bounded

by R-, we know
∥∥∥p(t′) − y(t

′)
∥∥∥ ≤ R-. Invoking Assumptions 2 and 3, we know

∥∥∥∥ε(t′)-

∥∥∥∥
∗
≤ 2C-. By the

Azuma-Hoefdding inequality, we can thus bound, for any ε > 0,

Pr

(
1

T

T∑
t=1

〈
ε(t)- , p(t) − y(t)

〉
≥ ε

)
≤ exp

(
− ε2

8TC2
- R

2
-

)
.

Fact B.4. Let (A-, A+, ϕ) be a convex-concave game satisfying Definition A.1 and Assumptions 1 and 2.
Without loss of generality, let our player of interest be the minimizing player. Consider a play sequence{
p(t), q(t)

}T
t=1

. If the following assumptions hold:

1. ĝ
(t)
- is an estimate of g(t)- := ∂p(t)ϕ

(
p(t), q(t)

)
that satisfies Assumption 3.

2. There exists the no-regret algorithm Q- satisfying the assumptions of Lemma B.1.

We can then bound the error of the stochastic oracle, ε(t)- := g
(t)
- − ĝ

(t)
- , with respect to our play sequence

as follows. Define y(t+1) := Q-

({
y(τ), ε

(τ)
-

}t

τ=1

)
. With probability at least 1− δ,

max
p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , p(t) − p∗

〉
≤ 1

T

T∑
t=1

〈
ε(t)- , p(t) − y(t)

〉
+

√
γ- (T,A-, 2C-)

T
.

Proof. We can rewrite Equation 11 with respect to a sequence

max
p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , p(t) − p∗

〉
= max

p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , p(t) − y(t) + y(t) − p∗

〉
=

1

T

T∑
t=1

〈
ε(t)- , p(t) − y(t)

〉
+ max

p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , y(t) − p∗

〉
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We will first bound the summand:

max
p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , y(t) − p∗

〉
.

By definition, our sequence y(1), . . . y(T ) is a Q--learned sequence for the operator errors ε
(1)
- , . . . , ε

(T )
- .

By Assumptions 2 and 3, we enforce that all operators and operator estimates have bounded norm, i.e.,

∥g-(·)∥E∗ ≤ C- and ∥ĝ-(·)∥E∗ ≤ C-. By triangle inequality, we can bound
∥∥∥∥ε(t′)-

∥∥∥∥
∗
≤ 2C-. Hence, the

guarantees of Q- imply:

max
p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , y(t) − p∗

〉
≤
√

γ- (T,A-, 2C-)

T
.

We now prove our general claim.

Proof of Lemma B.1. By Fact B.2, it suffices to prove the variational error bounds for each player:

Errv(p(1:T )) ≤ ε, Errv(q(1:T )) ≤ ε,

with respect to the operators,

g(t)- := ∂p(t)ϕ
(
p(t), q(t)

)
, g

(t)
+ := ∂q(t)ϕ

(
p(t), q(t)

)
.

In Algorithm 3, we estimate the true operators
{
g
(t)
-

}T

t=1
,
{
g
(t)
+

}T

t=1
with the stochastic estimates:

ĝ(t)- := ĝ-

(
ξq

(t)

-;t , p(t), q(t)
)
, ĝ

(t)
+ := ĝ+

(
ξ⊥+;⌈ t

r ⌉
, p(t), q(t)

)
.

Let ε(t)- := g
(t)
- − ĝ

(t)
- and let ε(t)+ := g

(t)
+ − ĝ

(t)
+ denote the difference between our true and estimated operators

at each timestep. We can thus divide each variational error into a training error and generalization error
component:

Errv(p(1:T )) ≤ max
p∗∈A-

1

T

T∑
t=1

〈
ĝ(t)- , p(t) − p∗

〉
+ max

p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , p(t) − p∗

〉
Errv(q(1:T )) ≤ max

q∗∈A+

1

T

T∑
t=1

〈
ĝ
(t)
+ , q(t) − q∗

〉
+ max

q∗∈A+

1

T

T∑
t=1

〈
ε
(t)
+ , q(t) − q∗

〉
We handle the training error first. Recall that p(1), . . . p(T ) is a Q--learned sequence for the operator sequence
ĝ
(1)
- , . . . , ĝ

(T )
- . By Assumption 3, we enforce that all operator estimates have bounded norm, i.e., ∥ĝ-(·)∥E∗ ≤ C-.

Hence, the guarantees of Q- imply:

max
p∗∈A-

1

T

T∑
t=1

〈
ĝ(t)- , p(t) − p∗

〉
≤
√

γ- (T,A-, C-)

T
. (12)

Similarly, q(1), . . . q(T ) is a Q+-learned algorithms enjoying Q+’s guarantee:

max
q∗∈A+

1

T

T∑
t=1

〈
ĝ
(t)
+ , q(t) − q∗

〉
≤
√

γ+ (T,A+, C+)

T
. (13)

23



We now handle the generalization error. We first consider the minimization player. Observe that, for every

t ∈ [T ], the play sequence
{
p(τ), q(τ)

}t
τ=1

is measurable by
{
ξq

(τ)

-;τ , ξ⊥+;⌈τ/r⌉

}t−1

τ=1
, which ξq

(t)

-;t is independent of
by construction. We can thus invoke Facts B.3 and B.4 to bound, with probability at least 1− δ:

max
p∗∈A-

1

T

T∑
t=1

〈
ε(t)- , p(t) − p∗

〉
≤

√
8R2

-C
2
- log

(
1
δ

)
T

+

√
γ- (T,A-, 2C-)

T
. (14)

We now consider the maximization player. First, we invoke Fact B.4 to separate:

max
q∗∈A+

1

T

T∑
t=1

〈
ε
(t)
+ , q(t) − q∗

〉
≤ 1

T

T∑
t=1

〈
ε
(t)
+ , q(t) − y(t)

〉
+

√
γ+ (T,A+, 2C+)

T
. (15)

For notional convenience, let i(j) = (j − 1)r + i denote the ith timestep of the jth period. Also let
mi :=

∣∣∣{i(j)}∞j=1

⋃
[T ]
∣∣∣ denote the number of valid timesteps that can be written as i(j). Observe that

mi ≤ ⌈T/r⌉. Fix a choice of i ∈ [r]. Observe that, for every k ∈ [mi], the play sequence
{
p(i(j)), q(i(j))

}k
j=1

is

measurable by
{
ξq

(i(j))

-;i(j) , ξ⊥+;j−1

}k−1

j=1
, which ξ⊥+;j is independent of by construction. We can thus again invoke

Fact B.3 to bound, with probability at least 1− δ:

max
q∗∈A+

1

mi

mi∑
j=1

〈
ε
(i(j))
+ , q(i(j)) − y(i(j))

〉
≤

√
8R2

+C
2
+ log

(
r
δ

)
mi

.

Taking a union bound over said Azuma inequality for all i ∈ [r], we have that with probability at least 1− δ,

max
q∗∈A+

T∑
t=1

〈
ε
(t)
+ , q(t) − y(t)

〉
=

r∑
i=1

mi∑
j=1

〈
ε
(i(j))
+ , q(i(j)) − y(i(j))

〉
≤

r∑
i=1

√
8miR2

+C
2
+ log(r/δ)

≤
√

8
r2

r − 1
TR2

+C
2
+ log(r/δ) (16)

(optional: assuming r ≥ 1) ≤
√
8(r + 2)TR2

+C
2
+ log(r/δ).

Gluing together our bounds on training error (Equation 12, Equation 13) and generalization error
(Equation 14, Equation 15, Equation 16) with triangle inequalities and union bounds, we have with probability
at least 1− δ,

Errv(p(1:T )) ≤
√

γ-(T,A-, C-)

T
+

√
γ-(T,A-, 2C-)

T
+

√
8R2

-C
2
- log

(
r+1
δ

)
T

Errv(q(1:T )) ≤
√

γ+(T,A+, C+)

T
+

√
γ+(T,A+, 2C+)

T
+

√
8r2R2

+C
2
+ log

(
r+1
δ

)
(r − 1)T

.
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B.2 Proof of Theorem B.2 (Generalization of Theorems 4.1 and 5.1)
Fact B.5. Let (Θ,D, ℓ) be a multi-distribution learning problem satisfying Definition A.12. Define a
corresponding convex-concave game (A-, A+, ϕ) where:

A- = Θ, A+ = ∆D, ϕ(p, q) = Riskq(p).

The minimizing player’s mixed strategy p in any ε-min-max equilibria (Definition A.3) constitutes an 2ε-error
solution to (Θ,D, ℓ).

Proof. If (p, q) is an ε-min-max equilibria, the following holds by definition

Riskq(p) ≤ min
p∈Θ

Riskq(p) + ε and Riskq(p) ≥ max
q∈∆D

Riskq(p)− ε.

Equivalently, by the min-max theorem,

max
q∈∆D

Riskq(p)− ε ≤ min
p∈Θ

Riskq(p) + ε

≤ min
p∈Θ

max
q∈∆D

Riskq(p) + ε.

Algorithm 4 On-Demand Multi-Distribution Learning.
Input: Parameter space Θ with distance generating function ω, distribution set D with n := |D|, and loss
function ℓ : Θ×Z → [0, L], all satisfying Definition A.13 and Assumptions 5 and 4;
Initialize: minimizing iterate p(1) = Θo where θo is as defined in Definition A.9, maximizing iterate
q(1) = [1/n]n, and iteration cap:

T =
36

ε2

(
9C2DΘ + 8R2

ΘC
2 log

(
n+ 1

δ

)
+ 32L2(n+ 2.1) log

(
n+ 1

δ

))
;

for a = 1, 2, . . . , ⌈T/n⌉ do
For all D ∈ D, sample datapoint zaD from EX(D) ;
for t = an+ 1− n, . . . , an do

Sample datapoint z(t) from EX(q(t));
Define the estimates ĝ

(t)
- = ∂θℓ(p

(t), z(t)) and ĝ
(t)
+ = [ℓ(p(t), zaD)]D∈D;

Update iterates: p(t+1) = Qomd,ω

(
p(t), ĝ

(t)
-

)
, q(t+1) = Qhedge

(
q(t), ĝ

(t)
+

)
;

end for
end for
Return: parameter θ := 1

T

∑T
t=1 p

(t) ∈ Θ.

Theorem B.2 (Generalization of Theorems 4.1 and 5.1). Algorithm 4 is an (ε, δ) multi-distribution learning
algorithm for any convex multi-distribution learning problem (Θ,D, ℓ) satisfying Definitions A.12 and A.13
and Assumptions 5 and 4. In other words, Algorithm 4 returns an θ ∈ Θ such that:

max
D∈D

RiskD(θ) ≤ inf
θ∗∈Θ

max
D∈D

RiskD(θ∗) + ε.

Furthermore, the sample complexity of Algorithm 4 is in O
(

DΘC2+(R2
−C2+nL2) log(n/δ)

ε2

)
.

Proof. The sample complexity of Algorithm 4 is immediate from its construction. Every period a, Algorithm
4 samples n datapoints. Every iteration t, Algorithm 4 samples 1 datapoint. Thus, Algorithm 4 samples
2n⌈T/n⌉ datapoints exactly.
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We now prove that Algorithm 4 is an (ε, δ)-learning algorithm for any convex multi-distribution learning
problem. We begin by constructing the following convex-concave game (A-, A+, ϕ) where:

A- = Θ, A+ = ∆D, ϕ(p, q) = Riskq(p).

We observe that this game satisfies Definition A.1 and Assumptions 1 and 2:

1. Definition A.13 defines Riskq(p)—and by extension ϕ(p, q)—to be convex in p.

2. As Riskq(p) :=
∑

D∈D
qDRiskD(p) by definition, ϕ(p, q) is linear and thus also concave in q.

3. In the l-1 norm, ∆D satisfies Assumption 1 with diameter R+ = 2.

4. Since Θ has finite Bregman radius of DΘ by Assumption 5 and ω is strongly convex modulus 1 by
definition, Θ satisfies Assumption 1 with a finite RΘ ≤ 2

√
2DΘ.

5. Since ∂qϕ(p, q) = [RiskD(p)]D∈D and the range of ℓ is [0, L], Assumption 2 is satisfied for ∂qϕ(p, q) by
C+ ≤ L in the l-infinity norm.

6. ∂pϕ(p, q) satisfies Assumption 2 for some finite C- = C directly by Assumption 4.

We now define a stochastic setting for our game. Let the minimizing player’s randomness source be given
by the sequences ξq- = {EX(q)i}∞i=1; recall that EX(D)k refers to the kth call to an example oracle for a
D ∈ ∆D. Let the maximizing player’s randomness source be given by the sequence ξ⊥+ = {[EX(D)i]D∈D}∞i=1.
Next, define the first-order oracle estimators:

ĝ-(ξ
q
-;i, p, q) = ∂pℓ

(
p, ξq-;i

)
, ĝ+(ξ

⊥
+;i, p, q) = [ℓ

(
p, (ξ⊥+;i)D

)
]D∈D.

We can observe that ĝ- is a locally unbiased first-order oracle (satisfying Definition A.7) and ĝ+ is a globally
unbiased first-order oracle (satisfying Definition A.8), with both ĝ- and ĝ+ satisfying Assumptions 3.

1. By the unbiasedness of empirical risk estimates, ĝ+ is globally unbiased as returns an empirical risk
sample for each D ∈ D. Similarly, by the unbiasedness of empirical risk estimates and linearity of
derivatives, ĝ- is locally unbiased.

2. As the range of loss function ℓ is in [0, L], empirical loss is also bounded in [0, L], ĝ+ satisfies Assumption
3 with C+ ≤ L in the l-infinity norm.

3. By Assumption 4, empirical partial subgradients are norm-bounded by some finite C, so ĝ- satisfies
Assumption 3 with some finite C- = C.

Finally, we observe that Algorithm 4 is equivalent to instantiating Algorithm 3 on our constructed game
(A-, A+, ϕ) for our constructed stochastic setting.

We will now rewrite the iteration complexity requirement of Lemma B.1 given by Equation 10 (copied
below):

T ≥ 9

ε′2

(
γ-(T,A-, 2C-) + 8R2

-C
2
- log

(
r + 1

δ

)
+ γ+(T,A+, 2C+) +

8R2
+C

2
+r

2

r + 1
log

(
r + 1

δ

))
.

In particular, we aim to show that the default iteration setting of Algorithm 4 satisfies it for ε′ = ε/2.
By Lemmas B.4 and B.9, we can bound the efficacy of our no-regret algorithms Qomd,,Qhedge by:

γ-(T,A-, C-) ≤
9C2

- DΘ

4
, γ+(T,A+, C+) ≤

9C2
+ log n

4
,

where γ-(T,A-, C-) and γ+(T,A+, C+) are as defined in Lemma B.1.
Accounting for our previous derivations of C-, C+, ε

′, R+, to satisfy Equation 10, it suffices to set:

T ≥9 · 4
ε2

(
36C2DΘ

4
+ 8R2

ΘC
2 log

(
n+ 1

δ

)
+

9L2 log n

4
+

8 · L24n2

n+ 1
log

(
n+ 1

δ

))
,
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or simplified further:

T ≥36

ε2

(
9C2DΘ + 8R2

ΘC
2 log

(
n+ 1

δ

)
+ 32L2(n+ 2.1) log

(
n+ 1

δ

))
.

Thus, by Lemma B.1, q := 1
T

∑T
t=1 q

(t) and θ, the output of Algorithm 4, form an ε
2 -min-max equilibria

of our game (A-, A+, ϕ) with probability at least 1− δ. The Theorem then follows by Fact B.5.

The following theorems, which are restated from the main text, are immediate corollaries of Theorem B.2.

Theorem 4.1. For any finite hypothesis class H and unknown set of distributions D, with probability 1− δ,
Algorithm 2 returns a distribution p ∈ ∆H such that

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

log|H|+n log(n/δ)
ε2

)
.

Proof. Observe that this finite multi-distribution learning problem can be re-written as the convex multi-
distribution learning problem (∆H,D, ℓ). Since ∆H is a probability simplex of dimension |H|, we know it
is compact, convex, with C = 1 and L = 1 (as the range of ℓ is in [0, 1]), and with RΘ ≤ 2. We can then
directly apply Theorem B.2, observing that Algorithm 2 is equivalent to Algorithm 4 in this setting.

Theorem 5.1. Consider a group distributionally robust problem (Θ,D) with convex compact unit-diameter
parameter space Θ of Bregman radius DΘ (Definition A.11), and convex loss ℓ : Θ×Z → [0, C]. A variant
of Algorithm 2 (in particular Algorithm 4 in Appendix 4.1), returns θ ∈ Θ such that maxD∈D Ez∼D [ℓ(θ, z)] ≤
R-OPT + ε, using a number of samples that is O

(
DΘC2+nC2 log(n/δ)

ε2

)
.

Proof. Similarly to Theorem 4.1, this claim follows immediately from Theorem B.2 for unit diameter RΘ = 1
and loss bound L = C.

Corollary 5.2 follows in a similar fashion, running Algorithm 4 on empirical data distributions. The
following proposition re-states this formally.

Proposition B.1 (Generalization of Corollary 5.2). Let (Θ,D, ℓ) be a convex multi-distribution learning
problem satisfying Definitions A.12 and A.13 and Assumptions 5 and 4. For every D ∈ D, let BD ∼ D be a
non-empty batch of i.i.d. datapoint samples. Define D′ = {D′}D∈D, where D′ is the empirical distribution of
BD. It follows that (Θ,D′, ℓ) also satisfies Definitions A.12 and A.13 and Assumptions 5 and 4 with identical
parameters. Thus, Algorithm 4, when applied to (Θ,D′, ℓ), with probability at least 1− δ returns an θ with a
multi-distribution training error of at most ε. Furthermore, the number of iterations—and accordingly partial
derivative operations—is in O

(
DΘC2+(R2

−C2+nL2) log(n/δ)

ε2

)
.
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B.3 Proof of Theorem 4.3
We now provide matching lower bounds for collaborative PAC learning.

We first define a notion of expected sample complexity. Take any multi-distribution learning problem
V = (Θ,D, ℓ). Recall that, on this problem, the input to any multi-distribution learning algorithm is a
random variable of form V̂ = (Θi, ℓi, {EX(D)}D∈∆D). Also recall that each example oracle EX(D) is an
infinite sequence of i.i.d. samples from D. We will let XV denote the probability distribution of the random
variable tuple (Θi, ℓi, {EX(D)}D∈∆D). Further let NA(V̂ ) denote the expected sample complexity of A given
inputs V̂ , where expectation is taken over any randomness from the algorithm A itself. We can now define a
general notion of expected sample complexity.

Definition B.1. Let A be a multi-distribution learning algorithm and P a probability distribution over a set
of multi-distribution learning problems V := {(Θi,Di, ℓi)}i. We define the expected sample complexity NA(P)
as:

NA(P) = E
V∼P

[
E

V̂∼XV

[
NA(V̂ )

]]
.

The outer expectation is taken over the randomness of the problem selection, the inner expectation is taken
over the randomness of datapoints, and NA(V̂ ) takes an expectation over the internal randomness of the
algorithm A.

Unless otherwise specified, we will use the shorthand: EV∼P

[
EV̂∼XV

[·]
]
= EV̂ [·]. We recall the following

theorem from Section 4.2.

Theorem 4.3. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm A. There
exists a collaborative learning problem (H,D) with |D| = n and |H| = 2d, on which A takes at least
Ω
(

1
ε2 (log |H|+ |D| log(min {|D| , log |H|} /δ))

)
samples.

We now prove two lemmas, Lemma B.3 and Lemma B.4, that directly imply Theorem 4.3.

Lemma B.3. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm A. There exists
a set of collaborative learning problems V on which A takes at least Ω

(
log|H|

ε2

)
samples and where, for every

(H,D) ∈ V, |D| = n and |H| = 2d.

Proof. This claim follows directly from the lower bound on sample complexity of agnostic probably-
approximately-correct (PAC) learning [29]. Take a set of PAC learning problems V′ where every problem in
V′ shares a hypothesis set H′ where |H′| = 2d, feature space X ′, and binary label space Y ′ = {0, 1}. Note that
|V′| is necessarily finite. We define the following class of collaborative learning problems. Let X = X ′⋃ {⊥},
where ⊥ is some special symbol. Let H = {gh′ | h′ ∈ H′}, where, for any x ∈ X , we define gh′(x) as:

gh′(x) =

{
1 x =⊥
h′(x) otherwise

Define D∗ as a degenerate probability distribution over X × Y where PrD∗(⊥, 1) = 1. For any PAC
learning problem (H′, D′) ∈ V′ we can thus define the collaborative learning problem (H,D′), where
D′ =

{
D̂′
}⋃

{D∗}n−1
i=1 and D̂′ is an adaptation of D′ onto the support X × Y. Accordingly, define

V = {(H,D′) | (H′, D′) ∈ V′}.
It is not hard to see that any (ε, δ) collaborative learning algorithm A for V is also an (ε, δ) PAC learning

algorithm A′ for V′ with an identical sample complexity. We can construct A′ using A as follows. Suppose
we are given a (H′, D′) ∈ V′. Construct (H,

{
D̂′
}⋃

{D∗}n−1
i=1 ) as described. Run A on (H,D′), simulating

data draws from D̂′ by drawing from D′. Letting h ∈ H denote the output of A (if it terminates), return
h′ ∈ H′ where h′(x) = h(x) for every x ∈ X ′. Since with probability at least 1− δ, A successfully outputs a
hypothesis h where:

Risk
D̂′(h) = max

D∈D′
RiskD(h) ≤ min

h∗∈H
max
D∈D′

RiskD(h∗) + ε = min
h∗∈H

Risk
D̂′(h

∗) + ε,
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meaning our output h′ also satisfies:

RiskD′(h′) ≤ min
h∗∈H′

RiskD′(h∗) + ε.

Finally, we can invoke the well-known lower bound of agnostic PAC learning to observe that there exists
an agnostic PAC learning problem V′ such that any (ε, δ)-learning algorithm has a sample complexity of
Ω
(

log|H|
ε2

)
[11]; we defer interested readers to Zhang [35] for a constructive proof of the existence of V′. Thus,

there exists a V satisfying the assumptions of Lemma B.3 where any (ε, δ) collaborative learning algorithm
has a sample complexity of Ω

(
log|H|

ε2

)
.

Lemma B.4. Take any n, d ∈ Z+, ε, δ ∈ (0, 1/8), and (ε, δ)-collaborative learning algorithm A. There exists
a set of collaborative learning problems V on which A takes at least Ω

(
1
ε2 (|D| log(k/δ))

)
samples and where,

for every (H,D) ∈ V, |D| = n and |H| = 2k with k := min {n, d}.

Proof. We prove this constructively. Fix a choice of n, d ∈ Z+ and ε, δ ∈ (0, 1/8). We begin by defining
collaborative learning problem sets Vu,w for all u,w ∈ N with u ≥ w. A problems in Vu,w share an feature
space X = {1, . . . , w}, label space Y = {+,−}, and hypothesis class H = {f : X → Y} (the set of all
deterministic binary labeling functions). For every i ∈ [u], we define distributions D−

i and D+
i as:

Pr
D−

i

(i,−) = Pr
D+

i

(i,+) =
1

2
+ ε and Pr

D−
i

(i,+) = Pr
D+

i

(i,−) =
1

2
− ε.

Now define Q as a distribution over w-length strings where each character is independently uniformly sampled
from {+,−}. We then define Pu,w as a distribution over collaborative learning problems, where for any

w-length string b, Pn

((
H,
{
D

bi (mod w)

i (mod w)

}u

i=1

))
= Q(b) = 2−u. Finally, we define Vu,w to be the support of

Pu,w.

Claim B.1. Take any (ε, δ)-learning algorithm A on V1,1. Then, the expected sample complexity (see
Definition B.1) of A on P1,1 is at least 1

8ε2 log
1
δ .

Proof. When u = w = 1, the distributions PrD+
1
,PrD−

1
are simply Bernoulli distributions with parameters

p1 = 1
2 + ε, p2 = 1

2 − ε respectively. We will first prove that any algorithm given only N datapoints will result
in an at least ε-error output with probability at least 1

4 exp
(
−8ε2N

)
. We will then relax these qualifiers on

A to recover our claim.
Let the random variables XN

1 , XN
2 , XN

3 , XN
0 each represent N i.i.d. samples from Bernoulli distributions

with parameter p = 1
2 + ε, p = 1

2 − ε, p = 1
2 + 2ε, p = 1

2 respectively. We will show that there is no function
f : {0, 1}N → {0, 1} that can reliably output 1 when given a realization of XN

1 and reliably output 0 when
given a realization of XN

2 . Let α = ED1

[
f(XN

1 )
]

and β = ED2

[
f(XN

2 )
]
. We can write the KL divergence

between the Bernoulli random variables f(XN
1 ) and f(XN

2 ) as:

KL
(
f(XN

1 )||f(XN
2 )
)
= α log

α

β
+ (1− α) log

1− α

1− β
. (17)

Since α logα+ (1− α) log(1− α) ≥ − log 2, we have that,

KL
(
f(XN

1 )||f(XN
2 )
)
≥ (α log

1

β
+ (1− α) log

1

1− β
− log 2).

Applying in order the data processing inequality, the tensorization property of KL divergence, and the fact
that KL

(
X1

1 ||X1
2

)
≤ KL

(
X1

3 ||X1
0

)
, we have that:

KL
(
f(XN

1 )||f(XN
2 )
)
≤ KL

(
XN

1 ||XN
2

)
= N · KL

(
X1

1 ||X1
2

)
=

−N

2
log(1− ε2) ≤ 16Nε2. (18)

Recall that α is the probability that f is correct given p = 1
2 + ε and β is the probability that f is wrong

given p = 1
2 . Combining Equations 17 and 18, we see that either α < 1/2 or β ≥ 1

4 exp
(
−8ε2N

)
. Thus, for
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any algorithm A outputting deterministic classifiers, there exists a problem V ∈ V1,1 such that when A is
given only N samples, its output classifier, with probability at least 1

4 exp
(
−8ε2N

)
, has an risk of at least ε.

By the minimax risk inequality, this also statement extends to algorithms returning random classifiers.
Now consider an (ε, δ)-learning algorithm A for V1,1. Recalling notation from Definition B.1, NA(V̂ ) is

a random variable denoting the number of samples taken by A. Let E denote the event that A returns a
classifier with error at least ε. By linearity of expectation, we can lower bound our failure probability as:

δ ≥ E
V̂

[ ∞∑
N=0

Pr
(
NA(V̂ ) = N | V

)
Pr
(
E | NA(V̂ ) = N,V

)]

≥ 1

2

∞∑
N=0

Pr(NA(V̂ ) = N | V ) · 1
4
exp

(
−8ε2N

)
= E

V̂

[
1

4
exp

(
−8ε2NA(V̂ )

)]
Observing that h(x) = log 1

4 exp(−8ε2)(x) is convex for ε ∈ (0, 1/8), by Jensen’s inequality:

E
V̂

[
NA(V̂ )

]
≥ h

(
E
V̂

[
1

4
exp

(
−8ε2NA(V̂ )

)])
≥ h (δ) ≥ log(1/δ)

log(4 exp(8ε2))
≥ log(1/δ)

8ε2
.

Claim B.2. Suppose there exists an (ε, δ) learning algorithm A for Vn,k. Further suppose A has an expected
sample complexity on Pn,k of m. Then there exists an (ε, 10δ

9k ) learning algorithm A′ for V1,1 with an expected
sample complexity on P1,1 of 10

9nm.

Proof. This claim closely follows the proofs of Claims 4.3 and 4.4 in Blum et al. [4], and is included for
completeness. We construct A′ as follows. Suppose a problem V ′ ∈ V1,1 is drawn.

1. A′ draws a problem (H,D) ∈ Vn,k and chooses an index i ∈ [n] uniformly at random.

2. A′ simulates the algorithm A on (H,D); when A tries to sample a datapoint from the ith distribution
Di, return a sampled datapoint from the data distribution of V ′.

3. When A terminates and returns a classifier h, A′ checks whether, for every j ̸= i: RiskDj
(h) < 1

2 . If
this condition is satisfied, A′ returns h′(1) = h(ℓ). If not, we repeat from Step 1. We denote the number
of total iterations with T .

Consider the probability pi that, in the third step, for every j ̸= i we have RiskDj
(h) < 1

2 but RiskDi
(h) ≥ 1

2 .
Let Et denote the event that A′ returns an at least ε-error hypothesis after t iterations of our procedure.
Noting that Et can only occur if A failed all t− 1 iterations before and at the tth iteration, Step 3 fails to
catch the bad hypothesis for Di. By assumption, δ ≥

∑k
i=1 pi. By symmetry of our construction V:

∞∑
t=1

Pr (Et) ≤
∞∑
t=1

δt−1 1

k

k∑
i=1

pi ≤
∞∑
t=1

δt/k ≤ 10δ

9k

Thus, A′ is an (ε, 10δ
9k )-algorithm for P1,1.

We now bound the sample complexity of A′. Let NA′(t) denote the number of samples that A′ takes
from V ′ on the tth iteration. Note that NA′(1), NA′(2), . . . are i.i.d. In addition, by the symmetry of V and
linearity of expectation, EV ′∈P1,1

[NA′(t)] = m/n. Thus, we can write:

E
V̂ ′

[
T∑

t=1

NA′(t)

]
= E

V̂ ′
[T ] E

V̂ ′
[NA′(1)] = E

V̂ ′
[T ]m/n.

We can upper bound T by observing that our procedure only repeats if A fails. Thus,

E
V̂ ′

[T ] =

∞∑
t=1

Pr(T ≥ t) ≤
∞∑
t=0

δt ≤ 1

1− δ
≤ 10

9
.

Thus, A′ has an expected sample complexity of at most 10m
9n .
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Combining claims B.1 and B.2, we see that any (ε, δ) collaborative learning algorithm A for Vn,k has an
expected sample complexity on Pn,k of at least m ≥ 9n

80ε2 log
(

9k
10δ

)
. By the probabilistic method, for at least

some collaborative learning problem V ∈ Vn,k, A must have a sample complexity in Ω
(

9n
80ε2 log

(
9k
10δ

))
. Recall

that each collaborative learning problem (H,D) ∈ Vn,k has |D| = n and |H| = 2k, satisfying our Lemma B.4
requirements.

The following is a more general restatement of Theorem 4.3 in terms of the terminology of Section A. It
follows by observing the difficult cases described in Theorem 4.3 constitute challenging cases for both convex
multi-distribution learning (Definition A.13) and binary classifier multi-distribution learning (Definition A.15).

Corollary B.5. Take any n,m ∈ N and ε, δ ∈ (0, 1/8). There exists a finite set V of multi-distribution
learning problems where:

1. Every (Θ,D, ℓ) ∈ V satisfies Definitions A.13 and A.15, with |D| = n and DΘ = log(m).

2. Every (ε, δ)-algorithm A has a sample complexity in
(

DΘ+n log(min{n,DΘ}/δ)
ε2

)
.
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B.4 Proof of Lemmas B.4 and B.9
For completeness, this section includes standard results on exponentiated gradient descent and mirror descent
more generally, proofs of which can be found in [30].

Lemma B.6. Pinsker’s inequality For any two vectors from the same probability simplex w,w′ ∈ ∆n, we
can bound their generalized Kullback-Leibler divergence as,

KL (w||w′) ≥ 1

2
∥w − w′∥21 .

Lemma B.7. Law of Cosines Define x, y, z ∈ Z where Z is a convex set, and let H : Z → R be a strictly
convex differentiable distance generating function and DH the Bregman divergence of H. Then,

⟨∇H(y)−∇H(z), y − x⟩ = DH(x, y) +DH(y, z)−DH(x, z).

Lemma B.8. Pythagorean theorem for Bregman Divergence Define x, y ∈ Z0 where Z0 is a closed
subset of a convex set Z, z ∈ Z. Let H : Z → R be a strictly convex differentiable distance generating function,
and let DH be the Bregman divergence of H. If y = argminu∈Z0 DH(u, z), then DH(x, y) + DH(y, z) ≤
DH(x, z).

We now turn to proving Lemma (restated below), which concerns exponentiated gradient descent with
bounded gradients.

Lemma 2.1 ([30]). Let g(1), . . . , g(T ) ∈ Rn and Z = ∆n. Further assume
∥∥g(t)∥∥∞ ≤ C for all timesteps

t = 1, . . . , T . Choosing η =
√
log n/T , after T iterations of exponential gradient descent, the output {w}Tt=1

satisfies,

Errv(w(1:T )) ≤ 3C

2

√
KL
(
w(T )||w(1)

)
T

.

Proof. This proof closely follows that of Theorem 7.5 in [30]. Fix t ∈ 1, . . . , T . First, we provide an expression
for g(t) in terms of w̃(t+1) and w(t), where w̃ is as defined in Equation 4. For all i ∈ 1, . . . , n, we have by
Equation 4:

w̃
(t+1)
i = w

(t)
i exp

(
−ηg

(t)
i

)
.

Equivalently,

g
(t)
i =

1

η

(
logw

(t)
i − log w̃

(t+1)
i

)
.

Letting H(x) =
∑n

i=1 xi log xi − xi denote our distance generating function, generalized negative entropy, we
can also write,

g
(t)
i =

1

η

(
∇H

(
w(t)

)
−∇H

(
w̃(t+1)

))
,

where logs are applied coordinate-wise. Defining KL (·||·) as generalized Kullback–Leibler divergence: the
Bregman divergence with respect to our choice of H as a distance generating function. Since Z is already
closed, by Lemma B.8, for any w∗ ∈ Z,〈

g
(t)
i , w(t) − w∗

〉
=

1

η

〈
∇H

(
w(t)

)
−∇H

(
w̃(t+1)

)
, w(t) − w∗

〉
=

1

η

(
KL
(
w∗||w(t)

)
+ KL

(
w(t)||w̃(t+1)

)
− KL

(
w∗||w̃(t+1)

))
.

Generalized Pythagorean Theorem, e.g. Theorem 7.7 in [30] gives,

KL
(
w∗||w̃(t+1)

)
≥ KL

(
w∗||w(t+1)

)
+ KL

(
w(t+1)||w̃(t+1)

)
.
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Then we can bound,

η

T∑
t=1

〈
g
(t)
i , w(t) − w∗

〉
=

T∑
t=1

KL
(
w∗||w(t)

)
+ KL

(
w(t)||w̃(t+1)

)
− KL

(
w∗||w̃(t+1)

)
(By Pythagorean) ≤

T∑
t=1

KL
(
w∗||w(t)

)
+ KL

(
w(t)||w̃(t+1)

)
−
(
KL
(
w∗||w(t+1)

)
+ KL

(
w(t+1)||w̃(t+1)

))
=

T∑
t=1

KL
(
w∗||w(t)

)
− KL

(
w∗||w(t+1)

)
+
(
KL
(
w(t)||w̃(t+1)

)
− KL

(
w(t+1)||w̃(t+1)

))
(By telescoping) ≤ KL

(
w∗||w(0)

)
+

T∑
t=1

KL
(
w(t)||w̃(t+1)

)
− KL

(
w(t+1)||w̃(t+1)

)
. (19)

To bound the second term, we again apply the law of cosines, this time in reverse order, recovering,

KL
(
w(t)||w̃(t+1)

)
− KL

(
w(t+1)||w̃(t+1)

)
= η

〈
g(t), w(t) − w(t+1)

〉
− KL

(
w(t+1)||w(t)

)
.

As w(t+1), w(t) ∈ Z, by Pinsker’s inequality (Lemma B.6),

KL
(
w(t)||w̃(t+1)

)
− KL

(
w(t+1)||w̃(t+1)

)
≤ η

〈
g(t), w(t) − w(t+1)

〉
− 1

2

∥∥∥w(t+1) − w(t)
∥∥∥2
1

≤ η
∥∥∥g(t)∥∥∥

∞

∥∥∥w(t) − w
(t+1)
1

∥∥∥− 1

2

∥∥∥w(t+1) − w(t)
∥∥∥2
1

≤ ηC
∥∥∥w(t) − w

(t+1)
1

∥∥∥− 1

2

∥∥∥w(t+1) − w(t)
∥∥∥2
1

≤ η2C2

2
, (20)

where the final inequality follows from maximizing the quadratic ηCz− z2

2 , attained at z =
∥∥w(t) − w(t+1)

∥∥
1
=

Cη. The claim follows by plugging Equation 20 into Equation 19.

Exponentiated gradient descent is a special case of mirror descent in the Euclidian space E = Rn equipped
with an L1-norm ∥·∥1, over the probability simplex Z = ∆n, and using entropy as a distance generating
function. The following lemma generalizes Lemma B.4 to more general Euclidian spaces, choices of convex
compact subsets, and strongly-convex distance generating functions. As the proof closely mirrors that of
Lemma B.4, we defer interested readers to Beck and Teboulle [2].

Lemma B.9 (Generalization of Lemma B.4 [2]). Let Z be a convex compact subset of a Euclidean space
E with distance generating function ω satisfying Definition A.9. Let g(1), . . . , g(T ) ∈ E∗. Further assume∥∥g(t)∥∥E∗ ≤ C for all timesteps t = 1, . . . , T . Choose step size η =

√
DZ

T where DZ is the Bregman radius of

Z. After T iterations of online mirror descent [2], the output {w}Tt=1 satisfies,

Errv(w(1:T )) ≤ 3C

2

√
DZ

T
.
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B.5 Proof of Theorem 4.2
This section discusses the implications of our results for finite VC dimension problems.

First, we will use DX to denote the marginal distribution of a data distribution D, i.e. the distribution of
D over its feature space. We also introduce the following definitions.

Definition B.2. The Renyi divergence Dα(P ||Q) between discrete distributions P,Q is defined by:

Dα(P ||Q) =
1

α− 1
log2

∑
x∈X

P (x)

(
P (x)

Q(x)

)α−1

and between continuous distributions P,Q as:

Dα(P ||Q) =
1

α− 1
log2

∫
X
P (x)

(
P (x)

Q(x)

)α−1

dx.

We will write dα(P ||Q) := 2Dα(P ||Q).

Remark B.1. Denoting the support of Q as XQ, we can write supx∈XQ

P (x)
Q(x) = d∞(P ||Q).

Recall that in Theorem B.2 we describe a multi-distribution learning algorithm (Algorithm 4) with provably
tight sample complexity upper bounds for convex multi-distribution learning problems (Definition A.13). We
note that there is one class of multi-distribution learning problems, non-convex finite VC multi-distribution
learning, that has been previously studied by [4, 22, 6] but does not satisfy the assumptions of convex multi-
distribution learning. A non-convex finite VC multi-distribution learning problem is a binary-classification
multi-distribution learning problem (Definition A.15) that satisfies three criteria: the hypothesis space H
is non-convex, of infinite size, and of finite VC dimension VCD(H) < ∞. [4, 22, 6] provide upper bounds
for non-convex finite VC multi-distribution learning that are identical to their upper bounds in Table 1 but
replacing log |H| with VCD(H).

In contrast, our Theorem B.2 upper bounds do not directly apply to non-convex finite VC multi-distribution
learning. However, a similar result can be obtained by running our Algorithm 4 on a probability simplex ∆H′

over some ε-covering H′ of H. Such ε-nets of size nε−2VCD(H) necessarily exist (see, e.g., [1]). For example,
given an ε-net for each distribution D ∈ D, we may take their union as the covering H′ and run Algorithm 2.
This directly inherits a favorable upper bound from Theorem B.2.

Corollary B.10 (VC Dimension Corollary of Theorem B.2). Consider any binary classification multi-
distribution learning problem (H,D) where the hypothesis set H is of finite VC dimension d and the unknown
distribution set is of size |D| = n. There is an algorithm that, given an ε-net of size poly

(
εd, ε, d, n

)
for each

distribution, with probability 1− δ, returns a distribution p ∈ ∆H with,

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

d log(1/ε)+n log(n/δ)
ε2

)
.

It is also not strictly necessary to know an ε-net in advance. Instead, one can compute a net from samples
or from other information about distributions in D. Theorem 4.2, restated below, formalizes this claim.

Theorem 4.2. For any H of VC dimension d and unknown set of distributions D for which Assumption 1
or 2 is met, there is an algorithm that, with probability 1− δ, returns a distribution p ∈ ∆H with,

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

d log(dn/ε)+n log(n/δ)
ε2

)
.

The following lemmas directly imply Theorem 4.2.
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Lemma B.11 (Assumption 1). Consider any binary classification multi-distribution learning problem (H,D)
where the hypothesis set H is of finite VC dimension d and the unknown distribution set is of size |D| = n.
There is an algorithm that, given access to the marginal distribution DX of every D ∈ D, with probability
1− δ, returns a distribution p ∈ ∆H with,

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

d log(1/ε)+n log(n/δ)
ε2

)
.

Proof. By uniform convergence, sampling Θ
(

d log(d/ε)+log(1/δ)
ε2

)
i.i.d. samples from a distribution DX , with

probability at least 1− δ, yields an ε-covering on D. By Sauer-Shelah’s lemma, the resulting covering H′
D is

of size O
(
(log(d/ε) + 1

d log(1/δ)/ε
2)d
)
. Repeating this procedure for each D ∈ D, with probability at least

1−nδ, we have an ε-covering of D of size O
(
n(log(d/ε) + 1

d log(1/δ)/ε
2)d
)
∈ poly

(
εd, ε, d, n

)
and can appeal

to Corollary B.10.

Lemma B.12 (Assumption 2). Consider any binary classification multi-distribution learning problem (H,D)
where the hypothesis set H is of finite VC dimension d and the unknown distribution set is of size |D| = n.
We say an algorithm has weak unlabeled access if the algorithm can access, for each D ∈ D, a marginal
distribution D′

X such that d∞(D′
X ||DX ) ∈ poly(1/ε, d, n), with probability 1− δ. There is an algorithm that,

given weak unlabeled access, with probability 1− δ, returns a distribution p ∈ ∆H with,

E
h∼p

[
max
D∈D

(h)

]
≤ OPT + ε and max

D∈D
(hMaj

p ) ≤ 2OPT + ε,

using a number of samples that is O
(

d log(dn/ε)+n log(n/δ)
ε2

)
.

Proof. Observe that when d∞(D′
X ||DX ) < γ, D′

X can be written as a mixture over DX with probability
at least 1

γ and some other distribution D̃X with probability at most 1 − 1
γ . Once again invoking uniform

convergence, we observe that sampling Θ
(
d∞(D′

X ||DX )d log(d/ε)+log(1/δ)
ε2

)
i.i.d. samples from distribution

D′
X , with probability at least 1 − δ, yields an ε-covering on D. By Sauer-Shelah’s lemma, the resulting

covering H′
D is of size O

(
(poly(1/ε, d, n))d

)
. Repeating this procedure for each D ∈ D, with probability

at least 1 − nδ, we have an ε-covering H′ of D of size |H′| ∈ O
(
n(poly(1/ε, d, n))d

)
. We can then appeal

directly to Theorem 4.1 for a sample complexity bound on learning (H′,D).
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C Experiment Details
Datasets Our experiments were performed on three datasets: Multi-NLI, CelebA, and Waterbirds [27].
We use identical preprocessing settings and dataset splits as Sagawa et al. [27]. Our experiments, unless
otherwise specified, replicate the exact hyperparameter settings adopted by Sagawa et al. [27] for their Table
2 experiments. This includes the choice of random seeds, batch sizes, learning rates, learning schedules, and
regularization. We defer readers to Sagawa et al. [27] or to our public source code for replication details.

The Multi-NLI dataset [32] concerns the following natural language inference task: determine if one
statement is entailed by, neutral with, or contradicts a given statement. This dataset is challenging because
traditional ERM models are prone to spuriously correlating “contradiction” labels with the existence of negation
words. The dataset is divided into 6 distributions: the Cartesian product of the label space (entailment,
neutral, contradiction) and an indicator of whether the sentence contains a negation word. The label space
annotations were annotated by [32] while negation labels were annotated by Sagawa et al. [27]. There are
206,175 datapoints available in the Multi-NLI dataset; the smallest distribution (entailment + negation) is
represented by only 1,521 datapoints. We use a randomly shuffled 50-20-30 training-validation-testing split.

The CelebA dataset is a dataset of celebrity face images and a label space of potential physical attributes
[17]. This dataset is challenging because traditional ERM models are prone to spuriously correlating attribute
labels with demographic information such as race and gender. Following Sagawa et al. [27], we divide the
dataset into 4 distributions: the Cartesian product of the blond vs dark hair attribute label (“Blond_Hair”)
with the “gender” attribute label (“Male”). Note that the authors of Liu et al. [17] limited the “gender”
attribute label to binary options of male and not male. There are 162,770 datapoints available in the CelebA
dataset; the smallest distribution (blond-hair + male) is represented by only 1,387 datapoints. We use the
official training-testing-validation dataset split.

The Waterbirds dataset is a dataset by Sagawa et al. [27] curated from a larger Caltech-UCSD
Birds-200-2011 (CUB) dataset [31]. It concerns the task of predicting whether a bird is of some waterbird
(sub)species from an image of said bird. This dataset is challenging because traditional ERM models are
prone to spuriously correlating backgrounds with foreground subjects; for instance, a model may often predict
that a bird is a waterbird only because the image of the bird was taken at a beach. The dataset has 4
distributions: the Cartesian product of the waterbird vs not waterbird label with whether the background
of the picture is over water. There are 4,795 datapoints available in the Waterbirds dataset; the smallest
distribution (waterbirds on land) is represented by only 56 examples.

Models We use two classes of models in our experiments: Resnet-50 [15] and BERT [9]. We use the
torchvision [19] implementation of the convolutional neural network Resnet-50, with a default choice of a
stochastic gradient descent optimizer with momentum 0.9 and batch size 128. Batch normalization is used;
data augmentation and dropout are not used. We use the HuggingFace [33] implementation of the language
model BERT, with a default choice of an Adam optimizer with dropout and batch size 32.

Hyperparameters In the Standard Regularization experiments, we use a Resnet-50 model with an ℓ-2
regularization parameter of λ = 0.0001 and a fixed learning rate of α = 0.001 for both Waterbirds and CelebA
datasets. The ERM and Group DRO baselines are trained on CelebA for 50 epochs and Waterbirds for 300
epochs. Our multi-distribution learning method is trained on CelebA for only 20 epochs and Waterbirds for
100 epochs; this is due to the faster training error convergence of our method. For the MultiNLI dataset, we
use a BERT model with a linearly decaying learning rate starting at α0 = 0.00002 and no ℓ-2 regularization.
The ERM and Group DRO baselines are trained on Multi-NLI for 20 epochs. Our multi-distribution learning
method is trained on Multi-NLI for only 10 epochs. Our multi-distribution learning method uses adversary
learning rates η+ of 1, 1, 0.2 on Waterbirds, CelebA and MultiNLI respectively.

In the Strong Regularization experiments, we follow similar settings to the Standard Regularization
experiments. The only change is that an ℓ-2 regularization parameter of λ = 1 is used for Waterbirds and
an ℓ-2 regularization parameter of λ = 0.1 is used for CelebA. Our multi-distribution learning method uses
adversary learning rates η+ of 1 and 0.2 on Waterbirds and CelebA respectively.

In the Early Stopping experiments, we follow similar settings to the Standard Regularization experiments.
The only change is that all CelebA and Waterbird experiments are run for a single epoch. MultiNLI
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experiments are run for 3 epochs. Our multi-distribution learning method uses adversary learning rates η+ of
1, 1, 1 on Waterbirds, CelebA and MultiNLI respectively.

The only hyperparameters we use that differ from prior literature are the number of training epochs
and the adversary learning rates of our method (resampling-based GDRO). The choice of epoch was not
fine-tuned, and was selected due to our observation of early training error convergence. We selected our
adversary learning rate η- by training our method, on each dataset, for both η- = 1 and η- = 0.2 and selecting
the η- yielding the highest validation-split worst-case accuracy.

Compute The total amount of compute run for the experiments in this section is approximately 50
GPU hours. A “n1-standard-8” machine was leased from the Cloud computing service Google Cloud; the
“n1-standard-8” machine was equipped with 8 Intel Broadwell chips and 1 NVIDIA Tesla V100 GPU. The cost
of these computing resources totaled approximately USD $2 per hour, with a total cost of approximately USD
$100. All results described in this section, with the exception of existing results cited from other works, were
obtained with experiments on said machine. All experiments were implemented in Python and PyTorch.

37


	Introduction
	Related Work

	Preliminaries
	Technical Background

	Technical Overview of Our Approach
	Collaborative Learning Bounds
	Sample Complexity Upper Bounds
	Sample Complexity Lower Bound

	Group DRO and Agnostic Federated Learning
	Empirical Analysis of On-Demand Sampling for Group DRO
	Experiment Results

	Full Formulation
	Convex-Concave Zero-Sum Game
	Stochastic Settings
	Multi-Distribution Learning

	Omitted Proofs
	Proof of Lemma B.1 (Generalization of Lemma 3.1)
	Proof of Theorem B.2 (Generalization of Theorems 4.1 and 5.1)
	Proof of Theorem 4.3
	Proof of Lemmas B.4 and B.9
	Proof of Theorem 4.2

	Experiment Details

