
Foundation of Machine Learning,
by the People, for the People

Nika Haghtalab

CMU-CS-18-114

August 2018

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Avrim Blum, Co-chair

Ariel D. Procaccia, Co-chair
Maria-Florina Balcan, Carnegie Mellon University

Tim Roughgarden, Stanford University
Robert Schapire, Microsoft Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2018 Nika Haghtalab

This research was sponsored by an IBM Ph.D. Fellowship, a Microsoft Research Fellowship, a Siebel Scholarship,
and the National Science Foundation under grant numbers IIS-1065251, IIS-1350598, CCF-1451177, CCF-1525971,
and CCF-1535967. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Machine learning, Algorithmic economics, Theory of Computer Science, Mech-
anism design, Stackelberg Games, Auction Design, No-regret Learning, Collaborative learning,
Learning from the crowd, Kidney Exchange

To the Iranian Bahá’ı́ Community.

iv

Abstract

Typical analysis of machine learning algorithms considers their outcome in
isolation from the effects that they may have on the process that generates the data or
the entity that is interested in learning. However, current technological trends mean
that people and organizations increasingly interact with learning systems, making
it necessary to consider how these interactions change the nature and outcome of
learning tasks.

The field of algorithmic game theory has been developed in response to the need
for understanding interactions in large interactive systems in the presence of strategic
entities, such as people. In many cases, however, algorithmic game theory requires
an accurate model of people’s behavior. In the applications of machine learning,
however, much of this information is unavailable or evolving. So, in addition to
the challenges involved in algorithmic game theory, there is a need to acquire the
information without causing undesirable interactions.

In this thesis, we present a view of machine learning and algorithmic game
theory that considers the interactions between machine learning systems and people.
We explore four lines of research that account for these interactions: learning about
people, where we learn optimal policies in game-theoretic settings, without an
accurate behavioral model and in ever changing environments, by interacting with
and learning about people’s preferences; learning from people, where we manage
people’s expertise and resources in data-collection and machine learning; learning
by people, where people can interact with each other and collaborate together
to effectively learn related underlying concepts; and learning for people, where
machine learning is used to benefit people and society, in particular, by creating
models that are resilient to uncertainties in the environment.

vi

Acknowledgments

I have been lucky to have not just one but two amazing advisors! In addition to being fantastic
researchers, Avrim and Ariel are two of the kindest and most supportive individuals that I
have had the pleasure of knowing. Avrim has been a great teacher with an incredibly intuitive
understanding of the theory of computer science and superb technical skills. I want to thank
him for his encouragements and his insights, for sharing with me his knowledge of a wide range
of research, for his ability to form elegant questions so that their answer emerges with equal
elegance, and for his humility and patience, which enabled me to grow as a researcher and come
into my own. Ariel has been a great friend and mentor. He has a great sense of style in choosing
what to work on. His approach and interests are so novel that people who cross his path cannot
help but want to work with him. I want to thank him for his friendship and his time, for his sense
of worthwhile research areas, for his ability to provide a computational perspective on all of life’s
problems, for his passion for perfection that demonstrates itself in all aspects of his research, and
for his unwavering support and faith in me that pushes me to strive to be a better researcher.

I am grateful to Nina Balcan, Tim Roughgarden, and Rob Schapire for all that they have done
for me during my Ph.D., including serving on my thesis committee. Nina has been a collaborator
on a number of projects discussed in this thesis. I want to thank her for her transformative energy
that has influenced much of my taste in problems. Tim hosted me for a visit at Stanford, the
results of which are presented in Chapter 7 of this thesis. During this time, he helped me achieve
a better understanding of the wider range of connections between machine learning and the
theory of computer science. Rob was one of my hosts during a very fun and productive internship
at Microsoft Research, the results of which are presented in Chapter 5 of this thesis. At times
when our goals seemed unattainable, Rob’s calmness and faith helped me keep my focus and
rigor.

A huge thanks goes to all of my other collaborators throughout my Ph.D: Nima Anari, Pranjal
Awasthi, Ioannis Caragiannis, Ofer Dekel, John dickerson, Miro Dudı̀k, Fei Fang, Arthur Flajolet,
Patrick Jaillet, Aron Laszka, Haipeng Luo, Simon MacKenzie, Yishay Mansour, Seffi Naor,
Thanh Ngyuen, Ritesh Noothigattu, Sebastian Pokutta, Eviatar Procaccia, Mingda Qiao, Oren
Salzman, Tuomas Sandholm, Ankit Sharma, Mohit Singh, Arunesh Sinha, Sid Srinivasa, Vasilis
Sygkanis, Alfredo Torrico, Milind Tambe, Ruth Urner, Rohit Vaish, Yevgeniy Vorobeychik,
Colin White, Jenn Wortman Vaughan, and Hongyang Zhang. It would not have been as fun or as
productive without them. Especially, I want to thank Ofer Dekel, Miro Dudı̀k, Jenn Wortman
Vaughan, Rob Schapire, and Vasilis Syrgkanis for being amazing mentors during two very fun
summers at Microsoft Research Redmond and New York City.

I want to thank everyone at CMU for contributing to a great environment for graduate studies.

vii

I am thankful to the members of the theory group, and especially to Mor Harchol-Balter and
Anupam Gupta, for their company and advice. I also want to thank Deb Cavlovich, Catherine
Copetas, Patricia Loring, and other amazing administrative staff for making the everyday life
at CMU so easy for graduate students. Special thanks to all of my friends and peers that made
my Ph.D. years some of the most memorable years of my life. I cannot possible name all of
them; instead let me thank them for sharing their love, thoughts, time, advice, houses, happiness,
sadness, and coffee/tea with me!

Lastly, I am ever indebted to my family — my parents Felora and Nasser, my sister Ayda,
and my husband Erik — for having my back, being my unabashed champions, and creating in
me a thirst for learning and education. They hold me to a high standard and help me achieve
it. They have done so much for me before my Ph.D. and I know that they will continue to do
so much for me after my Ph.D. that nothing I can say would sufficiently convey my love and
appreciation for them.

viii

Contents

1 Introduction 1
1.1 Background . 3

1.1.1 Stackelberg Games . 3
1.1.2 Offline Learning . 4
1.1.3 Online Learning . 5

1.2 Overview of Thesis Contributions and Structure 7
1.3 Bibliographical Remarks . 18
1.4 Excluded Research . 19

I Learning about People 21

2 Learning in Stackelberg Security Games 23
2.1 Introduction . 23
2.2 The Model . 24
2.3 Problem Formulation and Technical Approach 26
2.4 Main Result . 27

2.4.1 Characteristics of the Optimization Region 27
2.4.2 Finding Initial Points . 29
2.4.3 An Oracle for the Convex Region . 33
2.4.4 The Algorithms . 33

2.5 Discussion . 36

3 Learning about a Boundedly Rational Attacker in Stackelberg Games 39
3.1 Introduction . 39

3.1.1 Our Results . 39
3.1.2 Related Work . 40

3.2 Preliminaries . 41
3.3 Theoretical Results . 42

3.3.1 Linear Utility Functions . 42
3.3.2 Polynomial Utility Functions . 44
3.3.3 Lipschitz Utilities . 46
3.3.4 Learning the Optimal Strategy . 47

3.4 Discussion and Open Problems . 48

ix

4 Online Learning in Multi-attacker Stackelberg Games 51
4.1 Introduction . 51

4.1.1 Overview of Our Results . 52
4.1.2 Related work . 52

4.2 Preliminaries . 53
4.3 Problem Formulation . 54

4.3.1 Methodology . 55
4.4 Characteristics of the Offline Optimum . 56
4.5 Upper bounds – Full Information . 58
4.6 Upper bounds – Partial Information . 59

4.6.1 Overview of the Approach . 60
4.6.2 Partial Information to Full Information 61
4.6.3 Creating Unbiased Estimators . 63
4.6.4 Putting It All Together . 65

4.7 Lower Bound . 66
4.8 Discussion . 69
4.9 Subsequent Works . 70

5 Oracle-Efficient Online Learning and Auction Design 71
5.1 Introduction . 71

5.1.1 Oracle-Efficient Learning with Generalized FTPL 73
5.1.2 Main Application: Online Auction Design 75
5.1.3 Extensions and Additional Applications 77

5.2 Generalized FTPL and Oracle-Efficient Online Learning 78
5.2.1 Regret Analysis . 80
5.2.2 Oracle-Efficient Online Learning . 82

5.3 Online Auction Design . 85
5.3.1 VCG with Bidder-Specific Reserves 86
5.3.2 Envy-free Item Pricing . 91
5.3.3 Level Auctions . 93

5.4 Stochastic Adversaries and Stronger Benchmarks 95
5.4.1 Stochastic Adversaries . 95
5.4.2 Implications for Online Optimal Auction Design 97

5.5 Approximate Oracles and Approximate Regret 101
5.5.1 Approximation through Relaxation 102
5.5.2 Approximation by Maximal-in-Range Algorithms 103

5.6 Additional Applications and Connections . 103
5.6.1 Fully Efficient Online Welfare Maximization in Multi-Unit Auctions . . 103
5.6.2 Oracle Efficient Online Bidding in Simultaneous Second Price Auctions 105
5.6.3 Universal Identification Sequences . 107

x

6 Online Learning with a Hint 109
6.1 Introduction . 109
6.2 Related work . 110
6.3 Preliminaries . 111
6.4 Improved Regret Bounds for Strongly Convex K 112
6.5 Improved Regret Bounds for (C, q)-Uniformly Convex K 115
6.6 Lack of uniform Convexity . 119
6.7 Discussion . 121

6.7.1 Comparison with other Notions of Hint 121

7 Smoothed Analysis of Online Learning 123
7.1 Introduction . 123

7.1.1 Smoothed Analysis . 123
7.1.2 Smoothed Analysis in Online Learning 124
7.1.3 Our Results . 125
7.1.4 Related Work . 125

7.2 Preliminaries . 126
7.3 Main Results . 127
7.4 Lower Bound for Non-adaptive Non-smooth Adversaries 130
7.5 Discussion and Open Problem . 131

7.5.1 An Open Problem . 132

II Learning from People 135

8 Learning with Bounded Noise 137
8.1 Introduction . 137

8.1.1 Our Results . 138
8.1.2 Our Techniques . 139
8.1.3 Related Work . 140

8.2 Preliminaries . 142
8.3 Bounded Noise Algorithm . 143

8.3.1 Outline of the Proof and Related Lemmas 145
8.3.2 Initializing w0 . 148
8.3.3 Putting Everything Together . 149

8.4 AVERAGE Does Not Work . 150
8.5 Hinge Loss Minimization Does Not Work . 152

8.5.1 Proof of the Lower Bound . 153
8.6 Discussion and Subsequent Works . 156

8.6.1 Subsequent Works . 157

9 Efficient PAC Learning from the Crowd 159
9.1 Introduction . 159

9.1.1 Overview of Results . 160

xi

9.1.2 Related Work . 162
9.2 Model and Notations . 163
9.3 A Baseline Algorithm and a Road-map for Improvement 165
9.4 An Interleaving Algorithm . 165

9.4.1 The General Case of Any α . 173
9.5 No Perfect Labelers . 177

III Learning by People 181

10 Collaborative PAC Learning 183
10.1 Introduction . 183

10.1.1 Overview of Results . 184
10.1.2 Related Work . 184

10.2 Model . 185
10.3 Sample Complexity Upper Bounds . 186

10.3.1 Personalized Setting . 186
10.3.2 Centralized Setting . 188

10.4 Sample Complexity Lower Bounds . 191
10.4.1 Tight Lower Bound for the Personalized Setting 192
10.4.2 Lower Bound for Uniform Convergence 195

10.5 Extension to the Non-realizable Setting . 196
10.6 Discussion and Subsequent Works . 198

IV Learning for People 199

11 A Near Optimal Kidney Exchange with a Few Queries 201
11.1 Introduction . 201

11.1.1 Our theoretical results and techniques 202
11.1.2 Our experimental results: Application to kidney exchange 203

11.2 Related work . 204
11.2.1 Stochastic matching . 205
11.2.2 Kidney exchange . 205
11.2.3 Subsequent Work . 206

11.3 The Model . 206
11.4 Understanding the Challenges . 207
11.5 Adaptive Algorithm: (1− ε)-approximation 208
11.6 Non-adaptive algorithm: 0.5-approximation 211

11.6.1 Upper Bound on the Performance of the Non-Adaptive Algorithm . . . 213
11.7 Generalization to stochastic k-cycle packing 215

11.7.1 Augmenting structures for k-cycle packing 216
11.7.2 Adaptive algorithm for k-set packing 218

11.8 Experimental Results . 220

xii

11.8.1 Experiments on dense generated graphs 221
11.8.2 Experiments on real match runs from the UNOS nationwide kidney

exchange . 222
11.9 Discussion & future research . 225

11.9.1 Open theoretical problems . 226
11.9.2 Discussion of policy implications of experimental results 227

12 Individually Rational Multi-Hospital Kidney Exchange 229
12.1 Introduction . 229

12.1.1 Our Approach . 230
12.1.2 Our Results and Techniques . 230
12.1.3 Related Work . 232

12.2 Optimal Matchings Are Almost Individually Rational 233
12.2.1 Proof of Lemma 12.2.3 . 235
12.2.2 Proof of Lemma 12.2.4 . 239

12.3 Individually Rational Matchings that Are Almost Optimal 242
12.4 Justification for Conditions on p and L . 245

12.4.1 The Case of Large p . 246
12.4.2 The Case of Long Cycles . 246

12.5 Conclusions and Open Problems . 247

A Omitted Proofs for Chapter 5 249
A.1 Proof of Equation 5.4 . 249
A.2 Proof of Lemma 5.2.1 . 250
A.3 Proof of Lemma 5.3.9 . 251
A.4 Proof of Lemma 5.4.1 . 253
A.5 Proof of Lemma 5.4.3 . 253

B Omitted Proofs of Chapter 8 255
B.1 Proof of Lemma 8.5.2 . 255
B.2 Proof of Lemma 8.5.3 . 256
B.3 Proof of Lemma 8.5.4 . 256

C Probability Lemmas for Chapter 9 259

Bibliography 261

xiii

xiv

List of Figures

1.1 A machine learning framework that accounts for strategic and social interactions. 2
1.2 The figure on the left demonstrates instances labeled black and white that are

perfectly classified by a halfspace. The figure in the middle demonstrates ad-
versarial noise, where the adversary deterministically flips the labels of 10% of
the data (the shaded region). The figure on the right demonstrates the random
classification noise where the labels of all points (the shaded area) are flipped
with probability 10%. 14

2.1 The game payoff table on the right and optimization regions on the left. A
security game with one resource that can cover one of two targets. The attacker
receives utility 0.5 from attacking target 1 and utility 1 from attacking target 2,
when they are not defended; he receives 0 utility from attacking a target that is
being defended. The defender’s utility is the zero-sum complement. 30

4.1 Best-response regions. The first two figures define Pji in a game where one
resource can cover one of two targets, and two attacker types. The third figure
illustrates Pσ for the intersection of the best-response regions of the two attackers. 57

5.1 ΓVCG for n = 2 bidders and m = 3 . 88
5.2 Demonstration of how θ can be reconstructed by its revenue on the bid profiles

in V = {vi,`}i,` ∪ {en}. On the left, we show that as the value vn (blue circle)
gradually increases from 0 to 1, the revenue of the auction (red vertical lines)
jumps along the sequence of values θi0, θ

i
1, . . . , θ

i
s−1. So by analyzing the revenue

of an auction on all bid profiles {vi,`}i,` one can reconstruct θi for i 6= n and
θn1 , . . . , θ

n
s−1. To reconstruct θn0 , one only needs to consider the profile en. The

figure on the right demonstrates the revenue of the same auction, where the
horizontal axis is the value of vn and the vertical axis is the revenue of the
auction when vi = 1 and all other valuations are 0. 94

5.3 Demonstrating cases 1 and 2 of prof of Lemma 5.3.12. The bidder valuations are
demonstrated by blue circles on the real line and the revenue of the two auctions
θ and θ′ are demonstrated by red solid vertical line. 94

6.1 Virtual function and its properties. 113

7.1 Path (+1,−1,−1) is associated with the sequence (1
2
,+), (1

4
,−), and (3

8
,−). . 132

xv

8.1 Dα,β . 153
8.2 Area C . 155

11.1 Compatibility graphs for pairwise and three-way exchanges. Solid blue edges
represent successful crossmatch tests, dashed blue edges represent failed cross-
match tests, and black edges represent potential compatibilities that have not
been tested. Note that when pairwise exchanges are considered, the number of
incoming edge tests of a node is the same as the number of its outgoing edge
tests—a patient and its willing but incompatible donor are always involved in an
equal number of tests—while in three-way exchanges the number of incoming
and outgoing edge tests may be different. 204

11.2 Illustration of the construction in Example 11.4.2, for t = 4 and β = 1/2. . . . 208
11.3 Illustration of the upper bound on the performance of non-adaptive algorithm.

Blue and red edges represent the matching picked at rounds 1 and 2, respectively.
The green edges represent the edges picked at round 3 and above. The dashed
edges are never picked by the algorithm. 214

11.4 Saidman generator graphs constrained to 2-cycles only (left) and both 2- and
3-cycles (right). 222

11.5 Real UNOS match runs constrained to 2-cycles (left) and both 2-cycles and
chains (right). 223

11.6 Real UNOS match runs with 2- and 3-cycles and no chains (left) and with chains
(right). 224

11.7 Real UNOS match runs, restricted matching of 2-cycles only, without chains
(left) and with chains (right), including zero-sized omnsicient matchings. 224

11.8 Real UNOS match runs, matching with 2- and 3-cycles, without chains (left)
and with chains (right), including zero-sized omnsicient matchings. 225

12.1 A compatibility graph where individual rationality fails. 229
12.2 A graph demonstrating the Edmonds-Gallai Decomposition and the edge-disjoint graph

partition for the proof of Lemma 12.2.3. In this graph, each color represents one Gi in
the partition G =

⊎
iGi and the wavy edges represent the matched edges in OPT(G). . 237

12.3 The graph construction of Example 12.3.2. 245
12.4 A graph demonstrating the problem with long cycles. 246

B.1 Area T . 257

xvi

List of Tables

1.1 Applications of online learning to linear optimiation, Stackelberg games, auc-
tions, and prediction. 6

5.1 Regret bounds and oracle-based computational efficiency, for the auction classes
considered in this work for n bidders and time horizon T . All our results perform
a single oracle call per iteration. 77

5.2 Additional results considered in Sections 5.4-5.6 and their significance. Above,
m is the discretization level of the problems, n is the number of bidders, and T
is the time horizon. 78

xvii

xviii

Chapter 1

Introduction

It is no secret that machine learning has had many successes in the real world; it has revolutionized
scientific fields, technology, and our day-to-day lives broadly. Progress in machine learning has in
part enabled breakthroughs in a variety of applications, such as natural language processing [10,
75, 84, 201, 245], computer vision [102, 176, 176, 193], bioinformatics [40, 188], robotics [1,
135, 192], to name a few. On the theoretical front, elegant and powerful tools in machine learning,
such as VC-dimension, Rademacher theory, regret bounds, boosting, etc., have led to deeper
understanding of other mathematical fields, such as control theory [111, 120], algorithms [39,
139] and more.

From the theoretical perspective, one of the fundamental questions that the field of machine
learning seeks to answer is how to design and analyze algorithms that compute general facts
about an underlying data-generating process by observing a limited amount of that data. At a
high level, this question suggests viewing machine learning as a framework with three building
blocks: 1) an unknown process that generates data, 2) a process that collects limited amount
of that data, and 3) a learner who is interested in learning some general facts about the former
by studying the latter. As an example, when considering passive supervised learning in this
framework, we have an unknown distribution D (the data-generating process) over instances X
labeled +1 and −1, a sample set of instances chosen i.i.d. from D (the data-collection process),
and a learner who is interested in finding within a pre-determined set of functionsH a function
h ∈ H (the general fact) that best describes how instances in D map to labels +1 and −1.

Traditionally the outcome of a learning algorithm has been considered in isolation from the
effects that it may have on the process that generates the data or the entity who is interested in
learning. With data science and the applications of machine learning revolutionizing day-to-day
life, however, increasingly more people and organizations interact with learning systems. In
their interactions, people and organizations demonstrate a wide range of social and economic
limitations, aspirations, and behaviors. This necessitates a deeper understanding of how these
interactions fundamentally change the nature and outcome of the learning tasks and the challenges
involved.

The field of algorithmic game theory has been developed in response to the need for un-
derstanding interactions in large interactive systems. Being positioned at the intersection of
Computer Science, Economics, and Game Theory, this field answers questions such as: what kind
of behavior emerges when people make selfish decisions or selflessly collaborate [186, 237, 239]?

1

Learner

Data
Collection

Data
Generation

Machine
Learning

By the People

From the PeopleAbout the People

Goal: For the People

Figure 1.1: A machine learning framework that accounts for strategic and social interactions.

How can we compute the outcome (equilibria) of these interactions [28, 93, 95, 219, 242]? How
can we design mechanisms that incentivize certain types of behavior [91, 134, 163, 189, 213,
216]?

While many attribute the development of the field of algorithmic game theory to the advent
of the Internet—one of the largest computational systems that has emerged from the strategic
interactions of many entities—participation of people and organizations in machine learning
systems has introduced interesting and novel challenges in the intersection of algorithmic game
theory and machine learning. In many cases, algorithmic game theory requires significant
amount of information about the players in terms of an accurate model of their behavior. In the
applications of machine learning, however, much of this information is unavailable or evolving.
So, in addition to computational and analytical challenges involved in algorithmic game theory,
there are statistical challenges on how to efficiently gain the information that algorithmic game
theory relies on without causing undesirable interactions.

In this thesis we advocate a view of machine learning and algorithmic game theory that
considers the interactions between machine learning systems and people. Broadly speaking,
these interactions include settings where ...

(About the People) the process that generates the data is a group of people or organizations,

(From the People) data is collected by people or organizations, i.e., learning from the crowd,

(By the People) the learning task is performed by a person or organization,

(For the People) the overarching goal of the system is to benefit people and the society.

To see how interactions with people and organizations change the way one should design
learning systems, consider the following example: suppose Whole Foods wishes to decide what
items should be offered at one of its branches and at what prices. To do so, Whole Foods has to

2

develop a good understanding of customer preferences (learn about people). This information is
seldom available freely. However, customers’ interactions with the current pricing scheme, in
the form of their purchases, reveal important information about their preferences. Here, Whole
Foods has the opportunity to learn and refine its pricing scheme by using these interactions.
Moreover, customer preferences may evolve over time as a result of their earlier interactions with
the mechanism. For example, buyers who have recently purchased a one-year supply of an item
may not be interested in the same item, even at a deep discount, in the near future. Therefore, the
learning process should account for the social and economic interactions between the customers
and the mechanism. Suppose that Whole Foods decides to learn about the preferences of the
community by surveying a few people (learning from people). An individual has limited time and
interest and may be willing to answer only a few questions. So, a successful learning mechanism
should account for this limitation and effectively learn complex facts about the larger community
using only a few questions per individual. In some cases, multiple branches of Whole Foods or a
competing supermarket may be conducting market research simultaneously (learning by people).
In this case, the learning process should account for how interactions with other branches or
firms may benefit or harm each firm.

The interactions between people and learning systems exists in many applications and
domains. In industry alone, a recent survey [236] estimates that 85 of the 100 “top global brands”
either directly or indirectly use human knowledge and behavior in designing better products. In
social causes, learning in presence of interactions with people has made a big impact on how we
go about preserving wildlife [116, 143], securing our cities [257], and has been used for creating
better and more effective disaster relief systems [132, 218]. In science and education, Massive
Open Online Courses rely on machine learning to create better environments for people to learn
and interact [222]. The importance and prevalence of these applications calls for a theoretical
foundation for machine learning that accounts for such social and strategic interactions. This
thesis presents some of the author’s work towards developing such a foundation for machine
learning by developing tools in the theory of machine learning and algorithmic economics. In
short, the central theme of this thesis is

. . . to develop theoretical foundations for machine learning by the people, for the people.

1.1 Background
Before discussing the contributions of this thesis in more depth, let us present a brief overview
of some of the basic concepts and frameworks that we use or contribute to.

1.1.1 Stackelberg Games

One of the commonly used game theoretic models in practice is the Stackelberg game model.
This theoretical model has been applied for the purpose of computing optimal policies governing
people and organizations, such as to fight crime, secure the borders [257], protect the environ-
ment [116], and manage supply chains and shelf space allocation [160]. The basic insight behind
many of these applications is that the interactions between a policy maker and people form a

3

game in which the policy maker (first player) commits to a policy and a person (second player)
observes this policy and responds by taking actions that benefit him most. From the viewpoint of
the policy maker, the goal is to find the optimal strategy—the strategy that maximizes the policy
maker’s payoff when people best-respond.

More formally, a Stackelberg game is a two-player game with sets X and Y denoting the set
of pure strategies available for the leader (player 1) and follower (player 2), respectively, and the
set of outcomes X ×Y . Players have values over the set of outcomes, with u1(x, y) and u2(x, y)
denoting the leader’s and the follower’s value for the pair of strategies (x, y). Given a defender
mixed strategy, that is, a distribution P ∈ ∆(X) over pure strategies of the leader, the follower
responds by taking the strategy that maximizes its expected payoff, i.e., the best response

b (P) = arg max
y∈Y

E
x∼P

[u2(x, y)].

The goal of the leader is to commit to a mixed strategy that leads to the highest expected payoff
when the follower best-responds. That is to compute

arg max
P∈∆(X)

E
x∼P

[u1(x, b (P))].

1.1.2 Offline Learning
Offline learning is one of the most classical problems in the theory of machine learning. In this
setting, the learner has to learn to classify instances that are generated by a fixed joint distribution
over labeled instances.

A common model of offline learning is the agnostic supervised learning model. In this
model, there is an instance space X , a label set Y = {−1,+1}, and a hypothesis classH, such
that for each h ∈ H, h : X → Y . There is an unknown distribution D over X × Y . The learner
has access to a set S of training samples (x1, y1), . . . , (xm, ym) that are drawn i.i.d from D. For
any h, the true error and empirical error of h are respectively defined by

err
D

(h) = Pr
(x,y)∼D

[h(x) 6= y]

and
err
S

(h) =
1

m

∑

i∈[m]

Ih(xi)6=yi ,

where I is the indicator functions, i.e., for a boolean predicate b, Ib = 1 when b is satisfied, and 0
otherwise.

The goal of the learner is to find a hypothesis h ∈ H that minimizes the true error. How-
ever, since the learner does not know D, he has to choose a hypothesis by only considering
the training sample set S. A classical example of such an algorithm is Empirical Risk Min-
imization (ERM) that returns the hypothesis with lowest empirical error. That is, it returns
hS = arg minh∈H errS(h) with the hope that the true error of hS is close to the optimal true error.
A classical result from learning theory, called the uniform convergence property, states that when
the training sample set is large enough, with high probability the true error and empirical error of

4

any hypothesis, and as a result those of hS , are close to each other [11]. More formally, with
probability 1− δ, for all h ∈ H,

∣∣∣err
D

(h)− err
S

(h)
∣∣∣ ≤ O

(√
VCdim(H) + ln(1/δ)

m

)
,

where VCDim(H) is the VC dimension [264] ofH. As a direct consequence of this result, we
have that with probability 1− δ,

∣∣∣∣err
D

(hS)− arg min
h∈H

err
D

(h)

∣∣∣∣ ≤ O

(√
VCdim(H) + ln(1/δ)

m

)
.

Another common model of offline learning is the realizable Probably Approximately Correct
(PAC) model. In this setting, there is a hypothesis h∗ ∈ H that perfectly labels the instances, i.e.,
errD(h∗) = 0. The goal is to use the training sample set S to find a classifier h ∈ H with error
errD(h) ≤ ε. Note that this is much weaker than the uniform convergence property, as it does
not require the convergence of true and empirical errors for all hypotheses h ∈ H; rather, it is
sufficient for those classifiers that perfectly label the training data set to also have a small true
error. This allows us to obtain a stronger convergence bound. It is known that with probability
1− δ, for all h ∈ H such that errS(h) = 0, we have

err
D

(h) ≤ O

(
1

m

(
VCdim(H) ln

(
m

VCdim(H)

)
+ ln

(
1

δ

)))
.

1.1.3 Online Learning
Many situations involve learning in an environment that keeps changing and evolving in uncertain
ways. Therefore, there is a need to develop adaptive learning tools that are robust to changes
in the environment. This is where the online learning framework comes into play; it allows
one to create online adaptive algorithms with performance guarantees that hold even when the
environment is changing rapidly and adversarially.

We consider the following online learning problem. On each round t = 1, . . . , T , a learner
chooses an action xt ∈ X and an adversary chooses an action yt ∈ Y . There is a fixed reward
function f : X × Y → [0, 1] that is known to the learner. We consider two variants of online
learning. First, the full information variant where the learner observes action yt before the next
round and receives a payoff of f(xt, yt). Second, the partial information variant where the
learner only observes some partial information about yt, e.g., the learner may only observe the
payoff f(xt, yt). In both cases, the goal of the learner is to obtain low expected regret with
respect to the best action in hindsight, i.e., to minimize

REGRET := E

[
max
x∈X

T∑

t=1

f(x, yt)−
T∑

t=1

f(xt, yt)

]
,

where the expectation is over the randomness of the learner. We desire algorithms, called
no-regret algorithms, for which this regret is sublinear in the time horizon T , equivalently, the
average regret→ 0 as T →∞.

5

Online Learning Learner action xt ∈ X Adversary action yt ∈ Y Payoff f
Online Linear Opt. Vector xt ∈ K Cost vector ct ∈ [0, 1]d −xt · ct(xt)
Online Prediction Hypothesis ht ∈ H (xt, yt) ∈ X × Y −Ih(xt) 6=yt
Online Stackelberg Mixed strategy Pt ∈ ∆(X) Attacker type θt ∈ Θ Ex∼Pt [u1(x, bθt(Pt))]
Online Auctions Auction at ∈ A Bid profile vt ∈ [0, 1]n rev(at,vt)

Table 1.1: Applications of online learning to linear optimiation, Stackelberg games, auctions,
and prediction.

The study of online no-regret algorithms goes back to the seminal works of Hannan [147] and
Blackwell [48, 49], who developed algorithms with regret poly(|X |)o(T) for the full information
setting. Subsequently, Littlestone and Warmuth [196], Freund and Schapire [124], and Vovk
[267] improved this by introducing algorithms with

√
T log(|X |) regret. When the set of actions

available to the learner is structured, this bound can be improved to
√
T Ldim(X), where

Ldim(X) refers to the Littlestone dimension of X [195]. It is well-known that Ldim(X) ≤
log(|X |) in general, but in many cases, including some infinitely large classes, the Littlestone
dimension is much smaller than log(|X |). For the partial information setting, Auer et al. [21]
introduced an algorithm with

√
T |X | log(|X |) regret. This was later improved by Bubeck et al.

[66] who introduced an algorithm with regret
√
T |X |.

Now, years after its inception in the works of Blackwell [48, 49], Hannan [147], the pressing
need for robust learning algorithms in a wide range of problems is the driving force behind much
of the recent progress in this area: with applications ranging from the more classical online linear
optimization and online prediction problems, to the more modern applications of this domain to
game theory and economics [27, 31, 52, 70, 73, 240], including our work on online Stackelberg
games [37] and online auctions [113]. Here, we briefly describe a few examples of the domains
in which online learning has played a major role.

Online Linear Optimization Given a convex region K ⊂ Rd, at every round the learner
chooses a vector xt ∈ K and the adversary chooses a cost vector ct. The learner’s
payoff is −xt · ct. (See chapter 6 for more details.)

Online Prediction Given an instance space X and a hypothesis classH, such that every h ∈ H
is a hypothesis h : X → {−1,+1}, at every round the learner chooses one hypothesis
ht ∈ H. The adversary reveals an instance xt ∈ X with label yt ∈ {−1,+1}. The learner
receives utility 0 if its prediction ht(xt) matches yt, and −1 otherwise, i.e., the learner’s
payoff is −Ih(xt)6=yt . (See chapter 7 for more details.)

Online Stackelberg Security Games In Stackelberg Security games, sometimes a defender
has to face multiple types of attackers over time, each of whom have different prefer-
ences over targets. Given a set N of targets, defender strategy set X , defender utility
function u1, a set of attacker types Θ where each θ ∈ Θ represents an attacker with utility
function uθ. At every round, the defender chooses one mixed strategy Pt ∈ ∆(X), the
Nature reveals a type of attacker θt ∈ Θ with a corresponding best response function

6

bθt(Pt) = arg maxi∈N Ex∼Pt [uθt(x, i)]. The defender’s payoff is Ex∼Pt [u1(x, bθt(Pt))].
(See chapter 4 for more details.)

Online Auctions In design of auctions, auctioneers often set the parameters of an auction, e.g.,
reserve prices, based on the preferences of bidders that they typically face. Since people’s
preferences change over time, auctioneers need to adaptively tailor auction parameters
based on these changes. Given a set of auctions A, where each auction a ∈ A takes
valuations of n bidders, at every round the auctioneer chooses an auction at ∈ A. The
adversary chooses a valuation profile v of n bidders. The auctioneer receives revenue
rev(at,vt). (See chapter 5 for more details.)

1.2 Overview of Thesis Contributions and Structure

The thesis presents a selection of the author’s work on the theoretical aspects of machine learning
and algorithmic economics, that contributes to a theory of machine learning and algorithmic
economic that accounts for learning in presence of social and strategic behavior. This thesis is
organized in three parts: learning about people, from people, and by people, respectively.

Learning About People

In their interactions with deployed systems and mechanisms, people reveal important information
about their social and strategic behavior, their likes and dislikes, and, broadly speaking, their
decision making process. Computational thinking has profoundly affected how we view these
day-to-day interactions. A prime example of this is the use of Stackelberg games for the
purpose of modeling and understanding interactions between strategic entities, such as people,
organizations, and even algorithms.

A common application of the Stackelberg game model is to the physical security domain.
In these Stackelberg Security games, the defender commits to a randomized deployment of his
resources for protecting a set of potential targets, that is, X represents all possible deterministic
deployments of resources to targets. The attacker responds by attacking a target, that is, Y
represents the set of all targets, hereafter denoted byN . When a target is attacked, both defender
and attacker receive payoffs that depend on whether or not the target was protected in the
defender’s deployment. The attacker, having had surveillance of the defender’s randomized
deployment, attacks the target that maximizes his expected payoff. The goal is to compute an
optimal defender strategy—one that would maximize the defender’s payoff under the attacker’s
best response.

While the foregoing model is elegant, implementing it requires a lot of information in the
form of an accurate model of people’s strategic preferences, u1(x, y) and u2(x, y). Since any
optimal policy that one computes can be at most as accurate as the model of behavior it receives
as input, it is essential to create an accurate model of people’s behavior. In Chapters 2, 3, and
4, we show how, through his interactions with the attacker, the defender can learn a sufficiently
accurate model of attacker behavior to guide him in finding a near optimal defender strategy.

7

Chapter 2: Learning in Stackelberg Security Games In this chapter, we consider a Stackel-
berg Security game for which the payoffs of the attacker are unknown. We consider a learning-
theoretic approach to dealing with uncertain attacker payoffs. We show that the defender can
learn a near optimal strategy against an attacker by adaptively and iteratively committing to
different strategies and observing the attacker’s sequence of responses. In other words, we
consider a setting where the attacker utility function u2 is unknown, but one can still compute
b (P) for a given mixed strategy P by using it and observing the attacker’s response. We call each
round of committing to a strategy and observing the attacker’s response a query. The algorithm
we design uses poly

(
|N | log

(
1
εδ

))
queries and returns a mixed strategy P ′ ∈ ∆(X) such that

with probability 1− δ,

max
P∈∆(X)

E
x∼P

[u1(x, b (P))]− E
x∼P ′

[u1(x, b (P ′))] ≤ ε.

Our approach provides a practical method for calibrating the defender’s strategy using a relatively
short training period, and is especially appropriate for routine security tasks, e.g., ticket checks
on public transportation.

One highlight of our result is that the number of queries our approach uses is polynomial in
the number of targets, |N |, independently of the total number of pure strategies that are available
to the defender, |X |. This is crucial because in most settings the number of pure strategies of
the defender, i.e., the number of possible deterministic deployments of the defender’s resources
to targets, is exponential in the number of targets. In comparison, existing works in learning
in Stackelberg games [191] had introduced algorithms that use poly(|X |) number of queries,
making them unsuitable for Stackelberg Security games and other domains with large strategy
spaces.

Chapter 3: Learning about a Boundedly Rational Attacker in Stackelberg Games In this
chapter, we consider the problem of learning an optimal defender strategy in a Stackelberg
Security game where the attacker may not be fully rational. Study of rationality in decision
making has a long history in economics and social sciences [67, 167, 208, 241]. In many
applications, it has been observed that strategic entities are not fully rational—at times they may
take actions that are sub-optimal. In Stackelberg Security games, while deployments against
sophisticated adversaries have often assumed that the adversary is a perfectly rational player
who maximizes his expected value, it has been shown that such an assumption is not ideal for
addressing less sophisticated human adversaries [215].

In the application of Stackelberg Security games to wildlife preservation, where the goal is
to protect endangered animals from poachers, it has been observed that poacher behavior is best
described by a model of rationality called Subjective Utility Quantal Response [215]. In this
model, rather than attacking the target with the highest expected payoff in response to the mixed
strategy P , the attacker may attack any target i ∈ N with probability

DP (i) ∝ exp
(

E
x∼P

[u2(x, i)]
)
.

For this model, we show that one can learn an accurate model of attacker behavior, hence, and
accurate optimal defender strategy, by observing how the attacker responds to only three defender

8

strategies over a long period of time. More formally, we show that any three sufficiently different
strategies and m = poly

(
|N |1

ε
log
(

1
δ

))
queries each are sufficient to learn a defender strategy

that is (additively) ε-close to the optimal defender strategy, with probability 1− δ.
One highlight of this result is that it can use observations from any three historically used

defender strategies; in contrast, the algorithm introduced in Chapter 2 has to adaptively design
new strategies to query. This is especially appropriate for applications where even a short
calibration and training period may be undesirable, but large amount of historical records is
available to the defender. For example, when learning optimal patrolling policies for the purpose
of limiting and reducing poaching activities, using sub-optimal policies during the training period
may lead to loss of animals that are already close to extinction. On the other hand, there are
historical records of implemented policies and observed poaching activities over many years.
Our approach shows how these historical records can be used to learn the optimal patrolling
policy with no need for further calibration.

Online Learning—Dealing with Changes in People’s Behavior

As discussed, Chapters 2 and 3 focus on learning Stackelberg optimal strategies against one
type of attacker. That is, they assume that the attacker’s preferences remain the same during
the learning process. In many cases, however, people’s preferences develop over time and
our mechanisms will eventually encounter types of behavior that they were not designed for.
Therefore, there is a need to develop adaptive learning tools that are robust to changes in the
environment. This is where the online learning framework comes into play; it allows one to create
online adaptive algorithms with performance guarantees that hold even when the environment is
changing rapidly and adversarially.

Chapter 4: Online Learning in Multi-attacker Stackelberg Games In this chapter, we
consider the information theoretic aspects of online learning in multi-attacker Stackelberg
security games. The methods discussed in Chapters 2 and 3 are designed to use repeated
interactions with a single attacker to learn the missing payoff information and compute a near
optimal Stackelberg strategy against that attacker. However, sometimes a defender has to face
multiple types of attackers over time, each of whom have different preferences over targets. In
this chapter, we use the online learning framework to deal with the challenge of not knowing
what type of an attacker one may face at any time.

We provide two algorithmic results that apply to two different models of feedback. In the
full information model, the defender plays a mixed strategy and observes the type of attacker
that responds. This means that the algorithm can infer the attacker’s best response to any mixed
strategy, not just the one that was played. We show that, though the space of mixed strategies of
the defender is continuous and there are an infinite number of choices available to a defender
at every round, the defender can limit its choices to an appropriately designed set E of mixed
strategies of size |E| = exp(nk) without incurring any additional regret. As mentioned earlier,
using the classical no-regret algorithms in the full information setting, we immediately get a
no-regret algorithm with regret O(poly(nk)

√
T).

In the second model—the partial information model—the defender only observes which
target was attacked at each round. An additional challenge here is that classical no-regret

9

algorithms in the partial information setting have a regret that is polynomial in the size of
the learner’s action set. Therefore, simply limiting the defender’s choices to the set of mixed
strategies E is not sufficient for obtaining a regret bound that is polynomial in n and k. Here our
main technical result is to design a no-regret algorithm in the partial information model whose
regret is bounded by O(poly(nk)T 2/3).

For both results we assume that the attackers are selected (adversarially) from a set of k known
types. It is natural to ask whether no-regret algorithms exist when there are no restrictions on the
types of attackers. We answer this question in the negative, thereby justifying the dependence of
our bounds on k.

Chapter 5: Oracle-Efficient Online Learning and Auction Design In this chapter, we con-
sider the computational aspect of online learning. We consider the problem of online learning
with full-information both for the general learner payoff and the payoff structure in economic
mechanisms. As discussed, there are general purpose online learning algorithms that achieve a
regret bound of O

(√
T log(|X |)

)
in the full information setting. However, these information-

theoretically optimal learning algorithms require a runtime of Ω(|X |). This makes them un-
suitable for settings where the action space is exponential in the natural representation of the
problem, such as online Stackelberg games and online auctions. In this chapter, we design
computationally efficient no-regret algorithms for problems that satisfy a structural property that
are shared by many economic mechanisms.

Our goal is not achievable without some assumptions on the problem structure. Since
an online optimization problem is at least as hard as the corresponding offline optimization
problem [71, 94], a minimal assumption is the existence of an algorithm that returns a near-
optimal solution to the offline problem. We call such an offline optimization algorithm an oracle,
and an efficient algorithm that uses these oracles as a blackbox, an oracle-efficient algorithm.

Indeed, much of the effort in the field of algorithm design has been dedicated to the problem
of offline optimization. Powerful tools, such as LPs and SDPs, have been developed to solve
such problems quickly and without enumerating all possible solutions. Even when theoretical
guarantees are not achievable, in some cases there are highly optimized specialized tools that
can solve offline optimization problems fast in practice. Oracle-efficient online algorithms
are algorithms that directly tap into these existing offline optimization algorithms. In addition
to being of theoretical interest, existence of oracle-efficient algorithms sends a clear practical
message: offline optimization tools that are already deployed in practice can be directly used to
robustly solve optimization problems in changing environments.

Oracle-efficient algorithms have been introduced for some restrictive action spaces, such as
linear and submodular functions [27, 156, 168, 170], while their existence in general problem
spaces has been refuted by Hazan and Koren [157]. So, there is a need to identify structural
properties of a problem space that would allow one to design an oracle-efficient algorithm. In
this chapter, we show that when the problem space satisfies a structural property it admits an
oracle-efficient online learning algorithm. Here, we describe a weaker form of this result and
defer the complete description of this structural property to Chapter 5: if there exist N adversary
actions y(1), . . . , y(N) ∈ Y such that any pair of learner’s actions x, x′ ∈ X receive sufficiently
different rewards for at least one y(i), then our algorithm has regret O(N

√
T/δ) and runs in time

10

poly(N, T) where δ is the smallest difference between distinct rewards on any one of the N
actions.

The second contribution of this chapter is to show that many economic mechanisms, including
online auctions design, demonstrate the above property. Therefore, showing that our algorithm
can be used to achieve no-regret online learning in a large class of economic mechanisms. This
includes online optimization of VCG auctions with bidder-specific reserves, envy-free item
pricing, and level auctions.

Stable versus Adversarial Environments: A Middle Ground

The need for robust learning algorithms has led to the creation of online learning algorithms with
performance guarantees that hold even when the environment that the learner performs in changes
adversarially. Having been designed to perform well in adversarial environments, however, many
online learning algorithms have learning guarantees that are significantly worst than those in
stable environments. Thus, a natural question is whether the full power of online learning
algorithms is necessary in day-to-day applications where the changes in the environment may be
undesirable but not necessarily adversarial. For example, this may be the case when there are
uncertainties in an environment, such as measurement inaccuracies, that hinders the adversary’s
choice, or, when the learner has additional information regarding how the environment is evolving.
Is it possible to obtain algorithms with improved learning guarantees in environments that are
not fully adversarial? This is the question we answer in the Chapters 6 and 7.

Chapter 6: Online Learning with Side Information In this chapter, we study a variant of
online linear optimization where the player receives a hint about the cost function at the beginning
of each round.

Online linear optimization, as described in Table 1.1 is a canonical problem in online learning.
Many online algorithms exist that are designed to have a regret of O(

√
T) in the worst-case

which is known to be information theoretically optimal. While this worst-case perspective on
online linear optimization has lead to elegant algorithms and deep connections to other fields,
such as boosting [124] and game theory [12, 53], it can be overly pessimistic. In particular,
it does not account for the fact that the player may have side-information that allows him to
anticipate the upcoming cost functions and evade the Ω(T) regret lower bound. In this chapter,
we go beyond this worst case analysis and consider online linear optimization when additional
information in the form of a function that is correlated with the cost that is presented to the
player.

More formally, we consider the online linear optimization setup, described in Table 1.1, in
which at every round the learner chooses a vector xt ∈ K and the adversary chooses a cost
function ct. We further assume that the player receives a hint before choosing the action on each
round. The hint in our setting is a vector that is guaranteed to be weakly correlated with the cost
functions, i.e., the player receives vt ∈ Rd such that vt · ct ≥ α‖ct‖2 for some small but positive
α. For example, when the cost function does not change rapidly from one round to the next, ct−1

acts as a hint for round t. Other times, the learner can take a small sample from the cost function,
for example, see one of its (non-zero) coordinate.

11

We show that the player can benefit from such a hint if the set of feasible actions, K, is
sufficiently round. Specifically, if the set is strongly convex, the hint can be used to guarantee a
regret of O(log(T)), and if the set is q-uniformly convex for q ∈ (2, 3), the hint can be used to
guarantee a regret of o(

√
T). In contrast, we establish Ω(

√
T) lower bounds on regret when the

set of feasible actions is a polyhedron.

Chapter 7: Smoothed Online Learning In this chapter, we consider a middle ground between
offline and online learning using the framework of smoothed analysis. As discussed in Section 1.1,
offline and online learnability are characterized by two notions of complexity of the hypothesis
space: the VC dimension [265] and the Littlestone dimension [194], respectively. In many
hypothesis classes, however, there is a large gap between these two notions of complexity, and as
a result, there is a gap in our ability to learn in the offline and online setting. For example, it is
well-known that the class of 1-dimensional threshold functions has a VC dimension of 1 and can
be learned in the offline i.i.d. setting with convergence rate (equivalently, regret) of O

(√
T
)

, but
the Littlestone dimension of this class is unbounded so learning in the online adversarial setting
is impossible. In this chapter, we use the smoothed analysis framework of Spielman and Teng
[253] as a middle ground between online and offline learnability that leads to fundamentally
stronger learnability results, like those achievable in the offline setting, but is still robust to the
presence of an adversary.

The idea behind the smoothed analysis framework is that the adversary first chooses an
arbitrary (worst-case) input, which is then perturbed slightly by nature. Equivalently, an adversary
is forced to choose an input distribution that is not overly concentrated, and the input is then
drawn from the adversary’s chosen distribution. In addition to being a theoretically interesting
middle ground between online and offline learning, there is also a plausible narrative about why
“real-world” environments are captured by this framework: even in a world that is out to get us,
there are inevitable inaccuracies such as measurement error and uncertainties that smooths the
environment.

More formally, we consider the standard online prediction setup described in Table 1.1,
with the exception that at every round t the adversary chooses an arbitrary distribution Dt over
X × {−1,+1} with a density function over X that is pointwise at most 1/σ times that of the
uniform distribution. Then, (xt, yt) ∼ Dt is presented to the learner. We consider a non-adaptive
adversary that specifies D1, . . . ,DT in advance.

We show that there is an algorithm with expected regret of O
(√

VCdim(H) T ln(T/σ)
)

against any non-adaptive σ-smooth adversary. This gives us an algorithm with guarantees that
smoothly transition between a worst-case adversary (when σ → 0) to a uniformly random
adversary (when σ = 1) where the offline learning guarantees a regret of O

(√
VCdim(H) T

)
.

In this regard, our work highlights win-win scenario by introducing algorithms that are robust to
“realistic” adversarial changes in the environment with regret bounds that are almost as good as
those in the fully stochastic (offline) setting.

12

Part II: Learning from People
Over the last decade, research in machine learning and AI has seen tremendous growth, partly
due to the ease with which we can collect and annotate massive amounts of data across various
domains. This rate of data annotation has been facilitated in part by crowdsourcing tools, such
as Amazon Mechanical Turk, that employ people across the world to perform small tasks that
require human intelligence.

Human participation in data annotation has brought a number of challenges to the forefront
of machine learning research, one of the greatest of which is how to deal with human limitations,
such as lack of expertise and commitment. Lack of expertise in participants often leads to data
sets that are highly noisy [165, 180, 268]. Moreover, standard techniques for improving the
quality of these data sets put a heavy burden on individuals who may have limited time and
interest in participation. Therefore, the learning environments that involve the crowd give rise
to a multitude of design choices that do not appear in traditional learning environments. These
include: what challenges does the high amount of noise typically found in curated data sets pose
to the learning algorithms? How does the goal of learning from the crowd differs from the goal
of annotating data by the crowd? How do learning and labeling processes interplay?

The standard approach to learning from the crowd has been to view the process of acquiring
labeled data through crowdsourcing and the process of learning a classifier in isolation. Indeed,
most works in the crowdsourcing domain focus solely on collecting high quality data without
considering the nature of the learning task that is to be performed on that data. Unfortunately,
when learning and generalization from data is considered, high quality data does not necessarily
translate to a highly accurate learned model. That is, two data sets with the same noise rate can
lead to learned hypotheses that are significantly different in their quality. This is due to statistical
and computational challenges involved in learning from a noisy data set. Below, we demonstrate
some of these challenges.

From the computational perspective, our ability to efficiently learn from a noisy data set
depends, to a large degree, on the type of noise we face. On one extreme, there has been
significant work on the difficult adversarial noise models, where an adversary can choose some
η < 1

2
fraction of the data points and “deterministically” corrupt their labels. This is a particularly

difficult noise model with strong negative results. For example, it is known that an adversary can
take a data set that is perfectly labeled by a halfspace and corrupt just 1% of the data in such
a way that finding a halfspace with 51% accuracy is NP-Hard [140]. On the other extreme is
the much simpler random classification noise [177] model where the label of each instance is
flipped with probability exactly η < 1

2
. When considering learning halfspaces in the presence

of random classification noise, it is well-known that one can learn a halfspace that is arbitrarily
close to the optimal one in polynomial time [54].

From the information theoretic perspective, our ability to learn an accurate classifier using
small data sets depends on the type of noise we face. Take as an example Figure 1.2 where the
data can be perfectly labeled by the red halfspace. In presence of adversarial noise (demonstrated
in the middle) even with infinitely many samples (or knowing the full distribution of corrupted
instances) the learner cannot distinguish the true halfspace—whether the blue or the red halfspace
was the original classifier.1 In the presence of random classification noise, however, the learner

1In presence of adversarial noise, rather than recovering the true halfspace—one that is accurate on the non-noisy

13

No noise Adversarial noise Random classification noise

Figure 1.2: The figure on the left demonstrates instances labeled black and white that are perfectly
classified by a halfspace. The figure in the middle demonstrates adversarial noise, where the
adversary deterministically flips the labels of 10% of the data (the shaded region). The figure on
the right demonstrates the random classification noise where the labels of all points (the shaded
area) are flipped with probability 10%.

can find a d-dimensional halfspace that is ε-close in angle to the correct one using a data set of
size O

(
d
ε

)
[65].

When considering crowdsourced learning models, perhaps neither the adversarial noise
model nor the random classification noise model present a convincing model of the crowd’s
shortcomings. In this part of the thesis, we look at more realistic noise models that may arise
from human participation in a classification task. We consider both scenarios where a noisy
crowdsourced data set is given to us and our goal is to learn a classifier and scenarios where we
can design the data annotation protocol as well as the learning algorithm.

Chapter 8: Learning with Bounded Noise In this chapter, we consider a setting where we
are given a noisy data set and our goal is to learn an accurate classifier. We consider the bounded
noise model, also known as Massart noise [65] or Malicious Misclassification noise [232, 252].
Bounded noise can be thought of as a generalization of the random classification noise model
where the label of each example x is flipped independently with probability η(x) < 1

2
. That is,

the adversary has control over choosing a different noise rate η(x) ≤ η for every example x with
only the constraint that η(x) ≤ η.

In addition to being of theoretical interest as a middle ground between the adversarial and
random classification noise models, there is also a plausible narrative about why the noise in
crowdsourced data sets is captured by this model: Consider the PAC learning framework, where
there is a hypothesis h∗ ∈ H that perfectly labels the data. Consider a large crowd of labelers,
1−η fraction of whom know the target function h∗ and η fraction may make mistakes in arbitrary
ways. Note there may be easy instances, i.e., many of the imperfect labelers label them correctly;
and more difficult instances, i.e., only the perfect labelers know their correct label. So, any
instance x that is labeled by a randomly chosen person from this crowd receives an incorrect label
with probability η(x) ≤ η, where the instance-dependent noise rate η(x) captures the varying
degree of difficulty of an instance.

distribution—the learner instead can learn a halfspace whose error rate on the noisy distribution is close to the error
rate of the optimal classifier.

14

From the information theoretic point of view, similar to the case of random classification
noise, it is well known that the learner can learn a classifier that is ε-close to being optimal using
O
(

VCdim
ε

)
samples [65]. From the computational perspective, due to its highly asymmetric

nature, no computationally efficient learning algorithms had been known (except for classes
with constant VCdim) until the work we present in this chapter. In this chapter, we provide the
first computationally efficient algorithm in this noise model. In particular, we consider a setting
where the marginal distribution over instances X constitutes an isotropic log-concave distribution
in Rd andH is a class of d-dimensional halfspaces. We give an algorithm that for any ε and d
takes poly(1

ε
, d) samples and in time poly(1

ε
, d) returns a classifier h ∈ H with excess error ε

compared to h∗.

Chapter 9: Efficient Learning from the Crowd In this chapter, we focus on learning settings
where we can design the learning algorithm as well as the data annotation protocol. We explore
the crowdsourced setting behind the Bounded noise model of Chapter 8, where we have access
to a large pool of labelers, an α (equivalently, 1− η) fraction of whom are perfect labelers who
never make a mistake, and others may make mistakes in arbitrary ways. As opposed to Chapter 8,
where the data was collected by a third party and there were no direct interactions with the crowd,
we consider a setting where we can actively query a labeler sampled form the crowd on specific
instances drawn from the underlying distribution. This allows us to learn and acquire labels in
tandem.

Our goal is to design learning algorithms that efficiently learn highly accurate classifiers
using only a few queries. We compare the computational and statistical aspects of our algorithms
to their PAC counterparts in the realizable setting as discussed in Section 1.1. As we know,
mPAC
ε = O

(
d
ε

ln
(

1
ε

))
correctly labeled samples are sufficient to learn a classifier with ε-error

in the realizable setting when d = VCdim(H). We look for algorithms that ask not many more
queries than mPAC

ε . Furthermore, we look for algorithms that can be performed efficiently if
the corresponding learning task can be performed efficiently in the realizable setting. That is,
we have access to an oracle that for any labeled data set returns a classifier from H that is
consistent with that data set if one exists. Note that such algorithms are readily available for
many hypothesis classes, such as using Perceptron for halfspaces.

Our results show that there is an oracle-efficient learning algorithm that can learn an ε-
accurate classifier from the noisy crowd using 1

α
mPAC
ε queries 2 In other words, if H can be

efficiently learned in the realizable PAC model, then it can be efficiently learned in the noisy
crowdsourcing model with O(1

α
) queries per example. Additionally, each labeler is asked to

label only O(1
α

) examples.
The above result highlights the importance of performing data annotation and learning in

tandem. Recall that the bounded noise model of Chapter 8 corresponds to asking exactly 1 query
per example from the crowd, for α > 1

2
. As seen from the literature on learning theory and our

work in Chapter 8, obtaining computationally efficient learning algorithms that are robust to
Bounded noise, even for very simple hypothesis classes, has been a long standing open problem
with positive results that only holds under restrictive assumptions, e.g., log-concave distributions
with halfspaces [24, 25]. In comparison, the results in this chapter show that by asking a constant

2When α < 1
2 , we need access to an expert to label 1

α points correctly.

15

number of queries per example, instead of just one, we can devise efficient and general-purpose
learning algorithms that work across the board.

Part III: Learning by People

With the wide application of machine learning methods to many aspects of day-to-day life, many
simultaneous learning processes may be analyzing the same or related concepts at any given
moment. This brings about a natural question: How do interactions between learners affect the
learning process?

Chapter 10: Collaborative Learning In this chapter, we consider a setting where learners
who are interested in performing related, but not necessarily the same, learning tasks can
collaborate and share information to make the learning process more efficient. It is self-evident
that collaboration is beneficial for learning, but how beneficial? This is what we formalize in this
chapter.

We consider a model of collaborative PAC learning, in which k players attempt to learn
the same underlying concept. We then ask how much information is needed for all players to
simultaneously succeed in learning desirable classifiers. Specifically, we focus on the classic
probably approximately correct (PAC) setting of Valiant [263], where there is an unknown target
function h∗ ∈ H. We consider k players with distributions D1, . . . ,Dk that are labeled according
to h∗. Our goal is to learn h∗ up to an error of ε on each and every player distribution while
requiring only a small number of samples overall.

We compare the number of samples needed to accomplish all k learning tasks in the col-
laborative setting to the number of samples needed if no collaboration happens between the
learners. Using the PAC learning sample bounds from Section 1.1, it is evident that the latter
requires O

(
kε−1VCdim(H) ln

(
1
ε

))
samples. Our main technical result in this chapter is that

when learners collaborate the total number of samples needed to accomplish all k tasks is
O
(
log(k)ε−1VCdim(H) ln

(
1
ε

))
. Furthermore, we show that Θ

(
log(k)ε−1VCdim(H) ln

(
1
ε

))

samples are needed, even in the collaborative settings, for all learners to accomplish their learning
task.

Part IV: Learning For People

Pressing practical and societal needs, such as security and organ transplant, have inspired the
design of theoretical models. However, the uncertainties that arise from transitioning these
models from theory to practice can quickly degrade the quality of solutions that seem effective
in theory. This is where machine learning comes in; it robustly addresses these uncertainties
by gathering additional information when needed or establishing that the existing models are
resilient to the environment’s uncertainty. As part of learning about people in Part I of this thesis,
we discussed how machine learning can help us create better mechanisms for physical security.
In this part, we consider another application of great societal importance: kidney exchange.

The best treatment for people who suffer from chronic kidney disease is transplanting a
healthy kidney. Even for those patients that are fortunate enough to have a willing live donor,

16

usually a family member, direct transplantation is not always a viable option due to medical
incompatibility issues. This is where kidney exchange comes in. In its simplest form, it allows
two incompatible donor-patient pairs—such that the first patient is compatible with the second
donor and the second patient is compatible with the first donor—to swap donors, so that each
patient receives a compatible kidney. More generally, kidney exchange allows a cycle of donor-
patient pairs (up to the size 3 in practice), where each patient is compatible with the donor of the
next pair, to exchange kidneys.

In this part of the thesis, we consider the challenges that arise from deploying kidney exchange
models in practice. In particular, we consider two sources of uncertainty: the mechanism’s lack
of information on the compatibility between different patient-donor pairs and the hospital’s lack
of information on whether or not collaborating with other hospitals would benefit their patients.

Chapter 11: A Near Optimal Kidney Exchange with a few Queries A successful transplant
procedure relies mainly on two compatibility tests: First, a test that checks the blood type and
tissue type of the donor and patient, and, second, a crossmatch test that examines the compatibility
of a donor-patient pair by physically mixing their blood. Due to the significant cost of crossmatch
tests, kidney exchange programs perform at most one crossmatch per patient. Consequently,
most seemingly feasible matches based on blood type and tissue type fail at the crossmatch
level. On average, this results in less than 10% of patients receiving a kidney transplant. On the
other hand, a hypothetical procedure that performs all crossmatch tests—call it the omniscient
optimum—is much more effective, but its costly implementation renders it impractical.

In this chapter, we provide a polynomial time algorithm that for any ε > 0, proceeds in
Oε(1) rounds, at each round performing 1 crossmatch test per patient, for an overall constant
Oε(1) number of crossmatches per patient3. Our algorithm then recovers a (1− ε) fraction of
the omniscient optimum for 2-way exchanges, and 4

9
(1− ε) fraction of the omniscient optimum

for 3-way exchanges. Our results send a clear conceptual message: with a mild change at the
policy level to the number of crossmatch tests that are performed—from one to a few—we can
effectively get the full benefit of exhaustive testing at a fraction of the cost.

This approach is related to the problem of membership query learning in learning theory4,
where a target function is queried at points of an algorithm’s choosing in order to identify the
function. In this case, however, the goal is not to fully identify the underlying true kidney
exchange graph, but rather just enough to produce a near-optimal matching.

Chapter 12: Individually Rational Multi-Hospital Kidney Exchange Designing a near
optimal kidney exchange mechanism that takes into account the incentives of the participants
has become increasingly more important. In recent years, hospitals have enrolled patients into
regional or even national kidney exchange programs. However, hospitals may choose not to
participate. This is usually due to the fact that hospitals are uncertain whether they can match
many more of their own patients on their own. Economists would say that the exchange may not
be individually rational for the hospitals.

3Oε(1) denotes a time complexity that is constant when ε is considered to be a constant. Importantly, Oε(1) has
no dependence on the size of the graph in this context

4Similar to those used in the Stackelberg security games in Chapter 2

17

This fear of uncertainty regarding how many of their patients can be matched by other
hospitals has driven hospitals to take a worst case viewpoint. Indeed, creating a globally optimal
kidney exchange mechanism is at odds with hospital’s goal of matching as many as their own
patients when considering the worst case compatibility between patients and the worst-case
assignment of patients to hospitals. In this case, a globally optimal exchange may only match
2
3

of the patients that a hospital could have matched locally and individually rational kidney
exchange mechanisms match at most 1

2
of the patients matched in the globally optimal exchange.

In this chapter, we offer a new perspective on this problem. Our key insight is that it
suffices to assume that assignment of patients to hospitals is a random process independent of
the compatibility of them with other patients. The rationale for this model is simple: there is
no reason as to why donor-patient pairs with particular medical compatibility would belong
to a particular hospital the probability of that happening depends primarily on the size of the
hospital. Taking this view, we show that the uncertainty affecting the hospital’s number of
matched patients is indeed quite small. That is, with high probability over the assignment of
patients to hospitals, every hospital receives almost as many matched patients in the global
matching that it could have matched by itself. To complement these results, we also provide a
mechanism that with complete certainty is fully individually rational and with high probability is
close to being globally optimal.

While our approach to this problem is not directly in the framework of machine learning,
we take use of statistical learning theory tools, such as convergence bounds for combinatorial
functions, to limit the degree of uncertainty that a hospital faces when joining a multi-hospital
kidney exchange.

1.3 Bibliographical Remarks

The research presented in this thesis is based on joint work with several co-authors, described
below. This thesis only includes works for which this author was the, or one of the, primary
contributors.

Chapter 2 is based on joint work with Avrim Blum and Ariel D. Procaccia [56]. Chapter 3 is
based on joint work with Fei Fang, Thanh H. Nguyen, Ariel D. Procaccia, Arunesh Sinha, and
Milind Tambe [143]. Chapter 4 is based on joint work with Maria-Florina Balcan, Avrim Blum
and Ariel D. Procaccia [37]. Chapter 5 is based on joint work with Miroslav Dudik, Haipeng
Luo, Robert E. Schapire, Vasilis Syrgkanis, and Jennifer Wortman Vaughan [113]. Chapter 6
is based on joint work with Ofer Dekel, Authur Flajolet, and Patrick Jaillet [101]. Chapter 7 is
based on ongoing joint work with Tim Roughgarden. Chapter 8 is based on joint works with
Pranjal Awasthi, Maria-Florina Balcan, Ruth Urner, and Hongyang Zhang [24, 25]. Chapter 9 is
based on a joint work with Pranjal Awasthi, Avrim Blum, and Yishay Mansour [26]. Chapter 10
is based on a joint work with Avrim Blum, Ariel D. Procaccia, and Mingda Qiao [60]. Chapter 11
is based on a joint work with John P. Dickerson, Avrim Blum, Ariel D. Procaccia, Tuomas
Sandholm, and Ankit Sharma [58]. Finally, Chapter 12 is based on a joint work with Avrim
Blum, Ioannis Caragiannis, Ariel D. Procaccia, Eviatar B. Procaccia, and Rohit Vaish [59].

18

1.4 Excluded Research
In an effort to keep this dissertation succinct and coherent, a significant portion of this author’s
Ph.D. work has been excluded from this document. The excluded research includes:

• Work on topic modeling: Bridging the gap between co-training and topic modeling [51].

• Work on security domains: Monitoring Stealthy Diffusion [142], Dealing with attackers’s
lack of accurate observation [57], Computational aspect of Large Stackelberg Games.

• Online optimization of combinatorial objects: Voting rules [145] and Minmax Submodular
functions [7].

• Work on motion planning using few queries [144].

• Work on clustering [38].

19

20

Part I

Learning about People

21

Chapter 2

Learning in Stackelberg Security Games

2.1 Introduction

In this chapter, we consider learning in Stackelberg Security games. In the past decade, Stack-
elberg games have been used by the U.S. Coast Guard, the Federal Air Marshal Service, the
Los Angeles Airport Police, and other major security agencies for the purpose of finding good
security deployments [257]. The idea behind the application of the Stackelberg game model
to the physical security domain is simple: the interaction between the defender and a potential
attacker can be modeled as a Stackelberg game, in which the defender commits to a (possibly
randomized) deployment of his resources, and the attacker responds in a way that maximizes his
own payoff. The algorithmic challenge is to compute an optimal defender strategy—one that
would maximize the defender’s payoff under the attacker’s best response.

While the foregoing model is elegant, implementing it requires a significant amount of
information. Perhaps the most troubling assumption is that we can determine the attacker’s
payoffs for different outcomes. In deployed applications, these payoffs are estimated using expert
analysis and historical data—but an inaccurate estimate can lead to significant inefficiencies.
The uncertainty about the attacker’s payoffs can be encoded into the optimization problem itself,
either through robust optimization techniques [225], or by representing payoffs as continuous
distributions [179].

Letchford et al. [191] take a different, learning-theoretic approach to dealing with uncertain
attacker payoffs. Studying Stackelberg games more broadly (which are played by two players, a
leader and a follower), they show that the leader can efficiently learn the follower’s payoffs by
iteratively committing to different strategies, and observing the attacker’s sequence of responses.
In the context of security games, this approach may be questionable when the attacker is a
terrorist, but it is a perfectly reasonable way to calibrate the defender’s strategy for routine
security operations when the attacker is, say, a smuggler. And the learning-theoretic approach
has two major advantages over modifying the defender’s optimization problem. First, the
learning-theoretic approach requires no prior information. Second, the optimization-based
approach deals with uncertainty by inevitably degrading the quality of the solution, as, intuitively,
the algorithm has to simultaneously optimize against a range of possible attackers; this problem
is circumvented by the learning-theoretic approach.

23

But let us revisit what we mean by “efficiently learn”. The number of queries, i.e., obser-
vations of follower responses to leader strategies, required by the algorithm of Letchford et
al. [191] is polynomial in the number of pure leader strategies. The main difficulty in applying
their results to Stackelberg security games is that even in the simplest security game, the number
of pure defender strategies is exponential in the representation of the game. For example, if
each of the defender’s resources can protect one of two potential targets, there is an exponential
number of ways in which resources can be assigned to targets.

Our approach and results. We design an algorithm that learns an (additively) ε-optimal
strategy for the defender with probability 1− δ, by asking a number of queries that is polynomial
in the representation of the security game, and logarithmic in 1/ε and 1/δ. Our algorithm is
completely different from that of Letchford et al. [191]. Its novel ingredients include:

• We work in the space of feasible coverage probability vectors, i.e., we directly reason
about the probability that each potential target is protected under a randomized defender
strategy. Denoting the number of targets by n, this is an n-dimensional space. In contrast,
Letchford et al. [191] study the exponential-dimensional space of randomized defender
strategies. We observe that, in the space of feasible coverage probability vectors, the
region associated with a specific best response for the attacker (i.e., a specific target being
attacked) is convex.

• To optimize within each of these convex regions, we leverage techniques—developed
by Kalai and Vempala [171]—for optimizing a linear objective function in an unknown
convex region using only membership queries. In our setting, it is straightforward to build
a membership oracle, but it is quite nontrivial to satisfy a key assumption of the foregoing
result: that the optimization process starts from an interior point of the convex region. We
do this by constructing a hierarchy of nested convex regions, and using smaller regions to
obtain interior points in larger regions.

• We develop a method for efficiently discovering new regions. In contrast, Letchford et al.
[191] find regions (in the high-dimensional space of randomized defender strategies) by
sampling uniformly at random; their approach is inefficient when some regions are small.

2.2 The Model
A Stackelberg security game is a two-player general-sum game between a defender (or the
leader) and an attacker (or the follower). In this game, the defender commits to a randomized
allocation of his security resources to defend potential targets. The attacker, in turn, observes
this randomized allocation and attacks the target with the best expected payoff. The defender
and the attacker receive payoffs that depend on the target that was attacked and whether or not it
was defended. The defender’s goal is to choose an allocation that leads to the best payoff.

More precisely, a security game is defined by a 5-tuple (N ,D, R,A, U):

• N = {1, . . . , n} is a set of n targets.

24

• R is a set of resources.

• D ⊆ 2N is a collection of subsets of targets, each called a schedule, such that for every
schedule D ∈ D, targets in D can be simultaneously defended by one resource. It is
natural to assume that if a resource is capable of covering schedule D, then it can also
cover any subset of D. We call this property closure under the subset operation; it is also
known as “subsets of schedules are schedules (SSAS)” [185].

• A : R→ 2D, called the assignment function, takes a resource as input and returns the set
of all schedules that the resource is capable of defending. An allocation of resources is
valid if every resource r is allocated to a schedule in A(r).

• The payoffs of the players are given by functions Ud(i, pi) and Ua(i, pi), which return the
expected payoffs of the defender and the attacker, respectively, when target i is attacked
and it is covered with probability pi. 1 We make two assumptions that are common to
all works on security games. First, these utility functions are linear. Second, the attacker
prefers it if the attacked target is not covered, and the defender prefers it if the attacked
target is covered, i.e., Ud(i, pi) and Ua(i, pi) are respectively increasing and decreasing in
pi. We also assume w.l.o.g. that the utilities are normalized to have values in [−1, 1]. If
the utility functions have coefficients that are rational with denominator at most a, then the
game’s (utility) representation length is L = n log n+ n log a.

A pure strategy of the defender is a valid assignment of resources to schedules. The set of
pure strategies is determined by N , D, R, and A. Let there be m pure strategies; we use the
following n×m, zero-one matrix M to represent the set of all pure strategies. Every row in M
represents a target and every column represents a pure strategy. Mix = 1 if and only if target i is
covered using some resource in pure strategy x. A mixed strategy (hereinafter, called strategy) is
a distribution over the pure strategies. To represent a strategy we use a 1×m vector s, such that
sx is the probability with which the pure strategy x is played, and

∑m
x=1 sx = 1.

Given a defender’s strategy, the coverage probability of a target is the probability with which
it is defended. Let s be a defender’s strategy, then the coverage probability vector is p> = Ms>,
where pi is coverage probability of target i. We call a probability vector implementable if there
exists a strategy that imposes that coverage probability on the targets.

Let ps be the corresponding coverage probability vector of strategy s. The attacker’s best
response to s is defined by b(s) = arg maxi Ua(i, p

s
i). Since the attacker’s best-response is

determined by the coverage probability vector irrespective of the strategy, we slightly abuse
notation by using b(ps) to denote the best-response, as well. We say that target i is “better”
than i′ for the defender if the highest payoff he receives when i is attacked is more than the
highest payoff he receives when i′ is attacked. We assume that if multiple targets are tied for the
best-response, then ties are broken in favor of the “best” target.

The defender’s optimal strategy is defined as the strategy with highest expected payoff for the
defender, i.e. arg maxs Ud(b(s), ps

b(s)). An optimal strategy p is called conservative if no other

1Using the language introduced in Chapter 1, Ud(i, pi) = Ej∼p[u1(j, i)] and Ua(i, pi) = Ej∼p[u2(j, i)], where
j ∼ p denotes choosing element j with probability pi.

25

optimal strategy has a strictly lower sum of coverage probabilities. For two coverage probability
vectors we use q � p to denote that for all i, qi ≤ pi.

2.3 Problem Formulation and Technical Approach
In this section, we give an overview of our approach for learning the defender’s optimal strategy
when Ua is not known. To do so, we first review how the optimal strategy is computed in the
case where Ua is known.

Computing the defender’s optimal strategy, even when Ua(·) is known, is NP-Hard [184].
In practice the optimal strategy is computed using two formulations: Mixed Integer program-
ming [220] and Multiple Linear Programs [85]; the latter provides some insight for our approach.
The Multiple LP approach creates a separate LP for every i ∈ N . This LP, as shown below,
solves for the optimal defender strategy under the restriction that the strategy is valid (second
and third constraints) and the attacker best-responds by attacking i (first constraint). Among
these solutions, the optimal strategy is the one where the defender has the highest payoff.

maximize Ud(i,
∑

x:Mix=1

sx)

s.t. ∀i′ 6= i, Ua(i
′,
∑

x:Mi′x=1

sx) ≤ Ua(i,
∑

x:Mix=1

sx)

∀x, sx ≥ 0
n∑

x=1

sx = 1

We make two changes to the above LP in preparation for finding the optimal strategy in
polynomially many queries, when Ua is unknown. First, notice that when Ua is unknown, we
do not have an explicit definition of the first constraint. However, implicitly we can determine
whether i has a better payoff than i′ by observing the attacker’s best-response to s. Second, the
above LP has exponentially many variables, one for each pure strategy. However, given the
coverage probabilities, the attacker’s actions are independent of the strategy that induces that
coverage probability. So, we can restate the LP to use variables that represent the coverage
probabilities and add a constraint that enforces the coverage probabilities to be implementable.

maximize Ud(i, pi)

s.t. i is attacked
p is implementable

(2.1)

This formulation requires optimizing a linear function over a region of the space of coverage
probabilities, by using membership queries. We do so by examining some of the characteristics
of the above formulation and then leveraging an algorithm introduced by Kalai and Vempala
[171] that optimizes over a convex set, using only an initial point and a membership oracle. Here,
we restate their result in a slightly different form.

26

Proposition 2.3.1 (Theorem 2.1 of Kalai and Vempala [171]). For any convex set H ⊆ Rn that
is contained in a ball of radius R, given a membership oracle, an initial point with margin r
in H , and a linear function `(·), with probability 1− δ we can find an ε-approximate optimal
solution for ` in H , using O(n4.5 log nR2

rεδ
) queries to the oracle.

2.4 Main Result
In this section, we design and analyze an algorithm that (ε, δ)-learns the defender’s optimal
strategy in a number of best-response queries that is polynomial in the number of targets and the
representation, and logarithmic in 1

ε
and 1

δ
. Our main result is:

Theorem 2.4.1. Consider a security game with n targets and representation length L, such that
for every target, the set of implementable coverage probability vectors that induce an attack
on that target, if non-empty, contains a ball of radius 1/2L. For any ε, δ > 0, with probability
1− δ, Algorithm 2.2 finds a defender strategy that is optimal up to an additive term of ε, using
O(n6.5(log n

εδ
+ L)) best-response queries to the attacker.

The main assumption in Theorem 2.4.1 is that the set of implementable coverage probabilities
for which a given target is attacked is either empty or contains a ball of radius 1/2L. This implies
that if it is possible to make the attacker prefer a target, then it is possible to do so with a
small margin. This assumption is very mild in nature and its variations have appeared in many
well-known algorithms. For example, interior point methods for linear optimization require
an initial feasible solution that is within the region of optimization with a small margin [133].
Letchford et al. [191] make a similar assumption, but their result depends linearly, instead
of logarithmically, on the minimum volume of a region (because they use uniformly random
sampling to discover regions).

To informally see why such an assumption is necessary, consider a security game with n
targets, such that an attack on any target but target 1 is very harmful to the defender. The
defender’s goal is therefore to convince the attacker to attack target 1. The attacker, however,
only attacks target 1 under a very specific coverage probability vector, i.e., the defender’s
randomized strategy has to be just so. In this case, the defender’s optimal strategy is impossible
to approximate.

The remainder of this section is devoted to proving Theorem 2.4.1. We divide our intermediate
results into sections based on the aspect of the problem that they address.

2.4.1 Characteristics of the Optimization Region
One of the requirements of Proposition 2.3.1 is that the optimization region is convex. Let P de-
note the space of implementable probability vectors, and letPi = {p : p is implementable and b(p) =
i}. The next lemma shows that Pi is indeed convex.

Lemma 2.4.2. For all i ∈ N , Pi is the intersection of a finitely many half-spaces.

Proof. Pi is defined by the set of all p ∈ [0, 1]n such that there is s that satisfies the LP with the
following constraints. There are m half-spaces of the form sx ≥ 0, 2 half-spaces

∑
x sx ≤ 1

27

and
∑

x sx ≥ 1, 2n half-spaces of the form Ms> − p> ≤ 0 and Ms> − p> ≥ 0, and n − 1
half-spaces of the form Ua(i, pi) − Ua(i′, pi′) ≥ 0. Therefore, the set of (s,p) ∈ Rm+n such
that p is implemented by strategy s and causes an attack on i is the intersection of 3n+m+ 1
half-spaces. Pi is the reflection of this set on n dimensions; therefore, it is also the intersection
of at most 3n+m+ 1 half-spaces.

Lemma 2.4.2, in particular, implies that Pi is convex. The Lemma’s proof also suggests a
method for finding the minimal half-space representation of P . Indeed, the set S = {(s,p) ∈
Rm+n : Valid strategy s implements p} is given by its half-space representation. Using the
Double Description Method [125, 212], we can compute the vertex representation of S. Since,
P is a linear transformation of S, its vertex representation is the transformation of the vertex
representation of S. Using the Double Description Method again, we can find the minimal
half-space representation of P .

Next, we establish some properties of P and the half-spaces that define it.

Lemma 2.4.3. Let p ∈ P . Then for any 0 � q � p, q ∈ P .

Proof. Let there be k targets i such that pi > qi. We prove this lemma by induction on k. For
k = 0, the lemma trivially holds. Assume that for all k < k0 the result holds. Let k = k0. Let i
be an arbitrary target for which pi > qi. Since the set of pure strategies is closed under subset
operation there is a map, σ(·), such that for every pure strategy Mx (a column in matrix M) such
that Mix = 1, Mσ(x) only differs from Mx in the ith row (target). Let X and X ′ indicate these
strategies i.e. X = {x : Mix = 1}, X ′ = {σ(x) : Mix = 1}.

Define s′ as follows: For all x ∈ X , let s′x = sx · qipi and s′σ(x) = sσ(x) + sx · pi−qiqi
, and for

any x /∈ X ∪ X ′, let s′x = sx. Consider p′ that is induced by s′: For i, p′i =
∑

x:Mix=1 s
′
x =∑

x∈X sx · qipi = qi. For all i′ 6= i,

p′i′ =
∑

x:Mi′x=1

s′x =
∑

x:Mi′x=1
and x∈X

(
s′x + s′σ(x)

)
+

∑

x:Mi′x=1
and x/∈I∪I′

s′x

=
∑

x:Mi′x=1
and x∈I

(
qi
pi
sx + sσ(x) +

pi − qi
pi

sx

)
+

∑

x:Mi′x=1
and x/∈I∪I′

sx

=
∑

x:Mi′x=1
and x∈I

(
sx + sσ(x)

)
+

∑

x:Mi′x=1
and x/∈I∪I′

sx =
∑

x:Mi′x=1

sx

= pi′

We conclude that p′ such that p′i = qi and for all i′ 6= i, p′i′ = pi, is implementable. p′ and
q differ in only k0 − 1 indices and for all j, p′j ≥ qj , so using the induction hypothesis q is
implementable.

Lemma 2.4.4. Let A be a set of a positive volume that is the intersection of finitely many
half-spaces. Then the following two statements are equivalent.

1. For all p ∈ A, p � ε. And for all ε � q � p, q ∈ A.

28

2. A can be defined as the intersection of ei · p ≥ ε for all i, and a set H of half-spaces, such
that for any h · p ≥ b in H , h � 0, and b ≤ −ε.

Proof. (1 =⇒ 2). Consider the minimal set of half-spaces that defines A. We know that this set
is unique, and is the collection of facet-defining half-spaces. Since A has a positive volume, for
all i, (ei, ε) is a facet, so it belongs to the set of half-spaces that define A. Take any half-space
(h, b) in this collection that is not of the form (ei, ε). There is a point p on the the boundary of
(h, b) that is not on the boundary of any other half-space (including (ei, ε)), so p � ε. For every
i, define p i such that pii = ε and pij = pj for all j 6= i. Then,

h · p i = h · p + h · (p i
i − p) = b− hi(pi − ε).

Since p i ∈ A, hi ≤ 0. Since, ε ∈ A, h · ε = −‖h‖1ε ≥ b, so b ≤ −ε.
(2 =⇒ 1). For any p ∈ A and any ε � q � p, and any i, ei · q = qi ≥ ε. For any

(h, b) ∈ H of the second form,

h · q = h · p + h · (q− p) ≥ b,

where the last transition is by the fact that h and (q− p) are non-positive. So, q ∈ A.

Using Lemmas 2.4.3 and 2.4.4, we can refer to the set of half-spaces that define P by
{(ei, 0) : for all i} ∪HP , where for all (h∗, b∗) ∈ HP , h∗ � 0, and b∗ ≤ 0.

2.4.2 Finding Initial Points
An important requirement for many optimization algorithms, including the one developed by
[171], is having a “well-centered” initial feasible point in the region of optimization. There are
two challenges involved in discovering an initial feasible point in the interior of every region.
First, establishing that a region is non-empty, possibly by finding a boundary point. Second,
obtaining a point that has a significant margin from the boundary. We carry out these tasks by
executing the optimization in a hierarchy of sets where at each level the optimization task only
considers a subset of the targets and the feasibility space. We then show that optimization in one
level of this hierarchy helps us find initial points in new regions that are well-centered in higher
levels of the hierarchy.

To this end, let us define restricted regions. These regions are obtained by first perturbing
the defining half-spaces of P so that they conform to a given representation length, and then
trimming the boundaries by a given width (See Figure 2.1).

In the remainder of this chapter, we use γ = 1
(n+1)2L+1 to denote the accuracy of the

representation and the width of the trimming procedure for obtaining restricted regions. More
precisely:

Definition 2.4.5 (restricted regions). The set Rk ∈ Rn is defined by the intersection of the
following half-spaces: For all i, (ei, kγ). For all (h∗, b∗) ∈ HP , a half-space (h, b+ kγ), such
that h = γb 1

γ
h∗c and b = γd 1

γ
b∗e. Furthermore, for every i ∈ N , defineRk

i = Rk ∩ Pi.
The next Lemma shows that the restricted regions are subsets of the feasibility space, so, we

can make best-response queries within them.

29

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
1

p
2

Optimal strategy

R
2

2

R
1

2

P
2

R
2

1

R
1

1

P
1

p
1 + p

2 <= 1

0.5(1−p 1
) =

 1−p 2

Attack on Target 1

Attack on Target 2

Utility Halfspace

Feasibility Halfspaces

Optimal Strategy

Target Attacker Defender
1 0.5(1− p1) −0.5(1− p1)
2 (1− p2) −(1− p2)

Figure 2.1: The game payoff table on the right and optimization regions on the left. A security
game with one resource that can cover one of two targets. The attacker receives utility 0.5 from
attacking target 1 and utility 1 from attacking target 2, when they are not defended; he receives
0 utility from attacking a target that is being defended. The defender’s utility is the zero-sum
complement.

Lemma 2.4.6. For any k ≥ 0,Rk ⊆ P .

Proof. Let p /∈ P , by Lemma 2.4.4 one of the following cases holds: (1) There exists i, such
that ei · p < 0. In this case, ei · p ≤ kγ. So, p /∈ Rk. (2) There exists (h∗, b∗) ∈ HP such that
h∗ · p < b∗. Let (h, b) be the corresponding half-space of (h∗, b∗) inRk. Then,

h · p = h∗ · p + (h− h∗) · p < b∗ + (h− h∗) · p < b

where the last transition is by the fact that h � h∗, b > b∗, and p � 0.

The next two lemmas show that inRk one can reduce each coverage probability individually
down to kγ, and the optimal conservative strategy inRk indeed reduces the coverage probabilities
of all targets outside the best-response set to kγ.

Lemma 2.4.7. Let p ∈ Rk, and let q such that kγ � q � p. Then q ∈ Rk.

Proof. If Rk = ∅ is empty then the result holds trivially. If Rk 6= ∅, then there exists p � kγ
such that p ∈ Rk. By Lemmas 2.4.3 and 2.4.4, P has half-spaces of the form (ei, 0) and
(h∗, b∗), such that h∗ � 0 and b∗ ≤ 0. By construction ofRk, we have half-spaces of the form
(ei, kγ) for all i, and half-spaces (h, b+ kγ) such that h = b 1

γ
h∗c � h∗. Since, kγ � p ∈ Rk,

h · kγ = ‖h‖1kγ ≥ b. So, b ≤ −kγ. The proof is completed by the fact that the conditions of
Lemma 2.4.4 hold.

Lemma 2.4.8. Let s and its corresponding coverage probability p be a conservative optimal
strategy in Rk. Let i∗ = b(s) and B = {i : Ua(i, pi) = Ua(i

∗, pi∗)}. Then for any i /∈ B,
pi = kγ.

30

Proof. Note that there is a positive gap between the attacker’s payoff from attacking a best-
response target versus another target, i.e. mini/∈B Ua(i

∗, pi∗) − Ua(i, pi) > 0. Since Ua is
continuous and decreasing in the coverage probability, for any i /∈ B, if pi > kγ there exists
0 < δ ≤ pi − kγ such that Ua(i∗, pi∗) > Ua(i, pi − δ). Let q be defined such that for all i /∈ B,
qi = pi− δ ≥ kγ, and for all i ∈ B, qi = pi. Then by Lemma 2.4.7, q is implementable by some
strategy sq inRk. Furthermore, b(q) = i∗, so, sq is also an optimal strategy. This contradicts the
fact that s is a conservative optimal strategy.

The following Lemma shows that if every non-empty Pi contains a large enough ball, then
Rn
i 6= ∅.

Lemma 2.4.9. For any i ∈ N and k ≤ n such that Pi contains a ball of radius r > 1
2L

,Rk
i 6= ∅.

Proof. Let p be the center of the ball. Then for any j, pj ≥ r ≥ kγ, so ej · p ≥ kγ. For any
(h, b) defining half-space ofRk and its corresponding half-space (h∗, b∗) of P we have:

h · p− b = h∗p− b∗ + (h− h∗) · p + (b∗ − b) ≥ r − γn− (γ + kγ) ≥ 0,

where the second transition is by the fact that h∗p = r is the margin of p from a normalized
half-space h∗, and that for any value x and 1/γ ∈ Z, γb 1

γ
xc and γd 1

γ
xe are within γ from x.

Hence, p ∈ Rk
i .

The next lemma provides the main insight behind our search for the region with the highest-
paying optimal strategy. It implies that we can restrict our search to strategies that are optimal for
a subset of targets inRk, if the attacker also agrees to play within that subset of targets. At any
point, if the attacker chooses a target outside the known regions, he is providing us with a point
in a new region. Crucially, Lemma 2.4.10 requires that we optimize exactly inside each restricted
region, and we show below (Algorithm 2.1 and Lemma 2.4.13) that this is indeed possible.

Lemma 2.4.10. Assume that for every i, if Pi is non-empty, then it contains a ball of radius
1

2L
. Given K ⊆ N and k ≤ n, let p ∈ Rk be the coverage probability of the strategy that has

kγ probability mass on targets in N \K and is optimal if the attacker were to be restricted to
attacking targets in K. Let p∗ be the optimal strategy in P . If b(p) ∈ K then b(p∗) ∈ K.

Proof. Assume on the contrary that b(p∗) = i∗ /∈ K. Since Pi∗ 6= ∅, by Lemma 2.4.9, there
exists p′ ∈ Rk

i∗ .
For ease of exposition, replace p with its corresponding conservative strategy inRk. LetB be

the set of targets that are tied for the attacker’s best-response in p, i.e. B = arg maxi∈N Ua(i, pi).
Since b(p) ∈ K and ties are broken in favor of the “best” target, i.e. i∗, it must be that
i∗ /∈ B. Then, for any i ∈ B, Ua(i, pi) > Ua(i

∗, kγ) ≥ Ua(i
∗, p′i∗) ≥ Ua(i, p

′
i). Since Ua is

decreasing in the coverage probability, for all i ∈ B, p′i > pi. Note that there is a positive
gap between the attacker’s payoff for attacking a best-response target versus another target, i.e.
∆ = mini′∈K\B,i∈B Ua(i, pi)− Ua(i′, pi′) > 0, so it is possible to increase pi by a small amount
without changing the best response. More precisely, since Ua is continuous and decreasing in
the coverage probability, for every i ∈ B, there exists δ < p′i − pi such that for all i′ ∈ K \B,
Ua(i

′, pi′) < Ua(i, p
′
i − δ) < Ua(i, pi).

31

Let q be such that for i ∈ B, qi = p′i − δ and for i /∈ B, qi = pi = kγ (by Lemma 2.4.8 and
the fact that p was replaced by its conservative equivalent). By Lemma 2.4.7, q ∈ Rk. Since for
all i ∈ B and i′ ∈ K \B, Ua(i, qi) > Ua(i

′, qi′), b(q) ∈ B. Moreover, because Ud is increasing
in the coverage probability for all i ∈ B, Ud(i, qi) > Ud(i, pi). So, q has higher payoff for the
defender when the attacker is restricted to attacking K. This contradicts the optimality of p in
Rk. Therefore, b(p∗) ∈ K.

If the attacker attacks a target i outside the set of targets K whose regions we have already
discovered, we can use the new feasible point inRk

i to obtain a well-centered point inRk−1
i , as

the next lemma formally states.

Lemma 2.4.11. For any k and i, let p be any strategy in Rk
i . Define q such that qi = pi − γ

2

and for all j 6= i, qj = pj + γ
4
√
n

. Then, q ∈ Rk−1
i and q has distance γ

2n
from the boundaries of

Rk−1
i .

Proof. The boundaries ofRk are defined by (ei, kγ) for all i ∈ N and a half-space (h, b+ kγ)
for every half-space (h∗, b∗) ∈ HP such that h = γb 1

γ
h∗c and b = γd 1

γ
b∗e. In addition Rk

i is
the intersection ofRk with half-spaces Ui(i, pi) ≥ U(i′, pi′) for all i′ 6= i. Let dist(·) denote the
signed distance of a point from a half-space. For every j 6= i,

dist(q, (ej, (k − 1)γ)) =
ej · q− (k − 1)γ

‖ej‖2

= qj − (k − 1)γ ≥ pj +
γ

4
√
n
− (k − 1)γ

≥ kγ +
γ

4
√
n
− (k − 1)γ >

γ

2n
.

Moreover,

dist(q, (ei, (k − 1)γ)) =
ei · q− (k − 1)γ

‖ei‖2

= qi − (k − 1)γ = pi −
γ

2
− (k − 1)γ

≥ kγ − γ

2
− (k − 1)γ ≥ γ

2n
.

Finally, for every (h, b+ (k − 1)γ),

dist(q, (h, b+ (k − 1)γ)) =
h · q− (b+ (k − 1)γ)

‖h‖2

≥ h · p + h · (q− p)− (b+ (k − 1)γ)

2

≥ h · (q− p) + γ

2
≥ − γ

8
√
n
‖h‖1 − hi

(
γ

4
+

γ

8
√
n

)
+
γ

2

≥ − γ

8
√
n
‖h‖1 +

γ

2
≥ − γ

8
√
n

(
√
n+ nγ) +

γ

2

≥ 3γ

8
−
√
nγ2

8
≥ γ

2n
,

where the first inequality is by the fact that ‖h‖2 ≤ ‖h∗‖2+γ
√
n ≤ 1+γ

√
n < 2 (by the triangle

inequality), the penultimate inequality is by the fact that ‖h‖1 ≤ ‖h∗‖1 + nγ ≤ √n‖h∗‖2 + nγ,
and the last inequality follows from γ = 1

(n+1)2L+1 <
1

n
√
n

.

32

As for the utility half-spaces of the form Ua(i, qi)−Ua(i′, qi′) ≥ 0, for every i′, the probability
q has moved away by at least min(γ

2
, γ

4
√
n
) ≥ γ

2n
from every half-space. Moreover, by reducing

the coverage probability on the attacked target and increasing it on other targets, the attacker
receives even larger payoff from attacking i, so q still induces an attack on i, i.e. q ∈ Pi. Finally,
the signed distance of q from every half-space is greater than γ

2n
, therefore q ∈ Rk−1 ∩ Pi =

Rk−1
i , and it has distance γ

2n
from the boundaries ofRk−1

i .

2.4.3 An Oracle for the Convex Region
We use a three-step procedure for defining a membership oracle for P orRk

i . Given a vector p,
we first use the half-space representation of P (orRk) described in Section 2.4.1 to determine
whether p ∈ P (or p ∈ Rk). We then find a strategy s that implements p by solving a linear
system with constraints Ms> = p>, 0 � s, and ‖s‖1 = 1. Lastly, we make a best-response
query to the attacker for strategy s. If the attacker responds by attacking i, then p ∈ Pi (or
p ∈ Rk

i), else p /∈ Pi (or p /∈ Rk
i).

2.4.4 The Algorithms
In this section, we define algorithms that use the results from previous sections to prove The-
orem 2.4.1. First, we define Algorithm 2.1, which receives an approximately optimal strategy
in Rk

i as input, and finds the optimal strategy in Rk
i . As noted above, obtaining exact optimal

solutions inRk
i is required in order to apply Lemma 2.4.10, thereby ensuring that we discover

new regions when lucrative undiscovered regions still exist.

Algorithm 2.1: LATTICE-ROUNDING

1: Input: p, an 1
26n(L+1) -approximate optimal strategy inRk

i . A best-response oracle forRk
i .

2: for j 6= i do
3: Make best-response queries to binary search for the smallest p′j ∈ [kγ, pj] to accuracy

1
25n(L+1) , such that i = b(p′), where for all j′ 6= j, p′j′ ← pj′ .

4: end for
5: for j 6= i do
6: Set rj and qj respectively to the smallest and second smallest rational numbers with

denominator at most 22n(L+1), that are larger than p′j − 1
25n(L+1) .

7: end for
8: Let p∗ be such that p∗i is the unique rational number with denominator at most 22n(L+1) in

[pi, pi + 1
24n(L+1)) (Refer to the proof for uniqueness), and for all j 6= i, p∗j ← rj .

9: Query x← b(p∗).
10: if x 6= i, then p∗x ← qx and go to step 9.
11: return p∗.

The next two Lemmas establish the guarantees of Algorithm 2.1. The first is a variation of
a well-known result in linear programming [127] that is adapted specifically for our problem

33

setting.

Lemma 2.4.12. Let p∗ be a basic optimal strategy inRk
i , then for all i, p∗i is a rational number

with denominator at most 22n(L+1).

Proof. LetRk
i be represented as a system {p : Ap> � b} where there is a row (constraint) for

each half-space that definesRk, and a row for each i′ 6= i of the form Ua(i, pi)− Ua(i′, pi′) ≥ 0.
Furthermore, assume that A is normalized so that every row has integral coefficients. Note that
by the definition of the game representation length, each coefficient of the utility rows is at
most 2L. Moreover, by the definition of the defining half-spaces ofRk, each coefficients of the
feasibility constraints are at most (n+ 1)2L+1.

We know that each basic solution to the above LP is at the intersection of n independent
constraints of A. Let p∗ be such a solution. Let D represent those n hyper-planes. Using
Cramer’s rule, for all i, p∗i = det(Di)

det(D)
, where the Di is D with its ith column replaced by b. Using

Hadamard’s inequality,

det(D) ≤
n∏

i=1

√√√√
n∑

j=1

d2
ij ≤

n∏

i=1

(n+ 1)2L+1
√
n ≤ n2n2n(L+1) ≤ 22n(L+1),

Where the last inequality is by the fact that L > n log n.

Lemma 2.4.13. For any k and i, let p be a 1
26n(L+1) -approximate optimal strategy inRk

i . Algo-
rithm 2.1 finds the optimal strategy inRk

i in O(nL) best-response queries.

Proof. Let p∗ be the optimal strategy in Rk
i . By Lemma 2.4.12, for all j, p∗j has a denomina-

tor of at most 22n(L+1). Note that the difference between two distinct rational numbers with
denominators at most 22n(L+1) is at least 1

24n(L+1) .
Strategy p is a 1

26n(L+1) -approximate optimal strategy and the utilities have representation
length of at most L, so

p∗i − pi ≤ 2L · 1

26n(L+1)
<

1

24n(L+1)
.

Therefore, p∗i ∈ [pi, pi + 1
24n(L+1)). Since this range is smaller than the difference between two

rational numbers with denominator at most 22n(L+1), there is at most one such rational number
in this range, to which our algorithms sets p∗i . Note that the absence of such a rational number is
contradictory to Lemma 2.4.12 or the fact that p was a 1

26n(L+1) -approximate optimal strategy.
For all j, let p′j ≥ kγ be the smallest coverage probability, with accuracy 1

25n(L+1) , such
that Ua(i, pi) ≥ Ua(j, p

′
j). Then, p∗j ≥ p′j − 1

25n(L+1) . Let rj and qj , respectively, be the
smallest and second smallest rational numbers with denominator at most 22n(L+1) in the range
[p′j − 1

25n(L+1) , 1). We claim that p∗j = rj or qj . To prove this claim, it is sufficient to show that
for all j, Ua(j, qj) ≤ Ua(i, p

∗
i). Since qi is the second smallest rational number with denominator

at most 22n(L+1) in the given range, then qj ≥ p′j − 1
25n(L+1) + 1

24n(L+1) >
1

24n(L+1)+1 . Then,

Ua(j, p
′
j)− Ua(j, qj) ≥

1

2L
(qj − p′j) ≥

1

24n(L+1)+L+1

34

Algorithm 2.2: Optimize Defender Strategy
1: Input: Accuracy level ε, confidence δ, and best-response oracle b(·).
2: γ ← 1

(n+1)2L+1 , δ′ ← δ
n2 , and k ← n.

3: Query i← b(kγ).
4: Let K ← {i}, X ← {xi}, where xii = kγ − γ/2 and for j 6= i, xij = kγ + γ

4
√
n

.
5: for i ∈ K do
6: if between line 11 to 13 i′ /∈ K is attacked as a response to some strategy p then
7: Let xi′i′ ← pi′ − γ/2 and for j 6= i′, xi′j ← pj + γ

4
√
n

.
8: X ← X ∪ {xi′}, K ← K ∪ {i′}, and k ← k − 1.
9: Restart the loop at step 5.

10: end if
11: Use Theorem 2.3.1 with set of targets K. With probability 1− δ′ find a qi that is a

1
26n(L+1) -approximate optimal strategy restricted to set K.

12: Use Algorithm 2.1 on qi restricted to set of targets j ∈ K to find the optimal strategy q∗i

inRk
i . For all j /∈ K, let q∗ij ← kγ.

13: Query b(q∗i).
14: end for
15: for all i ∈ K do
16: Using Theorem 2.3.1 find p∗i that is an ε-approximate strategy in Pi
17: end for
18: return p∗i that has the highest payoff to the defender.

>
2L

26n(L+1)
≥ 2L (Ud(i, p

∗
i)− Ud(i, pi))

> Ua(i, pi)− Ua(i, p∗i).

Since, Ua(i, pi) ≥ Ua(j, p
′
j), the above inequality implies that Ua(j, qj) ≤ Ua(i, p

∗
i). So, for each

j, it is sufficient to query the attacker to see whether Ua(j, rj) ≤ Ua(i, p
∗
i) if so then p∗j = rj ,

else p∗j = qj .
For each j, this algorithm makes O(log 25(L+1)) = O(L) queries to find p′j with accuracy
1

25n(L+1) . Values of p∗i , rj and qj are computed without any best-response queries. Because
p∗j = rj or qj , step 9, is repeated at most n times, so there are n additional queries. In conclusion,
our algorithm makes O(nL+ n) = O(nL) many queries in total.

At last, we are ready to prove our main result, which provides guarantees for Algorithm 2.2,
given below.
Theorem 2.4.1 (restated). Consider a security game with n targets and representation length
L, such that for every target, the set of implementable coverage probability vectors that induce
an attack on that target, if non-empty, contains a ball of radius 1/2L. For any ε, δ > 0, with
probability 1− δ, Algorithm 2.2 finds a defender strategy that is optimal up to an additive term
of ε, using O(n6.5(log n

εδ
+ L)) best-response queries to the attacker.

35

Proof Sketch. For each K ⊆ N and k, the loop at step 5 of Algorithm 2.2 finds the optimal
strategy if the attacker was restricted to attacking targets of K inRk.

Every time the “if” clause at step 6 is satisfied, the algorithm expands the set K by a target i′

and adds xi
′ to the set of initial points X , which is an interior point ofRk−1

i′ (by Lemma 2.4.11).
Then the algorithm restarts the loop at step 5. Therefore every time the loop at step 5 is started,
X is a set of initial points in K that have margin γ

2n
inRk. This loop is restarted at most n− 1

times.
We reach step 15 only when the best-response to the optimal strategy that only considers

targets of K is in K. By Lemma 2.4.10, the optimal strategy is in Pi for some i ∈ K. By
applying Theorem 2.3.1 to K, with an oracle for P using the initial set of point X which has
γ/2n margin in R0, we can find the ε-optimal strategy with probability 1 − δ′. There are at
most n2 applications of Theorem 2.3.1 and each succeeds with probability 1− δ′, so our overall
procedure succeeds with probability 1− n2δ′ ≥ 1− δ.

Regarding the number of queries, every time the loop at step 5 is restarted |K| increases
by 1. So, this loop is restarted at most n − 1 times. In a successful run of the loop for set
K, the loop makes |K| calls to the algorithm of Theorem 2.3.1 to find a 1

26n(L+1) -approximate
optimal solution. In each call, X has initial points with margin γ

2n
, and furthermore, the total

feasibility space is bounded by a sphere of radius
√
n (because of probability vectors), so each

call makes O(n4.5(log n
δ

+ L)) queries. The last call looks for an ε-approximate solution, and
will take another O(n4.5(log n

εδ
+ L)) queries. In addition, our the algorithm makes n2 calls

to Algorithm 2.1 for a total of O(n3L) queries. In conclusion, our procedure makes a total of
O(n6.5(log n

εδ
+ L)) = poly(n, L, log 1

εδ
) queries.

2.5 Discussion
Our main result focuses on the query complexity of our problem. We believe that, indeed, best
response queries are our most scarce resource, and it is therefore encouraging that an (almost)
optimal strategy can be learned with a polynomial number of queries.

It is worth noting, though, that some steps in our algorithm are computationally inefficient.
Specifically, our membership oracle needs to determine whether a given coverage probability
vector is implementable. We also need to explicitly compute the feasibility half-spaces that
define P . Informally speaking, (worst-case) computational inefficiency is inevitable, because
computing an optimal strategy to commit to is computationally hard even in simple security
games [184].

Nevertheless, deployed security games algorithms build on integer programming techniques
to achieve satisfactory runtime performance in practice [257]. These algorithms often focus on
efficiently solving the following sub-problem in Stackelberg security games: Given a coverage
probability vector p, find a succinct representation of the mixed strategy s that implements it.
This is exactly the step we use to determine whether and how a coverage probability vector is
implementable. Therefore, an interesting open question is whether we can learn a highly accurate
defender strategy if we have access to such an algorithm that efficiently maps the coverage
probability space to the mixed strategy space. That is, is there a way around explicitly computing
feasibility half-spaces that define P in our algorithm? Solving this problem would allow us to

36

use deployed tools from the security game domain and obtain truly practical learning algorithms
for dealing with payoff uncertainty in security games.

37

38

Chapter 3

Learning about a Boundedly Rational
Attacker in Stackelberg Games

3.1 Introduction

In this chapter, we consider Stackelberg security games in settings where the attacker may not be
fully rational. In particular, we consider the recent application of Stackelberg security games to
protecting wildlife, fisheries and forests. This green security game (GSG) research [116, 214]
differs from earlier work in SSGs applied to counter-terrorism [224] in two ways: first, poacher
behavior has been observed to deviate from fully strategic behavior, perhaps due to poacher’s
lack of sophisticated surveillance methods; second, there is significant historical data available
in GSGs (e.g., wildlife crime, arrests of poachers) from repeated defender-attacker interactions.

Given the availability of the data in this domain, machine learning has begun to play a critical
role in improving defender resource allocation in GSGs, taking the place of domain experts as
the leading method for estimating attacker utilities and preferences. Indeed, inspired by GSGs,
researchers have focused on learning attacker bounded rationality models and designing optimal
defender strategies against such attackers [250, 272]. While existing results are encouraging, as
we explain in detail below, a shortcoming of the state-of-the-art approach is that its effectiveness
implicitly relies on the properties of the underlying distribution from which data is obtained—if
near-optimal strategies have not already been played in the past, a near-optimal strategy cannot
be learned.

3.1.1 Our Results

We take the next step in developing the theory and practice of learning attacker behavior. Our
first contribution is a theoretical analysis of the learnability of (a generalization of) the most
well-studied bounded rationality attacker behavior model in SSGs: Subjective Utility Quantal
Response (SUQR) [215], which is a parametric specification of the attacker’s behavior. We
find, perhaps surprisingly, that if the data contains a polynomial number of attacker responses
to each of only three defender strategies that are sufficiently different from each other (precise
statement is given in Theorem 3.3.1), then we can learn the model parameters with high accuracy.

39

Qualitatively, this means that we can expect to learn an excellent strategy from real-world
historical data, as typically each defender strategy is played repeatedly over a period of time. It
also means that, even if we collect additional data in the future by playing whatever strategy
seems good based on existing data, the new data will quickly lead to an optimal strategy, under
the very mild assumption that the new strategies that are played are somewhat different from the
previous ones.

Building on our analysis of the generalized SUQR model, as part of our second contribution,
we analyze the learnability of the more general class of attacker behavior models specified
by (non-parametric) Lipschitz functions. This is an extremely expressive class, and therefore,
naturally, learning an appropriate model requires more data. Even for this class we can learn the
attacker response function with high accuracy with a polynomial number of defender strategies—
but we make more stringent assumptions regarding how these strategies are selected. Our analysis
works by approximating Lipschitz functions using polynomial functions.

3.1.2 Related Work

Our work is most closely related to the recent paper of Sinha et al. [250]. They learn to predict
attacker responses in the PAC model of learning. Crucially, following the PAC model, the dataset
is assumed to be constructed by drawing defender strategies (and attacker responses) from a
fixed but unknown distribution—and the accuracy of the outcome of the learning process is then
measured with respect to that same distribution. In particular, if the training data is concentrated
in suboptimal regions of the defender strategy space, the PAC model approach allows accurate
prediction of attacker responses in those regions, but may not help pinpoint a globally optimal
strategy (as discussed at length by Sinha et al. [250]). In contrast, our approach leads to uniformly
accurate prediction, in the sense that we can accurately predict the attacker responses to any
defender strategy, even if we only observe suboptimal strategies. As we show, this provides
sufficient information to identify a near-optimal strategy.

Another related line of work, as presented in Chapter 2 and related works [37, 56, 191],
explores an adaptive learning approach, where an optimal strategy is learned by adaptively
playing defender strategies and observing the attacker responses. That approach cannot make
use of historical data. Moreover these works may play severely suboptimal strategies in order to
most efficiently pinpoint the optimal strategy. In contrast, in the adaptive interpretation of the
work in this chapter, we can learn an optimal strategy by playing any three (sufficiently different)
strategies, including ones that seem optimal based on existing evidence. Interestingly, the reason
why we are able to do so much better is that we assume a bounded rational attacker that responds
probabilistically to defender strategies, while the foregoing papers assume a perfectly rational
attacker. At first sight, it may appear that learning in the bounded rationality model may be
harder since the behavior of the attacker is random. But by repeatedly playing the same strategy,
we gain information about the attacker’s utility for all targets, whereas in the perfectly rational
case, to gain information about new targets, the learning algorithm has to discover the “best
response regions” of those targets.

40

3.2 Preliminaries

We consider a variant of the Stackelberg security game model in which the attacker does not act
rationally. We consider a set N = {1, . . . , n} of n targets. We directly work in the coverage
probability space, where the set of defender mixed strategies is the set of vectors P ⊆ [0, 1]n

and for each p ∈ P , pi represents the probability with which the defender protects target i in
mixed strategy p. As discussed in earlier chapters, this set is determined by defender’s security
resources and the subsets of targets that each resource can defend simultaneously. A pure
deployment of the defender is then an assignment of resources to targets, and a mixed deployment
of the defender is a distribution over pure deployments. In this context, the coverage probability
vector induced by a mixed deployment is defined as the probability with which each target is
defended under this mixed deployment. As we shall see, the behavior and utility of the attacker
only depend on the defender’s choice of coverage probabilities, and therefore we choose to
represent the defender’s action space by the set of coverage probabilities P .

As before, we use ud(i, pi) and ua(i, pi) to denote defender and attacker utilities when the
attacker attacks target i under mixed strategy p. To simplify these notations, in this chapter,
we use vi(pi) and ui(pi) to denote the defender and attacker utilities, respectively. Previous
work on learning in security games has mainly focused on utilities that are linear functions of
the coverage probability (like Chapter 2), or linear functions with the additional constraint that
ui(pi) = wpi + ci in the generalized SUQR model of Sinha et al. [250]. Our main result pertains
to (unrestricted) linear utility functions, but later we also deal with higher degree polynomials.

Upon observing the defender’s strategy p, the attacker computes the utility on each target
i, ui(pi), and based on these utilities responds to the defender’s strategy. In this chapter, we
consider a non-adaptive attacker who attacks target i with probability

Dp(i) =
eui(pi)∑
j∈N e

uj(pj)
. (3.1)

This model corresponds to the Luce model from quantal choice theory [199, 207], and is a
special case of the logit quantal response model. Together with our choice of utility functions,
our model is a generalization of bounded rationality models considered in previous work, such
as SUQR [215] and generalized SUQR [250].

Suppose the same mixed strategy p is played for multiple time steps. We denote the empirical
distribution of attacks on target i under p by D̂p(·). Furthermore, we assume that for the strategies
considered in our work, and for all i, Dp(i) ≥ ρ for some ρ = 1/poly(n). This assumption is
required to estimate the value of Dp(i) with polynomially many samples.

Our goal is to learn the utility functions, ui(·) for all i ∈ N , by observing attacker’s responses
to a choice of coverage probability vectors p ∈ P . This allows us to find an approximately
optimal defender strategy—the strategy that leads to the best defender utility. We say that
ûi : [0, 1]→ R uniformly approximates or uniformly learns ui(·) within an error of ε, if
∀x ∈ [0, 1], |ûi(x)− ui(x)| ≤ ε. Note that the attacker’s mixed strategy remains the same

when the utility functions corresponding to all targets are increased by the same value. Therefore,
we can only hope to learn a “normalized” representation of the utility functions, ûi, such that
for all i and all x, |ûi(x) + c− ui(x)| ≤ ε for some c. Technically, this is exactly what we need

41

to predict the behavior of the attacker. We use this fact in the proof of our main theorem and
choose an appropriate normalization that simplifies the presentation of the technical details.

3.3 Theoretical Results
In this section, we present our theoretical results for learning attacker utility functions. We first
state our results in terms of linear utility functions and show that it is possible to uniformly learn
the utilities up to error ε using only 3 randomized strategies, with poly(n, 1

ε
) samples for each,

under mild conditions. We view these results as practically significant.
In Section 3.3.2, we extend the results to polynomials of degree d to represent a larger class of

utility functions. We show (in Section 3.3.3) that this allows us to learn the even more expressive
class of Lipschitz utility functions. The extension to high-degree polynomials and Lipschitz
utilities requires more restrictive conditions, and hence it is of greater theoretical than practical
interest.

Finally, in Section 3.3.4, we show that accurately learning the attacker’s utility function
allows us to predict the distribution of attacker responses to any defender strategy, and, therefore,
to pinpoint a near-optimal strategy.

3.3.1 Linear Utility Functions
Assume that the utility functions are linear and denoted by ui(x) = wix+ ci. As discussed in
Section 3.2, we can normalize the utilities; That is, without loss of generality cn = 0. Our main
result is the following theorem.

Theorem 3.3.1. Suppose the functions u1(·), . . . , un(·) are linear. Consider any 3 strategies,
p,q, r ∈ P , such that for any i < n, |(pi − qi)(pn − rn) − (pn − qn)(pi − ri)| ≥ λ, and for
any two different strategies x,y ∈ {p,q, r}, we have |xi − yi| ≥ ν. If we have access to
m = Ω(1

ρ
(1
ενλ

)2 log(n
δ
)) samples of each of these strategies, then with probability 1− δ, we can

uniformly learn each ui(·) within error ε.

We view the assumptions as being mild. Indeed, intuitively ν depends on how different the
strategies are from each other—a very small value means that they are almost identical on some
coordinates. The lower bound of λ is less intuitive, but again, it would not be very small unless
there is a very specific relation between the strategies. As a sanity check, if the three strategies
were chosen uniformly at random from the simplex, both values would be at least 1/poly(n).

To gain some intuition before proceeding with the proof, note that in the quantal best-response
model, for each strategy p, the ratio between the attack probabilities of two targets i and n
follows the relation

ui(pi) = ln

(
Dp(i)

Dp(n)

)
+ un(pn). (3.2)

Therefore, each strategy induces n − 1 linear equations that can be used to solve for the
coefficients of ui. However, we can only obtain an estimate D̂p(i) of the probability that target i
is attacked under a strategy p, based on the given samples. So, the inaccuracy in our estimates of

42

ln(D̂p(i)/D̂p(n)) leads to inaccuracy in the estimated polynomial ûi. For sufficiently accurate
estimates D̂p(i), we show that the value of ui differs from the true value by at most ε.

Let us first analyze the rate of convergence of D̂p(i) to Dp(i) as the number of observations
of strategy p increases.

Lemma 3.3.2. Given p ∈ P , let D̂p(i) be the empirical distribution of attacks based on
m = Ω(1

ρε2
log(n

δ
)) samples. With probability 1− δ, for all i ∈ N , 1

1+ε
≤ D̂p(i)/Dp(i) ≤ 1 + ε.

Proof. Given p ∈ P and i ∈ N , let X1, . . . , Xm be Bernoulli random variables, whose value is
1 if and only if target i is attacked in sample j, under strategy p. These are i.i.d. random variables
with expectation Dp(i). Furthermore, D̂p(i) = 1

m

∑
j Xj . Therefore, using the Chernoff bound,

we have

Pr

[
1

1 + ε
≤ D̂p(i)

Dp(i)
≤ 1 + ε

]
≥ 1− 2e−mD

p(i)ε2/4.

Since Dp(i) > ρ, when m = Ω(1
ρε2

log(n
δ
)), with probability 1 − δ

n
, 1

1+ε
≤ D̂p(i)/Dp(i) ≤

1 + ε. Taking the union bound over all i ∈ N , with probability 1 − δ, for all i ∈ N , 1
1+ε
≤

D̂p(i)/Dp(i) ≤ 1 + ε.

Proof of Theorem 3.3.1. By Equation 3.2 and using our assumption that cn = 0, for all i ∈ N ,
wipi + ci = ln Dp(i)

Dp(n)
+ wnpn. Using the same equation for q and eliminating ci, we have

wi(pi − qi) = ln
Dp(i)

Dp(n)
− ln

Dq(i)

Dq(n)
+ wn(pn − qn).

Repeating the above for p and r and solving for wn, we have

wn =
(pi − ri) ln Dp(i)Dq(n)

Dq(i)Dp(n)
− (pi − qi) ln Dp(i)Dr(n)

Dr(i)Dp(n)

(pi − qi)(pn − rn)− (pn − qn)(pi − ri)
. (3.3)

Furthermore, for all i < n,

wi =
ln Dp(i)

Dp(n)
− ln Dq(i)

Dq(n)
+ wn(pn − qn)

pi − qi
(3.4)

and

ci = ln
Dp(i)

Dp(n)
+ wnpn − wipi (3.5)

Let ŵi and ĉi be defined similarly to wi and ci but in terms of the estimates D̂p(i). By
Lemma 3.3.2, for strategy p (and similarly q and r) and any i, we have 1

1+ε′
≤ Dp(i)

D̂p(i)
≤ 1 + ε′

43

for ε′ = ελν/128. Therefore, we have

|wn − ŵn| =

∣∣∣(pi − ri) ln
(
Dp(i)Dq(n)D̂q(i)D̂p(n)

D̂p(i)D̂q(n)Dq(i)Dp(n)

)
− (pi − qi) ln

(
Dp(i)Dr(n)D̂r(i)D̂p(n)

D̂p(i)D̂r(n)Dr(i)Dp(n)

)∣∣∣
|(pi − qi)(pn − rn)− (pn − qn)(pi − ri)|

≤ |pi − ri| ln(1 + ε′)4 + |pi − qi| ln(1 + ε′)4

|(pi − qi)(pn − rn)− (pn − qn)(pi − ri)|

≤ 8
ε′

λ
≤ ε/16,

where the third transition follows from the well-known fact that ln(1 + x) ≤ x for all x ∈ R.
Similarly, for i < n, we have

|wi − ŵi| =

∣∣∣ln
(
Dp(i)D̂p(n)

D̂p(i)Dp(n)

)
− ln

(
Dq(i)D̂q(n)

D̂q(i)Dq(n)

)
+ (wn − ŵn)(pn − qn)

∣∣∣
|pi − qi|

≤ 1

ν
(4ε′ + ε/16) ≤ ε/8.

And,

|ci − ci| =
∣∣∣∣∣ln

Dp(i)D̂p(n)

D̂p(i)Dp(n)
+ (wn − ŵn)pn − (wi − ŵi)pi

∣∣∣∣∣ ≤ 2ε′ + ε/4 ≤ ε/2.

Therefore, for any i and any x ∈ [0, 1], |ui(x)− ûi(x)| ≤ ε.

3.3.2 Polynomial Utility Functions
On the way to learning Lipschitz utilities, we next assume that the utility function is a polynomial
of degree at most d (linear functions are the special case of d = 1). We show that it is possible to
learn these the utility functions using O(d) strategies.

Theorem 3.3.3. Suppose the functions u1(·), . . . , un(·) are polynomials of degree at most d.
Consider any 2d + 1 strategies, q(1), . . . ,q(d), q(d+1) = p(1), . . . ,p(d+1), such that for all
k, k′, k 6= k′, q(k)

1 = q
(k′)
1 , p(k)

n = p
(k′)
n , |q(k)

n − q(k′)
n | ≥ ν, and for all i < n, |p(k)

i − p(k′)
i | ≥ ν.

If we have access to m = Ω(1
ρ
(d
ενd

)2 log(n
δ
)) samples of each of these strategies, then with

probability 1− δ, we can uniformly learn each ui(·) within error ε.

It is important to emphasize that, unlike Theorem 3.3.1, one would not expect historical data
to satisfy the conditions of Theorem 3.3.3, because it requires different strategies to cover some
targets with the exact same probability. It is therefore mostly useful in a setting where we have
control over which strategies are played. Strictly speaking, these more stringent conditions are
not necessary for learning polynomials, but we enforce them to obtain a solution that is stable
against inaccurate observations. Also note that the d = 1 case of Theorem 3.3.3 is weaker and

44

less practicable than Theorem 3.3.1, because the latter theorem uses tailor-made arguments that
explicitly leverage the structure of linear functions.

In a nutshell, the theorem’s proof relies on polynomial interpolation. Specifically, consider
the relationship between the utility functions of different targets shown in Equation (3.2). We
assume that all the strategies p(i) have the same coverage probability pn on target n; since
subtracting a fixed constant from all utility functions leaves the distribution of attacks unchanged,
we can subtract un(pn) and assume without loss of generality that

∀i < n, ui(pi) = ln

(
Dp(i)

Dp(n)

)
. (3.6)

Because ui is a polynomial of degree d, it can be found by solving for the unique degree d
polynomial that matches the values of ui at d+ 1 points. To learn un, we can then use the same
approach with the exception of using the utility function for targets 1, . . . , n−1 in Equation (3.2)
to get the value of un(·) on d+ 1 points. As before, we do not have access to the exact values of
Dp(i), so we use the estimated values D̂p(i) in these equations.

The next well-known lemma states the necessary and sufficient conditions for existence of a
unique degree d polynomial that fits a collection of d+ 1 points [128].

Lemma 3.3.4. For any values y1, . . . , yd and x1, . . . , xd such that xi 6= xj for all i 6= j, there is
a unique polynomial f : R→ R of degree d, such that for all i, f(xi) = yi. Furthermore, this
polynomial can be expressed as

f(x) =
d+1∑

k=1

yk
∏

k′:k′ 6=k

x− xk′
xk − xk′

. (3.7)

Proof of Theorem 3.3.3. Let ŷ(k)
i = ln(D̂p(k)

(i)/D̂p(k)
(n)) for all i < n. We have assumed that

p
(k)
i 6= p

(k′)
i for any k 6= k′, so the conditions of Lemma 3.3.4 hold with respect to the pairs(

p
(k)
i , ŷ

(k)
i

)
. Let ûi be the unique polynomial described by Equation (3.7), i.e.,

ûi(x) =
d+1∑

k=1

ŷ
(k)
i

∏

k′:k′ 6=k

x− p(k′)
i

p
(k)
i − p(k′)

i

.

Similarly, for the values y(k)
i = ln(Dp(k)

(i)/Dp(k)
(n)), by Lemma 3.3.4 and Equation (3.6),

ui(x) can be expressed by

ui(x) =
d+1∑

k=1

y
(k)
i

∏

k′:k′ 6=k

x− p(k′)
i

p
(k)
i − p(k′)

i

.

Let ε′ be such that ε = 4ε′(d + 1)/νd. By Lemma 3.3.2 for strategy p(k) and any i, we have
1

1+ε′
≤ Dp(k)

(i)

D̂p(k)
(i)
≤ 1 + ε′. Using the fact that ln(1 + x) ≤ x for all x ∈ R, with probability 1− δ,

|ŷ(k)
i − y(k)

i | =
∣∣∣∣∣ln

D̂p(k)
(i)

Dp(k)(i)
− ln

D̂p(1)(n)

Dp(1)(n)

∣∣∣∣∣ ≤ 2ε′.

45

Therefore, for all x and all i < n,

|ûi(x)− ui(x)| =
∣∣∣∣∣
d+1∑

k=1

(ŷ
(k)
i − y(k)

i)
∏

k′ 6=k

x− p(k′)
i

p
(k)
i − p(k′)

i

∣∣∣∣∣

≤ 2ε′
d+ 1

νd
≤ ε/2.

Similarly, by Equation (3.2) for target n and q(k), we have,

un(q(k)
n) = ln

(
Dq(k)

(n)

Dq(k)(1)

)
+ u1(q

(k)
1)

Since for all k, q(k)
1 = q1, using Lemma 3.3.4, un can be described by the unique polynomial

passing through points
(
q

(k)
n , ln Dq(k) (n)

Dq(k) (1)

)
translated by the value u(1)(q1). Similarly, let û(1) be

defined by the unique polynomial passing through points
(
q

(k)
n , ln D̂q(k) (n)

D̂q(k) (1)

)
translated by the

value û1(q1), then

|ûn(x)− un(x)| ≤ |û1(q1)− u1(q1)|+
∣∣∣∣∣
d+1∑

k=1

(
ln
D̂q(k)

(n)

D̂q(k)(1)
− ln

Dq(k)
(n)

Dq(k)(1)

) ∏

k′:k′ 6=k

x− q(k′)
n

q
(k)
n − q(k′)

n

∣∣∣∣∣

≤ ε

2
+
ε

2
= ε

This completes our proof.

3.3.3 Lipschitz Utilities
We now leverage the results of Section 3.3.2 to learn any utility function that is continuous and
L-Lipschitz, i.e., for all i and values x and y, |ui(x)− ui(y)| ≤ L|x− y|. We argue that such
utility functions can be uniformly learned up to error ε, using O(L

ε
) strategies.

To see this, we first state a result that shows that all L-Lipschitz functions can be uniformly
approximated within error ε using polynomials of degree O(L

ε
) [121].

Lemma 3.3.5. Let Fm be a family of degree m polynomials defined over [−1, 1], and let F be
the set of all L-Lipschitz continuous functions over [−1, 1]. Then, for all f ∈ F ,

inf
g∈Fm

sup
x
|f(x)− g(x)| ≤ 6L

m
.

Therefore, for any L-Lipschitz function ui(x), there is a polynomial of degree m = 12L/ε
that uniformly approximates ui(x) within error of ε/2. By applying Theorem 3.3.3 to learn
polynomials of degree 12L/ε, we can learn all the utility functions using O(L/ε) strategies.

46

Corollary 3.3.6. Suppose the functions u1(·), . . . , un(·) are L-Lipschitz. For d = 12L/ε, con-
sider any 2d+1 strategies, q(1), . . . ,q(d), q(d+1) = p(1), . . . ,p(d+1), such that for all k, k′, k 6= k′,
q

(k)
1 = q

(k′)
1 , p(k)

n = p
(k′)
n , |q(k)

n − q(k′)
n | ≥ ν, and for all i < n, |p(k)

i −p(k′)
i | ≥ ν. If we have access

to m = Ω(L2

ρε4ν24L/ε
log(n

δ
)) samples of each of these strategies, then with probability 1− δ, we

can uniformly learn each ui(·) within error ε.

3.3.4 Learning the Optimal Strategy

So far, we have focused on the problem of uniformly learning the utility function of the attacker.
We now show that an accurate estimate of this utility function allows us to pinpoint an almost
optimal strategy for the defender.

Let the utility function of the defender on target i ∈ N be denoted by vi : [0, 1]→ [−1, 1].
Given a coverage probability vector p ∈ P , the utility the defender receives when target i is
attacked is vi(pi). The overall expected utility of the defender is

V(p) =
∑

i∈N

Dp(i)vi(pi).

Let ûi be the learned attacker utility functions, and D̄p(i) be the predicted attack probability on
target i under strategy p, according to the utilities ûi, i.e.,

D̄p(i) =
eûi(pi)∑
j∈N e

ûj(pj)
.

Let V̄(p) be the predicted expected utility of the defender based on the learned attacker utilities
D̄p(i), that is, V̄(p) =

∑
i∈N D̄

p(i)vi(pi).We claim that when the attacker utilities are uniformly
learned within error ε, then V̄ estimates V with error at most 8ε. At a high level, this is established
by showing that one can predict the attack distribution using the learned attacker utilities.
Furthermore, optimizing the defender’s strategy against the approximate attack distributions
leads to an approximately optimal strategy for the defender.

Theorem 3.3.7. Assume for all p and any i ∈ N , |ûi(pi)− ui(pi)| ≤ ε ≤ 1/4. Then, for all p,
|V̄(p) − V(p)| ≤ 4ε. Furthermore, let p′ = arg maxp V̄(p) be the predicted optimal strategy,
then maxp V(p)− V(p′) ≤ 8ε.

Proof. First, we show that the predicted attack distribution is close to the real attack distribution

47

for any strategy p. We have,

∣∣∣∣ln
(
D̄p(i)

Dp(i)

)∣∣∣∣ =

∣∣∣∣∣ln
(
eûi(pi)

eui(pi)

)
− ln

(∑
j∈N e

ûj(pj)

∑
j∈N e

uj(pj)

)∣∣∣∣∣

=

∣∣∣∣∣ûi(pi)− ui(pi)− ln

(∑
j∈N e

ûj(pj)

∑
j∈N e

uj(pj)

)∣∣∣∣∣

≤ ε+

∣∣∣∣∣ln
(∑

j∈N e
uj(pj) eûj(pj)−uj(pj)∑
j∈N e

uj(pj)

)∣∣∣∣∣
≤ ε+ max

j

∣∣ln(eûj(pj)−uj(pj))
∣∣

≤ 2ε.

Using the well-known inequalities 1−x ≤ e−x, ex−x2/2 < 1 +x, and 2ε ≤ 4ε− 8ε2 for ε ≤ 1/4,
we have

(1− 2ε) ≤ e−2ε ≤ D̄p(i)

Dp(i)
≤ e2ε ≤ e4ε−8ε2 ≤ (1 + 4ε).

Then,

|V̄(p)− V(p)| ≤
∑

i∈N

vi(pi) |D̄p(i)−Dp(i)|

=
∑

i∈N

vi(pi)

∣∣∣∣
D̄p(i)

Dp(i)
− 1

∣∣∣∣Dp(i)

≤ 4ε
∑

i∈N

vi(pi)D
p(i)

≤ 4ε max
i
vi(pi)

(∑

i∈N

Dp(i)

)

≤ 4ε.

Let p∗ = arg maxp V(p) be the true defender’s optimal strategy. Then, V(p∗) ≤ V̄(p∗) + 4ε ≤
V̄(p′) + 4ε ≤ V(p′) + 8ε. This completes the proof.

3.4 Discussion and Open Problems
In this chapter, we considered learning in Stackelberg security games when the attacker behavior
deviates from the best-response function. In particular, we studied the Subjective Utility Quantal
Response models — a commonly-used model from behavioral game theory — where rather than
attacking the most lucrative target i∗ = arg maxui(pi), the attacker attacks any target i with
probability proportional to exp (ui(pi)). Motivated by the need for algorithms that withstand
unexpected attacker behavior, a natural research direction in Stackelberg security games is to
consider deviations from the best-response model that are even less stylized.

48

In machine learning, such deviations from the “correct” behavior are collectively referred
to as noise. For example, in the context of classification, a no noise (realizable) setting refers
to the case where the label of each instance x is y = f ∗(x) for a fixed (but unknown) f ∗

in a predetermined class of functions. A variety of noise models have been studied in this
context; from more stylized noise models where the probability of having a correct label,
Pr[y = f ∗(x) | x] = η, is known and uniform over all x, such as the random classification noise
model; to highly asymmetric noise models where the probability of having a correct label is
bounded but not uniform, i.e., Pr[y = f ∗(x) | x] = η(x) ≥ η, called the bounded noise model.
There has been significant push towards addressing highly unstructured noise models, such as
the results presented in Chapters 8 and 9. This has led to learning algorithms that are robust to a
wider range of deviation from a prescribed behavior.

Inspired by the shift from stylized noise models towards highly unstructured ones, one
possible relaxation of the Subjective Utility Quantal Response model is as follows. Consider
a setting where the best response i∗ = arg maxui(pi) is attacked with probability at least
exp (ui(pi)). How many short-term or long-term observations are required to learn the optimal
defender strategy? We leave this question unanswered in this thesis, but we discuss learning with
an analogous classification noise in Chapters 8 and 9.

49

50

Chapter 4

Online Learning in Multi-attacker
Stackelberg Games

4.1 Introduction
In this chapter, we continue our study of Stackelberg security games where we face uncertain
attacker utility and behavior. As we have seen in Chapters 2 and 3 and related works [56, 191,
204] one way to alleviate uncertainty about the attacker behavior is to learn about it through
repeated interaction with the attacker: at each round, the defender commits to a mixed strategy
and observes the attacker’s best response. But this line of work is restricted to repeated interaction
with a single attacker type [56, 204], or simple variations thereof [191]. Either way, the defender
faces the exact same situation in each round—a convenient fact that allows the learning process
to ultimately converge to an (almost) optimal strategy, which is then played until the end of time.

In this chapter, we deal with uncertainty about attackers by adopting a fundamentally dif-
ferent approach, which makes a novel connection to the extensive literature on online learning.
Similarly to previous work [56, 191, 204], we study a repeated Stackelberg game; but in our
setting the attackers are not all the same—in fact, they are chosen adversarially from some
known set of types Θ. That is, at each round the defender commits to a mixed strategy based
on the history of play so far, and an adversarially chosen attacker from Θ best-responds to that
strategy.

Even in the face of this type of uncertainty, we would like to compete with the best fixed
mixed strategy in hindsight, that is, the mixed strategy that yields the highest total payoff when
played against each attacker in the sequence generated by the adversary. The regret associated
with an online learning algorithm (which recommends to the defender a mixed strategy at each
step) is simply the difference between the utility of the best-in-hindsight fixed strategy and the
expected utility of the algorithm in the online setting. Our goal is to

... design online learning algorithms whose regret is sublinear in the number of time
steps, and polynomial in the parameters of the game.

Such an algorithm—whose average regret goes to zero as the number of time steps goes to
infinity—is known as a no-regret algorithm. While there has been substantial work on no-regret

51

learning, what makes our situation different is that our goal is to compete with the best mixed
strategy in hindsight against the sequence of attackers that arrived, not the sequence of targets
they attacked.

4.1.1 Overview of Our Results

We provide two algorithmic results that apply to two different models of feedback. In the full
information model (Section 4.5), the defender plays a mixed strategy, and observes the type of
attacker that responds. This means that the algorithm can infer the attacker’s best response to
any mixed strategy, not just the one that was played. We design an algorithm whose regret is
O
(√

Tn2k log(nk)
)

, where T is the number of time steps, n is the number of targets that can
be attacked, and k is the number of attacker types.

In the second model—the partial information model (Section 4.6)—the defender only
observes which target was attacked at each round. Our main technical result is the design and
analysis of a no-regret algorithm in the partial information model whose regret is bounded by
O
(
T 2/3nk log1/3(nk)

)
.

For both results we assume that the attackers are selected (adversarially) from a set of k
known types. It is natural to ask whether no-regret algorithms exist when there are no restrictions
on the types of attackers. In Section 4.7, we answer this question in the negative, thereby
justifying the dependence of our bounds on k.

Let us make two brief remarks regarding central issues that are discussed at length in
Section 4.8. First, throughout this chapter we view information, rather than computation, as
the main bottleneck, and therefore aim to minimize regret without worrying (for now) about
computational complexity. Second, our exposition focuses on Stackelberg Security Games, but
our framework and results apply to Stackelberg games more generally.

4.1.2 Related work

This chapter presents the first treatment of Stackelberg Security games in the online learning
setting.

Our work in this chapter is closely related to work on online learning. For the full information
feedback case, the seminal work of Littlestone and Warmuth [197] achieves a regret bound of
O
(√

T logN
)

for N strategies. Kalai and Vempala [170] show that when the set of strategies is
a subset of Rd and the loss function is linear, this bound can be improved to O(

√
TD), where D

is the `1-diameter of the strategy set. This bound is applicable when there are infinitely many
strategies. In our work, the space of mixed strategies can be translated to a n-dimensional space,
where n is the number of targets. However, our loss function depends on the best response of the
attackers, hence is not linear.

For the partial feedback case (also known as the bandit setting), Auer et al. [20] introduce
an algorithm that achieves regret O(

√
TN logN) for N strategies. Awerbuch and Kleinberg

[27] extend the work of Kalai and Vempala [170] to the partial information feedback setting for
online routing problems, where the feedback is in the form of the end-to-end delay of a chosen

52

source-to-sink path. Their approach can accommodate exponentially or infinitely large strategy
spaces, but again requires a linear loss function.

4.2 Preliminaries
We consider a repeated Stackelberg security game between a defender (the leader) and a sequence
of attackers (the followers). At each step of this repeated game, the interactions between the
defender and the attacker induce a Stackelberg security game, where the defender commits to a
randomized allocation of his security resources to defend potential targets, and the attacker, in
turn, observes this randomized allocation and attacks the target with the best expected payoff.
The defender and the attacker then receive payoffs. The defender’s goal is to maximize his payoff
over a period of time, even when the sequence of attackers is unknown.

More precisely, a repeated stackelberg security game includes the following components:

◦ Time horizon T : the number of rounds.

◦ Set of targets N = {1, . . . , n}.

◦ A defender with:

– Resources: A set of resources R.

– Schedules: A collection D ⊆ 2N of schedules. Each schedule D ∈ D represents a
set of targets that can be simultaneously defended by one resource.

– Assignment function: Function A : R→ 2D indicates the set of all schedules that can
be defended by a given resource. An assignment of resources to schedules is valid if
every resource r is allocated to a schedule in A(r).

– Strategy: A pure strategy is a valid assignment of resources to schedules. The set of
all pure strategies is determined by N ,D, R, and A and can be represented as follow.
Let there be m pure strategies, and let M be a zero-one n×m matrix, such that the
rows represent targets and columns represent pure strategies, with Mi,j = 1 if and
only if target i is covered by some resource in the jth pure strategy.
A mixed strategy is a distribution over the set of pure strategies and is represented
by an m× 1 probability vector s, such that for all j, sj is the probability with which
pure strategy j is played. Every mixed strategy induces a coverage probability
vector p ∈ [0, 1]n, where pi is the probability with which target i is defended under
that mixed strategy. The mapping between a mixed strategy, s, and its coverage
probability vector, p, is given by p = Ms.

◦ A set of all attacker types Θ = {θ1, . . . , θk}.

– An adversary selects a sequence of attackers a = a1, . . . , aT , such that for all t,
at ∈ Θ.

– Throughout this work we assume that Θ is known to the defender, while a remains
unknown.

53

◦ Utilities: The defender and attacker both receive payoffs when a target is attacked.

– For the defender, let ucd(i) and uud(i) be the defender’s payoffs when target i is
attacked and is, respectively, covered or not covered by the defender. Then, under
coverage probability p, the expected utility of the defender when target i is attacked
is given by Ud(i,p) = ucd(i)pi + uud(i)(1− pi). Note that Ud(i,p) is linear in p. All
utilities are normalized such that ucd(i), u

u
d(i) ∈ [−1, 1] for all i ∈ N .

– For an attacker of type θj , let ucθj(i) and uuθj(i) be the attacker’s payoffs from attacking
target i when the target is, respectively, covered or not covered by the defender. Then
under coverage probability p, the expected utility of the attacker from attacking target
i is given by Uθj(i,p) = ucθj(i)pi + uuθj(i)(1− pi). Note that Uθj(i,p) is linear in p.

At step t of the game, the defender chooses a mixed strategy to deploy over his resources.
Let pt be the coverage probability vector corresponding to the mixed strategy deployed at step t.
Attacker at observes pt and best-responds to it by attacking target bat(p) = arg maxi∈N Uat(i,p).
When multiple targets have the same payoff to the attacker, each attacker breaks ties in some
arbitrary but consistent order.

Note that given a coverage probability vector, the utilities of all players and the attacker’s
best-response is invariant to the mixed strategy that is used to implement that coverage probability.
Therefore, we work directly in the space of valid coverage probability vectors, denoted by P .
For ease of exposition, in the remainder of this work we do not distinguish between a mixed
strategy and its coverage probability vector.

4.3 Problem Formulation
In this section, we first formulate the question of how a defender can effectively protect targets
in a repeated Stackelberg security game when the sequence of attackers is not known to him. We
then give an overview of our approach.

Consider a repeated Stackelberg security setting with one defender and a sequence of
attackers, a, that is selected beforehand by an adversary. When a is not known to the defender a
priori, the defender has to adopt an online approach to maximize his overall payoff during the
game. That is, at every time step t the defender plays, possibly at random, a mixed strategy pt
and receives some “feedback” regarding the attacker at that step. The defender subsequently
adjusts his mixed strategy pt+1 for the next time step. The expected payoff of the defender is
given by

E

[
T∑

t=1

Ud(bat(pt),pt)

]
,

where, importantly, the expectation is taken only over internal randomness of the defender’s
online algorithm.

The feedback the defender receives at each time step plays a major role in the design of
the algorithm. In this work, we consider two types of feedback, full information and partial
information. In the full information case, after attacker at best-responds to pt by attacking a

54

target, the defender observes at, that is, the defender know which attacker type just attacked. In
the partial information case, even after the attack occurs the defender only observes the target that
was attacked, i.e. bat(pt). More formally, in the full-information and partial-information settings,
the choice of pt depends on ai for all i ∈ [t− 1] or bai(pi) for all i ∈ [t− 1], respectively. As a
sanity check, note that knowing ai is sufficient to compute bai(pi), but multiple attacker types
may respond by attacking the same target; so feedback in the full information case is indeed
strictly more informative.

To examine the performance of our online approach, we compare its payoff to the defender’s
payoff in a setting where a is known to the defender. In the event that the sequence of attackers,
or merely the frequency of each attacker type in the sequence, is known, the defender can
pre-compute a fixed mixed strategy with the best payoff against that sequence of attackers and
play it at every step of the game. We refer to this mixed strategy as the best mixed strategy in
hindsight and denote it by

p∗ = arg max
p

T∑

t=1

Ud(bat(p),p).1

Our goal is to design online algorithms for the defender with payoff that is almost as good as
the payoff of the best mixed strategy in hindsight. We refer to the difference between the utility
of the online algorithm and the utility of the best-in-hindsight mixed strategy as regret, i.e.,

T∑

t=1

Ud(bat(p
∗),p∗)− E

[
T∑

t=1

Ud(bat(pt),pt)

]
.

Our results are stated as upper and lower bounds on regret. For upper bounds, we show both
in the case of full information feedback (Theorem 4.5.1) and partial information feedback
(Theorem 4.6.1) that

T∑

t=1

Ud(bat(p
∗),p∗)− E

[
T∑

t=1

Ud(bat(pt),pt)

]
≤ o(T) · poly(n, k).

In particular, the average regret goes to zero as T goes to infinity, that is, our algorithms are
no-regret algorithms. In contrast, we show that even in the full-information case, when Θ is
large compared to T , our regret must be linear in T (Theorem 4.7.1).

4.3.1 Methodology
This formulation of our problem, which involves comparison between online and offline decision
making, closely matches (by design) the classic online learning framework. To formally introduce
this setup, consider a set of actions M, time horizon T , an online learner, and an adaptive
adversary. For every t ∈ [T], the learner chooses a distribution qt over the actions inM, and

1As we explain in Section 4.4, for a general tie breaking rule, it is possible that the optimal strategy p∗ may not
be well-defined. However, the value of the optimal strategy is always well-defined in the limit. Slightly abusing
notation for ease of exposition, we use p∗ to refer to a strategy that acheives this optimal value in the limit.

55

then picks a random action based on this distribution, indicated by jt. The adversary then chooses
a loss vector, `t, such that for all j, `t(j) ∈ [−κ, κ]. The adversary is adaptive, in the sense that
the choice of `t can depend on the distributions at every step q1, . . . ,qt, and on the realized
actions in the previous steps j1, . . . , jt−1. The online learner then incurs an expected loss of
qt · `t.

Let Lalg =
∑T

t=1 qt · `t be the total expected loss of the online learner over time period T for
a choice of an algorithm. On the other hand, let Lmin = minj∈M

∑T
t=1 `t(j), be the loss of the

best fixed action for the sequence `1, . . . , `T . Define regret as RT,M,κ = Lalg − Lmin.
In our work we leverage a well-known result on no-regret learning, which can be stated as

follows (see, e.g., [53]).

Proposition 4.3.1. There is an algorithm such that

RT,M,κ ≤
√
Tκ log(|M|)

In this work, we can use any algorithm that satisfies the above guarantee as a black box.
Many algorithms fall into this category, e.g., Polynomial Weights [72] and Follow the Lazy
Leader [170]. In Section 4.8, we discuss the choice of algorithm further. Also note that any
utility maximization problem has an equivalent loss minimization formulation. To be consistent
with the notation used by the learning community, we adopt the notion of loss minimization
when dealing with results pertaining to online learning.

Although our problem is closely related to classic regret minimization, our goal cannot be
readily accomplished by applying Proposition 4.3.1. Indeed, each mixed strategy in a security
game corresponds to one action in Proposition 4.3.1. This creates an infinitely large set of actions,
which renders the guarantees given by Proposition 4.3.1 meaningless. Previous work resolves this
issue for a subset of problems where the action space is itself a vector space and the loss function
has some desirable properties, e.g., linear or convex with some restrictions [66, 170, 275].
However, the loss function used in our work does not have such nice structural properties: the
loss function at step t depends on the best response of the attacker, which leads to a loss function
that is not linear, convex, or even continuous in the mixed strategy.

4.4 Characteristics of the Offline Optimum
In this section, we examine the characteristics of the best-in-hindsight mixed strategy. Using this
characterization, we choose a set of mixed strategies that are representative of the continuous
space of all mixed strategies. That is, rather than considering all mixed strategies in P , we show
that we can limit the choices of our online algorithm to a subset of mixed strategies without
incurring (significant) additional regret.

To this end, we first show that the given attacker types partition the space of mixed strategies
into convex regions where the attacker’s best response remains fixed.

Definition 4.4.1. For every target i ∈ N and attacker type θj ∈ Θ, let Pji indicate the set of all
valid coverage probabilities where an attacker of type θj attacks target i, i.e.,

Pji = {p ∈ P | bθj(p) = i}.

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p
2

P1
2

P1
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p
2

P2
2

P2
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p1

p 2

P(2,2)

P(1,1)

P(2,1)

Figure 4.1: Best-response regions. The first two figures define Pji in a game where one resource
can cover one of two targets, and two attacker types. The third figure illustrates Pσ for the
intersection of the best-response regions of the two attackers.

It is known that for all i and j, Pji is a convex polytope [56].

Definition 4.4.2. For a given function σ : Θ→ N , let Pσ indicate the set of all valid coverage
probability vectors such that for all θj ∈ Θ, θj attacks σ(j). In other words, Pσ =

⋂
j∈ΘPjσ(j).

Note that Pσ is an intersection of finitely many convex polytopes, so it is itself a convex
polytope. Let Σ indicate the set of all σ for which Pσ is a non-empty region. Figure 4.1 illustrates
these regions.

The next lemma essentially shows that the optimal strategy in hindsight is an extreme point
of one of the convex polytopes defined above. There is one subtlety, though: due to tie breaking,
for some σ, Pσ is not necessarily closed. Hence, some of the extreme points of the closure of Pσ
are not within that region. To circumvent this issue, instead we prove that the optimal strategy in
hindsight is approximately an extreme point of one of the regions. That is, for a given ε > 0, we
define E to be a set of mixed strategies as follow: for all σ and any p that is an extreme point of
the closure of Pσ, if p ∈ Pσ, then p ∈ E , otherwise there exists p′ ∈ E such that p′ ∈ Pσ and
||p− p′||1 ≤ ε.

Lemma 4.4.3. Let E be as defined above, then for any sequence of attackers a,

max
p∈E

T∑

t=1

Ud(bat(p),p) ≥
T∑

t=1

Ud(bat(p
∗),p∗)− 2εT.

Proof. Recall that p∗ is the optimal strategy in hindsight for a sequence of attackers a. Since the
set of regions Pσ for all σ : Θ→ N partitions the set of all mixed strategies, p∗ ∈ Pσ for some
σ. We will show that there is a point p′′ ∈ E that is near optimal for the sequence a.

For any coverage probability p ∈ Pσ, let Ua(p) be the defender’s expected payoff for playing
p against sequence a. Then,

Ua(p) =
T∑

t=1

Ud(bat(p),p) =
T∑

t=1

Ud(σ(at),p) =
N∑

i=1

Ud(i,p)
T∑

t=1

I(σ(at) = i),

57

where I is the indicator function. Note that
∑T

t=1 I(σ(at) = i), which is the total number of
times target i is attacked in the sequence a, is constant over Pσ. Moreover, by the definition of
utilities, Ud(i,p) is a linear function in p. Therefore, Ua(p) is a summation of linear functions,
and as a result, is itself a linear function in p over Pσ.

Let P ′σ be the closure of Pσ. So, P ′σ is a closed convex polytope. Since Ua(p) is a linear
function over the convex set P ′σ, there is an extreme point p′ ∈ P ′σ such that

T∑

t=1

Ud(σ(at),p
′) ≥ Ua(p∗).

Now, let p′′ ∈ E ∩ Pσ be the point that corresponds to extreme point p′, i.e. ||p′ − p′′||1 ≤ ε.
Since for each target i ∈ N , ucd(i), u

u
d(i) ∈ [−1, 1] we have

Ud(i, p
′′
i) = ucd(i)p

′′
i + uud(i)(1− p′′i) ≥ ucd(i)(p

′′
i + ε) + uud(i)(1− p′′i − ε)− 2ε ≥ Ud(i, p

′
i)− 2ε.

Hence,

Ua(p′′) =
T∑

t=1

Ud(σ(at),p
′′) ≥

T∑

t=1

Ud(σ(at),p
′)− 2εT ≥ Ua(p∗)− 2εT.

The above lemma shows that by only considering strategies in E , our online algorithm will
merely incur an additional loss of εT . For a small enough choice of ε this only adds a lower-order
term to our regret analysis, and as a result can effectively be ignored. For the remainder of this
chapter, we assume that E is constructed with ε ∈ O(1√

t
). Next, we derive an upper bound on

the size of E .

Lemma 4.4.4. For any repeated security game with n targets and k attacker types, |E| ∈
O((2n + kn2)nnk).

Proof. Any extreme point of a convex polytope in n dimensions is the intersection of n linearly
independent defining half-spaces of that polytope. To compute the number of extreme points,
we first compute the number of defining half-spaces. For a given attacker type θj , there are

(
n
2

)

half-spaces each separating Pji and Pji′ for two targets i 6= i′. Summing over all attacker types,
there are O(kn2) such half-spaces. Moreover, the region of the valid coverage probabilities is
itself the intersection of O(m+ n) half-spaces, where m is the number of subsets of targets that
are covered in some pure strategy [56]. In the worst case, m = 2n. Therefore, each extreme
point is an intersection of n halfspaces chosen from O(2n + n+ kn2) half-spaces, resulting in at
most

(
m+n+kn2

n

)
∈ O((2n + kn2)n) extreme points. Each extreme point can give rise to at most

nk other ε-approximate extreme points. Therefore, |E| ∈ O((2n + kn2)nnk).

4.5 Upper bounds – Full Information
In this section, we establish an upper bound on regret in the full information setting. With the
machinery of Section 4.4 in place, the proof follows quite easily from Proposition 4.3.1.

58

Theorem 4.5.1. Given a repeated security game with full information feedback, n targets, k
attacker types, and time horizon T 2, there is an online algorithm that for any unknown sequence
of attackers, a, at time t plays a randomly chosen mixed strategy pt, and has the property that

E

[
T∑

t=1

Ud(bat(pt),pt)

]
≥

T∑

t=1

Ud(bat(p
∗),p∗)−O

(√
Tn2k log nk

)
,

where the expectation is taken over the algorithm’s internal randomization.

Before proving the theorem, a comment is in order. The algorithm is playing a distribution
over mixed strategies at any stage; isn’t that just a mixed strategy? The answer is no: the attacker
is best-responding to the mixed strategy drawn from the distribution over mixed strategies chosen
by the defender. The best responses of the attacker could be completely different if he responded
directly to the mixed strategy induced by this distribution over mixed strategies.

Proof of Theorem 4.5.1. We use any algorithm that satisfies Proposition 4.3.1. Let the set of
extreme points E denote the set of actions to be used in conjunction with this algorithm. At
every round, after observing at, we compute the loss of all mixed strategies p ∈ E by setting
`t(p) = −Ud(bat(p),p). Note that the problem of maximizing utility is now transformed to
minimizing the loss. Using Proposition 4.3.1 and Lemma 4.4.4, we have

E

[
T∑

t=1

Ud(bat(pt),pt)

]
≥ max

p∈E

T∑

t=1

Ud(bat(p),p)−O(
√
T log |E|)

≥ max
p∈E

T∑

t=1

Ud(bat(p),p)−O
(√

T (n log(2n + kn2) + k log n)
)

≥ max
p∈E

T∑

t=1

Ud(bat(p),p)−O
(√

Tn2k log nk
)
.

Using Lemma 4.4.3 with an appropriate choice of ε ∈ O(1√
T

), we have

E

[
T∑

t=1

Ud(bat(pt),pt)

]
≥

T∑

t=1

Ud(bat(p
∗),p∗)−O

(√
Tn2k log nk

)
.

4.6 Upper bounds – Partial Information
In this section, we establish an upper bound on regret in the partial information setting. Recall
that under partial information feedback, after an attack has occurred, the defender only observes
the target that was attacked, not the attacker type that initiated the attack. Our goal is to prove
the following theorem.

2If T is unknown, we can use the guess and double technique, adding to the regret bound an extra constant
factor.

59

Theorem 4.6.1. Given a repeated security game with partial information feedback, n targets, k
attacker types, and time horizon T , there is an online algorithm that for any unknown sequence
of attackers, a, at time t plays a randomly chosen mixed strategy pt, and has the property that

E

[
T∑

t=1

Ud(bat(pt),pt)

]
≥

T∑

t=1

Ud(bat(p
∗),p∗)−O

(
T 2/3 nk log1/3(nk)

)
,

where the expectation is taken over algorithm’s internal randomization.

4.6.1 Overview of the Approach

The central idea behind our approach is that any regret-minimization algorithm in the full
information setting also works with partial feedback if, instead of observing the loss of every
action at a time step, it receives an unbiased estimator of the loss of all actions. For time horizon
T and range of action loss [−κ,+κ], let RT,κ represent the regret of a full-information algorithm.
For any action j and any time step t, let ˆ̀

t(j) be an unbiased estimator of the loss of action j at
time step t. Run the full-information regret-minimization algorithm with the values of the loss
estimators, i.e. ˆ̀

t(j), and let qt(j) be the probability that our full-information algorithm picks
action j at time t. Then, the expected loss of this algorithm (denoted LEst.) is as follows.

LEst. =
T∑

t=1

∑

j∈M

qt(j)`t(j) =
T∑

t=1

∑

j∈M

qt(j)E[ˆ̀t(j)] = E

[
T∑

t=1

∑

j∈M

qt(j)ˆ̀
t(j)

]

≤ E

[
min
j

T∑

t=1

ˆ̀
t(j) +RT,κ

]
≤ min

j
E

[
T∑

t=1

ˆ̀
t(j)

]
+RT,κ = min

j

T∑

t=1

`t(j) +RT,κ.

(4.1)

This means that, in the partial information setting, we can use a full-information regret-
minimization algorithm in combination with a mechanism to estimate the loss of all actions.
This is similar to the approach first introduced by Awerbuch and Kleinberg [27]. Informally
speaking, we simulate one time step of a full information setting by a window of time, where we
mostly use the mixed strategy that is suggested by the full information algorithm (exploitation),
except for a few time steps where we invoke a mechanism for getting an estimate for the loss of
all mixed strategies in that window of time (exploration). We then pass these estimates to the
full-information algorithm to be used for future time steps.

A naı̈ve approach for getting unbiased estimators of the loss of all mixed strategies involves
sampling each mixed strategy once at random in a window of time and observing its loss. Note
that, at every time step in which we sample a random strategy, we could incur significant regret.
That is, the strategy that is being sampled may have significant loss compared to the strategy
suggested by the full-information regret minimization algorithm. Therefore, sampling each
strategy individually once at random adds regret that is polynomial in the number of mixed
strategies sampled, which in our case is exponential in the number of targets and types (See
Lemma 4.6.2 for more details). Therefore, a more refined mechanism for finding an unbiased

60

estimator of the loss is needed. That is, the question is: How can we get an unbiased estimator
of the loss of all mixed strategies while sampling only a few of them?

To answer this question, we first notice that the loss of different mixed strategies is not
independent, rather they all depend on the number of times each target is attacked, which in turn
depends on the type frequency of attackers. The challenge, then, is to infer an unbiased estimator
of the type frequencies, by only observing the best responses (not the types themselves).

As an example, assume that there is a mixed strategy where each attacker type responds
differently (See Figure 4.1). Then by observing the best-response, we can infer the type with
certainty. In general, such a mixed strategy, where each attacker responds differently, might not
exists. This is where insights from bandit linear optimization prove useful.

In more detail, in order to estimate the loss of a mixed strategy p ∈ Pσ, it is sufficient to
estimate the total frequency of the set of attacker types that attack target i in region Pσ, for any
i ∈ N . This value itself is a linear function in Rk. That is, let I(σ=i) be the indicator vector
of the set of attackers that attack i in region Pσ and let f = (f1, . . . , fk) ∈ Rk be the vector
of frequencies of attacker types. The loss of mixed strategy p can be determined using values
f · I(σ=i) for all i ∈ N . Moreover, even though we cannot observe the above inner products
directly under partial information feedback, we can create an unbiased estimator of any f · I(σ=i)

by sampling any p ∈ Pσ and observing how often target i is attacked in response. Therefore
our problem reduces to creating “good” unbiased estimators for the above inner products, which
lie in a k-dimensional vector space. This can be achieved by only sampling a set of k strategies
(See Lemmas 4.6.4 and 4.6.5)

One subtle obstacle remains, and that is the range of the new loss estimator (where the notion
of a “good” estimator comes in). Indeed, as shown in Eq. 4.1, the regret also depends on the
range of the loss estimator. To this end, we use the concept of barycentric spanners [27] that
is also used in bandit linear optimization, to ensure that the range of the loss estimator remains
small even after inferring it through frequency estimation.

4.6.2 Partial Information to Full Information
As briefly discussed earlier, any regret-minimization problem with partial-information feedback
can be reduced to the full information case, assuming that we can estimate the loss of all actions
by sampling a subset of the actions. The next lemma gives an upper bound on regret in terms of
the number of actions sampled, the quality of the estimator (in terms of its range), and the total
number of actions.

Lemma 4.6.2. LetM be the set of all actions. For any time block (set of consecutive time steps)
T ′ and action j ∈M, let cT ′(j) be the average loss of action j over T ′. Assume that S ⊆M is
such that by sampling all actions in S , we can compute ĉT ′(j) for all j ∈M with the following
properties:

E[ĉT ′(j)] = cT ′(j) and ĉT ′(j) ∈ [−κ, κ].

Then there is an algorithm with loss

Lalg ≤ Lmin +O
(
T 2/3|S|1/3κ1/3 log1/3(|M|)

)
,

where Lmin is the loss of the best action in hindsight.

61

Proof. Our proposed algorithm is as follows. Let Z = (T 2|S|−2κ log(|M|))1/3. Divide T into
Z (roughly) equal blocks, B1, . . . , BZ . In each block, pick a uniformly random permutation of S
together with |S| uniformly random time steps in that block, and assign them to the exploration
phase. At any time step that is dedicated to exploration, sample the actions in S in the order they
appear in the random permutation. At the end of each block, by the assumptions of the lemma,
we receive ĉτ (j), which is the average loss of action j during Bτ . We pass this loss information
to any regret-minimization algorithm that works in the full information feedback model. At
every time step that is not designated for exploration, we use the action that is computed by the
full-information algorithm based on the loss from the previous time block.

Next, we compute the regret of the proposed algorithm: Let qτ (·) be the fixed probability
distribution over actions suggested by the full information algorithm for block Bτ . On the
other hand, let qt(·) be the probability distribution over actions used by the partial information
algorithm. That is, during exploitation time steps t in block Bτ , qt(·) = qτ (·), and during the
exploration phase qt(·) refers the action that is being sampled at round t. For any action j, let
`t(j) represent the actual loss at round t, and Lτ (j) and cτ (j) indicate the aggregate and average
loss of j in block Bτ , respectively. That is

Lτ (j) =
∑

t∈Bτ

`t(j) and cτ (j) =
Lτ (j)

|Bτ |
.

We have

Lalg =
Z∑

τ=1

∑

t∈Bτ

∑

j∈M

qt(j)`t(j)

≤
Z∑

τ=1

∑

j∈M

qτ (j)Lτ (j) + Z · |S| (Each j ∈ S is sampled once and has loss ≤ 1)

≤
Z∑

τ=1

∑

j∈M

qτ (j)E[ĉτ (j)]

(
T

Z

)
+ Z · |S| (Definition of cτ (·) and unbiasedness of ĉτ (·))

≤ T

Z
E

[
Z∑

τ=1

∑

j∈M

qτ (j)ĉτ (j)

]
+ Z · |S|

≤ T

Z
E

[
min
j

Z∑

τ=1

ĉτ (j) +RZ,κ

]
+ Z · |S| (Regret bound under full information)

≤ T

Z

(
min
j

E

[
Z∑

τ=1

ĉτ (j)

]
+RZ,κ

)
+ Z · |S| (Jensen’s Inequality)

≤ T

Z

(
min
j

Z∑

τ=1

cτ (j) +RZ,κ

)
+ Z · |S| (Unbiasedness of ĉτ (j))

≤ min
j

T∑

t=1

`t(j) +
T

Z
RZ,κ + Z · |S| (Because

T∑

t=1

`t(j) =
Z∑

τ=1

cτ (j)|Bτ |)

62

≤ LTmin +
T

Z

√
Zκ log(|M|) + Z · |S|

≤ LTmin +O
(
T 2/3|S|1/3κ1/3 log1/3(|M|)

)
(Because Z =

(
T 2|S|−2κ log(|M|)

)1/3)

4.6.3 Creating Unbiased Estimators

Constructing an unbiased loss estimator for each mixed strategy is a pre-requisite for our
reduction to the full information case (as in Lemma 4.6.2). Here, we show how such estimators
can be constructed for all mixed strategies, by sampling only a small number of mixed strategies.

For any τ , let fτ : Rk → R be a function that for any w = (w1, . . . , wk) returns the number
of times attacker types θ1, . . . , θk were active in block Bτ , weighted by coefficients of w. That is

fτ (w) =
k∑

j=1

wj
∑

t∈Bτ

I(at = θj),

where I is an indicator function. For the majority of this section, w denotes an indicator vector—a
binary vector in Rk indicating the set of attacker types that best-respond to a mixed strategy by
attacking a certain target. In this case, fτ (w) is the number of times that we encounter these
specified attacker types in block Bτ . That is, for some Θ′ ⊆ Θ and its corresponding indicator
vector w, fτ (w) is the total number of times attackers in Θ′ are active in Bτ . Furthermore, note
that

∑
t∈Bτ I(at = θj) is a constant for any fixed τ and j, therefore fτ (·) is a linear function.

For any mixed strategy p ∈ Pσ and any τ , let cτ (p) represent the average utility of p against
attackers in block Bτ . Then,

cτ (p) =
1

|Bτ |
N∑

i=1

Ud(i,p)fτ (I(σ=i)),

where I(σ=i) is an indicator vector representing all the attackers that respond to a mixed strategy
in region Pσ (including p) by attacking i.

Our goal is to construct an unbiased estimator for cτ (p) for any p. To do so, we first
construct an estimator for fτ (·). Since fτ (·) is linear in Rk, it suffices to construct an estimator
for a spanning set of Rk. To this end, we defineW = {I(σ=i)| for all i ∈ N and σ ∈ Σ}, which
is a set of vectors I(σ=i) for any i and σ, each corresponding to attacker types that attack target
i in region Pσ. Next, we introduce a result by Awerbuch and Kleinberg [27] that helps us in
choosing an appropriate basis forW .

Proposition 4.6.3. ([27, Proposition 2.2]) IfW is a compact subset of d-dimensional vector
space V , then there exists a set B = {b1, . . . ,bd} ⊆ W such that for all w ∈ W , w may be
expressed as a linear combination of elements of B using coefficients in [−1, 1]. That is, for all
w ∈ W , there exist coefficients λ1, . . . , λd ∈ [−1, 1], such that w =

∑
λjbj . Such B is called a

barycentric spanner forW .

63

Consider the set W . First, note that W is finite, so it is compact and it has a barycentric
spanner of size k. Using the methods of Awerbuch and Kleinberg [27], we can construct a
barycentric spanner forW by performing linear optimization overW . Alternatively, for a choice
of {b1, . . . ,bk} ∈ W , and for all w ∈ W , we can solve the following feasibility LP:

∀j ∈ [k],
∑

i

λibi,j = wj,

∀i, − 1 ≤ λi ≤ +1.

Let B be the barycentric spanner forW as defined above. For any b ∈ B, there must be a
mixed strategy p ∈ Pσ and target i ∈ N such that I(σ=i) = b (otherwise b /∈ W); call such
strategy and target pb and ib, respectively. We use pb and ib for the purpose of creating a loss
estimator for fτ (b) as follows: In the exploration phase, once at random (based on a chosen
random permutation), we play pb and observe target ib. If ib is attacked in response we set
p̂τ (b) = 1, otherwise p̂τ (b) = 0. The next lemma shows that p̂τ (b)|Bτ | is an unbiased estimator
for fτ (b).

Lemma 4.6.4. For any b ∈ B, E [p̂τ (b) · |Bτ |] = fτ (b).

Proof. Note that p̂(b) = 1 if and only if at the time step that pb was played for the purpose of
recording b, target ib was attacked. Because pb is played once for the purpose of recording b
uniformly at random over the time steps and the adversarial sequence is chosen before the game
play, the attacker that responded to pb is also picked uniformly at random over the time steps.
Therefore, E[p̂(b)] is the probability that a randomly chosen attacker from Bτ responds in a way
that is consistent with any one of the attackers who responds by attacking ib. Formally,

E[p̂τ (b)] =

∑
i:bi=1 fτ (ei)

|Bτ |
=
fτ (b)

|Bτ |
.

SinceW ⊆ {0, 1}k, the rank ofW is at most k. Let B = {b1, . . . ,bk} be the barycentric
spanner for W . For any w ∈ W , let λ(w) be the representation of w in basis B. That is,∑k

j=1 λj(w) bj = w. Now, consider any mixed strategy p and let σ be such that p ∈ Pσ. Let

ĉτ (p) =
n∑

i=1

k∑

j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p). (4.2)

The next lemma shows that for all p, ĉτ (p) is indeed an unbiased estimator of cτ (p) with a small
range.

Lemma 4.6.5. For any mixed strategy p, E[ĉτ (p)] = cτ (p) and ĉτ (p) ∈ [−nk, nk].

Proof. Let σ be such that p ∈ Pσ. We have,

E[ĉτ (p)] = E

[
n∑

i=1

k∑

j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p)

]

64

=
n∑

i=1

k∑

j=1

λj(Iσ=i) E[p̂τ (bj)] Ud(i,p) (linearity of expectation)

=
n∑

i=1

Ud(i,p)
k∑

j=1

λj(Iσ=i) fτ (bj)

|Bτ |
(by Lemma 4.6.4)

=
n∑

i=1

Ud(i,p)

|Bτ |
fτ

(
k∑

j=1

λj(Iσ=i) bj

)
(by linearity of fτ)

=
n∑

i=1

Ud(i,p)

|Bτ |
fτ (I(σ=i)) (by definition of λ(·))

= cτ (p).

Since B is barycentric, for any w ∈ W , λj(w) ∈ [−1, 1]. Moreover, p̂τ (·) ∈ {0, 1}, and
Ud(i,p) ∈ [−1, 1]. So,

ĉτ (p) =
n∑

i=1

k∑

j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p) ∈ [−nk, nk].

4.6.4 Putting It All Together
Using the machinery developed in previous subsections, we can now proceed to prove the
theorem.

Proof of Theorem 4.6.1. We use Algorithm 4.1 along with Proposition 4.3.1 as a black-box
full-information regret minimization algorithm. We use E as the set of mixed strategies described
in Section 4.4.

Our algorithm divides the timeline to Z = n (T 2 log nk)
1/3 equal intervals, B1, . . . , BZ . The

initial distribution over the set of mixed strategies E is the uniform distribution.
In each block, we pick a random permutation π over B together with k time steps in that

block and mark them for exploration. At the jth time step that is dedicated to exploration, we play
mixed strategy pbπ(j) and observe target ibπ(j) . If ibπ(j) is attacked, then we assign p̂τ (bπ(j)) = 1

otherwise p̂τ (bπ(j)) = 0. At any time step that is not set for exploration, we choose a mixed
strategy at random from the current distribution over E .

At the end of each block, we compute ĉτ (p) for all p ∈ E , using Equation 4.2. We then pass
this loss information to any regret-minimization algorithm that works in the full information
feedback model, and update the default distribution based on its outcome.

Using Lemma 4.6.5, ĉτ (p) is an unbiased estimator of the average loss of action p during
Bτ . This unbiased estimator is passed to the full-information regret minimization algorithm. By
Lemma 4.6.2, we have

T∑

t=1

Ud(bat(p
∗),p∗)− E

[
T∑

t=1

Ud(bat(pt),pt)

]
≤ O

(
T 2/3|B|1/3(nk)1/3 log1/3(|E|)

)

65

Algorithm 4.1: REPEATED SECURITY GAMES WITH PARTIAL INFORMATION

1: Input: Black-box access to an algorithm that satisfies Proposition 4.3.1,
FULL-INFORMATION(·), which takes as input the loss of all actions and produces a
distribution q over them.

2: Z ← n (T 2 log nk)
1/3.

3: Create setW = {I(σ=i)| for all i ∈ N and σ ∈ Σ}.
4: Find a barycenteric spanner B = {b1, . . . ,bk} forW . For every b ∈ B such that b = I(σ=i)

for some i and σ, let ib ← i and pb be any mixed strategy in Pσ.
5: For all w ∈ W let λ(w) be the representation of w in basis B. That is

∑k
j=1 λj(w) bj = w.

6: Let q1 be the uniform distribution over E .
7: for τ = 1, . . . , Z do
8: Choose a random permutation π over [k] and t1, . . . , tk time steps at random from [T/Z].
9: for t = (τ − 1)(T/Z) + 1, . . . , τ(T/Z) do

10: if t = tj for some j ∈ [k] then
11: Play pt ← pbπ(j)

12: If ibπ(j) is attacked, then p̂τ (bπ(j))← 1, otherwise p̂τ (bπ(j))← 0.
13: else
14: Play pt at random from distribution qτ .
15: end if
16: end for
17: for all p ∈ E and all σ such that p ∈ Pσ do
18:

ĉτ (p)←
n∑

i=1

k∑

j=1

λj(Iσ=i) p̂τ (bj)Ud(i,p).

19: end for
20: Call FULL-INFORMATION(ĉτ). And receive qτ+1 as a distribution over all mixed

strategies in E .
21: end for

∈ O
(
T 2/3k1/3(nk)1/3(n2k log(nk))1/3

)

∈ O
(
T 2/3 nk log1/3(nk)

)
.

4.7 Lower Bound
Can we be truly blind to the types of attackers that the defender might encounter? As mentioned
before, the set of all attacker types, Θ, is known to the defender. But what if we allow Θ to
include all possible types of attackers? In this section, we show that with no prior knowledge
regarding the possible types of attackers that the defender might encounter, it is impossible to

66

design a no-regret algorithm. This is formalized in our final theorem that shows that for any
T there is a game with at most 2T+1 attacker types such that any online algorithm experiences
regret that is linear in T .

Theorem 4.7.1. For any T there is a repeated security game in the full-information feedback
setting with a set Θ of attacker types such that |Θ| < 2T+1 and any online algorithm that at time
t (possibly at random) returns strategy pt has expected utility

E

[
T∑

t=1

Ud(bat(pt),pt)

]
≤

T∑

t=1

Ud(bat(p
∗),p∗)− T

2
,

where the expectation is over the algorithm’s internal randomization.

Proof. Consider a security game in whichN = {1, 2, 3}, and the defender has one resource that
can defend any one target at a time. Let the defender’s utility be Ud(i,p) = −1 for i ∈ {1, 3}
and Ud(2,p) = 0. Let all attackers break ties in lexicographic order.

Because the defender prefers target 2 to be attacked, for any coverage probability p, reducing
p2 to 0 leads to a valid coverage probability that will not decrease the defender’s payoff. So,
without loss of generality we restrict the defender’s actions to the coverage probabilities p =
[p, 0, 1− p].

Next, we define a set Θ of attackers. To do so, we first show that certain best-response
functions are valid, i.e. there is an attacker—defined by its utility function—that responds
according to that best-response function. The next lemma allows us to define the attackers by
their best-response functions, thereby significantly simplifying our analysis.

Lemma 4.7.2. For any 0 ≤ r1 ≤ r2 ≤ 1 and any p = [p, 0, 1− p], there exists an attacker type
θj (defined by its utility function) such that

bθj(p) =

1 if p ∈ [0, r1]

2 if p ∈ (r1, r2]

3 if p ∈ (r2, 1]

Proof. Let α = max{1−r1
r1
, r2

1−r2}. Let θj be an attacker defined as follows.

ucθj(i) =

−(1−r1)
r1α

if i = 1

0 if i = 2
−r2

(1−r2)α
if i = 3

and uuθj(i) =

{
0 if i = 2
1
α

otherwise

We show that attacker θj’s best-response has the desired properties. For p ∈ [0, r1],

Uθj(1,p) =
1

α

(
p
−(1− r1)

r1

+ (1− p)
)
≥ 1

α
(−(1− r1) + (1− p)) ≥ 0,

Uθj(2,p) = 0,

Uθj(3,p) =
1

α

(
(1− p) −r2

1− r2

+ p

)
≤ 1

α
(−r2 + p) ≤ 0,

67

so, bθj(p) = 1 for p ∈ [0, r1]. For p ∈ (r1, r2],

Uθj(2,p) = 0 >
1

α
(−(1− r1) + (1− p)) > 1

α

(
p
−(1− r1)

r1

+ (1− p)
)

= Uθj(1,p),

Uθj(2,p) = 0 ≥ 1

α
(−r2 + p) ≥ 1

α

(
(1− p) −r2

1− r2

+ p

)
= Uθj(3,p),

so, bθj(p) = 2 for p ∈ (r1, r2]. For p ∈ (r2, 1],

Uθj(1,p) =
1

α

(
p
−(1− r1)

r1

+ (1− p)
)
<

1

α
(−(1− r1) + (1− p)) < 0,

Uθj(2,p) = 0,

Uθj(3,p) =
1

α

(
(1− p) −r2

1− r2

+ p

)
>

1

α
(−r2 + p) > 0,

so, bθj(p) = 3. Therefore, the attacker defined by the above utility function has the desired
best-response.

Next, we recursively define 2T+1 − 2 attacker types. We use r1 ≤ r2 as defined in Lemma
4.7.2 to represent the best response of an attacker. We represent attacker types by binary strings.
Let

Attacker θ0 : r0
1 =

1

2
, r0

2 = 1

Attacker θ1 : r1
1 = 0, r1

2 =
1

2
.

For any x ∈ {0, 1}<T define

Attacker θ0x : r0x
1 =

rx1 + rx2
2

, r0x
2 = rx2

Attacker θ1x : r1x
1 = rx1 , r

1x
2 =

rx1 + rx2
2

This representation allows us to think of the choices of the adversary as a chain of post-fixes
of a T -bit binary number. That is, the attacker chooses a T -bit binary string and plays its
post-fixes in order.

Next, we formulate our problem in terms of decision trees. Consider a complete binary tree.
The adversary’s sequence of attackers indicates a root-to-leaf path in this tree that corresponds
to his choice of the T -bit string. The defender’s online decision at every step of the game is
to choose a distribution over p ∈ (r0x

1 , r
0x
2] or p ∈ (r1x

1 , r
1x
2], having already observed string

x. Since for all x, (r0x
1 , r

0x
2] ∩ (r1x

1 , r
1x
2] = ∅, these two choices represent two disjoint events.

Therefore, we can represent the defender’s online decision at node x as a distribution on nodes
0x or 1x. Using Lemma 4.7.2, if both the defender and attacker land on the same node, the
defender receives a penalty of 0 and otherwise receives a penalty of 1 (utility−1). To summarize,
the online algorithm corresponds to a distribution over all possible decision trees; the adversary
chooses a root-to-leaf path; and expected utility is calculated as above.

68

By Yao’s Minmax Principle, an upper bound on the expected utility of the optimal randomized
decision tree against the worst deterministic sequence (root-to-leaf path) can be obtained by
constructing a specific distribution over sequences, and reasoning about the expected utility of
the best deterministic decision tree against this distribution. Let this distribution be the uniform
distribution over all T -bit strings. That is, at step x the adversary chooses attackers 0x and
1x each with probability 1

2
. Then for any fixed decision tree, at every node the algorithm only

has 1
2

probability of matching the adversary’s choice. So, the defender receives an expected
penalty of 1

2
. We conclude that for any randomized online algorithm there exists a sequence of

attackers—corresponding to a T -bit string—such that the algorithm’s expected utility is at most
−T

2
.
To complete the proof, we claim that for any sequence of attackers corresponding to a T -bit

string, there is a mixed strategy that would cause each attacker in the sequence to attack target 2.
This is true because for every x and y, (ryx1 , r

yx
2] ⊂ (rx1 , r

x
2], and therefore if θx is the attacker at

step T , choosing p∗ ∈ (rx1 , r
x
2] would also place p in the interval corresponding to any previous

attacker. By Lemma 4.7.2, the best response of each attacker in the sequence to the strategy
p∗ = [p∗, 0, 1− p∗] is to attack target 2. It follows that p∗ has overall utility 0 to the defender,
and hence the regret is at least T

2
.

4.8 Discussion

Extension to general Stackelberg games The approach presented in this chapter easily ex-
tends to general repeated Stackelberg games, which can be represented as follows. There are k
matrices of size n×m, with the same payoffs for the row player, but possibly different payoffs for
the column player. This set of matrices is known to the players. At each time step, a game matrix
is chosen but remains unknown to the row player. The row player then chooses a probability
distribution over the rows of the matrix and the column player, having observed this distribution,
chooses the column with the best expected payoff. An online algorithm should guarantee to the
row player good payoff against any adversarially selected sequence of such matrices.

Note that a repeated SSG is captured by the foregoing framework: in each matrix, each
row represent a pure strategy of the defender (there may be exponentially many rows) and each
column represents a target. Then, for row i and column j, if target j is covered in the ith strategy
then the row and column payoff are ucd(i) and uca(i), and otherwise uud(i) and uua(i), respectively.

To see how our methodology extends, note that each of the k matrices can be used to
decompose the space of all probability distributions (over the rows) into m convex regions,
where in each region the best response is a fixed column. For the full information feedback
model, the set of all extreme points in the intersections of these regions leads to an algorithm
whose regret is polynomial inm,n and k, and sublinear in T . Similarly, for the partial information
feedback model, our approach for inferring the frequency of each matrix by only observing the
best response carries over to the general Stackelberg games. However, we focused on SSGs in
order to obtain regret bounds that are polynomial in the number of targets and attacker types—the
foregoing bounds for general Stackelberg games would translate to bounds that are exponential
in the number of targets.

69

On the power of adversary In our work, we assume that the sequence of attackers is chosen
adversarially before the game starts. That is, the adversary’s choice of attacker is oblivious to the
history. It is worth noting that our upper bound on regret in the full-information feedback setting
holds for a much more powerful adversary; an adaptive adversary who chooses an attacker at time
t by first observing the defender’s mixed strategies p1, . . . ,pt−1, and the defender’s distribution
(determined by the internal randomness of the online algorithm) over mixed strategies at steps
1, . . . , t. It would be interesting to know whether there are no-regret algorithms, with polynomial
dependence on the number of targets and types, for adaptive adversaries and partial-information
feedback.

On the benefits of laziness Our regret analysis holds when used in conjunction with any
regret-minimization algorithm that satisfies Proposition 4.3.1. Nevertheless, some algorithms
provide additional properties that may prove useful in practice. Specifically, when used with
Follow the Lazy Leader, our algorithm for the full information setting uses one mixed strategy
for a long period of time before switching to another (expected length Õ(

√
T)). Informally

speaking, this allows attackers enough time to conduct surveillance, observe the mixed strategy,
and then best-respond to it. Therefore, even if the attacker’s response to a new mixed strategy
is unreliable or irrational at first (not representative of his best response), the defender can still
guarantee a no-regret outcome.

The extremely partial information model Previous work has mostly assumed that the de-
fender is able to monitor all targets simultaneously and detect an attack on any one of them at
all times [179, 204]. In contrast, our algorithm for the partial information setting only requires
the ability to detect whether or not an attack occurs on at most one chosen target at a time. This
feature may prove useful in domains where simultaneous observation of targets is impractical.
For example, in wildlife protection applications, patrols and unmanned aerial vehicles (UAVs)
can detect signs of poaching only in very specific areas.

4.9 Subsequent Works
Following the initial publication of the results that appear in this chapter, Daskalakis and
Syrgkanis [94] considered online learning in the general case and with applications to auctions
design and online Stackelberg games. They showed that in any full information online learning
problem where the adversary has d actions, there is an algorithm with regret O(

√
dT). In

the context of online Stackelberg games with full information, Daskalakis and Syrgkanis [94]
obtained an improved regret of O(

√
kT) regardless of the number of targets, n. Subsequently, in

our recent work [113], we follow up on the work of Daskalakis and Syrgkanis [94] and show
that one can improve the regret of general online learning problems further down to

√
d′T for

some d′ � d, when the set of d actions of the adversary and the set of actions of the learner
demonstrate a certain structural property parameterized by d′ � d. We present these results in
the next chapter.

70

Chapter 5

Oracle-Efficient Online Learning and
Auction Design

5.1 Introduction

In this chapter, we consider the computational aspect of online learning. Online learning
algorithms have been designed for a variety of problems, such as multi-attacker Stackelberg
games (Chapter 4), online marketplaces [31, 52, 73, 240], and communication networks [27].
The environments in these applications are constantly evolving, requiring continued adaptation
of these systems. General-purpose online learning algorithms robustly address this challenge,
with performance guarantees that hold even when the environment is adversarial. However,
these general purpose algorithms (often with information-theoretically optimal guarantees)
are computationally inefficient when the action space is exponential in the natural problem
representation [124]. In this chapter, we introduce online algorithms that can be implemented
efficiently and with little effort for those exponentially large actions spaces that demonstrate
some structural properties.

This goal is not achievable without some assumptions on the problem structure. Since
an online optimization problem is at least as hard as the corresponding offline optimization
problem [71, 94], a minimal assumption is the existence of an algorithm that returns a near-
optimal solution to the offline problem. We assume, without loss of generality, that our learner
has access to such an offline algorithm, which we call an offline optimization oracle. This oracle,
for any (weighted) history of choices by the environment, returns an action of the learner that
(approximately) maximizes the learner’s reward. We seek to design oracle-efficient learners, that
is, learners that run in polynomial time, with each oracle call counting O(1).

An oracle-efficient learning algorithm can be viewed as a reduction from the online to the
offline problem, providing conditions under which the online problem is not only as hard, but
also as easy as the offline problem, and thereby offering computational equivalence between
online and offline optimization. Apart from theoretical significance, reductions from online
to offline optimization are also practically important. For example, if one has already devel-
oped and implemented a Bayesian optimization procedure which optimizes against a static
stochastic environment, then our algorithm offers a black-box transformation of that procedure

71

into an adaptive optimization algorithm with provable learning guarantees in non-stationary,
non-stochastic environments. Even if the existing optimization system does not run in worst-case
polynomial time, but is rather a well-performing fast heuristic, a reduction to offline optimization
will leverage any expert domain knowledge that went into designing the heuristic, as well as any
further improvements of the heuristic or even discovery of polynomial-time solutions.

Recent work of Hazan and Koren [157] shows that oracle-efficient learning in adversarial
environments is not achievable in general, while leaving as open the problem of identifying
the properties under which oracle-efficient online learning may be possible. Specifically, we
introduce a general purpose algorithm called Generalized Follow-the-Perturbed-Leader (Gener-
alized FTPL) and derive sufficient conditions under which this algorithm yields oracle-efficient
online learning. Our results are enabled by providing a new way of adding regularization so as to
stabilize optimization algorithms in general optimization settings. The latter could be of indepen-
dent interest beyond online learning. Our approach unifies and extends previous approaches to
oracle-efficient learning, including the Follow-the-Perturbed Leader (FTPL) approach introduced
by Kalai and Vempala [170] for linear objective functions, and its generalizations to submodular
objective functions [156], adversarial contextual learning [255], and learning in simultaneous
second-price auctions [94]. Furthermore, our sufficient conditions draw a strong connection
between the notion of a universal identification set of Goldman et al. [131] and oracle-efficient
learnability.

The second main contribution of our work is to introduce a new framework for the problem of
adaptive auction design for revenue maximization and to demonstrate the power of Generalized
FTPL through several applications in this framework. Traditional auction theory assumes that
the valuations of the bidders are drawn from a population distribution which is known, thereby
leading to a Bayesian optimization problem. The knowledge of the distribution by the seller is a
strong assumption. Recent work in algorithmic mechanism design [83, 103, 211, 238] relaxes
this assumption by solely assuming access to a set of samples from the distribution. In this
work, we drop any distributional assumptions and introduce the adversarial learning framework
of online auction design. On each round, a learner adaptively designs an auction rule for the
allocation of a set of resources to a fresh set of bidders from a population.1 The goal of the
learner is to achieve average revenue at least as large as the revenue of the best auction from
some target class. Unlike the standard approach to auction design, initiated by the seminal work
of Myerson [213], our approach is devoid of any assumptions about a prior distribution on the
valuations of the bidders for the resources at sale. Instead, similar to an agnostic approach in
learning theory, we incorporate prior knowledge in the form of a target class of auction schemes
that we want to compete with. This is especially appropriate when the auctioneer is restricted
to using a particular design of auctions with power to make only a few design choices, such
as deciding the reserve prices in a second price auction. A special case of our framework is
considered in the recent work of Roughgarden and Wang [240]. They study online learning of the
class of single-item second-price auctions with bidder-specific reserves, and give an algorithm
with performance that approaches a constant factor of the optimal revenue in hindsight. We go

1Equivalently, the set of bidders on each round can be the same as long as they are myopic and optimize their
utility separately in each round. Using extension to contextual learning (See full version of our results in [113]), this
approach can also be applied when the learner’s choice of auction is allowed to depend on features of the arriving
set of bidders, such as demographic information.

72

well beyond this specific setting and show that our Generalized FTPL can be used to optimize
over several standard classes of auctions including VCG auctions with bidder-specific reserves
and the level auctions of Morgenstern and Roughgarden [211], achieving low additive regret to
the best auction in the class.

In the remainder of this section, we describe our main results in more detail and then
discuss several extensions and applications of these results, including (1) learning with constant-
factor approximate oracles (e.g., using Maximal-in-Range algorithms [217]); (2) regret bounds
with respect to stronger benchmarks for the case in which the environment is not completely
adversarial but follows a fast-mixing Markov process.

Our work contributes to two major lines of work on the design of efficient and oracle-efficient
online learning algorithms [5, 94, 112, 156, 157, 168, 170, 229, 256] and the design of auctions
using machine learning tools [52, 73, 83, 103, 181, 211].

5.1.1 Oracle-Efficient Learning with Generalized FTPL

We consider the following online learning problem. On each round t = 1, . . . , T , a learner
chooses an action xt from a finite set X , and an adversary chooses an action yt from a set Y . The
learner then observes yt and receives a payoff f(xt, yt) ∈ [0, 1], where the function f is fixed
and known to the learner. The goal of the learner is to obtain low expected regret with respect to
the best action in hindsight, i.e., to minimize

REGRET := E

[
max
x∈X

T∑

t=1

f(x, yt)−
T∑

t=1

f(xt, yt)

]
,

where the expectation is over the randomness of the learner.2 We desire algorithms, called
no-regret algorithms, for which this regret is sublinear in the time horizon T .

Our algorithm takes its name from the seminal Follow-The-Perturbed-Leader (FTPL) algo-
rithm of Kalai and Vempala [170]. FTPL achieves low regret, O(

√
T log(|X |), by independently

perturbing the historical payoff of each of the learner’s actions and choosing on each round the
action with the highest perturbed payoff. However, this approach is inefficient when the action
space is exponential in the natural representation of the learning problem, because it requires
creating |X | independent random variables.3 Moreover, because of the form of the perturbation,
the optimization of the perturbed payoffs cannot be performed by the offline optimization oracle
for the same problem, but instead it requires a “perturbed” optimization oracle. We overcome
both of these challenges by, first, generalizing FTPL to work with perturbations that can be
compactly represented and are thus not necessarily independent across different actions (shar-
ing randomness), and, second, by implementing such perturbations via synthetic histories of
adversary actions (implementing randomness).

2To simplify exposition, we assume that the adversary is oblivious, i.e., that the sequence y1, . . . , yT is chosen
in advance, though our results generalize to adaptive adversaries using standard techniques [94, 164].

3 If payoffs are linear in some low-dimensional representation of X then the number of variables needed is equal
to this dimension. But for non-linear payoffs, |X | variables are required.

73

Sharing randomness Our Generalized FTPL begins by drawing a random vector α ∈ RN

of some small size N , with components αj drawn independently from a dispersed distribution
D. The payoff of each of the learner’s actions is perturbed by a linear combination of these
independent variables, as prescribed by a perturbation translation matrix Γ of size |X |×N , with
entries in [0, 1]. Let Γx denote the row of Γ corresponding to x. On each round t, the algorithm
outputs an action xt that (approximately) maximizes the perturbed historical performance. In
other words, xt is chosen such that for all x ∈ X ,

t−1∑

τ=1

f(xt, yτ) +α · Γxt ≥
t−1∑

τ=1

f(x, yτ) +α · Γx − ε

for some fixed optimization accuracy ε ≥ 0. See Algorithm 5.1 in Section 5.2 for a full
specification.

We show that Generalized FTPL is no-regret as long as ε is sufficiently small and the
translation matrix Γ satisfies an admissibility condition. This condition requires the rows of Γ to
be (sufficiently) distinct so that each action’s perturbation uses a different weighted combination
of the low-dimensional noise. To the best of our knowledge, the approach of using an arbitrary
matrix to induce shared randomness among actions of the learner is novel. See Theorem 5.2.5
for a formal statement of this result.

Theorem 5.2.5 (informal). A translation matrix is (κ, δ)-admissible if any two rows of the
matrix are distinct, the number of different values within a column is at most κ, and the minimum
non-zero difference between any two values within a column is at least δ. Generalized FTPL
with a (κ, δ)-admissible matrix Γ and an appropriate uniform distribution as D achieves regret
O(N

√
Tκ/δ + εT).

A technical challenge here is to show that the randomness induced by Γ on the set of actions
X stabilizes the algorithm, i.e., the probability that xt 6= xt+1 is small. We use the admissibility
of Γ to guide us through the analysis of stability. In particular, we consider how each column of
Γ partitions actions of X to a few subsets (at most κ) based on their corresponding entries in that
column. Admissibility implies that the algorithm is stable as a whole, if for each column the
partition to which an action belongs remains the same with probability close to 1. This allows
us to decompose the stability analysis of the algorithm as a whole to the analysis of stability
across partitions of each column. At the column level, stability of the partition between two time-
steps follows by showing that a switch between partitions happens only if the perturbation αj
corresponding to that column falls into a small sub-interval of its support. The latter probability
is small if the distribution is sufficiently dispersed. This final argument is similar in nature to the
reason why perturbations lead to stability in the original FTPL algorithm of [170].

Implementing randomness To ensure oracle-efficient learning, we additionally need the
property that the induced action-level perturbations can be simulated by a (short) synthetic
history of adversary actions. This allows us to avoid working with Γ directly, or even explicitly
writing it down. This requirement is captured by our implementability condition, which states
that each column of the translation matrix essentially corresponds to a scaled version of the

74

expected reward of the learner on some distribution of adversary actions. See Theorem 5.2.9 for
a formal statement of this result.

Theorem 5.2.9 (informal). A translation matrix is implementable if each column corresponds to
a scaled version of the expected reward of the learner against some small-supported distribution
of actions of the adversary. Generalized FTPL with an implementable translation matrix can be
implemented with one oracle call per round and running time polynomial in N , T , and the size
of the support of the distribution implementing the translation matrix. Oracle calls count O(1)
in the running time.

For some learning problems, it is easier to first construct an implementable translation matrix
and argue about its admissibility; for others, it is easier to construct an admissible matrix and
argue about its implementability. We will see examples of each in the applications below,
exhibiting the versatility of our conditions.

The following is one consequence of our theorems that is particularly useful for obtaining
oracle-efficient no-regret algorithms (see Theorems 5.2.5 and 5.2.9 for more general statements):

If there exist N adversary actions such that any pair of learner’s actions yields
different rewards for at least one of these N actions, then Generalized FTPL has
regret O(N

√
T/δ) and runs in time poly(N, T) where δ is the smallest difference

between distinct rewards on any one of the N actions.

The aforementioned results establish a reduction from online optimization to offline opti-
mization. When the offline optimization problem can indeed be solved in polynomial time, these
results imply that the online optimization problem can also be solved in polynomial time. See
Corollary 5.2.10 for the associated runtime.

5.1.2 Main Application: Online Auction Design
In many applications of auction theory, including electronic marketplaces, a seller repeatedly
sells an item or a set of items to a population of buyers, with a few arriving for each auction.
In such cases, the seller can optimize his auction design in an online manner, using historical
data consisting of observed bids. We consider a setting in which the seller would like to use this
historical data to select an auction from a fixed target class. For example, a seller in sponsored-
search auctions might be limited by practical constraints to consider only second-price auctions
with bidder-specific reserves. The seller can optimize the revenue by using the historical data for
each bidder to set these reserves. Similarly, a seller on eBay may be restricted to set a single
reserve price for each item. Here, the seller can optimize the revenue by using historical data
from auctions for similar goods to set the reserves for new items. In both cases, the goal is to
leverage the historical data to pick an auction on each round in such a way that the seller’s overall
revenue compares favorably with the optimal auction from the target class.

More formally, on round t = 1, . . . , T , n bidders arrive with a vector of bids (or equivalently,
valuations, since we assume the auctions used are truthful) vt ∈ Vn. We allow these valuations
to be arbitrary, e.g., chosen by an adversary. Prior to observing the bids, the auctioneer commits
to an auction at from a class of truthful auctions A. The goal of the auctioneer is to achieve a
revenue that, in hindsight, is very close to the revenue that would have been achieved by the best

75

fixed auction in class A if that auction were used on all rounds. In other words, the auctioneer
aims to minimize the expected regret

E

[
max
a∈A

T∑

t=1

Rev(a,vt)−
T∑

t=1

Rev(at,vt)

]
,

where Rev(a,v) is the revenue of auction a on bid profile v and the expectation is over the
actions of the auctioneer.

This problem can easily be cast in our oracle-efficient online learning framework. The
learner’s action space is the set of target auctions A, while the adversary’s action space is the set
of bid or valuation vectors Vn. Finally, the offline oracle is a revenue maximization oracle which
computes an (approximately) optimal auction within the class A given a set of valuation vectors.
Using the Generalized FTPL with appropriate matrices Γ, we provide the first oracle-efficient
no-regret algorithms for several commonly studied auction classes:

– Vickrey-Clarkes-Groves (VCG) auctions with bidder-specific reserve prices in single-
dimensional matroid auction settings, which are known to achieve half the revenue of the
optimal auction in i.i.d. settings under some conditions [153];

– envy-free item pricing mechanisms in combinatorial markets with unlimited supply, often
studied in the static Bayesian setting [31, 141];

– single-item level auctions, introduced by Morgenstern and Roughgarden [211], who show
that these auctions approximate, to an arbitrary accuracy, the Myerson auction [213],
which is known to be optimal for the Bayesian independent-private-value setting.

The crux of our approach is designing admissible and implementable matrices. In the case of
VCG with bidder-specific reserves and envy-free item pricing auctions, we show how one can
implement an (obviously admissible) matrix Γ, where each row corresponds to the concatenation
of the binary representations of the reserves of each bidder or the prices of each item, respectively.
We show that, surprisingly, any perturbation on the auction revenues that is a linear function of
this bit representation can be simulated by a distribution of bidder valuations (see Figure 5.1
for an example such construction). For the case of level auctions, our challenge is to show that
an (obviously implementable) matrix Γ whose columns refer to a specific small subset of bid
profiles is admissible. The hard part of this construction is identifying a small set of bidder
valuation vectors, such that any two different level auctions yield different revenues on at least
one of these valuation vectors.

Table 5.1 summarizes the regret of our oracle-efficient algorithms, as well as the computa-
tional efficiency assuming oracle calls take O(1) computation. All our results perform a single
oracle call per iteration, so T oracle calls in total. Note that these results demonstrate an efficient
reduction from the online problem to the offline problem.

While in theory, the auction classes discussed in this table do not have a worst-case polyno-
mial time algorithm for solving the offline problem, in practice there are fast running algorithms,
e.g., highly optimized Integer Program solvers, that can perform these computations. Hence,
the key practical appeal of online to offline reduction is the fact that it enables one to tap into

76

Auction Class Regret Oracle-Based Complexity Section
VCG with bidder-specific reserves, s-unit O(ns log(T)

√
T) O(nT 3/2 log(T)) 5.3.1

envy free k-item pricing O(nk log(T)
√
T) O(nT 3/2 log(T)) 5.3.2

level auction with discretization level m O(nm2
√
T) O(nm2T) 5.3.3

Table 5.1: Regret bounds and oracle-based computational efficiency, for the auction classes
considered in this work for n bidders and time horizon T . All our results perform a single oracle
call per iteration.

such existing routines that are designed to find an optimal auction on historical data, at almost
no additional cost. Nevertheless, in some cases one may only be interested in using polynomial
time algorithms, even if the solutions they provide are sub-optimal. Therefore, we extend our
framework to work with some classes of multiplicative approximation oracles, i.e., oracles that
only return an action whose performance is within a constant factor of the performance of the
optimal action in class. As a concrete example of the power of such methods, we provide a fully
efficient polynomial time online algorithm for the problem of online Welfare Maximization in
multi-unit auctions using an offline approximation algorithm. See the extensions for an overview
of these results.

5.1.3 Extensions and Additional Applications

In Sections 5.4-5.6, we present several extensions and additional applications of our results. See
Table 5.2 for a summary. In addition to below, we refer the interested reader to the full version of
our results [113] for additional extensions to contextual online learning platform and extensions
to weaker oracle models.

Markovian Adversaries and Competing with the Optimal Auction (Section 5.4). Mor-
genstern and Roughgarden [211] show that level auctions can provide an arbitrarily accurate
approximation to the overall optimal Myerson auction in the Bayesian single-item auction setting
if the values of the bidders are drawn from independent distributions and i.i.d. across time.
Therefore, if the environment in an online setting picks bidder valuations from independent dis-
tributions, standard online-to-batch reductions imply that the revenue of Generalized FTPL with
the class of level auctions is close to the overall optimal (i.e., not just best-in-class) single-shot
auction. We generalize this reasoning and show the same strong optimality guarantee when
the valuations of bidders on each round are drawn from a fast-mixing Markov process that is
independent across bidders but Markovian over rounds. For this setting, our results give an
oracle-efficient algorithm with regret O(n1/5T 9/10) to the overall optimal auction, rather than
just best-in-class. This is the first result on competing with the Myerson optimal auction for
non-i.i.d. distributions, as all prior work [83, 103, 211, 238] assumes i.i.d. samples.

Approximate Oracles and Approximate Regret (Section 5.5). For some problems there
might not exist a sufficiently fast (e.g., polynomial-time or FPTAS) offline oracle with small

77

Problem Class Regret Section Notes
Markovian, single item O(n1/5T 9/10) 5.4.2 competes with Myerson optimal auction

welfare maximization, s-unit4 1/2-regret: O(n4
√
T) 5.6.1 fully polynomial-time algorithm

bidding in SiSPAs, k items O(km
√
T) 5.6.2 solves an open problem of [94]

Table 5.2: Additional results considered in Sections 5.4-5.6 and their significance. Above, m is
the discretization level of the problems, n is the number of bidders, and T is the time horizon.

additive error as we require. To make our results more applicable in practice, we extend them
to handle oracles that are required only to return an action with performance that is within a
constant multiplicative factor, C ≤ 1, of that of the optimal action in the class. We consider two
examples of such oracles: Relaxation-based Approximations (see, e.g., [31]) and Maximal-in-
Range (MIR) algorithms [217]. Our results hold in both cases with a modified version of regret,
called C-regret, in which the online algorithm competes with C times the payoff of the optimal
action in hindsight.

Additional Applications (Section 5.6). Finally, we provide further applications of our work
in the area of online combinatorial optimization with MIR approximate oracles, and in the area
of no-regret learning for bid optimization in simultaneous second-price auctions.

– In the first application, we give a polynomial-time learning algorithm for online welfare
maximization in multi-unit auctions that achieves 1/2-regret, by invoking the polynomial-
time MIR approximation algorithm of Dobzinski and Nisan [110] as an offline oracle.

– In the second application, we solve an open problem raised in the recent work of Daskalakis
and Syrgkanis [94], who offered efficient learning algorithms only for the weaker bench-
mark of no-envy learning, rather than no-regret learning, in simultaneous second-price
auctions, and left as an open question the existence of oracle efficient no-regret algorithms.
We show that no-regret learning in simultaneous item auctions is efficiently achievable,
assuming access to an optimal bidding oracle against a known distribution of opponents
bids (equiv, against a distribution of item prices).

5.2 Generalized FTPL and Oracle-Efficient Online Learning
In this section, we introduce the Generalized Follow-the-Perturbed-Leader (Generalized FTPL)
algorithm and describe the conditions under which it efficiently reduces online learning to offline
optimization.

As described in Section 5.1.1, we consider the following online learning problem. On each
round t = 1, . . . , T , a learner chooses an action xt from a finite set X , and an adversary chooses
an action yt from a set Y , which is not necessarily finite. The learner then observes yt and
receives a payoff f(xt, yt) ∈ [0, 1], where the function f is fixed and known to the learner. The

4The regime of interest in this problem is s� n. Note that our regret is independent of s in this case.

78

goal of the learner is to obtain low expected regret with respect to the best action in hindsight,
i.e., to minimize

REGRET := E

[
max
x∈X

T∑

t=1

f(x, yt)−
T∑

t=1

f(xt, yt)

]
,

where the expectation is over the randomness of the learner. An online algorithm is called a
no-regret algorithm if its regret is sublinear in T , which means that its per-round regret goes to
0 as T → ∞. To simplify exposition, we assume that the adversary is oblivious, i.e., that the
sequence y1, . . . , yT is chosen up front without knowledge of the learner’s realized actions. Our
results generalize to adaptive adversaries using standard techniques [94, 164].

A natural first attempt at an online learning algorithm with oracle access would be one
that simply invokes the oracle on the historical data at each round and plays the best action
in hindsight. In a stochastic environment in which the adversary’s actions are drawn i.i.d.
from a fixed distribution on each round, this Follow-the-Leader approach achieves a regret
of O(

√
T log |X |). However, because the algorithm is deterministic, it performs poorly in

adversarial environments (see e.g., [53]).
To achieve sublinear regret, we use a common scheme, introduced by Kalai and Vempala

[170], and optimize over a perturbed objective at each round. Indeed, our algorithm takes its
name from Kalai and Vempala’s Follow-the-Perturbed-Leader (FTPL) algorithm. Unlike FTPL,
we do not generate a separate independent perturbation for each action, because this creates the
two problems mentioned in Section 5.1.1. First, FTPL for unstructured payoffs requires creating
|X | independent random variables, which is intractably large in many applications, including the
auction design setting considered here. Second, FTPL yields optimization problems that require
a stronger offline optimizer than assumed here. We overcome the first problem by working with
perturbations that are not necessarily independent across different actions (prior instances of
such an approach were known only for online linear [170] and submodular [156] minimization).
We address the second problem by implementing such perturbations with synthetic historical
samples of adversary actions; this idea was introduced by Daskalakis and Syrgkanis [94], but
they did not provide a method of randomly generating such samples in general learning settings.
Thus, our work unifies and extends these previous lines of research.

We create shared randomness among actions in X by drawing a random vector α ∈ RN

of some small size N , with components αj drawn independently from a dispersed distribution
D. The payoff of each of the learner’s actions is perturbed by a linear combination of these
independent variables, as prescribed by a perturbation translation matrix Γ of size |X | × N ,
with entries in [0, 1]. The rows of Γ, denoted Γx, describe the linear combination for each
action x. That is, on each round t, the payoff of each learner action x ∈ X is perturbed by
α · Γx, and our Generalized FTPL algorithm outputs an action x that approximately maximizes∑t−1

τ=1 f(x, yτ)+α·Γx. See Algorithm 5.1 for a full specification. (For non-oblivious adversaries,
a fresh random vector α is drawn in each round.)

In the remainder of this section, we analyze the properties of matrix Γ that guarantee that
Generalized FTPL is no-regret and that its perturbations can be efficiently transformed into
synthetic history. Together these properties give rise to efficient reductions of online learning to
offline optimization.

79

Algorithm 5.1: Generalized FTPL
1: Input: non-negative matrix Γ ∈ [0, 1]|X |×N , distribution D, and optimization accuracy

parameter ε.
2: Draw αj ∼ D for j = 1, . . . , N
3: for t = 1, . . . , T do
4: Choose any xt such that for all x ∈ X ,

t−1∑

τ=1

f(xt, yτ) +α · Γxt ≥
t−1∑

τ=1

f(x, yτ) +α · Γx − ε

5: Observe yt and receive payoff f(xt, yt)
6: end for

5.2.1 Regret Analysis
To analyze Generalized FTPL, we first bound its regret by the sum of a stability term, a perturba-
tion term, and an error term in the following lemma. While this approach is standard [170], we
include a proof in Appendix A.2 for completeness.

Lemma 5.2.1 (ε-FTPL Lemma). For Generalized FTPL, we have

REGRET ≤ E

[
T∑

t=1

f(xt+1, yt)− f(xt, yt)

]
+ E [α · (Γx1 − Γx∗)] + εT (5.1)

where x∗ = arg maxx∈X
∑T

t=1 f(x, yt).

In this lemma, the first term measures the stability of the algorithm, i.e., how often the action
changes from round to round. The second term measures the strength of the perturbation, that is,
how much the perturbation amount differs between the best action and the initial action. The
third term measures the aggregated approximation error in choosing xt that only approximately
optimizes

∑t−1
τ=1 f(x, yτ) +α · Γx.

To bound the stability term, we require that the matrix Γ be admissible and the distribution
D be dispersed in the following sense.

Definition 5.2.2 ((κ, δ)-Admissible Translation Matrix). A translation matrix Γ is admissible if
its rows are distinct. It is (κ, δ)-admissible if it is admissible and also:

1. the number of distinct elements within each column is at most κ,

2. distinct elements within each column differ by at least δ.

Definition 5.2.3 ((ρ, L)-Dispersed Distribution). A distribution D on the real line is (ρ, L)-
dispersed if for any interval of length L, the probability measure placed by D on this interval is
at most ρ.

80

In the next lemma, we bound the stability term in Equation (5.1) by showing that with high
probability, for all rounds t, we have xt+1 = xt. At a high level, since all rows of an admissible
matrix Γ are distinct, it suffices to show that the probability that Γxt+1 6= Γxt is small. We
prove this for each coordinate Γxt+1j separately, by showing that it is only possible to have
Γxt+1j 6= Γxtj when the random variable αj falls in a small interval, which happens with only
small probability for a sufficiently dispersed distribution D.

Lemma 5.2.4. Consider Generalized FTPL with a (κ, δ)-admissible matrix Γ with N columns
and a

(
ρ, 1+2ε

δ

)
-dispersed distribution D. Then, E

[∑T
t=1 f(xt+1, yt)− f(xt, yt)

]
≤ 2TNκρ.

Proof. Fix any t ≤ T . The bulk of the proof will establish that, with high probability, Γxt+1 =
Γxt , which by admissibility implies that xt+1 = xt and therefore f(xt+1, yt)− f(xt, yt) = 0.

Fix any j ≤ N . We first show that Γxt+1j = Γxtj with high probability. Let V denote the
set of values that appear in the j th column of Γ. For any value v ∈ V , let xv be any action that
maximizes the perturbed cumulative payoff among those whose Γ entry in the j th column equals
v:

xv ∈ arg max
x∈X : Γxj=v

[
t−1∑

τ=1

f(x, yτ) +α · Γx

]
= arg max

x∈X : Γxj=v

[
t−1∑

τ=1

f(x, yτ) +α · Γx − αjv
]
.

For any v, v′ ∈ V , define

∆vv′ =

(
t−1∑

τ=1

f(xv, yτ) +α · Γxv − αjv
)
−
(

t−1∑

τ=1

f(xv
′
, yτ) +α · Γxv′ − αjv′

)
.

Note that xv and ∆vv′ are independent of αj , as we removed the payoff perturbation correspond-
ing to αj .

If Γxtj = v, then by the ε-optimality of xt on the perturbed cumulative payoff, we have
αj(v

′ − v) − ε ≤ ∆vv′ for all v′ ∈ V . Suppose Γxt+1j = v′ 6= v. Then by the ε-optimality of
xt+1, we have

t−1∑

τ=1

f(xv
′
, yτ) + f(xv

′
, yt) +α · Γxv′ ≥

t−1∑

τ=1

f(xv, yτ) + f(xv, yt) +α · Γxv − ε.

Rearranging, we obtain for this same v′ that

∆vv′ ≤ αj(v
′ − v) + f(xv

′
, yt)− f(xv, yt) + ε ≤ αj(v

′ − v) + 1 + ε.

If v′ > v, then

αj ≥
∆vv′ − 1− ε

v′ − v ≥ min
v̂∈V, v̂>v

∆vv̂ − 1− ε
v̂ − v

and so αj(v− v) + 1 + ε ≥ ∆vv where v is the value of v̂ minimizing the expression on the right.
Thus, in this case we have −ε ≤ ∆vv − αj(v − v) ≤ 1 + ε. Similarly, if v′ < v, then

αj ≤
∆vv′ − 1− ε

v′ − v ≤ max
v̂∈V, v̂<v

∆vv̂ − 1− ε
v̂ − v

81

and so αj(v − v) + 1 + ε ≥ ∆vv where v is the value maximizing the expression on the right. In
this case we have −ε ≤ ∆vv − αj(v − v) ≤ 1 + ε. Putting this all together, we have

Pr
[
Γxt+1j 6= Γxtj

∣∣ αk, k 6= j
]
≤ Pr

[
∃v ∈ V : −ε ≤ ∆vv − αj(v − v) ≤ 1 + ε or

−ε ≤ ∆vv − αj(v − v) ≤ 1 + ε
∣∣∣ αk, k 6= j

]

≤
∑

v∈V

(
Pr

[
αj ∈

[
∆vv−1−ε
v−v , ∆vv+ε

v−v

] ∣∣∣∣ αk, k 6= j

]

+ Pr

[
αj ∈

[−∆vv − ε
v − v ,

−∆vv + 1 + ε

v − v

] ∣∣∣∣ αk, k 6= j

])

≤ 2κρ.

The last line follows from the fact that v − v ≥ δ and v − v ≥ δ, the fact that D is
(
ρ, 1+2ε

δ

)
-

dispersed, and a union bound.
Since this bound does not depend on the values of αk for k 6= j, we can remove the

conditioning and bound Pr[Γxt+1j 6= Γxtj] ≤ 2κρ. Taking a union bound over all j ≤ N , we
then have that, by admissibility, Pr [xt+1 6= xt] = Pr

[
Γxt+1 6= Γxt

]
≤ 2Nκρ, which implies the

result.

To bound the regret, it remains to bound the perturbation term in Equation (5.1). This bound
is specific to the distribution D. Many distribution families, including (discrete and continuous)
uniform, Gaussian, Laplacian, and exponential can lead to a sublinear regret when the variance is
set appropriately. Here we present a concrete regret analysis for the case of a uniform distribution:

Theorem 5.2.5. Let Γ be a (κ, δ)-admissible matrix with N columns and let D be the uniform
distribution on [0, 1/η] for η =

√
δ/((1 + 2ε)Tκ). Then, the regret of Generalized FTPL can be

bounded as REGRET ≤ O(N
√

(1 + 2ε)Tκ/δ) + εT. In general, κ ≤ 1/δ, so this bound is at
most O

(
(N/δ)

√
(1 + 2ε)T

)
+ εT .

The proof of this theorem follows immediately from Lemmas 5.2.1 and 5.2.4, setting ρ =
η(1 + 2ε)/δ =

√
(1 + 2ε)/(Tκδ).

5.2.2 Oracle-Efficient Online Learning
We now define the offline oracle and oracle-efficient online learning framework more formally.
Our oracles are defined for real-weighted datasets. Since many natural offline oracles are iterative
optimization algorithms, which are only guaranteed to return an approximate solution in finite
time, our definition assumes that the oracle takes the desired precision ε as an input. For ease of
exposition, we assume that all numerical computations, even those involving real numbers, take
O(1) time.

Definition 5.2.6 (Offline Oracle). An offline oracle OPT is any algorithm that receives as input
a weighted set of adversary actions S = {(w`, y`)}`∈L with w` ∈ R+, y` ∈ Y and a desired

82

Algorithm 5.2: Oracle-Based Generalized FTPL
1: Input: datasets Sj , j ∈ [N], that implement a matrix Γ ∈ [0, 1]|X |×N

2: distribution D with non-negative support.
3: an offline oracle OPT

4: Draw αj ∼ D for j = 1, . . . , N .
5: for t = 1, . . . , T do
6: For all j, let αjSj denote the scaled version of Sj , i.e., αjSj := {(αjw, y) : (w, y) ∈ Sj}.
7: Set S =

{
(1, y1), . . . , (1, yt−1)

}
∪⋃j≤N αjSj .

8: Play xt = OPT
(
S, 1√

T

)
.

9: Observe yt and receive payoff f(xt, yt).
10: end for

precision ε, and returns an action x̂ = OPT(S, ε) such that
∑

(w,y)∈S

wf(x̂, y) ≥ max
x∈X

∑

(w,y)∈S

wf(x, y)− ε.

Definition 5.2.7 (Oracle Efficiency). We say that an online algorithm is oracle-efficient with
per-round complexity g(T) if its per-round running time is O(g(T)) with oracle calls counting
O(1).

We next define a property of a translation matrix Γ which allows us to transform the perturbed
objective into a dataset, thus achieving oracle-efficiency of Generalized FTPL:

Definition 5.2.8. A matrix Γ is implementable with complexity M if for each j ∈ [N] there
exists a weighted dataset Sj , with |Sj| ≤M , such that

for all x, x′ ∈ X : Γxj − Γx′j =
∑

(w,y)∈Sj

w
(
f(x, y)− f(x′, y)

)
.

In this case, we say that weighted datasets Sj , j ∈ [N], implement Γ with complexity maxj∈[N] |Sj|.

One simple but useful example of implementability is when each column j of Γ specifies the
payoffs of every learner action under a particular adversary action yj ∈ Y , i.e., Γxj = f(x, yj)
for all x. In this case, Sj = {(1, yj)}. Using an implementable Γ gives rise to an oracle-efficient
variant of the Generalized FTPL, provided in Algorithm 5.2, in which we explicitly set ε = 1/

√
T .

Theorem 5.2.9 shows that the output of this algorithm is equivalent to the output of Generalized
FTPL and therefore the same regret guarantees hold. Note the assumption that the perturbations
αj are non-negative. The algorithm can be extended to negative perturbations when both Γ and
−Γ are implementable.

Theorem 5.2.9. If Γ is implementable with complexity M , then Algorithm 5.2 is an oracle-
efficient implementation of Algorithm 5.1 with ε = 1/

√
T and has per-round complexity O

(
T +

NM
)
.

83

Proof. To show that the Oracle-Based FTPL procedure (Algorithm 5.2) implements Generalized
FTPL (Algorithm 5.1) with ε = 1√

T
, it suffices to show that at each round t, for any x,

t−1∑

τ=1

f(x, yτ) +α · Γx ≥ max
x∈X

[
t−1∑

τ=1

f(x, yτ) +α · Γx

]
− ε

⇐⇒ (5.2)
∑

(w,y)∈Sj

wf(x, y) ≥ max
x∈X

∑

(w,y)∈Sj

wf(x, y)− ε,

Note that if the above equation holds, then at each timestep, the set of actions that OPT(S, ε)
can return legally, i.e., actions whose payoffs are an approximation of the optimal payoff, is
exactly the same as the set of actions that the offline optimization step of Algorithm 5.1 can
legally play. Clearly, if oracle OPT and Algorithm 5.1 employ the same tie breaking rule, then
Algorithm 5.1 and Algorithm 5.2 play the same action at every time step. Even if they do not
use the same tie-breaking rule, the guarantee over the payoff of Algorithm 5.2 still holds, as the
proof of Theorem 5.2.5 does not rely on using any specific tie-breaking rules. Therefore, the
theorem is proved if Equation (5.2) holds.

Let us show that Equation (5.2) is indeed true. For S =
{

(1, y1), . . . , (1, yt−1)
}
∪⋃j≤N αjSj .

Consider any x, x′ ∈ X . Then, from the definition of S and by implementability,

∑

(w,y)∈S

wf(x, y)−
∑

(w,y)∈S

wf(x′, y) =
t−1∑

τ=1

[f(x, yτ)− f(x′, yτ)] +
∑

j∈[N]

αj
∑

(w,y)∈Sj

w (f(x, y)−f(x′, y))

=
t−1∑

τ=1

[f(x, yτ)− f(x′, yτ)] +
∑

j∈[N]

αj(Γxj − Γx′j)

=

(
t−1∑

τ=1

f(x, yτ) +α · Γx

)
−
(

t−1∑

τ=1

f(x′, yτ) +α · Γx′

)
,

which immediately yields Equation (5.2).
Also, by implementability, the running time to construct the set S is at most T +NM . Since

there is only one oracle call per round, we get the per-round complexity of T +NM .

As an immediate corollary, we obtain that the existence of a polynomial-time offline oracle
implies the existence of polynomial-time online learner with regret O(

√
T), whenever we have

access to an implementable and admissible matrix.

Corollary 5.2.10. Assume that Γ ∈ [0, 1]|X |×N is implementable with complexity M and (κ, δ)-
admissible, and there exists an approximate offline oracle OPT

(
·, 1√

T

)
which runs in time

poly(N,M, T). Then Algorithm 5.2 with distribution D as defined in Theorem 5.2.5 runs in time
poly(N,M, T) and achieves cumulative regret O(N

√
Tκ/δ).

Alternative Notions of Oracles Multiple other notions of offline optimization oracles may be
interesting here. We refer the interested reader to the full version of our results in [113] that
include an extensive treatment of integer-weighted oracles and pseudo-polynomial oracles.

84

5.3 Online Auction Design
In this section, we apply the general techniques developed in Section 5.2 to obtain oracle-efficient
no-regret algorithms for several common auction classes.

Consider a mechanism-design setting in which a seller wants to allocate k ≥ 1 heterogeneous
resources to a set of n bidders. The allocation to a bidder i is a subset of {1, . . . , k}, which we
represent as a vector in {0, 1}k, and the seller has some feasibility constraints on the allocations
across bidders. Each bidder i ∈ [n] has a combinatorial valuation function vi ∈ V , where
V ⊆

(
{0, 1}k → [0, 1]

)
. We use v ∈ Vn to denote the vector of valuation functions across

all bidders. A special case of the setting is that of multi-item auctions for k heterogeneous
items, where each resource is an item and the feasibility constraint simply states that no item
is allocated to more than one bidder. Another special case is that of single-parameter (service-
based) environments in which each resource is a service, e.g., receiving a bundle of items in
combinatorial auctions with single minded bidders. Formally, each bidders allocation is in {0, 1},
so we treat this as a setting with k = 1 resources where the seller has some constraints on which
bidders can receive a service simultaneously. We describe this in more detail in Section 5.3.1.

An auction a takes as input a bid profile consisting of reported valuations for each bidder,
and returns both the allocation for each bidder i and the price that he is charged. In this work,
we only consider truthful auctions, where each bidder maximizes his utility by reporting his
true valuation, irrespective of what other bidders report. We therefore make the assumption
that each bidder reports vi as their bid and refer to v not only as the valuation profile, but also
as the bid profile throughout the rest of this section. The allocation that the bidder i receives
is denoted qi(v) ∈ {0, 1}k and the price that he is charged is pi(v); we allow sets qi(v) to
overlap across bidders, and drop the argument v when it is clear from the context. We consider
bidders with quasilinear utilities: the utility of bidder i is vi(qi(v))− pi(v). For an auction a
with price function p(·), we denote by Rev(a,v) the revenue of the auction for bid profile v, i.e.,
Rev(a,v) =

∑
i∈[n] pi(v).

For single-parameter service-based environments (a special case of which are single-item
auctions), we slightly simplify notation and use vi ∈ [0, 1] to denote the value of bidder i for
being served.

Fixing a class of (truthful) auctions A and a set of possible valuations V , we consider the
problem in which on each round t = 1, . . . , T , a learner chooses an auction at ∈ A while an
adversary chooses a bid profile vt ∈ Vn. The learner then observes vt and receives revenue
Rev(at,vt). The goal of the learner is to obtain low expected regret with respect to the best
auction from A in hindsight. That is, we would like to guarantee that

REGRET := E

[
max
a∈A

T∑

t=1

Rev(a,vt)−
T∑

t=1

Rev(at,vt)

]
≤ o(T)poly(n, k).

We require our online algorithm to be oracle-efficient, assuming access to an ε-approximate
offline optimization oracle that takes as input a weighted set of bid profiles, S = {(w`,v`)}`∈L
and returns an auction that achieves an approximately optimal revenue on S, i.e., a revenue at
least maxa∈A

∑
(w,v)∈S wRev(a,v) − ε. Throughout the section, we assume that there exists

such an oracle for ε = 1/
√
T , as needed in Algorithm 5.2.

85

Using the language of oracle-based online learning developed in Section 5.2, the learner’s
action corresponds to the choice of auction, the adversary’s action corresponds to the choice of
bid profile, the payoff of the learner corresponds to the revenue generated by the auction, and we
assume access to an offline optimization oracle OPT. These correspondences are summarized in
the following table.

Auction Setting Oracle-Based Learning Equivalent
Auctions at ∈ A Learner actions xt ∈ X
Bid/valuation profiles vt ∈ Vn Adversary actions yt ∈ Y
Revenue function Rev Payoff function f

For several of the auction classes we consider, such as multi-item or multi-unit auctions,
the revenue of an auction on a bid profile is in range [0, R] for R > 1. In order to use the
results of Section 5.2, we implicitly re-scale all the revenue functions by dividing them by R
before applying Theorem 5.2.5. Note that, since Γ does not change, the admissibility condition
keeps the regret of the normalized problem at O(N

√
Tκ/δ), according to Theorem 5.2.5. We

then scale up to get a regret bound that is R times the regret for the normalized problem, i.e.,
O(RN

√
Tκ/δ). Assuming that numerical computations take O(1) time, this re-scaling does not

increase the runtime, as when both the revenues are scaled down by a factor of R and the matrix
Γ is unchanged, the implementability dataset Sj is scaled up by a factor of R which does not
change the complexity M of implementing Γ. Refer to full version of these results [113] for a
note on numerical computations and the mild change in runtime when numerical computations
do not take O(1) time.

We now derive results for VCG auctions with bidder-specific reserves, envy-free item-pricing
auctions, and level auctions. We defer the definition of each auction class to its respective
subsection.

5.3.1 VCG with Bidder-Specific Reserves
In this section, we consider a standard class of auctions, VCG auctions with bidder-specific
reserve prices, which we define more formally below and denote by I . These auctions are known
to approximately maximize the revenue when the bidder valuations are drawn independently
(but not necessarily identically) from some distribution [153]. Recently, Roughgarden and Wang
[240] considered this class I in an online learning framework. They provided a computationally
efficient algorithm whose total revenue is at least 1/2 of the best revenue among auctions in
I, minus a term that is o(T). We apply the techniques from Section 5.2 to generate an oracle-
efficient online algorithm with low additive regret with respect to the optimal auction in the class
I, without any loss in multiplicative factors.

We go beyond single-item auctions and consider general single-parameter environments. In
these environments, each bidder has one piece of private valuation for receiving a service, i.e.,
being included in the set of winning bidders. We allow for some combinations of bidders to be
served simultaneously, and let S ⊆ 2[n] be the family of feasible sets, i.e., sets of bidders that
can be served simultaneously; with some abuse of notation we write q ∈ S , to mean that the set
represented by the binary allocation vector q is in S . We assume that it is possible for any bidder

86

to be the sole bidder served, i.e., that {i} ∈ S for all i, and that it is possible that no bidder is
served, i.e., ∅ ∈ S .5 Examples of such environments include single-item single-unit auctions (for
which S contains only singletons and the empty set), single-item s-unit auctions (for which S
contains any subset of size at most s), and combinatorial auctions with single-minded bidders. In
the last case, we begin with some set of original items, define the service as receiving the desired
bundle of items, and let S contain any subset of bidders seeking disjoint sets of items.

We consider the class of VCG auctions with bidder-specific reserves. In a basic VCG
auction, an allocation q∗ ∈ S is chosen to maximize social welfare, that is, maximize

∑n
i=1 viq

∗
i .

Each bidder who is served is then charged the externality he imposes on others, pi(v) =
maxq∈S

∑
i′ 6=i vi′qi′ −

∑
i′ 6=i vi′q

∗
i′ , which can be shown to equal the minimum bid at which he

would be served. Such auctions are known to be truthful. The most common example is the
second-price auction for the single-item single-unit case in which the bidder with the highest bid
receives the item and pays the second highest bid. VCG auctions with reserves, which maintain
the property of truthfulness, are defined as follows.

Definition 5.3.1 (VCG auctions with bidder-specific reserves). A VCG auction with bidder-
specific reserves is specified by a vector r of reserve prices for each bidder. As a first step, all
bidders whose bids are below their reserves (that is, bidders i for which vi < ri) are removed
from the auction. If no bidders remain, no item is allocated. Otherwise, the basic VCG auction is
run on the remaining bidders to determine the allocation. Each bidder who is served is charged
the larger of his reserve and his VCG payment.

Fixing the set S of feasible allocations, we denote by I the class of all VCG auctions with
bidder-specific reserves. With a slight abuse of notation we write r ∈ I to denote the auction
with reserve prices r. To apply the results from Section 5.2, which require a finite action set for
the learner, we limit attention to the finite set of auctions Im ⊆ I consisting of those auctions in
which the reserve price for each bidder is a strictly positive integer multiple of 1/m, i.e., those
where ri ∈ {1/m, . . . ,m/m} for all i. We will show for some common choices of S that the
best auction in this class yields almost as high revenue as the best auction in I.

We next show how to design a matrix Γ for this problem that is admissible and implementable.
As a warmup, suppose we use the |Im| × n matrix Γ with Γri = Rev(r, ei) for all r ∈ Im and
i ∈ [n]. That is, the ith column of Γ corresponds to the revenue of each auction on a bid profile in
which bidder i has valuation 1 and all others have valuation 0. By definition, Γ is implementable
with complexity n using Sj = {(1, ej)}j∈[n]. Moreover, Rev(r, ei) = ri so any two rows of Γ
are indeed different and Γ is (m, 1/m)-admissible. By Theorem 5.2.9, there is an oracle-efficient
implementation of the Generalized FTPL with regret that is polynomial in m.

To improve this regret bound and obtain a regret that is polynomial in log(m), we carefully
construct another translation matrix that is implementable using a more complex dataset of
adversarial actions. As we describe shortly, the translation matrix we design is quite intuitive.
The row corresponding to an auction r contains a binary representation of its reserve prices. In
this case, proving admissibility of the matrix is simple. The challenge is then showing that this
simple translation matrix is implementable using a dataset of adversarial actions.

5A more common and stronger assumption used in previous work [153, 240] is that S is a downward closed
matroid.

87

Construction of Γ: Let ΓVCG be an |Im| × (ndlogme) binary matrix, where the ith collection
of dlogme columns contain the binary encodings of the auctions’ reserve prices for bidder i.
More formally, for any i ≤ n and a bit position β ≤ dlogme, let j = (i− 1)dlogme+ β and set
ΓVCG

rj to be the βth bit of mri.

Lemma 5.3.2. ΓVCG is (2, 1)-admissible and implementable with complexity m.

Let us first illustrate the main ideas used in the proof of Lemma 5.3.2 through a simple
example. Binary encoding

Auction r r1 r2

(1/3, 1/3) 0 1 0 1
(1/3, 2/3) 0 1 1 0 ∆ = −1

(1/3, 3/3) 0 1 1 1
(2/3, 1/3) 1 0 0 1
(2/3, 2/3) 1 0 1 0 ∆ = 0

(2/3, 3/3) 1 0 1 1
(3/3, 1/3) 1 1 0 1 ∆′ = 1

(3/3, 2/3) 1 1 1 0 ∆′ = −1

(3/3, 3/3) 1 1 1 1

Figure 5.1: ΓVCG for n = 2 bidders and m = 3

Example 5.3.3. Consider ΓVCG for n = 2 bidders and m = 3 discretization levels, as demon-
strated in Figure 5.1. As an example, we show how one can go about implementing columns 1
and 4 of ΓVCG.

Consider the first column of ΓVCG. This corresponds to the most significant bit of r1, so
this value is independent of the value of r2. Hence, to implement this column, we need to find
a set of bid profiles where the difference in revenue is as prescribed by ΓVCG. Consider bid
profiles vh = (h/3, 0) for h ∈ {1, 2, 3}. This requirement is satisfied by S1 = {(wh,vh)}h iff
the weights satisfy the following two equations:

1

3
(w1 + w2 + w3)− 2

3
(w2 + w3) = −1,

2

3
(w2 + w3)− 3

3
(w3) = 0,

where the left-hand sides of the two equations are the differences in the revenues of two re-
serve prices r1 = 1

3
and 2

3
, and r1 = 2

3
and 3

3
, respectively, and the right-hand sides are the

differences between the corresponding entries of ΓVCG (denoted by ∆ in Figure 5.1). Note
that S1 = {(3,v1), (2,v2), (4,v3)} satisfies this requirement and implements the first column.
Similarly, for implementing the fourth column we consider bid profiles v′h = (0, h/3) for
h ∈ {1, 2, 3} and equations dictated by the values of ΓVCG and values ∆′. One can verify that
S4 = {(6,v′1), (0,v′2), (3,v′3)} implements this column.

More generally, the proof of Lemma 5.3.2 shows that ΓVCG is implementable by showing that
any differences in values in one column that solely depend on a single bidder’s reserve price
lead to a system of linear equations that is satisfiable.

88

Let us now turn our attention to the proof of Lemma 5.3.2.

Proof of Lemma 5.3.2. In the interest of readability, we drop the superscript and write Γ for
ΓVCG in this proof.

For any r, row Γr corresponds to the binary encoding of r1, . . . , rn. Therefore, for any
two different auctions r 6= r′, Γr 6= Γr′ . Since Γ is a binary matrix, this implies that Γ is
(2, 1)-admissible.

Next, we prove that Γ is implementable. Pick i ≤ n and β ≤ dlogme, and the associated
column index j. We will construct the set Sj for each column j ≤ ndlog(m)e for implementing
Γ. The set Sj includes exactly the m profiles in which only the bidder i has non-zero valuation,
denoted as vh := (h/m)ei for h ≤ m. To determine their weights wh, we use the definition of
implementability. In particular, the weights must satisfy:

∀ r, r′ ∈ Im, Γrj − Γr′j =
∑

h≤m

wh

(
Rev(r,vh)− Rev(r′,vh)

)
.

In the above equation, Γrj and Γr′j encode the βth bit of ri and r′i, respectively, so the left-hand
side is independent of the reserve prices for bidders i′ 6= i. Moreover, Rev(r,vh) = ri1(h≥mri),
so the right-hand side of the above equation is also independent of the reserve prices for bidders
i′ 6= i. Let zβ be the βth bit of integer z. That is, Γrj = (mri)β. Substituting z = mri and
z′ = mr′i, the above equation can be reformulated as

∀z, z′ ∈ {1, . . . ,m},
(
zβ − z′β

)
=
∑

h≤m

wh

(
z

m
1(h≥z) −

z′

m
1(h≥z′)

)
.6 (5.3)

We next recursively derive the weights wh, and show that they are non-negative and satisfy
Equation (5.3). To begin, let

wm = max
{

0, max
z

[
m
(
zβ − (z − 1)β

)]}
,

and for all z = m,m− 1, . . . , 2, define

wz−1 =
1

z − 1

(
m∑

h=z

wh −m
(
zβ − (z − 1)β

)
)
.

Next, we show by induction that wh ≥ 0 for all h. For the base case of h = m, by definition
wm ≥ 0. Now, assume that for all h ≥ z, wh ≥ 0. Then

wz−1 ≥
1

z − 1

(
wm −m

(
zβ − (z − 1)β

))
≥ 0.

Therefore all weights are non-negative. Furthermore, by rearranging the definition of wz−1, we
have

(
zβ − (z − 1)β

)
=

1

m

(
m∑

h=z

wh − (z − 1)wz−1

)
=

1

m

(
z

m∑

h=z

wh − (z − 1)
m∑

h=z−1

wh

)

=
∑

h≤m

wh

(
z

m
1(h≥z) −

z − 1

m
1(h≥z−1)

)
.

6Not including the reserve 0 is a crucial technical point for the proof of implementability.

89

Where in the second equality we simply added and subtracted the term (z − 1)
∑m

h=z wh and in
the last equality, we grouped together common terms.

Equation (5.3) is proved for a particular pair z > z′ by summing the above expression for(
ζβ − (ζ − 1)β

)
over all ζ ∈ (z′, z] and canceling telescoping terms, and if z = z′, the statement

holds regardless of the weights chosen.
This shows that Γ is implementable. Note that the cardinality of Sj is at most m. Also note

that the above proof constructs (in poly(n,m) time) such datasets {Sj}j∈[ndlogme] that implement
Γ. Therefore, Γ is implementable with complexity m using the datasets described above.

The next theorem follows immediately from Lemma 5.3.2, Theorem 5.2.5, and the fact that
the maximum revenue is at most R.

Theorem 5.3.4. Consider the online auction design problem for the class of VCG auctions with
bidder-specific reserves, Im. Let R = maxr,v Rev(r,v) and let D be the uniform distribution as
described in Theorem 5.2.5. Then, the Oracle-Based Generalized FTPL algorithm with D and
datasets that implement ΓVCG is oracle-efficient with per-round complexity poly(n,m, T) and
has regret

E

[
max
r∈Im

T∑

t=1

Rev(r,vt)−
T∑

t=1

Rev(rt,vt)

]
≤ O(n log(m)R

√
T).

Note that R is bounded by the number of bidders that can be served simultaneously, which is
at most n.

Now we return to the infinite class I of all VCG auctions with reserve prices ri ∈ [0, 1].
We show Im is a finite “cover” for this class when the family of feasible sets S is the set of all
subsets of size at most s, corresponding to single-item single-unit auctions (when s = 1) or more
general single-item s-unit auctions. In particular, we prove in Appendix A.1, that the optimal
revenue of Im compared with that of I can decrease by at most 2s/m at each round. That is,

max
r∈I

T∑

t=1

Rev(r,vt)−max
r∈Im

T∑

t=1

Rev(r,vt) ≤
2Ts

m
. (5.4)

Setting m =
√
T and using Theorem 5.3.4, we obtain the following result for the class of

auctions I.

Theorem 5.3.5. Consider the online auction design problem for the class of VCG auctions with
bidder-specific reserves, I, in s-unit auctions. Let D be the uniform distribution as described in
Theorem 5.2.5. Then, the Oracle-Based Generalized FTPL algorithm with D and datasets that
implement ΓVCG is oracle-efficient with per-round complexity poly(n, T) and has regret

E

[
max
r∈I

T∑

t=1

Rev(r,vt)−
T∑

t=1

Rev(rt,vt)

]
≤ O(ns log(T)

√
T).

90

5.3.2 Envy-free Item Pricing
In this section, we consider envy-free item pricing [141] in an environment with k heterogeneous
items with a supply of s` ≥ 0 units for each item ` ≤ k.

Definition 5.3.6 (Envy-free Item-Pricing Auction). An envy-free item-pricing auction for k
heterogeneous items, given supply s` for ` = 1, . . . , k, is defined by a vector of prices a, where
a` is the price of item `. The mechanism considers bidders i = 1, . . . , n in order and allocates to
bidder i the bundle qi ∈ {0, 1}k that maximizes vi(qi)− a · qi, among all feasible bundles, i.e.,
bundles that can be composed from the remaining supplies. Bidder i is then charged the price
a · qi.

Examples of such environments include unit-demand bidders and single-minded bidders
in settings such as hypergraph pricing, where bidders seek hyper-edges in a hypergraph, and
its variant the highway problem, where bidders seek hyperedges between sets of contiguous
vertices [31, 141]. We describe some of these problems in more detail later on.

We represent by Pm the class of all such envy-free item pricing auctions where all the prices
are strictly positive multiples of 1/m, i.e., a` ∈ {1/m, . . . ,m/m} for all `. Next, we discuss the
construction of an implementable and admissible translation matrix Γ. Consider a bid profile
where one bidder has value v for bundle e` and all other bidders have value 0 for all bundles.
The revenue of auction a on such a bid profile is a`1(v≥a`). Note the similarity to the case of
VCG auctions with bidder-specific reserve prices r, where bid profiles with a single non-zero
valuation vi and revenue ri1(vi≥ri) were used to create an implementable construction for Γ. We
show that a similar construction works for Pm.

Construction of Γ: Let ΓIP be a |Pm| × (kdlogme) binary matrix, where the `th collection of
dlogme columns correspond to the binary encoding of the auction’s price for item `. More
formally, for any ` ≤ k and β ≤ dlogme, ΓIP

aj is the βth bit of (the integer) ma`, where
j = (`− 1)dlogme+ β. Next, we show that ΓIP is admissible and implementable. The proof of
the following lemma is analogous to that of Lemma 5.3.2.

Lemma 5.3.7. ΓIP is (2, 1)-admissible and implementable with complexity m.

Proof. We will argue that the setting here is isomorphic to the setting in the proof of Lemma 5.3.2,
so we can directly apply the result of analysis of ΓVCG. The isomorphism from the VCG setting
to IP setting maps bidders i in VCG to items ` in IP, and reserve price vectors r to price vectors
a. We therefore assume that n in VCG equals k in IP, and the values of m in both settings are
equal. Then, indeed ΓVCG equals ΓIP.

Next we need to show how to construct Sj for all j in the ΓIP setting. Assume that j
corresponds to the bidder i and the bit β in VCG setting, and the item ` and the bit β in IP setting.
In VCG, we considered the bid profiles vh = (h/m)ei, and the revenue of any auction r is

RevVCG(r,vh) = ri1(h≥mri).

In IP setting, we consider profiles v′h of combinatorial valuations over bundles q ∈ {0, 1}k, in
which all bidders have values zero on all bundles and one bidder has value h/m for bundle e`

91

and zero on all other bundles.7 In this case, we have

RevIP(a,v′h) = ai1(h≥mai).

Thus, both the translation matrices ΓVCG and ΓIP as well as the revenue functions RevVCG

and RevIP are isomorphic (given these choices of the profiles). Therefore, we can set the
weights w′h in IP setting equal to the weights wh in VCG setting and obtain admissibility and
implementability with the same constants and complexity.

Our main theorem follows immediately from Lemma 5.3.7, Theorems 5.2.5 and 5.2.9, and
the fact that the revenue of the mechanism at every step is at most R. In general, R is at most n.

Theorem 5.3.8. Consider the online auction design problem for the class of envy-free item
pricing auctions, Pm. Let R = maxa,v Rev(a,v) and let D be the uniform distribution as
described in Theorem 5.2.5. Then, the Oracle-Based Generalized FTPL algorithm with D and
datasets that implement ΓIP is oracle-efficient with per-round complexity poly(k,m, T) and has
regret

E

[
max
a∈Pm

T∑

t=1

Rev(a,vt)−
T∑

t=1

Rev(at,vt)

]
≤ O

(
kR log(m)

√
T
)
.

Consider the class of all envy-free item-pricing auctions where a` ∈ [0, 1] is a real number
and denote this class by P . We show that Pm is a discrete “cover” for P when there is an
unlimited supply of all items (s` = ∞ for all `) and the bidders have single-minded or unit-
demand valuations. In the single-minded setting, each bidder i is interested in one particular
bundle of items q̂i. That is, vi(qi) = vi(q̂i) for all qi ⊇ q̂i and 0 otherwise. In the unit-demand
setting, each bidder i has valuation vi(e`) for item `, and wishes to purchase at most one item,
i.e., item arg max` (vi(e`)− a`). We show that in both settings, discretizing item prices cannot
decrease revenue by much (see Appendix A.3).

Lemma 5.3.9. For any a ∈ P there is a′ ∈ Pm, such that for any unit-demand valuation profile
or for any single-minded valuation profile v with infinite supply (the digital goods setting),
Rev(a,v)− Rev(a′,v) ≤ 2nk/m.

These discretization arguments together with Theorem 5.3.8 yield the following result for
the class of auctions P (using the fact that R ≤ n, and the setting m =

√
T):

Theorem 5.3.10. Consider the online auction design problem for the class of envy-free item
pricing auctions, P , with unit-demand bidders or with single-minded bidders with infinite supply
(the digital goods setting). Let D be the uniform distribution as described in Theorem 5.2.5.
Then, the Oracle-Based Generalized FTPL algorithm with D and datasets that implement ΓIP is
oracle-efficient with per-round complexity poly(k, T) and has regret

E

[
max
a∈P

T∑

t=1

Rev(a,vt)−
T∑

t=1

Rev(at,vt)

]
≤ O

(
nk log(T)

√
T
)
.

7 Note that a simple variation of this bid profile can be used in settings where the valuations need to satisfy
additional assumptions, such as (sub-)additivity or free disposal. In such cases, we can use a similar bid profile
where one bidder has valuation h/m for any bundle that includes item ` and all other valuations are 0.

92

5.3.3 Level Auctions

We next consider the class of level auctions introduced by Morgenstern and Roughgarden [211].
These auctions can achieve (1−ε)-approximate revenue maximization if the valuations of the
bidders are drawn independently (but not necessarily identically) from a distribution [211],
approximating Myerson’s optimal auction [213]. Using our tools, we derive oracle-efficient
no-regret algorithms for this auction class.

The s-level auctions realize a single-item single-unit allocation as follows.

Definition 5.3.11. An s-level auction θ is defined by s thresholds for each bidder i, 0 ≤ θi0 <
· · · < θis−1 ≤ 1. For any bid profile v, we let bθi (vi) denote the index b of the largest threshold
θib ≤ vi, or −1 if vi < θi0. If vi < θi0 for all i, the item is not allocated. Otherwise, the item goes
to the bidder with the largest index bθi (vi), breaking ties in favor of bidders with smaller i. The
winner pays the price equal to the minimum bid that he could have submitted and still won the
item.

When it is clear from the context, we omit θ in bθi (vi) and write just bi(vi). We consider a
class of s-level auctions, Ss,m that is the set of all auctions described by Definition 5.3.11 with
thresholds that are in the set {0, 1

m
, . . . , m

m
}.

Let us discuss a construction of an admissible and implementable Γ for Ss,m. Our approach
for designing matrix Γ starts with a matrix that is clearly implementable, but the challenge is in
showing that it is also admissible. In what follows, we identify a small subset of the actions of
the adversary, such that any two actions of the learner receive sufficiently different revenues on at
least one of these actions. This naturally leads to an admissible and implementable construction
for Γ.

Consider the bid profile in which the only non-zero bids are vn = `/m for some 0 ≤ ` ≤ m,
and vi = 1 for a single bidder i < n. Note that bidder i wins the item in any such profile and
pays θib corresponding to b = max{0, bn(vn)}. We define a matrix Γ with one column for every
bid profile of this form and an additional column for the bid profile en, with the entries in each
row consisting of the revenue of the corresponding auction on the given bid profile. Clearly, Γ is
implementable. As for admissibility, take θ ∈ Ss,m and the corresponding row Γθ. Note that
as vn = `/m increases for ` = 0, . . . ,m, there is an increase in bn(`/m) = −1, 0, . . . , s − 1,
possibly skipping the initial −1. As the level bn(vn) increases, the auction revenue attains the
values θi0, θi1, . . . , θ

i
s−1, changing exactly at those points where vn crosses thresholds θn1 , . . . , θ

n
s−1.

Since any two consecutive thresholds of θ are different, the thresholds of θib for b ≥ 0 and θnb for
b ≥ 1 can be reconstructed by analyzing the revenue of the auction and the values of vn at which
the revenue changes. The remaining threshold θn0 can be recovered by examining the revenue of
the bid profile v = en. Since all of the parameters of the auction can be recovered from the entries
in the row, this shows that any two rows of Γ are different and Γ is (m+ 1, 1/m)-admissible.
This reasoning is summarized in the following construction and the corresponding lemma. See
Figure 5.2 for more intuition.

Construction of Γ: For i ∈ {1, . . . , n − 1} and ` ∈ {0, . . . ,m}, let vi,` = ei + (`/m)en.
Let V = {vi,`}i,` ∪ {en}. Let ΓSL be the matrix of size |Ss,m| × |V | with entries indexed by
(θ,v) ∈ Ss,m × V , such that ΓSL

θ,v = Rev(θ,v).

93

Bidder !
"#

Jumps in the Revenue

Bidder $

Gradual Increase in "%

&'#

&(#
&)#

&*#

&(% &)% &*%
&(% &)% &*%&'%

&'# &(# &)# &*#"%

"%

Re
ve

nu
e

Figure 5.2: Demonstration of how θ can be reconstructed by its revenue on the bid profiles in
V = {vi,`}i,` ∪ {en}. On the left, we show that as the value vn (blue circle) gradually increases
from 0 to 1, the revenue of the auction (red vertical lines) jumps along the sequence of values
θi0, θ

i
1, . . . , θ

i
s−1. So by analyzing the revenue of an auction on all bid profiles {vi,`}i,` one can

reconstruct θi for i 6= n and θn1 , . . . , θ
n
s−1. To reconstruct θn0 , one only needs to consider the

profile en. The figure on the right demonstrates the revenue of the same auction, where the
horizontal axis is the value of vn and the vertical axis is the revenue of the auction when vi = 1
and all other valuations are 0.

Lemma 5.3.12. ΓSL is (m+ 1, 1/m)-admissible and implementable with complexity 1.

Proof. Since ΓSL
θ,v = Rev(θ,v), ΓSL can be implemented by datasets Sv = {(1,v)} for v ∈ V .

So, Γ is implementable with complexity 1.

Bidder i

Bidder n

Bidder i

Bidder n

Γθ θib

s
vis

vn

Γθ′ θ′
i
b

s
vis

vn

(a) Case 1

Bidder 1

Bidder n

Bidder 1

Bidder n

Γθ θ1b

s
v1svn

θnb

Γθ′ θ1b′

s
v1svn

θ′
n
b

(b) Case 2

Figure 5.3: Demonstrating cases 1 and 2 of prof of Lemma 5.3.12. The bidder valuations are
demonstrated by blue circles on the real line and the revenue of the two auctions θ and θ′ are
demonstrated by red solid vertical line.

Take any two different auctions θ and θ′. We show that ΓSL
θ 6= ΓSL

θ′ . Let b be the smallest
level at which there is i ∈ [n] such that θib 6= θ′ib and among such i choose the largest. There are
three cases (see Figure 5.3 for Cases 1 and 2):

1. i 6= n: Consider the bid profile vi,` for ` = mθnb . By the choice of i and the fact that i 6= n,
we have that bθn(vi,`n) = bθ

′

n (vi,`n) = b. On the other hand, bθi (vi,`i) = s− 1 ≥ b. Therefore,
bidder i wins the item in both auctions and pays the bth threshold. So, Rev(θ,vi,`) = θib 6=
θ′ib = Rev(θ′,vi,`).

94

2. i = n and b ≥ 1: Without loss of generality, assume that θnb < θ′nb . Let ` = mθnb and
consider v1,`. Then bθn(v1,`

n) = b and bθ
′

n (v1,`
n) = b′ for some b′ < b. So, bidder 1 wins

the item in both auctions and pays the threshold that corresponds to the nth bidder’s level.
Therefore, Rev(θ,v1,`) = θ1

b 6= θ1
b′ = Rev(θ′,v1,`).

3. i = n and b = 0: Consider bid profile en. In this profile, bidder n wins and pays the
absolute reserve price. Therefore, Rev(θ, en) = θn0 6= θ′n0 = Rev(θ′, en).

Therefore, ΓSL
θ 6= ΓSL

θ′ . Since any element of ΓSL is a multiple of 1/m, ΓSL is (m+ 1, 1
m

)-
admissible.

Our next theorem is an immediate consequence of Lemma 5.3.12, Theorems 5.2.5 and 5.2.9,
and the fact that the revenue of the mechanism at every step is at most 1.

Theorem 5.3.13. Consider the online auction design problem for the class of s-level auctions
with no repeated thresholds, Ss,m. Let D be the uniform distribution as described in Theo-
rem 5.2.5. Then, the Oracle-Based Generalized FTPL algorithm with D and datasets that
implement ΓSL is oracle-efficient with per-round complexity poly(n,m, T) and has regret

E

[
max
θ∈Ss,m

T∑

t=1

Rev(θ,vt)−
T∑

t=1

Rev(θt,vt)

]
≤ O(nm2

√
T).

5.4 Stochastic Adversaries and Stronger Benchmarks
So far our results apply to general adversaries, where the sequence of adversary actions are
arbitrary and where we showed that the payoff of the learner is close to the payoff of the best
action in hindsight. Can we make stronger statements about the average payoff of a no-regret
learning algorithm when we impose distributional assumptions on the sequence of the adversary?

We start with the easier setting where the actions of the adversary are drawn i.i.d. across
all rounds and then we analyze the slightly more complex setting where the actions of the
adversary follow a fast-mixing Markov chain. For both settings we show that the average payoff
of the learning algorithm is close to the optimal expected payoff, in expectation over the i.i.d.
distribution across all rounds in the i.i.d. setting and over the stationary distribution in the
Markovian setting.

When applied to the online optimal auction setting, combining these results with approximate
optimality results of simple auctions such as s-level auctions or VCG with bidder-specific
reserves, we get that the average revenue of our online learning algorithms competes with the
revenue achieved by the unrestricted optimal auction for these distributional settings and not
only with the best auction within the class over which our algorithms were learning.

5.4.1 Stochastic Adversaries
I.I.D. Adversary One extreme case is to assume that the adversary’s action yt at each iteration
is drawn independently and identically from the same unknown distribution F . This leads to

95

the i.i.d. learning setting. An easy application of the Chernoff-Hoeffding bound yields that for
such a learning setting, the average payoff of a no-regret learner converges to the best payoff one
could achieve in expectation over the distribution F :

Lemma 5.4.1. Suppose that y1, . . . , yT are i.i.d. draws from a distribution F . Then for any
no-regret learning algorithm, with probability at least 1− δ,

1

T

T∑

t=1

E
xt

[f(xt, yt)] ≥ sup
x∈X

E
y∼F

[f(x, y)]−
√

log(2/δ)

2T
− REGRET

T
. (5.5)

Markovian Adversary Suppose that the choice of the adversary yt follows a stationary and
reversible Markov process based on some transition matrix P (y, y′) with a stationary distribution
F . Moreover, consider the case where the set Y is finite. For any Markov chain, the spectral
gap γ is defined as the difference between the first and the second largest eigenvalue of the
transition matrix P (the first eigenvalue always being 1). We will assume that this gap is bounded
away from zero. The spectral gap of a Markov chain is strongly related to its mixing time. In
this work we will specifically use the following result of Paulin [221], which is a Bernstein
concentration inequality for sums of dependent random variables that are the outcome of a
stationary Markov chain with spectral gap bounded away from zero. A Markov chain y1, . . . , yT
is stationary if y1 ∼ F where F is the stationary distribution, and is reversible if for any y, y′,
F (y)P (y, y′) = F (y′)P (y′, y). For simplicity, we focus on stationary chains, though similar
results hold for non-stationary chains (see Paulin [221] and references therein).

Theorem 5.4.2 (Paulin [221], Theorem 3.8). Let X1, . . . , Xz be a stationary and reversible
Markov chain on a state space Ω, with stationary distribution F and spectral gap γ. Let
g : Ω→ [0, 1], then

Pr

[∣∣∣∣∣
1

z

z∑

i=1

g(Xi)− E
X∼F

[g(X)]

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− zγε2

4 + 10ε

)
.

Applying this result, we obtain the following lemma (see Appendix A.5 for the proof):

Lemma 5.4.3. Suppose that the adversary’s actions y1, . . . , yT form a stationary and reversible
Markov chain with stationary distribution F and spectral gap γ. Then for any no-regret learning
algorithm, with probability at least 1− δ:

1

T

T∑

t=1

E
xt

[f(xt, yt)] ≥ sup
x∈X

E
y∼F

[f(x, y)]−
√

14 log(2/δ)

γT
− REGRET

T
. (5.6)

Example 5.4.4 (Sticky Markov Chain). Consider a Markov chain where at every iteration yt
is equal to yt−1 with some probability ρ ≥ 1/2 and with the remaining probability (1− ρ) it is
drawn independently from some fixed distribution F . It is clear that the stationary distribution of
this chain is equal to F . We can bound the spectral gap of this Markov chain by the Cheeger

96

bound [74]. The Cheeger constant for a finite state, reversible Markov chain is defined and in
this case bounded as

Φ = min
Q⊆Ω:F (Q)≤1/2

∑
y∈Q

∑
y′∈Qc F (y)P (y, y′)

F (Q)
= min

Q⊆Ω:F (Q)≤1/2

∑
y∈Q

∑
y′∈Qc F (y)(1− ρ)F (y′)

F (Q)

= min
Q⊆Ω:F (Q)≤1/2

(1− ρ)
F (Q) · F (Qc)

F (Q)
= min

Q⊆Ω:F (Q)≤1/2
(1− ρ)F (Qc) ≥ 1− ρ

2

Moreover, by the Cheeger bound we know that γ ≥ Φ2

2
≥ (1−ρ)2

8
. Thus we get that for such a

sequence of adversary actions, with probability 1− δ,

1

T

T∑

t=1

E
xt

[f(xt, yt)] ≥ sup
x∈X

E
y∼F

[f(x, y)]− 4

1− ρ

√
7 log(2/δ)

T
− REGRET

T
(5.7)

5.4.2 Implications for Online Optimal Auction Design
Consider the online optimal auction design problem for a single item and n bidders. Suppose that
the adversary who picks the valuation vectors v1, . . . ,vT , is Markovian and that the stationary
distribution F of the chain is independent across players, i.e., the stationary distribution is a
product distribution F = F1 × . . .× Fn.

Then we know that the optimal auction for this setting is what is known as Myerson’s auction
[213], which translates the players’ values based on some monotone function φ, known as the
ironed virtual value function and then allocates the item to the bidder with the highest virtual
value, charging payments so that the mechanism is dominant-strategy truthful.

A recent result of Morgenstern and Roughgarden [211] shows that level auctions approximate
Myerson’s auction in terms of revenue. In particular, if distributions Fi are bounded in [1, H],
then the class of s-level auctions with s = Ω(1

ε
+ log1+εH), where the thresholds can be any

real numbers, achieves expected revenue at least (1 − ε) of the expected optimal revenue of
Myerson’s auction. Analogously to these results, we prove and use an additive approximation
result using thresholds that are in the discretized set Ss,m (defined in Section 5.3.3), rather
than the multiplicative guarantees of Morgenstern and Roughgarden [211] that can use any
real numbers as thresholds. We use a discretization level m = Θ

(
1
ε2

)
and number of levels

s = Θ
(

1
ε

)
, to prove that

max
θ∈Ss,m

E
v∼F

[Rev(θ,v)] ≥ OPT(F)−O(ε), (5.8)

where OPT(F) is the optimal revenue achievable by any dominant-strategy truthful mechanism
for valuation vector distribution F . At a high level, we first show that one can discretize the
support of F to O(1/ε) levels while losing only O(ε) in revenue. We then show that a variant
of the class of auctions Ss,1/ε, calledRs,1/ε that allows two consecutive thresholds to be equal,
approximates the optimal revenue on the discretized valuations. Finally, by using a finer grid, we
show that the optimal auction in Ss,m approximates the optimal auction inRs,1/ε, which in turn,
approximates the optimal revenue on discretized valuations.

For now, let us defer the proof of this equation to the end of this section. Combining the
results in this section with the aforementioned results we get the following theorem:

97

Theorem 5.4.5 (Competing with Overall Optimal). Consider the online auction design problem
for a single item among n bidders, where the sequence of valuation vectors v1, . . . ,vT is
Markovian, following a stationary and reversible Markov process, with a stationary distribution
F = F1 × . . . × Fn that is a product distribution across bidders, Fis are continuous, and
with a spectral gap of γ > 0. Then the oracle-efficient online learning algorithm (studied in
Theorem 5.3.13) which optimizes over the set of s-level auctions Ss,m with s = Θ(n−1/5T 1/10)
and with a discretization of the threshold levels of size m = Θ(n−2/5T 1/5), guarantees the
following bound with probability at least 1− δ:

1

T

T∑

t=1

E
θt

[Rev(θt,vt)] ≥ OPT(F)−O
(

1√
m

)
−
√

14 log(2/δ)

γT
−O

(
nm2

√
T

)

≥ OPT(F)−O
(
n1/5

T 1/10

)
.

Example 5.4.6 (Valuation Shocks). Consider the setting where valuations of players in the
beginning of time are drawn from some product distribution F = F1 × . . .× Fn. Then at every
iteration with some probability ρ the valuations of all players remain the same as in the previous
iteration, while with some probability 1− ρ, there is a shock in the market and the valuations
of the players are re-drawn from distribution F . As we analyzed in the previous section, the
spectral gap of the Markov chain defined by this setting is at least (1−ρ)2

8
. Thus we get a regret

bound which depends inversely proportionally with the quantity 1− ρ.
Hence, our online learning algorithm achieves revenue that is close to the optimal revenue

achievable by any dominant-strategy truthful mechanism for the distribution F . More importantly,
it achieves this guarantee even if the valuations of the players are not drawn i.i.d. at every
iteration and even if the learner does not know what the distribution F is, when the valuations of
the players are going to be re-drawn, or what the rate ρ of shocks in the markets is.

Proof of Equation (5.8)

We set out to prove
max
θ∈Ss,m

E
v∼F

[Rev(θ,v)] ≥ OPT(F)− 3ε, (5.9)

for m = 1/ε2 and s = 1/ε.
Let us first briefly mention two existing approaches to proving similar results using different

discretization sets.
Let Rs,m be the set of s-level auctions with discretization level m, as described in Defi-

nition 5.3.11, with the exception that consecutive thresholds can be equal. Morgenstern and
Roughgarden [211] aim for a multiplicative approximation guarantee and show that when
distributions Fi are bounded in [1, H] and s = Ω(1

ε
+ log1+εH),

max
θ∈Rs,∞

E
v∼F

[Rev(θ,v)] ≥ (1− ε)OPT(F).

Note that this result uses the set of auctionsRs,∞, i.e., the thresholds can be set at any real values
and consecutive thresholds may be equal, rather than in the discretization grid Ss,m for a finite m

98

and no repeated thresholds. On the other hand, Devanur et al. [103] show that the valuations of
the bidders can be discretized with only a small loss in the revenue of the optimal auction. That
is, if F ′ is a product distribution obtained by rounding down each v ∼ F to the closest power of
(1− ε), then OPT(F ′) ≥ (1− ε)OPT(F).

We use a combination of these results to prove our claim. In particular, we use a variant of the
approach of Devanur et al. [103] to obtain an ε additive approximation guarantee by discretizing
the valuations of the bidders, not the auctions, at a discrete grid. We then use a variant of the
approach of Morgenstern and Roughgarden [211] to approximate the optimal auction on these
valuations using the gridRs,∞. Since the valuations of the bidders are discretized themselves,
we show how to discretize the thresholds of the optimal auction to the set of auctions inRs,1/ε,
while losing only a small additive term. Finally, we show how to use a finer grid and approximate
the revenue of the optimal auction using level auctions that have distinct thresholds, i.e., Ss,1/ε2 .

First, let F ′ be a product distribution obtained by rounding down each v ∼ F to the closest
multiple of ε. We show that OPT(F ′) ≥ OPT(F)− ε. The proof is an analogue of Lemma 5 of
[103] for additive approximation.

Lemma 5.4.7. Given any product distribution F = F1 × . . . × Fn, let F ′ be the distribution
obtained by rounding down the values from F to the closest multiple of ε. Then OPT (F ′) ≥
OPT (F)− ε.

Proof. Let M be the optimal Myerson auction for F and let M ′ be the following mechanism for
allocating items to v′ ∼ F ′: Take v such that 1−Fi(vi) = 1−F ′i (v′i) for all i ∈ [n] and allocate
the item according to the outcome of mechanism M on v. Charge the winner the minimum value
above which it would remain a winner.

To analyze the revenue of M ′, we will think of the expected revenue in terms of quantiles.
The quantile of a distribution Fi is defined as ci(vi) = 1− Fi(vi). So instead of thinking of an
auction in terms of the allocation as a function of values, we can think of it in terms of quantiles
and we can write vi(c) = c−1

i (c) as the value that corresponds to quantile c. Then we can express
the expected revenue as Ec[Rev(M,v(c)], where each quantile ci is drawn uniformly in [0, 1].

Consider any vector of quantiles c ∈ [0, 1]n and let v and v′ be the values in F and F ′

corresponding to these quantiles, i.e., 1 − Fi(vi) = 1 − F ′i (v′i) = ci for all i ∈ [n]. Note that,
allocation of M on v is the same as the allocation of M ′ on v′. Moreover, the payment of a
truthful mechanism is the threshold value of the winner above which he still remains allocated.
Therefore, for any such quantile the payment in F and F ′ differ by at most ε. This proves that
OPT(F ′) ≥ OPT(F)− ε.

Next, we show that there is θ ∈ R1/ε,∞ such that Ev∼F ′ [Rev(θ,v)] ≥ OPT(F ′)−ε. This is an
analogue of Theorem 3.4 in Morgenstern and Roughgarden [211], but for additive approximation,
which enables us to drop some strong assumptions made in Morgenstern and Roughgarden [211]
on the support of the distribution.

Lemma 5.4.8. Consider any product distribution F = F1× . . .×Fn, where each Fi has support
in [0, 1]. We have that:

max
θ∈R1/ε,∞

E
v∼F

[Rev(θ,v)] ≥ OPT(F)− ε. (5.10)

99

Proof. For each i, let φi(·) be the ironed virtual valuation function for bidder i with respect to
Fi (see [151]). These φi(·) are non-decreasing functions. Let θ be such that θib = φ−1

i (b · ε) for
b ∈ {0, 1, . . . , s−1} (where the inverse is defined as the left-most value v for which φi(v) = b ·ε).
Observe that with such a vector of thresholds, the s-level auction is essentially approximating
the virtual value functions to within an epsilon error, and then allocating to the player with the
highest approximate virtual value function. In particular, observe that a player i in this s-level
auction is assigned level b if his ironed virtual value φi(vi), is in interval [bε, (b + 1)ε), or in
[bε, 1] if b = s− 1.

Next, we show that for any v, Rev(θ,v) ≥ OPT(F) − ε. Consider v ∼ F and let i∗ and
i′ be the winners in θ and the Myerson optimal auctions respectively. Moreover, observe that
in both auctions the allocation of a player can be determined as a function of his ironed virtual
value (rather than directly his value). Thus we can conclude by Theorem 3.18 of [151], that the
expected revenue of both auctions is equal to their expected ironed virtual value (not only upper
bounded by it). So, we have that:

E
v∼F

[Rev(θ,v)] = E
v∼F

[φi∗(vi∗)] and OPT(F) = E
v∼F

[φi′(vi′)].

Now, consider the winners i∗ and i′. Note that if i∗ was the unique bidder at the highest bucket
under θ (there were no ties to be broken lexicographically), then i∗ also has the highest ironed
virtual valuation, so i∗ = i′. On the other hand, if i′ was tied with i∗, then φi′(vi′)− φi∗(vi∗) ≤ ε.
So, overall we have

E
v∼F

[Rev(θ,v)] = E
v∼F

[φi∗(vi∗)] ≥ E
v∼F

[φi′(vi′)]− ε = OPT(F)− ε.

We can now combine the above two Lemmas to show Equation (5.9). From Lemma 5.4.8,
starting from any product distribution F , we can first round down values to the nearest multiple
of ε to get a distribution F ′, such OPT(F ′) ≥ OPT(F)− ε. Then we can apply Lemma 5.4.8, for
distribution F ′, to show that

max
θ∈R1/ε,∞

E
v∼F ′

[Rev(θ,v)] ≥ OPT(F ′)− ε ≥ OPT (F)− 2ε.

Next, observe that since the distribution F ′ is only supported at values that are multiples of ε,
in the above maximization over threshold levels, it suffices to optimize over thresholds that are
multiples of ε. For any other threshold, θib, which is not a multiple of ε, we can rounded up to the
nearest multiple of ε. This does not change the allocation of any realized value and it can only
increases the payment. Thus:

max
θ∈R1/ε,1/ε

E
v∼F ′

[Rev(θ,v)] = max
θ∈R1/ε,∞

E
v∼F ′

[Rev(θ′,v)] ≥ OPT(F)− 2ε.

Next, we show that without loss of generality, we can consider those auctions in θ ∈ R1/ε,1/ε

where for each bidder i, only θi0 can be set at value 0 and no other threshold. Consider θ such
that θi0 =, . . . , θib = 0. Note that no payment in such an auction falls in the bucket b − 1 of
bidder i′ < i or bucket b of i′ > i. Therefore, one can remove thresholds θi1, · · · , θib and the

100

corresponding thresholds for bidders i′ without changing the allocation or payment on any
valuation. Therefore, in the remainder of this proof, we assumes that R1/ε,1/ε is restricted to
auctions with no repeated thresholds on value 0.

Note that the thresholds created above fall in the setR1/ε,1/ε, that is they may have consecutive
thresholds that are equal (however, not on value 0). Instead, consider level auctions at a finer
grid value, S1/ε,1/ε2 . For any θ ∈ R1/ε,1/ε, consider a θ′ ∈ S1/ε,1/ε2 such that the equal threshold
in θ are spread in the 1

ε
discretization levels between the two discretization levels of θ. That is,

for any bidder i and any ` ∈ [1/ε], all the thresholds of bidder i that are equal to `ε are spread
to get distinct values {(`− 1)ε+ ε2, (`− 1)ε+ 2ε2, · · · , `ε} in θ′. Since auction θ has 1

ε
levels,

all levels are distinct in θ′, and since θ has at most one threshold on value 0, no negative value
thresholds are created in θ′. Moreover, because the valuations in F ′ are themselves discretized at
multiples of ε, no bid changes level and the allocation in θ is the same as θ′. So, the revenue of
any valuation drops by at most ε. Therefore,

max
θ∈S1/ε,1/ε2

E
v∼F ′

[Rev(θ,v)] ≥ max
θ∈R1/ε,1/ε

E
v∼F ′

[Rev(θ,v)]− ε.

Finally, since valuations of F are rounded down to valuations in F ′, we have that under F , any
s-level auction can only yield higher revenue than under F ′, because F has point-wise higher
values than F . Hence:

max
θ∈S1/ε,1/ε2

E
v∼F

[Rev(θ,v)] ≥ max
θ∈S1/ε,1/ε2

E
v∼F ′

[Rev(θ,v) ≥ OPT(F)− 3ε.

5.5 Approximate Oracles and Approximate Regret
As we saw, the Oracle-Based Generalized FTPL algorithm requires an oracle to choose an action
with a total payoff that is within a small additive error of that of the optimal action. In this
section, we extend our main results regarding the Oracle-Based Generalized FTPL algorithm to
work with oracles that return an action whose payoff is only a constant approximation of that of
the optimal actions. An offline approximation oracle is defined formally as follows:

Definition 5.5.1 (Offline Approximation Oracle). An offline approximation oracle for a set of
learner’s actions X and function f , C-OPT(f,X) where C ≤ 1, is any algorithm that receives
as input a weighted set of adversary actions S = {(w`, y`)}`∈L, wk ∈ R+, yk ∈ Y , and returns
x ∈ X , such that ∑

(w,y)∈S

wf(x, y) ≥ C max
x∈X

∑

(w,y)∈S

wf(x, y).

Similarly below we will use notation OPT(f,X) to represent an offline oracle OPT defined in
Section 5.2.2 for function f and set X , making the dependence explicit.

As discussed earlier, access to an oracle OPT that has a small additive approximation error is
needed for achieving no-regret results. That is, using standard online-to-batch reductions [71, 94],
one can turn a polynomial time online no-regret algorithm into a polynomial time additive
approximation scheme for the offline problem. So, when the best approximation for a problem
is obtained through a C-approximation oracle for general C, there is no hope for achieving

101

no-regret results. Instead Kakade et al. [169] introduced an alternative measure of regret, called
C-REGRET, for competing with an offline approximation algorithm. Formally, the C-REGRET

of an online maximization problem is defined as

C-REGRET = E

[
C max

a∈A

T∑

t=1

f(x, yt)−
T∑

t=1

f(xt, yt)

]
.

Note that for FPTAS algorithm, where C = 1− ε for any desirable ε, using ε = 1/poly(T)
recovers a no-regret guarantee. Below we consider several types of constant approximation
oracles, such as approximation through relaxation of the objective and approximation oracles
that stem from Maximal-in-Range (MIR) algorithms, and show that using the Oracle-Based
Generalized FTPL algorithm with the approximation oracles obtains vanishing C-REGRET.

5.5.1 Approximation through Relaxation
A large class of approximation algorithms achieve their approximation guarantees by exactly
optimizing a relaxation of the objective functions. More formally, if there is a function F :
X × Y → R, such that Cf(x, y) ≤ F (x, y) ≤ f(x, y) and there is an offline oracle OPT(F,X)

(with ε = 0 for simplicity), then it is clear that any online algorithm for F is also online algorithm
with vanishing C-REGRET for f . This result is more formally stated below.

Theorem 5.5.2. Let F be a functions such that for any x ∈ X and y ∈ Y , f(x, y) ≥ F (x, y) ≥
Cf(x, y). Let ΓF ∈ [0, 1]|X |×N be (κ, δ)-admissible and implementable for function F with
complexity g(N, T). Let D be the uniform distribution on [0, 1/η] for η =

√
δ/(2Tκ). Then, the

Oracle-Based Generalized FTPL algorithm with D, datasets that implement ΓF , and OPT(F,X)

is oracle-efficient with per-round complexity O(T + g(N, T)) and regret

C-REGRET ≤ 2N
√

2Tκ/δ.

A similar observation was made by Balcan and Blum [31] regarding approximation algo-
rithms that use linear optimization as a relaxation and therefore can be efficiently optimized by
the standard FTPL algorithm of Kalai and Vempala [170]. Our work extends this observation to
any relaxation of function f that has an FPTAS and an admissible and implementable translation
matrix.

Roughgarden and Wang [240] as a Relaxation. The approach of Roughgarden and Wang
[240] for achieving a 1/2-regret for single-item second price auctions with bidder-specific re-
serves, falls exactly in the relaxation approximation framework. They give a relaxed objective
which admits a polynomial time offline oracle and which is always within a factor 2 from the
original objective. Then they run an oracle based online learning algorithm for the relaxed objec-
tive. However, in their case the relaxed objective corresponds to an online linear optimization
problem and can be solved with the standard FTPL algorithm of Kalai and Vempala [170]. The
theorem above shows that the same approach extends even if the relaxed objective does not
reduce to an online linear optimization problem but to a problem that can be tackled by our
Generalized FTPL, providing a potential avenue for obtaining vanishing C-REGRET for values
of C ≥ 1

2
.

102

5.5.2 Approximation by Maximal-in-Range Algorithms
Another interesting class of approximation algorithms is Maximal-in-Range (MIR) algorithms.
An MIR algorithm commits to a set of feasible solutions X ′ ⊆ X independently of the input to
the algorithm and outputs the best solution x ∈ X ′. That is, an MIR C-approximation algorithm
forms an approximation oracle C-OPT(f,X)(S) = OPT(f,X ′)(S, 0) for any S. Consider an MIR
approximation algorithm and ΓX translation matrix that is admissible and implementable for
X . Clearly, ΓX restricted to the set of rows in X ′ (denoted by ΓX

′) is also admissible and
implementable for any X ′ ⊆ X . In fact ΓX

′ is (κ′, δ′) admissible for κ′ ≤ κ and 1
δ′
≤ 1

δ
.

Thus even better regret guarantees could be achievable if one uses the smaller admissibility
quantities of matrix ΓX

′ . Therefore, an MIR C-approximation algorithm leads to an efficient
online algorithm with vanishing C-REGRET. In Section 5.6.1, we demonstrate an example where
a better approximate regret bound is obtained using smaller admissibility quantities.

More formally we have:

Theorem 5.5.3. Let ΓX
′ ∈ [0, 1]|X

′|×N be (κ′, δ′)-admissible and implementable with complexity
g(N, T). Let D be the uniform distribution on [0, 1/η] for η =

√
δ′/(2Tκ′). Then, the Oracle-

Based Generalized FTPL algorithm with D, datasets that implement ΓX
′

(or equivalently
datasets that implement ΓX) and an MIR approximation oracle OPT(f,X ′) is oracle-efficient with
per-round complexity O(T + g(N, T)) and regret

C-REGRET ≤ 2N
√

2Tκ′/δ′.

5.6 Additional Applications and Connections
In this section, we discuss an application of our oracle efficient learning approach to the problem
of online welfare maximization in multi-unit auctions, to no-regret learning in simultaneous
second price auctions, and discuss the connections between our notions of admissibility and
implementability with other statistical measures of complexity from learning theory.

For readability, we use superscript (t), as opposed to the subscript t, to index the time step
throughout this section.

5.6.1 Fully Efficient Online Welfare Maximization in Multi-Unit Auctions
In this section, we consider the class of single-item multi-unit auctions that has 1/2-approximation
Maximal-in-Range (MIR) algorithm. We show how the results of Section 5.5 can be applied to
this problem to achieve a truly polynomial time online algorithm with vanishing 1

2
-REGRET.

We consider an online learning variant of an n-bidder multi-unit environment, better modeled
as a set of s identical items. Each bidder i has a monotonic valuation function vi : [s]→ [0, 1].
In other words, bidder i has marginal valuation µi(`) for receiving its `th item and the total
utility of bidder i for receiving qi items is vi(qi) =

∑qi
`=1 µi(`). Here we consider the case where

s is much larger than n and the goal is to find an allocation q ∈ Zn, subject to
∑n

i=1 qi = s,
that maximizes the total welfare

∑n
i=1 vi(qi) in time polynomial in n and log(s). In the online

learning setting, every day t a fresh set of bidders arrive with new valuations vti and the learner

103

commits to an allocation of the units of the item to the players, prior to seeing the valuations.
The goal of the learner is to pick an allocation each day that competes with the best in hindsight
allocation.

It is not hard to see that the offline welfare maximization problem in this setting corresponds
to the Knapsack problem, where each player has a valuation equal to the average value in
hindsight, i.e., 1

T

∑T
t=1 v

(t)
i (·). So, dynamic programming can be used to compute a welfare-

maximizing allocation in time polynomial in n and s. Dobzinski and Nisan [110] introduced a
1/2-approximation MIR algorithm for this problem. At a high level, the algorithm proceeds by
dividing the set of items to n2 bundles of size s/n2.8 Then, the MIR algorithm chooses the best
allocation from the set of allocations (range of the algorithm) where all the items in one bundle
are allocated to the same bidders. This algorithm is effectively solving a knapsack problem over
n2 items and can be implemented in time polynomial in n and log(s).

We show how to construct a matrix ΓMU that is admissible and implementable for unrestricted
n-bidder s-unit auctions. We then use Theorem 5.5.3 to obtain an online algorithm with vanishing
1
2
-REGRET that runs in time poly(n, T, log s).

Construction of Γ: Let ΓMU be a matrix with n columns, such that for any allocation q and
any column j, ΓMU

qj = qj/s. Let ΓMU′ be the restriction of matrix ΓMU to the rows that represent
the range of the 1/2-approximation algorithm of Dobzinski and Nisan [110].

Clearly, for any q 6= q′ we have ΓMU
q 6= ΓMU

q′ . So, ΓMU is (s+ 1, 1
s
)-admissible. Moreover,

observe that the matrix ΓMU′ restricted to the range of the 1/2 approximation algorithm of
Dobzinski and Nisan [110] has much better admissibility constants. In particular, the number of
different entries within each column is at most κ′ = n2 +1, since each player receives allocations
that are multiples of s/n2 and there are at most n2 + 1 such multiples. Moreover, the minimum
non-zero difference of the column entries, between any two such bundled allocations, is at least
δ′ ≥ s

n2
1
s

= 1
n2 . Therefore matrix ΓMU′ is

(
n2 + 1, 1

n2

)
-admissible.

It is not hard to see that ΓMU is also implementable with complexity 1. For any column
j, consider the bid profile vj where bidder j’s marginal valuation for any item is 1/s and all
other bidders have 0 valuation for any number of items. That is, µj(`) = 1/s and µi(`) = 0
for all ` and i 6= j. The welfare of any allocation on this bid profile is the utility of bidder
j, which is qj/s = ΓMU

qj . Therefore, ΓMU is implementable with complexity 1 using datasets
Sj = {(1,vj)} for all j ∈ [n]. As a result, ΓMU′ is also implementable with complexity 1 using
the same datasets.

Theorem 5.6.1. Consider the problem of welfare maximization in s-unit auctions. Let D be the
uniform distribution on [0, 1/η] for η =

√
δ′/(2Tκ′) =

√
1

2Tn2(n2+1)
. Then, for any sequence of

valuation functions v(1), . . . ,v(T), the Oracle-Based Generalized FTPL algorithm with datasets
that implement matrix ΓMU′ , distribution D, and the 1/2-approximate MIR algorithm of [110]
as an oracle, runs in per-round time poly(n, log(s), T) and plays the sequence of allocations

8If s is not a multiple of n2, one can add extra items with marginal value of 0 to all bidders.

104

q(1), . . . ,q(T), such that

1

2
-REGRET = E

1

2

 max

q∈Zn:
‖q‖1=s

T∑

t=1

n∑

i=1

v
(t)
i (qi)

−

T∑

t=1

n∑

i=1

v
(t)
i (q

(t)
i)

≤ n · 2n
√

2T (n2 + 1)n2

≤ O(n4
√
T).

In the above theorem, the extra factor of n in the regret as compared to that implied by
Theorem 5.5.3, is due to the fact that the maximum welfare in this problem is upper bounded by
n.

5.6.2 Oracle Efficient Online Bidding in Simultaneous Second Price Auc-
tions

In this section, we answer an open problem raised by Daskalakis and Syrgkanis [94] regarding
the existence of an oracle-based no-regret algorithm for optimal bidding in Simultaneous Second-
Price Auctions. We show that our Oracle-Based Generalized FTPL algorithm used with an
appropriate implementable and admissible translation matrix can be used to obtain such an
algorithm.

A Simultaneous Second-Price Auction (SiSPA) [47, 80, 118] is a mechanism for allocating
k items to n bidders. Each bidder i ≤ n submits k simultaneous bids denoted by a vector of
bids bi. The mechanism allocates each item using a second-price auction based on the bids
solely submitted for this item, while breaking ties in favor of bidders with larger indices. For
each item j, the winner is charged pj , the second highest bid for that item. Each bidder i has
a fixed combinatorial valuation function vi : {0, 1}k → [0, 1] over bundles of items. Then, the
total utility of bidder i who is allocated the bundle qi ∈ {0, 1}k is vi(qi)− p · qi, where p is the
vector of second largest bids across all items.

We consider the problem of optimal bidding in a SiSPA from the perspective of the first
bidder. Hereafter, we drop the indices of the players from the notation. From this perspective,
the utility of the bidder only depends on its bid b and the threshold vector p of the second largest
bids. The online optimal bidding problem is defined as follows.

Definition 5.6.2 (Online Bidding in SiSPAs [255]). At each time step t, the player picks a bid
vector b(t) and an adversary picks a threshold vector p(t). The player wins the bundle of items
q(b(t),p(t)), with qj(b(t),p(t)) = 1

(b
(t)
j >p

(t)
j)

and gets the utility

u(b(t),p(t)) = v
(
q(b(t),p(t))

)
− p(t) · q.

We consider this problem under the no-overbidding condition that requires that for any bundle
q, the sum of bids over items in q does not exceed the bidder’s valuation for q, i.e., b(t) ·q ≤ v(q),
for all q ∈ {0, 1}k. Similar no-overbidding assumptions are used in the previous work to prove
that no-regret learning in second-price auctions has good welfare guarantees [80, 118].

105

We consider the online bidding problem where for any q, the valuation v(q) ∈ {0, 1/m, . . . ,m/m}
and for any item j ≤ k, bj is a multiple of 1/m. We represent by Bm the class of all such bid
vectors that satisfy the no-overbidding condition for v(·). Note that the assumption on the
valuation function is not restrictive. That is, for any valuation function v(·), one can round down
its values to the closest multiple of 1/m, while losing at most 1/m utility. Moreover, a similar
discretization for the bid vectors was used by Daskalakis and Syrgkanis [255] for studying offline
and online optimal bidding in SiSPAs.

Next, we show how to construct an implementable and admissible translation matrix for Bm.

Construction of Γ: Let ΓOB be a matrix with k columns and |Bm| rows that are equal to bid
vectors, i.e., ΓOB

b = b.
The next lemma shows that ΓOB is admissible and implementable.

Lemma 5.6.3. ΓOB is (m+ 1, 1/m)-admissible and implementable with complexity m.

Proof. Since ΓOB
b = b and b is descretized, ΓOB is (m+ 1, 1/m)-admissible. Next, we argue

that ΓOB is also implementable. Consider column j of ΓOB. We show that datasets Sj for all j
that is only supported on threshold vectors where all but the jth thresholds are set to 1, implement
ΓOB. Specifically, for ` = 0, 1, . . . ,m− 1, let pj` = (`/m)ej +

∑
j′ 6=j ej′ . Note that the utility of

playing bid b against pj` is u(b,pj`) =
(
v(ej)−`/m

)
1(bj>`/m). We set the weight corresponding

to pj` to

wj` =

{
1
m
· 1
v(ej)−`/m if `/m < v(ej)

0 otherwise.

Since bj ≤ v(ej) for any b, we have

m−1∑

`=0

wj` u(b,pj`) =
m−1∑

`=0

1

m
· 1

v(ej)− `/m
·
(
v(ej)− `/m

)
1(bj>`/m)

=
m−1∑

`=0

1

m
1(bj>`/m) =

mbj−1∑

`=0

1

m

= bj = ΓOB
bj .

Thus, indeed Sj = {(wj` ,pj`)}` implements ΓOB. Note that |Sj| ≤ m, so ΓOB is implementable
with complexity m.

The next theorem is a direct consequence of Lemma 5.6.3 and Theorems 5.2.5 and 5.2.9.

Theorem 5.6.4. Consider the problem of Online Bidding in SiSPAs. Let D be the uniform distri-
bution as described in Theorem 5.2.5. Then, the Oracle-Based Generalized FTPL algorithm with
D and datasets that implement ΓOB is oracle-efficient with per-round complexity poly(k,m, T)
and has regret

E

[
max
b∈Bm

T∑

t=1

u(b,p(t))−
T∑

t=1

u(b(t),p(t))

]
≤ O(km

√
T).

106

5.6.3 Universal Identification Sequences
There is an interesting connection between our definitions of admissibility and implementability
and a statistical measure of complexity from learning theory, called the Universal Identification
Sequences.

Definition 5.6.5 (Universal Identification Sequences [131]). Consider a domain Z and a class of
functions F mapping from Z to {0, 1}. A set of unlabeled instances Z ′ ⊆ Z is said to distinguish
function f ∈ F if f is the only function that is consistent with the labeling on Z ′ produced by f .
A set of unlabeled instances Z ′ is called a universal identification sequence if it distinguishes
every f ∈ F .

Any universal identification sequence of F can be used to construct a translation matrix that
is admissible and implementable. Consider a matrix ΓF , whose rows are indexed by F and
columns are indexed by Z ′, such that ΓFfz = f(z) for any f ∈ F and z ∈ Z ′. By the definition
of universal identification sequence for any two functions, f, f ′ ∈ F there is z ∈ Z ′, such that
f(z) 6= f ′(z), i.e., ΓFf 6= ΓFf ′ . As a results ΓF is (2, 1)-admissible. Moreover, the columns of
ΓF correspond to the value of functions applied to z ∈ Z ′. Therefore, ΓF is implementable
with complexity 1 using datasets Sz = {(1, z)} for all z ∈ Z ′. That is, the length of a universal
identification sequence is an upper bound on the number of columns needed to create a translation
matrix that is admissible and implementable for a class of binary functions. Examples of function
classes with polynomial-length universal identification sequences include logarithmic-depth
read-once majority formulas and logarithmic-depth read-once positive NAND formulas [131].
The next corollary is a direct consequence of Theorems 5.2.5 and 5.2.9.

Corollary 5.6.6. Consider a domain Z and a class of binary functions F with a universal
identification sequence Z ′ of length d. Let D be the uniform distribution as described in
Theorem 5.2.5. Then, the Oracle-Based Generalized FTPL algorithm with D and datasets that
implements ΓF is oracle-efficient with per-round complexity poly(d, T) and has regret

E

[
max
f∈F

T∑

t=1

f(z(t))−
T∑

t=1

f (t)(z(t))

]
≤ O(d

√
T).

Our condition on the existence of admissible and implementable matrices is very similar to the
existence of short universal identification sequences. In particular, when f is a boolean function
these two notions are equivalent. However, our Oracle-Based Generalized FTPL algorithm
goes beyond the use of binary functions and universal identification sequences. In particular,
we applied our results to obtain no-regret algorithms for several real-valued function classes.
Furthermore, we introduced implementable translation matrices where each column corresponds
to a complex weighted set of adversary’s actions, rather than, columns that correspond to
individual adversary’s actions.

107

108

Chapter 6

Online Learning with a Hint

6.1 Introduction

The need for robust learning algorithms has led to the creation of online learning algorithms
with performance guarantees that hold even when the environment that the learner performs in
changes adversarially. A canonical example of this framework is the online linear optimization
problem. In this setting, a player attempts to minimize an online adversarial sequence of linear
loss functions while incurring a small regret, compared to the best offline solution. Many online
algorithms exist that are designed to have a regret of O(

√
T) in the worst case and it has been

known that one cannot avoid a regret of Ω(
√
T) in the worst case. Having been designed to

perform well in adversarial environments, however, these algorithms can be overly pessimistic
for some day-to-day applications where the changes in the environment may be undesirable but
not necessarily adversarial. In particular, the online learning framework does not account for the
fact that the player may have side-information that allows him to anticipate the upcoming loss
functions and evade the Ω(

√
T) regret. In this chapter, we go beyond this worst case analysis

and consider online linear optimization when additional information in the form of a function
that is correlated with the loss is presented to the player.

More formally, online convex optimization [154, 275] is a T -round repeated game between a
player and an adversary. On each round, the player chooses an action xt from a convex set of
feasible actions K ⊆ Rd and the adversary chooses a convex bounded loss function ft. Both
choices are revealed and the player incurs a loss of ft(xt). The player then uses its knowledge of
ft to adjust its strategy for the subsequent rounds. The player’s goal is to accumulate a small loss
compared to the best fixed action in hindsight. This value is called regret and is a measure of
success of the player’s algorithm.

When the adversary is restricted to Lipschitz loss functions, several algorithms are known
to guarantee O(

√
T) regret [154, 170, 275]. If we further restrict the adversary to strongly

convex loss functions, the regret bound improves to O(log(T)) [159]. However, when the loss
functions are linear, no online algorithm can have a regret of o(

√
T) [70]. In this sense, linear

loss functions are the most difficult convex loss functions to handle [275].
In this chapter, we focus on the case where the adversary is restricted to linear Lipschitz loss

functions. More specifically, we assume that the loss function ft(x) takes the form c>t x, where

109

ct is a bounded loss vector in C ⊆ Rd. We further assume that the player receives a hint before
choosing the action on each round. The hint in our setting is a vector that is guaranteed to be
weakly correlated with the loss vector. Namely, at the beginning of round t, the player observes a
unit-length vector vt ∈ Rd such that v>t ct ≥ α‖ct‖2, and where α is a small positive constant. So
long as this requirement is met, the hint could be chosen maliciously, possibly by an adversary
who knows how the player’s algorithm uses the hint. Our goal is to develop a player strategy
that takes these hints into account, and to understand when hints of this type make the problem
provably easier and lead to smaller regret.

We show that the player’s ability to benefit from the hints depends on the geometry of the
player’s action set K. Specifically, we characterize the roundness of the set K using the notion of
(C, q)-uniform convexity for convex sets. In Section 6.4, we show that if K is a (C, 2)-uniformly
convex set (or in other words, if K is a C-strongly convex set), then we can use the hint to
design a player strategy that improves the regret guarantee to O

(
(Cα)−1 log(T)

)
, where our O(·)

notation hides a polynomial dependence on the dimension d and other constants. Furthermore,
as we show in Section 6.5, if K is a (C, q)-uniformly convex set for q ∈ (2, 3), we can use the
hint to improve the regret to O

(
(Cα)

1
1−qT

2−q
1−q

)
, when the hint belongs to a small set of possible

hints at every step. In Section 6.6, we show that when K is not uniformly convex, such as an L1

and L∞, no algorithm can have a regret of o(
√
T).

6.2 Related work
The notion of hint introduced here is quite general and arises naturally in multiple environ-
ments. Indeed, this notion generalizes some of the previous notions of predictability in online
optimization. Hazan and Megiddo [158] considered as an example a setting where the player
knows the first coordinate of the loss vector at all rounds, and showed that when ct1 > 0 and
the set of feasible actions is the Euclidean ball, one can achieve a regret of O(log(T)). Our
work directly improves over this result, as in our setting a hint vt = e1 also achieves O(log(T))
regret. Furthermore, the algorithm of Hazan and Megiddo [158] requires knowing the value of
ct1 a priori, whereas our algorithm only needs to know whether ct1 > 0 and can also work with
hints in different directions at the different rounds. Hazan and Megiddo [158] also considered
modeling the prior information in each round as a space state and measuring regret against a
stronger benchmark that uses a mapping from the state space to the feasible set. Chiang and Lu
[78] considered actively querying bits of the loss vector, but their result mainly improves the
dependence of regret on the dimension, d.

Another notion of predictability is concerned with predictability of the entire loss vector
rather than individual bits. Chiang et al. [79] considered online convex optimization with a
sequence of loss functions that demonstrates a gradual change and derived a regret bound in
terms of the deviation of the loss functions. Rakhlin and Sridharan [228, 231] extended this line
of work beyond sequences with gradual change and showed that one can achieve an improved
regret bound if the gradient of the loss function is predictable. They also applied this method
to offline optimization problems such as Max Flow and computing the value of a zero-sum
game. In the latter case, they showed that when both players employ a variant of the Mirror Prox
algorithm, they converge to the minimax equilibrium at rate O(log(T)). In the context of online

110

linear optimization, our notion of hint generalizes these notions of predictability. We discuss this
further in Section 6.7.

6.3 Preliminaries
We begin with a more formal definition of online linear optimization (without hints). Let A
denote the player’s algorithm for choosing its actions. On round t the player uses A and all of
the information it has observed so far to choose an action xt in a convex compact set K ⊆ Rd.
Subsequently, the adversary chooses a loss vector ct in a compact set C ⊆ Rd. The player and the
adversary reveal their actions and the player incurs the loss c>t xt. The player’s regret is defined
as

REGRET(A, c1:T) =
T∑

t=1

c>t xt −min
x∈K

T∑

t=1

c>t x.

In online linear optimization with hints, the player observes vt ∈ Rd with ‖vt‖2 = 1, before
choosing xt, with the guarantee that v>t ct ≥ α‖ct‖2, for some α > 0.

We use uniform convexity to characterize the degree of convexity of the player’s action set K.
Informally, uniform convexity requires that the convex combination of any two points x and y
on the boundary of K be sufficiently far from the boundary. A formal definition is given below.

Definition 6.3.1 (Pisier [223]). Let K be a convex set that is symmetric around the origin. K
and the Banach space defined by K are said to be uniformly convex if for any 0 < ε < 2 there
exists a δ > 0 such that for any pair of points x, y ∈ K with ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε,
we have

∥∥x+y
2

∥∥
K ≤ 1 − δ. The modulus of uniform-convexity δK(ε) is the best possible δ for

that ε, i.e.,

δK(ε) = inf

{
1−

∥∥∥∥
x+ y

2

∥∥∥∥
K

: ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε

}
.

For brevity, we say that K is (C, q)-uniformly convex when δK(ε) = Cεq and we omit C when it
is clear from the context.

Examples of uniformly convex sets include Lp balls for any 1 < p < ∞ with modulus of
convexity δLp(ε) = Cpε

p for p ≥ 2 and a constant Cp and δLp(ε) = (p− 1)ε2 for 1 < p ≤ 2. On
the other hand, L1 and L∞ units balls are not uniformly convex. When δK(ε) ∈ Θ(ε2), we say
that K is strongly convex.

Another notion of convexity we use in this work is called exp-concavity. A function f : K →
R is exp-concave with parameter β > 0, if exp(−βf(x)) is a concave function of x ∈ K. This is
a weaker requirement than strong convexity when the gradient of f is uniformly bounded [159].
The next proposition shows that we can obtain regret bounds of order Θ(log(T)) in online convex
optimization when the loss functions are exp-concave with parameter β.

Proposition 6.3.2 (Hazan et al. [159]). Consider online convex optimization on a sequence of
loss functions f1, . . . , fT over a feasible set K ⊆ Rd, such that all t, ft : K → R is exp-concave
with parameter β > 0. There is an algorithm, with runtime polynomial in d, which we callAEXP,
with a regret that is at most d

β
(1 + log(T + 1)).

111

Throughout this work, we draw intuition from basic orthogonal geometry. Given any vector x
and a hint v, we define x v = (x>v)v and x

T

v = x− (x>v)v, as the parallel and the orthogonal
components of x with respect to v. When the hint v is clear from the context we simply use x
and x

T

to denote these vectors.
Naturally, our regret bounds involve a number of geometric parameters. Since the set of

actions of the adversary C is compact, we can find G ≥ 0 such that ‖c‖2 ≤ G for all c ∈ C.
When K is uniformly convex, we denote K = {w ∈ Rd | ‖w‖K ≤ 1}. In this case, since all
norms are equivalent in finite dimension, there exist R > 0 and r > 0 such that Br ⊆ K ⊆ BR,
where Br (resp. BR) denote the L2 unit ball centered at 0 with radius r (resp. R). This implies
that 1

R
‖·‖2 ≤ ‖·‖K ≤ 1

r
‖·‖2.

6.4 Improved Regret Bounds for Strongly Convex K
At first sight, it is not immediately clear how one should use the hint. Since vt is guaranteed to
satisfy c>t vt ≥ α‖ct‖2, moving the action x in the direction −vt always decreases the loss. One
could hope to get the most benefit out of the hint by choosing xt to be the extremal point in K in
the direction −vt. However, this naı̈ve strategy could lead to a linear regret in the worst case.
For example, say that ct = (1, 1

2
) and vt = (0, 1) for all t and let K be the Euclidean unit ball.

Choosing xt = −vt would incur a loss of −T
2

, while the best fixed action in hindsight, the point
(−2√

5
, −1√

5
), would incur a loss of −

√
5

2
T . The player’s regret would therefore be

√
5−1
2
T .

Intuitively, the flaw of this naı̈ve strategy is that the hint does not give the player any
information about the (d − 1)-dimensional subspace orthogonal to vt. Our solution is to use
standard online learning machinery to learn how to act in this orthogonal subspace. Specifically,
on round t, we use vt to define the following virtual loss function:

ĉt(x) = min
w∈K

c>t w s.t. w

T

vt = x

T

vt .

In words, we consider the 1-dimensional subspace spanned by vt and its (d− 1)-dimensional
orthogonal subspace separately. For any action x ∈ K, we find another point, w ∈ K, that equals
x in the (d− 1)-dimensional orthogonal subspace, but otherwise incurs the optimal loss. The
value of the virtual loss ĉt(x) is defined to be the value of the original loss function ct at w. The
virtual loss simulates the process of moving x as far as possible in the direction −vt without
changing its value in any other direction (see Figure 6.1a). This can be more formally seen by
the following equation.

arg min
w∈K:w

T

=x̂

T

c>t w = arg min
w∈K:w

T

=x̂

T

(
(c

T

t)>x̂

T

+ (ct)
>w

)
= arg min

w∈K:w

T

=x̂

T

v>t w, (6.1)

where the last transition holds by the fact that ct =
∥∥ct
∥∥

2
vt since the hint is valid.

This provides an intuitive understanding of a measure of convexity of our virtual loss
functions. When K is uniformly convex then the function ĉt(·) demonstrates convexity in the
subspace orthogonal to vt. To see that, note that for any x and y that lie in the space orthogonal
to vt, their mid point x+y

2
transforms to a point that is farther away in the direction of −vt than

the midpoint of the transformations of x and y. As shown in Figure 6.1b, the modulus of uniform

112

x

y

x̂

ŷ

z

x
v

c

ĉ(x)

ẑ

�v

�c

ĉ(ẑ)

1

2
(ĉ(x̂) + ĉ(ŷ))

z0

(a) Virtual function ĉ(·).

x

y

x
v

c

ĉ(x)

�v

�c

w

ŷ

x̂

z=
x+y

2

ĉ(z)

ĉ(x)+ĉ(y)

2

(b) Uniform-convexity of the feasible set affects
the convexity the virtual loss function.

Figure 6.1: Virtual function and its properties.

convexity of K affects the degree of convexity of ĉt(·). We note, however, that ĉt(·) is not
strongly convex in all directions. In fact, ĉt(·) is constant in the direction of vt. Nevertheless, the
properties shown here allude to the fact that ĉt(·) demonstrates some notion of convexity. As we
show in the next lemma, this notion is indeed exp-concavity:

Lemma 6.4.1. If K is (C, 2)-uniformly convex, then ĉt(·) is 8α·C·r
G·R2 -exp-concave.

Proof. Let γ = 8α·C·r
G·R2 . Without loss of generality, we assume that ct 6= 0, otherwise ĉt(·) = 0 is

a constant function and the proof follows immediately. Based on the above discussion, it is not
hard to see that ĉt(·) is continuous. It remains to prove that ĉt(·) is exp-concave. For this, it is
sufficient to show that

exp

(
−γ · ĉt

(
x+ y

2

))
≥ 1

2
exp (−γ · ĉt(x)) +

1

2
exp (−γ · ĉt(y)) ∀(x, y) ∈ K.

Consider (x, y) ∈ K and choose corresponding (x̂, ŷ) ∈ K such that ĉt(x) = c>t x̂ and ĉt(y) =
c>t ŷ. Without loss of generality, we have ‖x̂‖K = ‖ŷ‖K = 1, as we can always choose
corresponding x̂, ŷ that are extreme points of K. Since exp(−γĉt(·)) is decreasing in ĉt(·),
we have

exp

(
−γ · ĉt

(
x+ y

2

))
= max

‖w‖K≤1

w

T

vt=(x+y
2

)

T

vt

exp(−γ · c>t w). (6.2)

Note that w = x̂+ŷ
2
− δK(‖x̂− ŷ‖K) vt

‖vt‖K
satisfies ‖w‖K ≤ 1, since ‖w‖K ≤

∥∥ x̂+ŷ
2

∥∥
K +

δK(‖x̂− ŷ‖K) ≤ 1 (see also Figure 6.1b). Moreover, w

T

vt = (x+y
2

)

T

vt . So, by using this
w in Equation (6.2), we have

exp

(
−γ · ĉt

(
x+ y

2

))
≥ exp

(
−γ

2
· (c>t x̂+ c>t ŷ) + γ · c

>
t vt
‖vt‖K

· δK(‖x̂− ŷ‖K)

)
. (6.3)

113

On the other hand, since ‖vt‖K ≤ 1
r
‖vt‖2 = 1

r
and ‖x̂− ŷ‖K ≥ 1

R
‖x̂− ŷ‖2, we have

exp

(
γ · c

>
t vt
‖vt‖K

· δK(‖x̂− ŷ‖K)

)
≥ exp

(
γ · r · α · ‖ct‖2 · C ·

1

R2
· ‖x̂− ŷ‖2

2

)

≥ exp

(
γ · α · C · r

R2
· ‖ct‖2 ·

(
c>t x̂

‖ct‖2

− c>t ŷ

‖ct‖2

)2
)

≥ exp

(
(γ/2)2 · (c>t x̂− c>t ŷ)2

2

)

≥ 1

2
· exp

(γ
2
· (c>t x̂− c>t ŷ)

)
+

1

2
· exp

(γ
2
· (c>t ŷ − c>t x̂)

)
,

where the penultimate inequality follows by the definition of γ and the last inequality is a
consequence of the inequality exp(z2/2) ≥ 1

2
exp(z) + 1

2
exp(−z),∀z ∈ R. Plugging the last

inequality into Equation (6.3) yields

exp

(
−γĉt(

x+y

2
)

)
≥ 1

2
exp

(
−γ

2
(c>t x̂+ c>t ŷ)

)
·
{

exp
(γ

2
(c>t x̂− c>t ŷ)

)
+ exp

(γ
2

(c>t ŷ − c>t x̂)
)}

=
1

2
exp

(
−γ · c>t ŷ

)
+

1

2
exp

(
−γ · c>t x̂

)

=
1

2
exp (−γ · ĉt(y)) +

1

2
exp (−γ · ĉt(x)) ,

which concludes the proof.

Now, we use the sequence of virtual loss functions to reduce our problem to a standard
online convex optimization problem (without hints). Namely, the player applies AEXP (from
Proposition 6.3.2), which is an online convex optimization algorithm known to have O(log(T))
regret with respect to exp-concave functions, to the sequence of virtual loss functions. Then our
algorithm takes the action x̂t ∈ K that is prescribed by AEXP and moves it as far as possible in
the direction of −vt. This process is formalized in Algorithm 6.1.

Algorithm 6.1: Ahint FOR STRONGLY CONVEX K
1: for t = 1, . . . , T , do
2: Use Algorithm AEXP with the history ĉτ (·) for τ < t, and let x̂t be the chosen action.
3: Let

xt = arg min
w∈K

(v>t w) s.t. w

T

vt = x̂

T

vt
t

4: Play xt and receive ct as feedback.
5: end for

Next, we show that the regret of algorithm AEXP on the sequence of virtual loss functions is an
upper bound on the regret of Algorithm 6.1.

114

Lemma 6.4.2. For any sequence of loss functions c1, . . . , cT , let REGRET(Ahint, c1:T) be the
regret of algorithmAhint on the sequence c1, . . . , cT , and REGRET(AEXP, ĉ1:T) be the regret of al-
gorithmAEXP on the sequence of virtual loss functions ĉ1, . . . , ĉT . Then, REGRET(Ahint, c1:T) ≤
REGRET(AEXP, ĉ1:T).

Proof. Equation (6.1) provides an equivalent definition xt = arg minw∈K(c>t w) s.t. w

T

vt = x̂

T

vt
t .

Using this, we show that the loss of algorithm Ahint on the sequence c1:T is the same as the loss
of algorithm AEXP on the sequence ĉ1:T .

T∑

t=1

ĉt(x̂t) =
T∑

t=1

min
w∈K:w

T

=x̂

T

t

c>t w =
T∑

t=1

c>t (arg min
w∈K:w

T

=x̂

T

t

c>t w) =
T∑

t=1

c>t xt.

Next, we show that the offline optimal on the sequence ĉ1:T is more competitive that the offline
optimal on the sequence c1:T . First note that for any x and t, ĉt(x) = minw∈K:w

T

=x

Tc>t w ≤ c>t x.
Therefore, minx∈K

∑T
t=1 ĉt(x) ≤ minx∈K

∑T
t=1 c

>
t x. The proof concludes by

REGRET(Ahint, c1:T) =
T∑

t=1

c>t xt −min
x∈K

T∑

t=1

c>t x

≤
T∑

t=1

ĉt(x̂t)−min
x∈K

T∑

t=1

ĉt(x)

= REGRET(AEXP, ĉ1:T).

Our main result follows from the application of Lemmas 6.4.1 and 6.4.2.

Theorem 6.4.3. Suppose that K ⊆ Rd is a (C, 2)-uniformly convex set that is symmetric around
the origin, and Br ⊆ K ⊆ BR for some r and R. Consider online linear optimization with hints
where the cost function at round t is ‖ct‖2 ≤ G and the hint vt is such that c>t vt ≥ α‖ct‖2, while
‖vt‖2 = 1. Algorithm 6.1 in combination with AEXP has a worst-case regret of

REGRET(Ahint, c1:T) ≤ d ·G ·R2

8α · C · r · (1 + log(T + 1)).

6.5 Improved Regret Bounds for (C, q)-Uniformly Convex K
In this section, we consider any feasible set K that is (C, q)-uniformly convex for q ≥ 2. Our
results differ from the previous section in two aspects. First, our algorithm can be used with
(C, q)-uniformly convex feasible sets for any q ≥ 2 compared to the results of the previous
section that only hold for strongly convex sets (q = 2). On the other hand, the approach in this
section requires the hints to be restricted to a finite set of vectors V . We show that when K is
(C, q)-uniformly convex for q > 2, our regret is O(T

2−q
1−q). If q ∈ (2, 3), this is an improvement

over the worst case regret of O(
√
T) guaranteed in the absence of hints.

115

We first consider the scenario where the hint is always pointing in the same direction, i.e.
vt = v for some v and all t ∈ [T]. In this case, we show how one can use a simple algorithm
that picks the best performing action so far (a.k.a the Follow-The-Leader algorithm) to obtain
improved regret bounds. We then consider the case where the hint belongs to a finite set V .
In this case, we instantiate one copy of the Follow-The-Leader algorithm for each v ∈ V and
combine their outcomes in order to obtain improved regret bounds that depend on the cardinality
of V , which we denote by |V|.
Lemma 6.5.1. Suppose that vt = v for all t = 1, · · · , T and that K is (C, q)-uniformly convex
that is symmetric around the origin, and Br ⊆ K ⊆ BR for some r and R. Consider the algo-
rithm, called Follow-The-Leader (FTL), that at every round t, plays xt ∈ arg minx∈K

∑
τ<t c

>
τ x.

If
∑t

τ=1 c
>
τ v ≥ 0 for all t = 1, · · · , T , then the regret is bounded as follows,

REGRET(AFTL, c1:T) ≤
(‖v‖K ·Rq

2C

)1/(q−1)

·
T∑

t=1

(‖ct‖q2∑t
τ=1 c

>
τ v

)1/(q−1)

.

Furthermore, when v is a valid hint with margin α, i.e., c>t v ≥ α · ‖ct‖2 for all t = 1, · · · , T , the
right-hand side can be further simplified to obtain the regret bound:

REGRETAFTL, c1:T) ≤ 1

2γ
·G · (ln(T) + 1) if q = 2

and
REGRET(AFTL, c1:T) ≤ 1

(2γ)1/(q−1)
·G · q − 1

q − 2
· T

q−2
q−1 if q > 2,

where γ = C·α
‖v‖K·Rq

.

Proof. We use a well-known inequality, known as FT(R)L Lemma (see e.g., [155, 209]), on the
regret incurred by the FTL algorithm:

REGRET(AFTL, c1:T) ≤
T∑

t=1

c>t (xt − xt+1).

Without loss of generality, we can assume that ‖xt‖K = ‖xt+1‖K = 1 since the maximum of a
linear function is attained at a boundary point. Since K is (C, q)-uniformly convex, we have

∥∥∥∥
xt + xt+1

2

∥∥∥∥
K
≤ 1− δK(‖xt − xt+1‖K).

This implies that ∥∥∥∥
xt + xt+1

2
− δK(‖xt − xt+1‖K)

v

‖v‖K

∥∥∥∥
K
≤ 1.

Moreover, xt+1 ∈ arg minx∈K x
>∑t

τ=1 cτ . So, we have
(

t∑

τ=1

cτ

)>(
xt + xt+1

2
− δK(‖xt − xt+1‖K)

v

‖v‖K

)
≥ inf

x∈K
x>

t∑

τ=1

cτ = x>t+1

t∑

τ=1

cτ .

116

Rearranging this last inequality and using the fact that
∑t

τ=1 v
>cτ ≥ 0, we obtain:

(
t∑

τ=1

cτ

)>(
xt − xt+1

2

)
≥ δK(‖xt − xt+1‖K)·

∑t
τ=1 v

>cτ
‖v‖K

≥ C · ‖xt − xt+1‖q2
‖v‖K ·Rq

·
(

t∑

τ=1

v>cτ

)
.

By definition of FTL, we have xt ∈ arg minx∈K x
>∑t−1

τ=1 cτ , which implies:

(
t−1∑

τ=1

cτ

)>
xt+1 − xt

2
≥ 0.

Summing up the last two inequalities, we derive:

c>t

(
xt − xt+1

2

)
≥
(

C

‖v‖K ·Rq

)
·
(

t∑

τ=1

v>cτ

)
· ‖xt − xt+1‖q2

≥
(

C

‖v‖K ·Rq

)
·
(

t∑

τ=1

v>cτ

)
· (c>t (xt − xt+1))q

‖ct‖q2
.

Rearranging this last inequality and using the fact that
∑t

τ=1 v
>cτ ≥ 0, we obtain:

|c>t (xt − xt+1)| ≤
(‖v‖K ·Rq

2C

)1/(q−1)

·
(‖ct‖q2∑t

τ=1 v
>cτ

)1/(q−1)

. (6.4)

Summing Equation (6.4) over all t completes the proof of the first claim.
The regret bounds for when v>ct ≥ α · ‖ct‖2 for all t = 1, · · · , T follow from the first regret

bound and setting γ = C·α
‖v‖K·Rq

, we have:

|c>t (xt − xt+1)| ≤ 1

(2γ)1/(q−1)
·
(‖ct‖q2∑t

τ=1 ‖cτ‖2

)1/(q−1)

.

Note that the right-hand side is finite even if ct = 0. Plugging this last inequality back into the
first regret bound, we derive:

REGRET(AFTL, c1:T) ≤ 1

(2γ)1/(q−1)
·

T∑

t=1

(‖ct‖q2∑t
τ=1 ‖cτ‖2

)1/(q−1)

≤ 1

(2γ)1/(q−1)
· sup

(y1,··· ,yT)∈[0,G]T

T∑

t=1

(
yqt∑t
τ=1 yτ

)1/(q−1)

.

We prove below that for any t = 1, · · · , T and any fixed values (y1, · · · , yt−1, yt+1, · · · , yT) ∈
[0, G]T−1, the function yt →

∑T
n=1

(
yqn∑n
τ=1 yτ

)1/(q−1)

is convex on [0, G] and thus the maximum

117

of this function is attained at an extreme point: either 0 or G. Repeating this process for
t = 1, · · · , T , we get:

REGRET(AFTL, c1:T) ≤ 1

(2γ)1/(q−1)
· sup

(y1,··· ,yT)∈{0,G}T

T∑

t=1

(
yqt∑t
τ=1 yτ

)1/(q−1)

≤ 1

(2γ)1/(q−1)
· sup
n=0,··· ,T

n∑

k=1

(
Gq

k ·G)1/(q−1)

≤ 1

(2γ)1/(q−1)
·G ·

T∑

k=1

1

k1/(q−1)
.

This concludes the proof as
∑T

k=1
1

k1/(q−1) ≤ ln(T) + 1 if q = 2 and
∑T

k=1
1

k1/(q−1) ≤ q−1
q−2
· T

q−2
q−1

if q > 2.
Let us now prove that, for any t = 1, · · · , T and any fixed values (y1, · · · , yt−1, yt+1, · · · , yT) ∈
[0, G]T−1, the function yt →

∑T
n=1(yqn∑n

τ=1 yτ
)1/(q−1) is convex on [0, G]. Clearly,

yt →
∑

n6=t

(
yqn∑n
τ=1 yτ

)1/(q−1)

is convex on [0, G] since yt only appears in the denominator and 1/(q − 1) ≥ 0. We use the
shorthand A =

∑t−1
τ=1 yτ . It remains to show that φ : y → (yq

y+A
)1/(q−1) is convex. We have:

φ
′′
(y) =

q

(q − 1)2
· yq/(q−1)−2 · A2 · (y + A)−1/(q−1)−2,

which is non-negative for A ≥ 0 and y > 0 (for y = 0, we can directly show by hand that
φ(λ · 0 + (1− λ) · z) ≤ λ · φ(0) + (1− λ) · φ(z) for λ ∈ [0, 1] and z ≥ 0).

Note that the regret bounds become O(T) when q →∞. This is expected because Lq balls are
q-uniformly convex for q ≥ 2 and converge to L∞ balls as q → ∞ and it is well-known that
Follow-The-Leader yields Θ(T) regret in online linear optimization when K is a L∞ ball.

Using the above lemma, we introduce an algorithm for online linear optimization with hints
that belong to a set V . In this algorithm, we instantiate one copy of the FTL algorithm for each
possible direction of the hint. On round t, we invoke the copy of the algorithm that corresponds
to the direction of the hint vt, using the history of the game for rounds with hints in that direction.
We show that the overall regret of this algorithm is no larger than the sum of the regrets of the
individual copies.

Theorem 6.5.2. Suppose that K ⊆ Rd is a (C, q)-uniformly convex set that is symmetric around
the origin, and Br ⊆ K ⊆ BR for some r and R. Consider online linear optimization with hints
where the cost function at round t is ‖ct‖2 ≤ G and the hint vt comes from a finite set V and is
such that c>t vt ≥ α‖ct‖2, while ‖vt‖2 = 1. Algorithm 6.2 has a worst-case regret of

REGRET(Aset, c1:T) ≤ |V| · R2

2C · α · r ·G · (ln(T) + 1), if q = 2,

118

Algorithm 6.2: Aset: SET-OF-HINTS

1: for v ∈ V , let Tv = ∅. end for
2: for t = 1, . . . , T , do
3: Play

xt ∈ arg min
x∈K

∑

τ∈Tvt

c>τ x

4: Receive ct as feedback.
5: Update Tvt ← Tvt ∪ {t}.
6: end for

and

REGRET(Aset, c1:T) ≤ |V| ·
(

Rq

2C · α · r

)1/(q−1)

·G · q − 1

q − 2
· T

q−2
q−1 if q > 2.

Proof. We decompose the regret as follows:

REGRET(Aset, c1:T) =
T∑

t=1

c>t xt − inf
x∈K

T∑

t=1

c>t x ≤
∑

v∈V

{∑

t∈Tv

c>t xt − inf
x∈K

∑

t∈Tv

c>t x

}

≤ |V| ·max
v∈V

REGRET(AFTL, cTv).

The proof follows by applying Lemma 6.5.1 and by using ‖vt‖K ≤ (1/r) · ‖vt‖2 = 1/r.

Note that Aset does not require α or V to be known a priori, as it can compile the set of hint
directions as it sees new ones. Moreover, if the hints are not limited to finite set V a priori, then
the algorithm can first discretize the L2 unit ball with an α/2-net and approximate any given hint
with one of the hints in the discretized set. Using this discretization technique, Theorem 6.5.2
can be extended to the setting where the hints are not constrained to a finite set while having a
regret that is linear in the size of the α/2-net (exponential in the dimension d).

6.6 Lack of uniform Convexity
In the previous section, we showed that when the feasible set is sufficiently uniformly convex,
one can use hints to improve over the worst case regret bound of Ω(

√
T). In this section, we

examine two commonly used feasible sets that are not uniformly convex and show that in these
cases even a stronger form of hint cannot guarantee an improved regret bounds.

Consider the feasible set defined by the unit cube, i.e. K = {x | ‖x‖∞ ≤ 1}. Note that this
set is not uniformly convex. Since, the ith coordinate of points in such a set, namely xi, has
no effect on the range of acceptable values for the other coordinates, revealing one coordinate
does not give us any information about the other coordinates xj for j 6= i. For example, suppose

119

that ct has each of its first two coordinates set to +1 or −1 with equal probability and all other
coordinates set to 1. In this case, even after observing the last d− 2 coordinates of the loss vector,
the problem is reduced to a standard online linear optimization problem in the 2-dimensional
unit cube. This choice of ct is known to incur a regret of Ω(

√
T) [2]. Therefore, online linear

optimization with the set K = {x | ‖x‖∞ ≤ 1}, even in the presence of hints, has a worst-case
regret of Ω(

√
T).

Now consider K = {x | ‖x‖1 ≤ 1} that is not uniformly convex. As opposed to the unit L∞
ball, when we fix the value of xi in the L1 unit ball we directly affect the range of the acceptable
values for xj such that

∑
j 6=i xj ≤ 1− |xi|. At a high level, revealing the loss on coordinate i

when it is the same as the expected loss on the remaining coordinates combined, does not guide
the player’s actions on the remaining coordinates. The next theorem formalizes this intuition and
shows that no online linear optimization algorithm has a worst case regret of o(

√
T) even when

it receives hints.

Theorem 6.6.1. In online linear optimization with hints where the feasible region is K = {x |
‖x‖1 = 1}, there exists a set of hints v1, . . . , vt such that c>t vt ≥ 1

2
√
d
‖ct‖, ‖vt‖ = 1 for all t, but

every online algorithm has worst case regret of Ω(
√
T log d).

Proof. Consider the online linear optimization problem, where the hint at every step is vt =
(0, 0, . . . ,−1). Additionally the adversary’s cost function at round t, ct, is such that ct,i is equal
to 0 or −2 with equal probability for i < d, and ct,n = −1. Note, the hint at round t satisfies the

criteria that ‖vt‖2 = 1 and v>t ct = 1. Since 1 ≤ ‖ct‖ ≤ 2
√
d, we have that v>t ct ≥

(
1

2
√
d

)
‖ct‖,

i.e., we have a 1
2
√
d
-hint. We show that the worst case regret of any algorithm on such a

stochastically generated sequence is Ω(
√
T log d). First note that even after revealing that

ct,n = −1 for all t, the expected loss of any online algorithm is in the best case −T . This is
because the expected loss the player receives is

∑T
t=1

∑d
i=1 xi E[ct,i] = −∑T

t=1

∑d
i=1 xi ≥ −T .

Now consider the expected loss of the optimal offline solutions. Let the value of the offline
optimal solution be OPT . Then OPT = min‖x‖1=1

∑T
t=1 c

>
t x = −max‖x‖1=1

∑T
t=1−c>t x =

−
∥∥∥
∑T

t=1 ct

∥∥∥
∞

, by definition of dual norms. Since ct,i is a binomial variable, for large enough

T ,
∑T

t=1 ct,i is approximately a normal variable with mean −T and variance T . Moreover,∥∥∥
∑T

t=1 ct

∥∥∥
∞

is the maximum of d− 1 independent such normal variables and also a constant

−1, therefore E
[∥∥∥−

∑T
t=1 ct

∥∥∥
∞

]
= −T − Θ(

√
T log(d)). Hence, the expected regret of any

online algorithm is at best Θ(
√
T log(d)).

At first sight, this result may come as a surprise. After all, since any Lp ball with 1 < p ≤ 2
is Θ(ε2)-uniformly convex, one hopes to use a L1+ν unit ball K ′ to approximate K and apply
the results of Section 6.4 to achieve better regret bounds. The problem with this approach is
that as p→ 1, the constant in the modulus of convexity of the the set deteriorates as δLp(ε) =

(p− 1)ε2 [41]. Therefore, the guarantees Theorem 6.4.3, which is O
(

1
p−1

log T
)

also worsens
as p→ 1. On the other hand, for p that is significantly larger than 1, K′ becomes a smaller subset
of K and the approximation ratio weakens. Since the best approximation of L1 ball using an

120

Lp ball is of the form
{
x | d1− 1

p‖x‖p ≤ 1
}

, the distance between the offline optimal in K and

K′ can be as large as 1− d1− 1
p . This adds in an additional regret of

(
1− d1− 1

p

)
T . Due to the

inverse dependence of these two regret terms on p, the optimal choice of p = 1 + Õ
(

1√
T

)
leads

to regret Õ
(√

T
)

.

6.7 Discussion
In this chapter, we introduced a general model of online linear optimization where on every
round the learner has access to a linear function that is weakly correlated with the loss function.
We showed that using this hint one can achieve an improved regret bound of o(

√
T) depending

on the degree of convexity of the set of feasible action.

6.7.1 Comparison with other Notions of Hint
The notion of hint that we introduce in this chapter generalizes some of the notions of pre-
dictability in online learning. Hazan and Megiddo [158] considered as an example a setting
where the player knows the first coordinate of the loss vector at all rounds, and showed that
when |ct1| ≥ α and when the set of feasible actions is the Euclidean ball, one can achieve a
regret of O(1/α · log(T)). Our work directly improves over this result, as in our setting a hint
vt = ±e1 also achieves O(1/α · log(T)) regret, but we can deal with hints in different directions
at different rounds and we allow for general uniformly convex action sets.

Rakhlin and Sridharan [231] considered online learning with predictable sequences, with a
notion of predictability that is concerned with the gradient of the convex loss functions. They
show that if the player receives a hint Mt at round t, then the regret of the algorithm is at most

O(
√∑T

t=1 ‖∇ft(xt)−Mt‖2
∗). In the case of linear loss functions, this implies that having an

estimate vector c′t of the loss vector within distance σ of the true loss vector ct results in an
improved regret bound of O(σ

√
T). In contrast, we consider a notion of hint that pertains to the

direction of the loss vector rather than its location. Our work shows that merely knowing whether
the loss vector positively or negatively correlates with another vector is sufficient to achieve
improved regret bound, when the set is uniformly convex. That is, rather than having access to
an approximate value of ct, we only need to have access to a halfspace that classifies ct correctly
with a margin. This notion of hint is weaker that the notion of hint in the work of Rakhlin and
Sridharan [231] when the approximation error satisfies ‖ct − c′t‖2 ≤ σ · ‖ct‖2 for σ ∈ [0, 1). In
this case one can use c′t/ ‖c′t‖2 as the direction of the hint in our setting and achieve a regret of
O(1

1−σ log T) when the set is strongly convex. This shows that when the set of feasible actions is
strongly convex, a directional hint can improve the regret bound beyond what has been known to
be achievable by an approximation hint. However, we note that our results require the hints to be
always valid, whereas the algorithm of Rakhlin and Sridharan [228] can adapt to the quality of
the hints.

An interesting open problem is whether a combination of natural notions of hint can lead to
exponential improvement over the regret bound O(

√
T) even when K is not uniformly convex.

121

122

Chapter 7

Smoothed Analysis of Online Learning

7.1 Introduction
In this chapter, we continue our examination of a suitable middle ground between offline and
online learnability. Offline and online learnability are two of the most classical problems in
the theory of machine learning. The first considers scenarios where a learner attempts to learn
a highly accurate hypothesis on instances that are drawn i.i.d. from some fixed but unknown
distribution and the second considers online scenarios where the instances are generated by an
adversary. It is well-known that offline and online learnability are characterized by two notions of
complexity of the hypothesis space: the VC dimension [265] and the Littlestone dimension [194],
respectively. In many hypothesis classes, however, there is a large gap between these two notions
of complexity, and as a result, there is a gap in our ability to learn in the offline and online
settings. For example, it is well known that the class of 1-dimensional threshold functions has
a VC dimension of 1 and can be learned in the offline i.i.d. setting with convergence rate of
O
(

1√
T

)
, but the Littlestone dimension of this class is unbounded, and so learning in the online

adversarial setting is impossible. Is there a middle ground between the i.i.d. and adversarial
models that can lead to strong learnability results, like those achievable in the offline setting, but
is still robust to the presence of an adversary? Smoothed analysis provides one approach to this
question.

7.1.1 Smoothed Analysis

Smoothed analysis [253] is one of the most well-studied examples of a semi-random model,
where nature and an adversary collaborate to produce an input to an algorithm. The idea is
that the adversary first chooses a worst-case input, which is then perturbed slightly by nature.
Equivalently, an adversary is forced to choose an input distribution that is not overly concentrated,
and the input is then drawn from the adversary’s chosen distribution. The goal is then to design
an algorithm that always (no matter what the adversary does) has good expected performance,
where the expectation is over nature’s perturbation.

Smoothed analysis can escape the curse of worst-case inputs (especially if they are “brittle”),
while also avoiding overfitting a solution to a specific distributional assumption. There is also a

123

plausible narrative about why “real-world” environments are captured by this framework: even
in a world that is out to get us, there are inevitable inaccuracies such as measurement error and
uncertainties that smooth the environment.

7.1.2 Smoothed Analysis in Online Learning

This chapter extends the reach of smoothed analysis to regret-minimization in online learning.
We consider the standard online learning setup in which there is an input space X (assumed
to be a bounded subset of Euclidean space), a setH of binary hypotheses (each mapping X to
{+1,−1}), and a known time horizon T . Each time step t = 1, 2, . . . , T , an online algorithm
chooses a distribution qt over hypotheses from H, and an adversary subsequently chooses an
input point xt ∈ X and a label yt ∈ {+1,−1}. Recall that the average regret incurred by a
sequence of hypotheses h1, . . . , hT on a sequence of input-label pairs (x1, y1), . . . , (xT , yT) is
the difference between the average error of h1, . . . , hT (i.e., the fraction of misclassified points)
and that of the best fixed hypothesis fromH. The goal of an online leaning algorithm is to drive
the expected average regret to 0 as quickly as possible (no matter what the adversary does).

We consider σ-smooth adversaries, which at each time step t choose an arbitrary distri-
bution Dt over input-label pairs with a density function over inputs that is pointwise at most
1/σ times that of the uniform distribution. The actual input at time t is chosen at random
according to Dt. The adversary is allowed to set yt arbitrarily, after observing the realization of
xt. The parameter σ smoothly interpolates between a worst-case adversary (when σ → 0) and a
uniformly random adversary (when σ = 1).

Why should smoothed analysis help in online learning? To answer this question, we next
review a well known but “brittle” bad example. Suppose X = [0, 1] and H is the set of 1-D
threshold functions, where each h ∈ H has the form h(x) = 1 for all x ≤ b and h(x) = −1
for all x > b (for some b ∈ [0, 1]). Consider a randomized adversary that always chooses the
labels yt uniformly at random, and the xt’s as follows: x1 is 1

2
; x2 is either 1

4
(if y1 = −1) or 3

4

(if y1 = 1); and so on. With probability 1, in hindsight, there is a hypothesis with zero error. But
every online learning algorithm has a 50% chance of an error at every time step.

This bad example for 1-D thresholds exploits the adversary’s ability to specify input points
with arbitrary precision. It is intuitively clear (and not very hard to prove) that, with a σ-smooth
adversary in this example, it is possible to achieve small expected regret. Thus, online learning
can be fundamentally easier with a σ-smooth adversary (even for very small σ) than a worst-case
adversary. But how general is this phenomenon?

Is there an online algorithm with expected regret at most f(d, σ) · T−c for every σ-
smooth adversary, where d is the VC dimension ofH, f(·, ·) is an arbitrary function,
and c > 0 is a constant?

We answer this question for a non-adaptive adversary that specifies all T σ-smooth distribu-
tions, D1, . . . ,DT in advance. We will also discuss the case of the adaptive adversary that can
choose Dt as a function of the history of the play, including the realization of earlier instances
and the earlier hypotheses used by the algorithm. Such an adaptive smooth adversary is more
powerful than a smoothed non-adaptive one in two senses: it can condition its output on the

124

outcome of both the algorithm’s coin flips in previous iterations, and also its own past coin flips.
Only the first source of power plays a role in the classical online learning setting.

7.1.3 Our Results
The next theorem, whose proof appears in Section 7.3, upper bounds the regret against a non-
adaptive smooth adversary.

Theorem 7.3.4 (Informal) There is an algorithm with expected average regret ofO
(√

d ln(T/σ)
T

)

against any non-adaptive σ-smooth adversary.

As we showed earlier, there is an adaptive (non-smooth) adversary against whom any online
algorithm incurs an average regret of Ω(1). The next theorem, whose proof appears in Section 7.4
uses a variation of the same example to show that there is also a non-adaptive (and non-smooth)
adversary that enforces a regret of Ω(1) for every online algorithm. Therefore, what enables our
strong regret bound in Theorem 7.3.4 is indeed the smoothness of the adversary.

Theorem 7.4.1 (Informal) There is a non-adaptive (and non-smooth) adversary and a class
of hypotheses H with VC dimension 1, against which any online algorithm incurs an average
regret of Ω(1) as T →∞.

The above theorems demonstrate that finite VC dimension of a class of hypotheses provides
an upper bound of Õ

(√
d/T

)
on the regret of online algorithms against non-adaptive smooth

adversaries. It is worth mentioning that VC dimension also provides a lower bound of Ω̃
(√

d/T
)

on the regret of online and offline algorithms (see e.g. [11]). Therefore, the VC dimension of a
class of hypotheses characterizes regret against non-adaptive smooth adversaries.

7.1.4 Related Work
To date, most applications of the smoothed analysis concern the computational complexity of
algorithms. Here, we discuss a few works that, like ours, have considered smoothed analysis for
the purpose of improving the statistical aspects of an algorithm.

The use of smoothed analysis in online learning was first explored by Rakhlin et al. [230] who
showed that, under additive perturbations in the instance space, one can achieveO(ln(1/σ)T−1/2)
regret against the best 1-dimensional halfspace, even though the Littlestone dimension of this
hypothesis class is known to be unbounded. Gupta and Roughgarden [138] considered online
optimization of Maximum Weighted Independent Set (MWIS) under the smoothed analysis
model and showed that while online optimization of MWIS for worst case adversaries leads to a
constant regret, against a smoothed adversary one can guarantee a small regret. Subsequently,
Cohen-Addad and Kanade [81] studied online optimization of piecewise constant functions
under the assumption that the thresholds at which the function changes its value are perturbed
and further improved the runtime analysis of the aforementioned result. In comparison, our
work considers all hypothesis classes with bounded VC dimension and shows that it is precisely
the boundedness of their VC dimension together with the smoothness of the adversary that
characterizes their regret bound.

125

More recently, Kannan et al. [173] considered the performance of the greedy algorithm in
the linear contextual bandit problem with stochastic rewards and showed that while the greedy
algorithm does not have a good worst-case regret bound, it has a small regret when faced with a
smooth adversary. This differs from our line of inquiry in two ways: We focus on characterizing
the regret achievable using any algorithm while they focus on the regret of the greedy algorithm
(for fairness purposes)—indeed, there are non-greedy methods with good regret in their setting.
Moreover, the rewards in our setting are adversarial and will be revealed fully after each round.
In contrast, in their setting these rewards are stochastic and the learner only receives bandit
feedback.

7.2 Preliminaries

Consider a bounded and Lebesgue-measurable instance space X and the label set Y = {+1,−1}.
We consider a hypothesis class H. For a labeled instance s = (x, y) and a hypothesis h ∈ H,
errs(h) = 1(h(x) 6= y) indicates whether h makes a mistake on s. For a multi-set of samples
s = (s1, . . . , sT), let errs(h) = 1

T

∑
i∈[T] errsi(h) denote the empirical error of h.

Let U be the uniform distribution over X with density (or mass) function u(·). For a
distribution D over X × Y , let p(·) be the probability density (or mass) function of its marginal
over X . D is said to be σ-smooth if for all x ∈ X , p(x) ≤ u(x)σ−1.

In this chapter, we consider the setting of online (adversarial and full-information) learning.
In this setting, a learner and an adversary interact over T time steps. Our main result is concerned
with a non-adaptive σ-smooth adversary: In this setting, the adversary first chooses an unknown
sequence of distributions D = (D1, . . . ,DT) such that Dt is a σ-smooth distribution over X ×Y
for all t ∈ [T]. At every step t ∈ [T], the learner picks one ht ∈ H. The learner then observes an
instance st ∼ Dt and incurs penalty errst(ht). We denote this random process by s ∼ D and
denote by errD(h) = Es∼D[errs(h)] the true error of hypothesis h on D. We are interested in
minimizing the expected average regret,

E[AVERAGE-REGRET]:=E
s

[
err
s

(ht)− inf
h∈H

err
s

(h)

]
,

where the expectation is taken over the randomness of the learner and s ∼ D. We desire
algorithms, called no-regret algorithms, for which this average regret tends to 0 as T →∞.

Given a hypothesis classH and a set of m unlabeled instances x = (x1, . . . , xm), we define
H[x] = {(h(x1), . . . , h(xm))}∀h∈H to be the set of all possible ways that hypotheses in H can
classify instances in x. The growth function ofH, denoted by πH : N→ N is defined as

πH(m) = max
x∈Xm

|H[x]|.

The VC dimension of H is defined as the largest m for which πH(m) = 2m. It is well-known
that πH(m) ≤ (em/d)d for all m ≥ d. In this work, we consider a hypothesis classH that has a
finite VC dimension d.

126

7.3 Main Results
In this section, we develop fundamental tools for leveraging smoothness of an adversary in an
online learning setting.

For finite hypothesis classes H, existing no-regret algorithms such as Hedge [124], Multi-
plicative Weight Update [197], and Follow-the-Perturbed-Leader [170] provide a regret bound of
O
(√

log(|H|)/T
)

. For a (possibly infinite) hypothesis classH with finite VC dimension, we
seek to use a finite setH′ ⊆ H as a proxy forH and only focus on competing with hypotheses in
H′. The inexact nature of such an approximation ofH byH′ generally leads to additional regret.
The following lemma shows the trade-off between our gain in using a small hypothesis class and
the additional loss caused by this approximation for any (smooth or non-smooth) adversary.

Lemma 7.3.1. LetH′ ⊆ H. Then, there is an algorithm for which

E[AVERAGE-REGRET] ≤ O

(√
ln (|H′|)

T

)
+

1

T
E
s

[
sup
h∈H

inf
h∈H′

T∑

t=1

1(h′(st) 6= h(st)

]
. (7.1)

Proof. We consider an algorithm that is no-regret with respect to the best-in-hindsight hypothesis
in H′, e.g., Hedge, and then account for the difference between the two best-in-hindsight
hypotheses within setsH′ andH:

E[AVERAGE-REGRET] = E
s

[
err
s

(h′t)− inf
h∈H

err
s

(h)

]

= E
s

[
err
s

(h′t)− inf
h′∈H′

err
s

(h′)

]
+ E

s

[
inf
h′∈H′

err
s

(h′)− inf
h∈H

err
s

(h)

]

≤ O

(√
ln (|H′|)

T

)
+ E

s

[
sup
h∈H

inf
h′H′

(
err
s

(h′)− err
s

(h)
)]

≤ O

(√
ln (|H′|)

T

)
+

1

T
E
s

[
sup
h∈H

inf
h∈H′

T∑

t=1

1(h′(st) 6= h(st))

]
,

where the penultimate inequality holds by the guarantees of Hedge and re-ordering the terms.

For the above lemma to be effective, we need to design a hypothesis classH′ that is small
(so the first term in (7.1) is small) yet representative of H (so that the second term in (7.1)
is small). To capture this, we define a distance metric between two hypotheses h and h′ by
d(h, h′) = Prx∼U [h(x) 6= h′(x)] , where, to recall, U is the uniform distribution over the set X .
A hypothesis classH′ is called a γ-cover ofH, if

∀h ∈ H,∃h′ ∈ H′, such that d(h, h′) ≤ γ.

The next lemma shows that a γ-cover of relatively small size exists for any class of hypotheses
with small VC dimension.

Lemma 7.3.2. LetH have VC dimension d. ThenH has a γ-cover of size at most (41/γ)d.

127

Proof. We use the following `1 packing lemma.1

Lemma 4.11 of [11] For any m and γ, let G ⊆ {0, 1}m be such that for all g, g′ ∈ G,

|{i : gi 6= g′i}| > γm. Then, |G| ≤
(

41
γ

)d
, where d is the VC dimension of G.

Suppose for contradiction thatH has no γ-cover of size at most (41/γ)d. Then, we can find
p > (41/γ)d hypothesis h1, . . . , hp with d(hi, hj) ≥ γ + δ for every i 6= j (for some δ > 0).
Now consider m samples from U . With probability approaching 1 as m→∞, for every i 6= j,
hi and hj differ on more than a γ fraction of samples. Interpreting the labels of each hypothesis
as a vector in {0, 1}m, this contradicts the above lemma.

To effectively bound the second term of Equation (7.1), we need to show that any h ∈ H
closely agrees with an h′ ∈ H′ on the instances s = (s1, . . . , sT) that are generated by a smooth
adversary. In this regard, a γ-cover only implies that any h ∈ H closely agrees with an h′ ∈ H′
in expectation over instances that are drawn from the uniform distribution. At a high level,
a σ-smooth distribution resembles a uniform distribution: Since the density of a σ-smooth
distribution cannot be overly skewed towards the disagreement region, any h and h′ that usually
agree over the uniform distribution also agree, slightly less usually, over a σ-smooth distribution.
More formally, for any σ-smooth distribution D,

sup
h∈H

inf
h′∈H

Pr
x∼D

[h(x) 6= h′(x)] ≤ sup
h∈H

inf
h′∈H

Prx∼U [h(x) 6= h′(x)]

σ
≤ γ

σ
. (7.2)

What remains to show is that such an h and its corresponding h′ closely agree, not just in
expectation for a single sample, but also over the samples that are generated by the σ-smooth
adversary. To simplify this, we capture the symmetric difference of hypotheses inH and their
representatives inH′ by a class of hypotheses A, where

A =

{
a

∣∣∣∣for some h ∈ H and h′ = arg min
h′∈H′

d(h, h′), a(x) = 1(h(x) 6= h′(x))

}
. (7.3)

That is,A captures the disagreement regions between hypotheses ofH and their nearest neighbors
inH′. Note that becauseH andH′ both have VC dimension at most d, and A is a subset of their
symmetric differences, Sauer’s lemma shows that A has VC dimension O(d).

We would like to show that the following generalization bound is small:

E
s

[
sup
a∈A

1

T

T∑

t=1

a(xt)− E
s′

[
1

T

T∑

t=1

a(x′t)

]]
, (7.4)

where st = (xt, yt) and s′t = (x′t, y
′
t) are generated by the adversary.

Indeed, for a non-adaptive σ-smooth adversary we prove a much stronger uniform con-
vergence bound. That is for any class of hypotheses, beyond just A, and regardless of the
smoothness property, the values of all hypotheses on a sufficiently large sample set are close to
their expectations.

1Note that the growth function ofH can be used directly for a slightly worst dependence. We instead use an `1
packing bound that is obtained via chaining and directly yields a sharper upper bound on the cover size.

128

Lemma 7.3.3. For any non-adaptive sequence of distributions D (that are not necessarily
smooth) and any hypothesis class G with VC dimension d,

E
s∼D

[
sup
g∈G

1

T

T∑

t=1

g(xt)− E
s′∼D

[
1

T

T∑

t=1

g(x′t)

]]
≤ O

(√
d ln (T/d)

T

)
,

where st = (xt, yt) and s′t = (x′t, y
′
t).

Proof. This proof closely resembles the proof of the uniform convergence theorem for the setting
where instances s1, . . . , sT are all generated from the same distribution D. We adapt that proof
and generalize it to scenarios where st is generated independently from distributionDt, where the
choice of Dt is also independent of instances st′ for t′ 6= t. In short, the observation that allows
us to consider instances that are generated from different distributions is that during the process
of symmetrization on the ghost sample, an instance st and its corresponding instance s′t that may
get swapped were generated by the same distribution. Therefore, their symmetrization induces
an independent zero-mean random variable whose sum across all t is strongly concentrated by
the Heoffding bound.

In more detail, when st = (xt, yt) and s′t = (x′t, y
′
t) are independently generated from Dt and

ε is a vector of T rademacher random variables, we have,

E
s∼D

[
sup
g∈G

1

T

T∑

t=1

g(xt)− E
s′∼D

[
1

T

T∑

t=1

g(x′t)

]]
≤ E

s,s′∼D

[
sup
g∈G

1

T

T∑

t=1

(g(st)− g(s′t))

]

(Jensen’s ineqality)

= E
s,s′∼D

E
ε

[
sup
g∈G

1

T

T∑

t=1

εt (g(st)− g(s′t))

]

= E
s,s′∼D

[
E
ε

[
sup

g∈G[s∪s′]

1

T

T∑

t=1

εt (g(st)− g(s′t))

∣∣∣∣∣ s, s′

]]
.

For fixed s and s′ and any fixed g ∈ G[s ∪ s′], the random variables εt (g(st)− g(s′t)) are
independent across all t, with mean 0 and range [−1, 1]. Therefore, for every ρ > 0 and every g,
Hoeffding’s inequality implies that

Pr
ε

[∣∣∣∣∣
1

T

T∑

t=1

εt (g(st)− g(s′t))

∣∣∣∣∣ > ρ

∣∣∣∣∣ s, s′

]
≤ 2 exp(−2Tρ2).

Taking a union bound over all choices of g ∈ G[s ∪ s′] implies that, for every s and s′ and every
ρ > 0,

Pr
ε

[
sup

g∈G[s∪s′]

∣∣∣∣∣
1

T

T∑

t=1

εt (g(st)− g(s′t))

∣∣∣∣∣ > ρ

∣∣∣∣∣ s, s′

]
≤ 2πG(2T) · exp(−2Tρ2),

where πG denotes the growth function of G (see Section 7.2). Using Lemma A.4 of [247], this
implies that

E
ε

[
sup

g∈G[s∪s′]

∣∣∣∣∣
1

T

T∑

t=1

εt (g(st)− g(s′t))

∣∣∣∣∣

∣∣∣∣∣ s, s′

]
≤ 4 +

√
log(πG(2T))√

2T
.

129

Taking expectation over all s and s′ and using the fact that πG(m) ≤ (em/d)d for all m, we have

E
s,s′∼P

[
E
ε

[
sup

g∈G[s∪s′]

∣∣∣∣∣
1

T

T∑

t=1

εt (g(st)− g(s′t))

∣∣∣∣∣

∣∣∣∣∣ s, s′

]]
≤ 4 +

√
d ln(2eT/d)√

2T
.

Let’s now see how these different ingredients fit together to prove a regret bound against
non-adaptive adversaries.

Theorem 7.3.4 (Non-adaptive adversaries). LetH be a hypothesis class of VC dimension d and
D be an unknown non-adaptive sequence of σ-smooth distributions. Then, there is an algorithm
with regret

E[AVERAGE-REGRET] ≤ O

√
d ln

(
T
σ

)

T

 .

Proof. Define A as above. Note that using linearity of expectation and inequality (7.2),

E
s∼D

[
1

T

T∑

t=1

a(st)

]
=

1

T

T∑

t=1

E
st∼Dt

[a(st)] ≤
γ

σ
.

Let γ = T−1/2σ. Then, lemmas 7.3.1, 7.3.2, and 7.3.3, together imply that

E[AVERAGE-REGRET] ≤ O

(√
d ln (1/γ)

T

)
+
γ

σ
+O

(√
d ln (T/d)

T

)
≤ O

(√
d ln (T/σ)

T

)
.

7.4 Lower Bound for Non-adaptive Non-smooth Adversaries
In this section, we show that there is a non-adaptive (and non-smooth) adversary that enforces a
regret of Ω(1) on any online algorithm. Therefore, the driving force behind our strong regret
bound in Theorem 7.3.4 is indeed the smoothness of the adversary.

Theorem 7.4.1. There exists a class of hypothesisH with VC dimension 1, and a non-adaptive
and non-smooth adversary, such that for any online algorithm

E [AVERAGE-REGRET] ∈ Ω(1).

Proof. Consider a full binary tree of depth T , as shown in Figure 7.1, whose nodes correspond
to multiples of powers of 1

2
. LetH be the class of linear thresholds in one dimension. We first

show that each root-to-leaf path in this tree corresponds to one adversarial sequence and each
randomized online algorithm corresponds to a distribution over labelings of the nodes of this tree.
We then use the minimiax theorem to show that the worst non-adaptive adversary can enforce a

130

regret on the best randomized algorithm that is the same as the regret that the best deterministic
algorithm gets against a distribution of adversarial sequences. Finally, we construct a distribution
over sequences on which any deterministic algorithm incurs a large regret.

Let y ∈ {+1,−1}T represent a root-to-leaf path in a binary tree of depth T , where +1 and
−1 refer to taking the left child and right child, respectively. Let Y be the set of all such paths
and ∆(Y) represent the set of all distributions over Y. Let π be a labeled full binary tree, such
that for any path y of length at most T , π(y) corresponds to the label of the node corresponding
to the path y. Let Π be the set of all labeled full binary trees and ∆(Π) the set of all distributions
over them.

Next, we describe the learner and adversary’s strategies on this tree.

1. Adversarial sequence {(xt, yt)}t∈[T]: A path y ∈ Y corresponds to a sequence in which at
time t the adversary plays instance (xt, yt) where xt corresponds to π(y1, . . . , yt−1).

2. A (randomized) online algorithm: An online algorithm can be denoted by a distribution
over labeled binary trees. Since for any node there is a unique path from the root to
it, a node xt presented to the algorithm at time t corresponds to a unique history of the
sequence, (x1, y1), . . . , (xt−1, yt−1). Therefore, an online algorithm’s (randomize) choice
of action at time t, ht, is only a function of xt. Conditioning on the value of ht(xt), the
choice of ht does not affect the utility or the regret of the algorithm. Therefore, we can
represent the decision of the algorithm at time t by a probability distribution over assigning
label +1 or −1 to xt. This induces a distribution Q ∈ ∆(Π) over labeled trees.

Note that for any y ∈ Y, there is a linear threshold in H that is consistent with labeled
samples (xt, yt) for all t ∈ [T]. This is due to the fact that, for any y1, . . . , yt−1, we always take
a path that arrives at xt which falls between the left-most node with +1 label and the right-most
node with the −1 label. Therefore, infπ erry(π) = 0. So, it is suffices to show that

inf
Q∈∆(Π)

sup
y∈Y

E
π∼Q

[
err
y

(π)

]
= Ω(T).

By the minimax theorem, we have

inf
Q∈∆(Π)

sup
y∈Y

E
π∼Q

[
err
y

(π)

]
= sup

Y ∈∆(Y)

inf
π∈Π

E
y∼Y

[
err
y

(π)

]
,

where the right hand side of the above equation is the loss of any deterministic algorithm against a
distribution over adversarial sequences. Now consider Y ∈ ∆(Y) that is the uniform distribution
over all sequences in Y. In other words, at time t the adversary chooses yt = +1 or yt = −1
each with probability 1

2
. Then, any fixed labeling π incurs an error of 1

2
in expectation. Therefore,

E [erry(π)] ≥ T/2 for any π. This completes the proof.

7.5 Discussion and Open Problem
In this chapter, we applied the smoothed analysis framework of Spielman and Teng [253] to
the problem of regret-minimization in online learning, and showed that fundamentally stronger

131

1 2⁄

1 4⁄ 3 4⁄

7 8⁄5 8⁄3 8⁄1 8⁄

0 1
Consistent
ℎ ∈ ℋ

Figure 7.1: Path (+1,−1,−1) is associated with the sequence (1
2
,+), (1

4
,−), and (3

8
,−).

regret guarantees are possible with smoothed adversaries than with worst-case adversaries. Our
results demonstrate that, similar to offline (i.i.d) learning, the VC dimension of a hypothesis
class characterizes the regret obtainable against smoothed adversaries. This is in stark contrast to
the worse-case regret bounds that are characterized by the Littlestone dimension of a class of
hypotheses, as the Littlestone dimension of even simple classes with constant VC dimension can
be unbounded.

7.5.1 An Open Problem
Our main result in this chapter considers the case of non-adaptive smooth adversaries. Another
adversarial model considered in online learning is the adaptive adversarial model. In this setting,
the adversary makes a fresh choice at every time step, considering the entire history of the
play until then. Interestingly, in the context of online non-smooth adversarial learning with
full information, the minmax regret in the adaptive and non-adaptive settings are equal (See
Section 7.4 and the work of Rakhlin and Sridharan [227]). A natural question is whether we
can get improved regret bounds, as we did in the case of a non-adaptive smooth adversary, for
adaptive smooth adversaries as well. We leave this general question as an open problem. But, we
show some preliminary efforts in extending our results to the adaptive case.

Formally, an adaptive σ-smooth adversary is such that at every time step t ∈ [T] the adversary
adaptively chooses a σ-smooth distribution Dt based on the actions of the learner h1, . . . , ht−1

and the realizations of the previous instances s1, . . . , st−1. We denote this random process by
s ∼ DDD and denote by errDDD(h) = Es∼DDD [errs(h)] the true error of hypothesis h on DDD .

As we observed in Lemma 7.3.3, any hypothesis class G with bounded VC dimension
demonstrates uniform convergence on any non-adaptive sequence of distributions D, regardless
of the smoothness of D or other properties of G. The next example demonstrates that this
property fails to hold with adaptive adversaries.

Example 7.5.1. Let X = [0, 1] and G = {gb(x) = 1(x ≥ b) | ∀b ∈ [0, 1]} be the set of
one-dimensional thresholds. Let DDD be an adaptive sequence of distributions, such that D1 is a
uniform distribution over [0, 1

4
] ∪ [3

4
, 1] and D2 = · · · = DT all are the uniform distribution on

[0, 1
4
] if x1 ∈ [0, 1/4], and otherwise, are the uniform distribution on [3

4
, 1]. In this case, we do

132

not achieve concentration for any value of T , as

1

T

T∑

t=1

g0.5(xt) =

{
0 w.p. 1/2

1 w.p. 1/2
and E

x∼DDD

[
1

T

T∑

t=1

g0.5(xt)

]
=

1

2
.

An even more troubling aspect of the above example is that DDD is 1
4
-smooth and G has a VC

dimension of 1. So, smoothness of an adaptive distribution is not sufficient for obtaining uniform
convergence over G, even if G has a small VC dimension.

At a high level, one of the challenging aspects of the above example is that {x | g0.5(x) = 1}
is relatively large. This allows an adaptive adversary to create a smooth DDD where the supports of
D2, . . . ,DT are all within the set {x | g(x) = 1} if some constant-probability event takes place
in the first round, and otherwise choosing smooth D2, . . . ,DT whose supports are within the set
{x | g(x) = 0}. So, not all hope is lost in obtaining a no-regret algorithm for smooth adaptive
adversaries. Note that the hypotheses that we really care about are those in A, each of which
is the symmetric difference of two similar hypotheses. That is, PrU [a(x) = 1] is small for all
a ∈ A. So, it may still be possible to use this property to obtain a good generalization bound
over all a ∈ A and prove Equation (7.4).

133

134

Part II

Learning from People

135

Chapter 8

Learning with Bounded Noise

8.1 Introduction

Designing noise tolerant and computationally efficient learning algorithms has been a long-
standing question in learning theory. In absence of noise—when the data is realizable—such
algorithms exist in a number of concepts classes, including halfspaces and constant-degree
polynomials [88]. However, the problem becomes significantly harder in the presence of label
noise. How much harder? It depends on the concept class and the noise model. In this chapter,
we focus on learning d-dimensional halfspaces, which are one of the most popular classifiers
studied in both the theory and practice of machine learning. Moreover, we focus on the bounded
noise model (also known as Massart noise), which is a realistic and well-studied noise model
from statistical learning theory [65, 205]. Our goal is to design algorithms that achieve error
OPT + ε for an arbitrarily small ε— where OPT is the error of the best halfspace—and run in
time poly

(
1
ε

)
and d.

The bounded noise model considers a setting where the label of each instance x is flipped
independently with probability η(x) < 1/2. The adversary has control over choosing a different,
and unknown, noise rate η(x) ≤ η for every instance x with the only constraint that η(x) ≤ η.
From a statistical point of view, it is well known that one can obtain an improved sample
complexity bound of O(d

ε
) under this noise model, compared to the worst-case joint distributions

that requires Ω(d
ε2

) samples [65]. In computational learning theory, this noise model has also
been studied under the name of malicious misclassification noise [232, 252]. However due to its
highly assymmetric nature, until our recent works [24, 25], no computationally efficient learning
algorithms were known in this model. In this chapter, we provide the first computationally
efficient algorithm achieving arbitrarily small excess error for learning halfspaces in presence of
bounded noise when the marginal distribution of the instance space is isotropic log-concave, e.g.,
Gaussian.

Theoretical Motivation for Bounded Noise The work on computationally efficient algo-
rithms for learning halfspaces has mostly focused on two different extremes. On one hand, for
the very stylized random classification noise model (RCN), where each example x is flipped
independently with equal probability η, several works have provided computationally efficient

137

algorithms that can achieve arbitrarily small excess error in polynomial time [32, 54, 246], all of
which crucially exploit the high amount of symmetry present in the RCN noise. At the other
extreme, there has been significant work on much more difficult and adversarial noise models
where the adversary deterministically flips labels of an adversarially selected η fraction of the
instances. The best results here however, not only require additional distributional assumptions
about the marginal over the instance space, but they only achieve much weaker multiplicative
approximation guarantees of error cOPT for a large constant c [23, 172, 182]. In this respect,
bounded noise falls between these two extremes, where the noise is not fully adversarial but also
far from being stylized.

Practical Motivation for Bounded Noise In addition to being of theoretical interest as a
middle ground between the adversarial and random classification noise models, there is also
a plausible narrative about why this noise may appear in practice, and especially in crowd-
sourced data sets: Consider the PAC learning framework, where there is a true target halfspace
h∗(x) = sign(w∗ · x) that perfectly labels all instances x. Consider an infinitely large crowd of
labelers, 1− η fraction of whom know the target function h∗ and η fraction may make mistakes
in arbitrary ways. Note that there may be easy instances, i.e., many of the imperfect labelers
label them correctly; and more difficult instances, i.e., only the perfect labelers know their
correct label. So, any instance x that is labeled by a randomly chosen person from this crowd
receives an incorrect label with probability η(x) ≤ η, where the instance-dependent noise rate
η(x) captures the varying degree of difficulty of an instance. Indeed, the bounded noise model
is a generalization of the noise models more commonly used in crowdsourcing, including the
David-Skene model [96].

8.1.1 Our Results

In this work, we provide the first computationally efficient algorithm achieving arbitrarily
small excess error for learning halfspaces. That is, we show that there exists a polynomial
time algorithm that can learn a halfspace of error OPT + ε and run in poly(d, 1

ε
) when the

underlying distribution is an isotropic log-concave distribution in <d and the noise of each
example η(x) ≤ 1

2
− β for some β = O(1).

A result of this form—that can get arbitrarily close to OPT—was only known for random
classification noise. In random classification noise, the error of each classifier scales uniformly
under the observed labels. This is indeed the underlying reason behind the working of many
single-shot optimization mechanisms.1 When bounded noise is considered, however, the observed
error of classifiers under bounded noise could change drastically in a non-uniform fashion. This
is due to the fact that the adversary has control over choosing a different noise rate η(x) ≤ η
for every example x. As we show, these correlations significantly degrade the quality of the
outcome of common single-shot optimization algorithms, such as the averaging algorithm [246]
and hinge loss minimization.

1When distributions are far from being isotropic, some single shot mechanisms are accompanied by pre-
processing steps that remove outliers, e.g. the work of Blum et al. [54]

138

In face of these challenges, we take an entirely different approach than previously considered
for random classification noise. We define an adaptively chosen sequence of optimization tasks
within smaller and smaller boundary regions of our the current guess for what the target classifier
is. We show that when the optimization task at every round finds a halfspace with small, but
constant, error within a given region, it directs us closer and closer to the optimal classifier. This
allows us to achieve arbitrarily small excess error rate overall. We discuss this method and the
nature of the optimization task in more detail in Section 8.1.2.

An appealing feature of our algorithm is that it is naturally adaptable to the active learning
framework, which has been intensively studied in recent years [92, 148, 150]. In this case, our
algorithm only requests labels for instances that fall within the optimization region in each
iteration. We show that our algorithm achieves a label complexity of poly

(
d, ln

(
1
ε

))
, which is

exponentially smaller than the number of unlabeled samples it requires. The following theorem
informally states these results.

Theorems 8.3.1 (informal). Consider a joint distribution D̃ over X × Y , such that the
marginal distribution on X is an isotropic log-concave distribution in Rd and the labels satisfy
bounded noise condition for a constant β with halfspace w∗. There is an algorithm that
takes poly

(
d, 1

ε
, ln
(

1
δ

))
unlabeled samples, poly

(
d, ln

(
1
ε

)
, ln
(

1
δ

))
labeled samples, runs in time

poly
(
d, 1

ε
, ln
(

1
δ

))
, and finds a halfspace w that with probability 1− δ, ‖w −w∗‖2 ≤ ε.

We note that the guarantees of the above theorem, that ‖w −w∗‖2 ≤ ε, indeed implies that
w∗ has an excess error of O(ε) compared to w∗. This is both due to the fact that the marginal
distribution in the above theorem is an isotropic log-concave distribution and that excess error is
bounded above by disagreement of w and w∗ (See Lemma 8.2.1).

Given that our algorithm is an adaptively chosen sequence of optimization tasks, one might
wonder what guarantee one-shot optimization of easy-to-optimize functions, such as hinge loss
minimization and averaging, have. In Section 8.4, we show that a simple but powerful AVERAGE

algorithm [246] cannot recover the true halfspace. In Section 8.5, we show a strong negative
result: for every τ and β, there is a noisy distribution D̃ over <d × {0, 1} satisfying bounded
noise with parameter β and an ε > 0, such that τ -scaled hinge loss minimization returns a
classifier with excess error Ω(ε). Indeed, this result is not restricted to hinge loss minimization.
As we show in our work [25], this can extend to a large class of functions that satisfy some
properties, such as continuity and other mild conditions.

8.1.2 Our Techniques

Our algorithm follows a localization technique inspired by the work of Balcan et al. [35]. Our
algorithm is initialized by a classifier w0 with a 0/1 error that is at most an appropriate small
constant more than the error of w∗ with respect to the observed labels. This difference is known
as the excess error. The algorithm then proceeds in rounds, aiming to cut down the excess error
by half in each round. By the properties of bounded noise (Lemma 8.2.1) and the log-concave
distribution (Lemma 8.2.2, Part 3), excess error of a classifier is a linear function of its angle
to w∗. Therefore, our algorithm aims to cut the angle by half at each round and eventually will
output a w that is close to w∗.

139

Consider wk−1 with angle≤ αk to w∗. It can be shown that for a band of width γk−1 = Θ(αk)
around the separator wk−1, wk−1 makes most of its error in this band. Therefore, improving
the accuracy of wk−1 in the band significantly improves the accuracy of wk−1 overall. When
considering vectors that are at angle ≤ αk to wk−1, it can be shown that any vector wk that
achieves a small enough constant excess error with respect to the distribution in the band, indeed,
enjoys a much stronger guarantee of having excess error that is half of wk−1 overall. Therefore,
if such a vector wk can be found efficiently in the presence of bounded noise, a classifier of
excess error ε can be learned in O(ln(1

ε
)) steps. In order to make the above method work we

need to achieve two goals: a) achieve a constant excess error while tolerating noise rate of
η(x) ≤ 1

2
− β

2
and b) the hypothesis output should be a halfspace.

On one hand, efficient proper learning methods, such as surrogate loss minimization in
the band, readily achieve goal (b). However, convex surrogate loss functions are only a good
approximation of the 0/1 loss when the noise is small enough. Since the noise in the band can
be as high as 1

2
− β

2
, this directly restricts the noise rate of bounded noise that can be tolerated

with such methods. Indeed, our first work in this space [24] demonstrated that when hinge-loss
minimization is used in the band, such a method only works if the probability of flipping the
label is as small as ≈ 10−6, i.e., when β is very close to 1. On the other hand, the polynomial
regression approach of Kalai et al. [172] learns halfspaces to an arbitrary excess error of ε with
runtime poly

(
d, exp

(
poly

(
1
ε

)))
when the marginal distribution is log-concave, requiring no

additional assumption on noise. Since the distribution in the band is also log-concave, this
method can achieve an arbitrarily small constant excess error in the band thereby achieving goal
(a). However, this algorithm outputs the sign of a polynomial p(·) as a hypothesis, which is not
necessarily a halfspace.

Instead, our algorithm takes a novel two-step approach to find wk for any amount of noise.
This is done by first finding a polynomial pk that has a small constant excess error in the band. To
obtain such a polynomial, we choose poly

(
d, ln

(
ln(1/ε)
δ

))
labeled samples from the distribution

in the band and use the algorithm by Kalai et al. [172] to find a polynomial with a small enough
but, importantly, a constant excess error, eKKMS, in the band. Note that at this point pk already
satisfies goal (a) but it does not satisfy goal (b) as it is not a halfspace. At a high level, since pk has
a small excess error with respect to w∗ in the band, using a structural property of bounded noise
that connects the excess error and disagreement of a classifier with respect to w∗ (Lemma 8.2.1),
we can show that pk is also close in classification to w∗. Therefore, it suffices to agnostically learn
a halfspace wk to a constant error for samples in the band that are labeled based on sign(p(·)).
To achieve this, we use localized hinge loss minimization in the band over a set of samples that
are labeled based on predictions of pk to find wk. Therefore, wk is close in classification to pk in
the band, which is in turn close to w∗ in the band. As a result, wk also has a small error in the
band as desired.

8.1.3 Related Work

Learning linear classifiers under noise has been extensively studied in the past. One of the noise
models considered in the past is the random classification noise (RCN) model [177]. Blum et al.
[54] provided the first polynomial time algorithm capable of learning halfspaces in Rd to an

140

arbitrary accuracy ε under the RCN model. The algorithm works under any data distribution and
runs in time polynomial in d, 1

ε
and 1

1−2η
, where η < 1

2
is the probability of flipping a label under

the RCN model. A simpler algorithm was later proposed by Dunagan and Vempala [114]. At
the other extreme is the agnostic noise model where no assumption is made on the nature of
the noise. In other words, the label of each example can be flipped in a completely adversarial
fashion [178]. The goal is to output a hypothesis of error at most OPT + ε, where OPT is the
error of the best hypothesis in the class. Kalai et al. [172] designed an algorithm for learning
halfspaces in this model under log-concave distributions. The algorithm relies on a structural
result that under log-concave distributions, halfspaces are approximated in L2 norm to ε accuracy,
by a polynomial of degree f(1/ε). Here, f(·) is an exponentially growing function. Hence, by
minimizing the absolute loss between the observed labels and a degree f(1/ε) polynomial, one
can get arbitrarily close to the error of the best halfspace. Because the analysis does not rely on
the existence of a good margin, the algorithm runs in time df(1/ε) and hence, is efficient only if ε
is a constant. Shalev-Shwartz et al. [248] extended the work of Kalai et al. to design a learning
algorithm for halfspaces which works for any distribution with a good margin. The run time
however, still has a mild exponential dependence on 1/ε. In the agnostic model, algorithms
with run time polynomial in d and 1

ε
are known if one is allowed to output a hypothesis of error

multiplicatively worse than OPT. The simple averaging algorithm achieves a multiplicative error

of O(
√

ln 1
OPT

) [172]. This was improved to an error of O(OPT) using a different algorithm
by Awasthi et al. [23]. Later, Daniely [89] showed how to get error of (1 + µ)OPT + ε in time
inverse exponential in µ. The last two results mentioned above for the agnostic model hold for
isotopic log-concave distributions. There are computational lower bounds suggesting that such
multiplicative guarantees cannot be obtained under arbitrary distributions [90].

A family of interesting noise models lie between the RCN model and the agnostic noise
model. The two most popular are the bounded (a.k.a Massart) noise model and the more general
Tsybakov noise model [65, 260]. These models can be viewed as semi-random adversarial.
For instance, in the bounded noise model, an adversary can decide, for each example x, the
probability η(x) ≤ 1

2
− β

2
of flipping the label of x. The actual label of x is then generated by

flipping a coin of the given bias η(x). The computational study of bounded noise in the learning
theory community dates back to early 90’s with the work of [232, 252] who studied this model
under the name Malicious Misclassification Noise. However, except for very simple cases, such
as intervals on the line or other classes of constant VC-dimension, efficient algorithms in this
model had remained unknown until recently. A variant of bounded noise, where the flipping
probability for each point is either η(x) = 0 or η(x) = η has been considered as an important
open problem in learning theory with the hope that understanding the complexities involved
in this type of noise could shed light on the problem of learning disjunctions in the presence
of noise [50]. From the statistical point of view, it is also known that under this models, it is
possible to get faster learning rates [65]. However, computationally efficient algorithms were not
known until our works [24, 25].

Many other noise models are studied in the literature as well. The most popular among them
is the linear noise model, where one assumes that the probability of a flipping the label of x is
proportional to |w∗ · x|, where w∗ is the optimal classifier. Because of the highly symmetric
nature of the noise, efficient algorithms for halfspaces are known under this model [100]. The

141

recent work of Feige et al. [117] studies a noise model where one is allowed to perturb inputs
and models the problem as a zero-sum game between a learner, minimizing the expected error,
and an adversary, maximizing the expected error.

8.2 Preliminaries
We use X to denote the domain of the samples and Y to denote the label set. We work in a
setting where X ⊆ Rd and Y = {+1,−1}. We define the sign function as sign(x) = 1 if x ≥ 0
and −1 otherwise. We consider a noise process denoted by Nβ that corrupts the labels according
to bounded noise with parameter β. In this model, a joint distribution over (X ,Y) satisfies the
bounded noise condition with parameter β > 0, if

|Pr(y = +1|x)− Pr(y = −1|x)| ≥ β, ∀x ∈ X .

In other words, bounded noise is equivalent to the setting where an adversary constructs the
distribution by flipping the label of each point x from sign(w∗ · x) to −sign(w∗ · x) with a
probability η(x) ≤ 1−β

2
. As is customary, we will use Bayes optimal classifier to refer to w∗, the

vector generating the uncorrupted measurements.
For any halfspace w, we denote the resulting classifier hw(x) = sign(w·x). For any classifier

h : X 7→ Y , we define the error with respect to distribution P as errP(h) = Pr(x,y)∼P [h(x) 6= y].
We define the excess error of h as errP(h)− errP(hw∗). We use OPT to denote the error of the
Bayes classifier, i.e., errP(hw∗). When the distribution is clear from the context, we use err(hw∗)
instead of errP(hw∗).

Our goal in this chapter is to find a halfspace that has small excess error. As we show in the
following lemma, this is directly related to finding a halfspace that has a small disagreement with
w∗.

Lemma 8.2.1 (Bousquet et al. [65]). Given a classifier h : X 7→ {+1,−1} and distribution
P satisfying bounded noise condition with parameter β, let w∗ be the Bayes optimal classifier.
Then we have

β Pr
(x,y)∼P

[h(x) 6= hw∗(x)] ≤ err
P

(h)− err
P

(hw∗) ≤ Pr
(x,y)∼P

[h(x) 6= hw∗(x)]. (8.1)

We frequently examine the region within a specified margin of a given halfspace. For
distribution P , halfspace w, and margin γ, we denote by Pw,γ the conditional distribution over
the set Sw,γ = {x | |w · x| ≤ γ}. We define the τ -hinge loss of a halfspace w over a labeled
instance (x, y) as

`τ (w,x, y) = max

(
0, 1− y(w · x)

τ

)
.

When τ is clear from the context, we simply refer to the above quantity as the hinge loss. For a
given set T of examples, we use Lτ (w, T) to denote the empirical hinge loss over the set, i.e.,
Lτ (w, T) = 1

|T |
∑

(x,y)∈T `τ (w,x, y). For a classifier w ∈ Rd and a value r, we use B(w, r)

to denote the set {v ∈ Rd : ‖w − v‖2 ≤ r}. Moreover, for two unit vectors u and v, we use
θ(u,v) = arccos(u · v) to denote the angle between the two vectors.

142

In this chapter, we focus on distributions whose marginal over X is an isotropic log-concave
distribution. A distribution in x = (x1, x2, . . . , xd) with density function f(x) is log-concave if
ln(f(x)) is concave. In addition, the distribution is isotropic if it is centered at the origin, and
its covariance matrix is the identity, i.e., E[xi] = 0, E[xi

2] = 1 for all i, and E[xixj] = 0 for
all i 6= j. Below we state useful properties of such distributions. See [33, 198] for a proof of
Lemma 8.2.2.

Lemma 8.2.2. Let P be an isotropic log-concave distribution in Rd. Then there exist absolute
constants C1, C2 and C3 such that

1. When d = 1, Prx∼P [x ≥ α] ≤ exp(−α + 1).

2. All marginals of P are isotropic log-concave.

3. For any two unit vectors u and v in Rd,

C1θ(v,u) ≤ Pr
x∼P

[sign(u · x) 6= sign(v · x)].

4. For any unit vectors w and any γ,

C3γ ≤ Pr
x∼P

[|w · x| ≤ γ] ≤ C2γ.

5. For any constant C4, there exists a constant C5 such that for two unit vectors u and v in Rd

with ‖u− v‖2 ≤ r and θ(u,v) ≤ π/2, we have that

Pr
x∼P

[sign(u · x) 6= sign(v · x) and |v · x| ≥ C5r] ≤ C4r.

6. For any constant C6, there exists another constant C7, such that for any unit vectors v and u
in Rd such that ‖u− v‖2 ≤ r and any γ ≤ C6,

E
x∼Pu,γ

[
(v · x)2

]
≤ C7(r2 + γ2).

8.3 Bounded Noise Algorithm
In this section, we introduce efficient algorithms for recovering the true classifier in the presence
of bounded noise for any constant β.

At a high level, our algorithm proceeds in log(1
ε
) rounds and returns a halfspace wk at round

k whose disagreement with respect to w∗ is halved at every step. We defer the discussion on
how to find an appropriate initial classifier w0 to Section 8.3.2. By induction, consider wk−1

143

whose disagreement with w∗ is at most Pr[sign(w∗ · x) 6= sign(wk−1 · x)] ≤ αk
π

. First, we
draw samples from the distribution of points that are at distance at most γk−1 to wk−1. We call
this region the band at round k and indicate it by Swk−1,γk−1

. Next we apply the polynomial
regression algorithm of [172] to get a polynomial p(·) of error a constant eKKMS in the band. We
draw additional samples from the band, label them based on sign(p(·)), and minimize hinge loss
with respect to these labels to get wk. We then show that wk that is obtained using this procedure
has disagreement at most αk+1

π
with the target classifier. We can then use wk as the classifier for

the next iteration. The detailed procedure is presented in Algorithm 8.1. The main result of this
section is that Algorithm 8.1 efficiently learns halfspaces under log-concave distributions in the
presence of bounded noise for any constant parameter β that is independent of the dimension.
The small excess error implies arbitrarily small approximation rate to the optimal classifier w∗

under bounded noise model.

Theorem 8.3.1. Let the optimal Bayes classifier be a halfspace denoted by w∗. Assume that
the bounded noise condition holds for some constant β ∈ (0, 1]. For any ε > 0, δ > 0, there
exist absolute constants e0, C,C1, C2, c1, c2 such that Algorithm 8.1 with parameters rk = e0

C12k
,

γk = Crk, λ = 3C1

8CC2
, eKKMS = β(λ/(4c1 + 4c2 + 2))4, and τk = λ γk−1/(4c1 + 4c2 + 2)

runs in polynomial time, proceeds in s = O(ln 1
ε
) rounds, where in round k it takes nk =

poly(d, exp(k), ln(1
δ
)) unlabeled samples andmk = poly(d, ln(s/δ)) labels and with probability

1− δ returns a vector w ∈ Rd such that ‖w −w∗‖2 ≤ ε.

Algorithm 8.1: LEARNING HALFSPACES UNDER BOUNDED NOISE

1: Input: A sequence of values γk, τk and rk for k = 1, . . . , log(1/ε), and eKKMS.
2: Let w0 be the initial classifier as describe in Section 8.3.2.
3: for k = 1, . . . , log(1/ε) = s do
4: Take poly(d, ln(s

δ
)) labeled samples from D̃k and place them in the set T .

5: Perform polynomial regression [172] over T to find a polynomial pk such that
errD̃k(sign(pk)) ≤ errD̃k(hw∗) + eKKMS.

6: Take d(d+ ln(k/δ)) unlabeled samples from D̃k, label them according to sign(pk(·)).
Call this set of labeled samples T ′.

7: Find vk ∈ B(wk−1, rk−1) that approximately minimizes the empirical hinge loss over
T ′ using threshold τk, i.e., Lτk(vk, T

′) ≤ minw∈B(wk−1,rk−1) Lτk(w, T
′) + λ

12
.

8: Let wk = vk
‖vk‖2

.
9: end for

10: return ws.

For the remainder of this chapter, we denote by D̃ the noisy distribution and by D the
distribution with labels corrected according to w∗. Furthermore, we refer to D̃wk−1,γk−1

and
Dwk−1,γk−1

, the noisy and clean distributions in the band, by D̃k and Dk, respectively.

144

8.3.1 Outline of the Proof and Related Lemmas
In this section, we provide an outline of the analysis of Algorithm 8.1 and the related lemmas.
We defer the detailed proof of Theorem 8.3.1 to Section 8.3.3.

Consider a halfspace wk−1 at angle αk to w∗ and consider the band of width γk−1 around
wk−1. In a log-concave distribution, a Θ(γk−1) fraction of the distribution falls in the band
Swk−1,γk−1

(Property 4). Moreover, the probability that wk−1 makes a mistake outside of the
band is a small constant fraction of αk (Property 5). So, wk−1 makes most of its mistakes in
the band Swk−1,γk−1

. Therefore, if we can find a wk that has a small (constant) error in the band
and, similarly as in wk−1, is close to w∗, then the overall error of wk is a constant times better
than that of wk−1. This is the underlying analysis of the margin-based technique [35]. It suffices
to show that wk, indeed, has a small error rate (of a constant) in the band Swk−1,γk−1

. That
is, errDk(hwk

) ≤ λ for the small constant λ. At each step of the algorithm, we first consider
a polynomial p(·) obtained at Step 4 such that err(sign(p(·)) − err(hw∗) ≤ eKKMS. Since the
distribution in the band is also log-concave, we can use the polynomial regression algorithm of
[172] to find such a polynomial.

Theorem 8.3.2 (Kalai et al. [172]). Let D be a joint distribution over X ⊆ Rd and Y ∈
{+1,−1}, such that the marginal over X is log-concave. Let OPT be the classification error of
the best halfspace w∗ with respect to D. Then there exists an algorithm which, for any ε > 0,
outputs a polynomial p(·) such that err(sign(p(·)) ≤ err(hw∗) + ε. The running time and the
number of samples needed by the algorithm is dexp(1/ε4).

Note, errDk(hwk
) ≤ Pr(x,y)∼Dk [sign(pk(x)) 6= hw∗(x)]+Pr(x,y)∼Dk [hwk

(x) 6= sign(pk(x))].
By the relation between the excess error and disagreement of a classifier under bounded noise
(Lemma 8.2.1), polynomial p is eKKMS/β close in classification to w∗. Therefore, the first part of
this inequality is at most eKKMS/β. For the second part of this inequality we need to argue that
wk is close in classification to p(·) inside the band. Recall that at an intuitive level, we choose
wk so as to learn the labels of p(·). For this purpose, we draw samples from inside the band,
label them based on sign(p(x)), and then choose wk that minimizes the hinge loss over these
labels. Since this hinge loss is an upper bound on the disagreement of p(·) and wk, it suffices to
show that it is small. We prove this in the following Lemma, where D′k denotes the distribution
Dk where the labels are predicted based on sign(pk(·)).

The above discussion applies to the expected value of hinge loss. In the following lemma,
we use VC dimension tools to show that for linear classifiers that are considered in Step 7 (the
ones with angle αk to wk), the empirical and expected hinge loss are close.

Lemma 8.3.3. Let D′k denote the distribution Dk where the labels are predicted based on
sign(pk(·)). There is mk = O(d(d + ln(k/d))) such that for a randomly drawn set T ′ of mk

labeled samples from D′k, with probability 1− δ
4(k+k2)

, for any w ∈ B(wk−1, rk−1),
∣∣∣∣ E
(x,y)∼D′k

[`τk(w,x, y)]− `τk(w, T ′)
∣∣∣∣ ≤

λ

12
.

Proof. The pseudo-dimension of the set of hinge loss values, i.e., {`τk(w, ·) : w ∈ <d} is known
to be at most d. Next, we prove that for any halfspace w ∈ B(wk−1, rk−1) and for any point

145

(x, y) ∼ D′k, `τk(w,x, y) ∈ O(
√
d). We have,

`τk(w,x, y) ≤ 1 +
|w · x|
τk

≤ 1 +
|wk−1 · x|+ ‖w −wk−1‖2‖x‖2

τk

≤ 1 +
γk−1 + rk−1‖x‖2

τk
≤ c(1 + ‖x‖2).

By Lemma 8.2.2 part 1, for any (x, y) ∈ T ′, Pr(x,y)∼D′k [‖x‖2 > α] ≤ c exp(−α/
√
d). Using

union bound and setting α = Θ(
√
d ln(|T ′|k2/δ)) we have that with probability 1 − δ

8(k+k2)
,

maxx∈T ′ ‖x‖2 ∈ O(
√
d ln(|T ′|k2/δ)). Using standard pseudo-dimension rule we have that for

|T ′| > Õ(d(d+ ln k
δ
)), with probability 1− δ

4(k+k2)
,

∣∣∣∣ E
(x,y)∼D′k

[`(w,x, y)]− `(w, T ′)
∣∣∣∣ ≤

λ

12
.

Next we show that the expected hinge of w∗ with respect to D′ is close to the expected hinge
of w∗ on the clean distribution D because p and w∗ have small disagreement.

Lemma 8.3.4. There exists an absolute constant c2 such that
∣∣∣∣ E
(x,y)∼D′k

[
`τk(w

∗,x, y)
]
− E

(x,y)∼Dk

[
`τk(w

∗,x, y)
]∣∣∣∣ ≤ c2

γk−1

τk

√
err
Dk

(pk).

Proof. Let N indicate the set of points (x, y) on which pk and hw∗ disagree. We have,
∣∣∣∣ E
(x,y)∼D′k

[
`τk(w

∗,x, y)
]
− E

(x,y)∼Dk

[
`τk(w

∗,x, y)
]∣∣∣∣

≤
∣∣∣∣ E
(x,y)∼D′k

[
Ix∈N

(
`τk(w

∗,x, y)− `τk(w∗,x, sign(w∗ · x))
)]∣∣∣∣

≤ 2 E
(x,y)∼D′k

[
Ix∈N

(|w∗ · x|
τk

)]

≤ 2

τk

√
Pr

(x,y)∼D′k
[x ∈ N]×

√
E

(x,y)∼D′k
[(w∗ · x)2] (By Cauchy Schwarz)

≤ 2

τk

√
err
Dk

(pk)×
√

E
(x,y)∼Dk

[(w∗ · x)2] (By definition of N)

≤ 2

τk

√
err
Dk

(pk)×
√
C7(r2

k−1 + γ2
k−1) (By Lemma 6)

≤ c2
γk−1

τk

√
err
Dk

(pk).

146

Lemma 8.3.5. There exists an absolute constant c2 such that with probability 1− δ
2(k+k2)

,

err
D′k

(hwk
) ≤ 2 E

(x,y)∼Dk
[`τk(w

∗,x, y)] + 2c2
γk−1

τk

√
err
Dk

(pk) +
λ

2
.

Proof. First, we note that the true 0/1 error of wk on any distribution is at most its true hinge
loss on that distribution. So, it suffices to bound the hinge loss of wk on D′k. Moreover, vk
approximately minimizes the hinge loss on distribution D′k, so in particular, it performs better
than w∗ on D′k. On the other hand, Lemma 8.3.4 shows that the difference between hinge loss of
w∗ on D′k and Dk is small. So, we complete the proof by using Lemma 8.3.6 and bounding the
hinge of w∗ on Dk. The following equations show the process of derivation of this bound as we
explained.

err
D′k

(hwk
) ≤ E

(x,y)∼D′k
[`τk(wk,x, y)] (Since hinge loss larger than 0/1 loss)

≤ 2 E
(x,y)∼D′k

[`τk(vk,x, y)] (Since ‖vk‖2 > 0.5)

≤ 2Lτk(vk, T
′) + 2(

λ

12
) (By Lemma 8.3.3)

≤ 2Lτk(w
∗, T ′) + 4(

λ

12
) (vk was an approximate hinge loss minimizer)

≤ 2 E
(x,y)∼D′k

[`τk(w
∗,x, y)] + 6(

λ

12
) (By Lemma 8.3.3)

≤ 2 E
(x,y)∼Dk

[`τk(w
∗,x, y)] + 2c2

γk−1

τk

√
err
Dk

(pk) +
λ

2
(By Lemma 8.3.4)

≤ 2c1
τk
γk−1

+ 2c2
γk−1

τk

√
err
Dk

(pk) +
λ

2
. (By Lemma 8.3.6)

Finally, we show that hinge loss of w∗ on the clean distribution can be upper bounded
by the parameters of the algorithm. Together with the result of Lemma 8.3.5 this shows that
errD′k(wk) ≤ λ as desired.

Lemma 8.3.6. There exists an absolute constant c1 such that E(x,y)∼Dk [`τk(w
∗,x, y)] ≤ c1

τk
γk−1

.

Proof. Notice that w∗ never makes a mistake on distribution Dk, so the hinge loss of w∗ on Dk
is entirely attributed to the points of Dk that are within distance τk from w∗. We have,

E
(x,y)∼Dk

[`τk(w
∗,x, y)] ≤ Pr

(x,y)∼Dk
[|w∗ · x| < τk]

=
Pr(x,y)∼D[|w∗ · x| < τk]

Pr(x,y)∼D[|wk−1 · x| ≤ γk−1]

≤ C2τk
C3γk−1

(By Part 4 of Lemma 8.2.2)

≤ c1
τk
γk−1

.

147

8.3.2 Initializing w0

We need to find w0 such that errD(hw0) ≤ π
2C1

. To find such w0, we first take a labeled sample of
size m0 = poly(d, ln(ln(1/ε)/δ)) from D̃ and run the polynomial regression algorithm of Kalai

et al. [172] on this set to find a polynomial p0(·) with excess error e′KKMS = β
(

π
4(1+C′1+C′2)C1

)4

,
where we defer the choice of C ′1 and C ′2 to later in the proof.

Then we take T ′ a sample of size poly(d, ln(1/δ)) from D and label it based on sign(p0(·)).
We find w0 = v0

‖v0‖2 that approximately minimizes the empirical hinge loss over this sample. We
have

err
D

(hw0) = Pr
(x,y)∼D

[p0(x) 6= hw∗(x)] + Pr
(x,y)∼D

[p0(x) 6= hw0(x)].

For the second part of this equation, we follow a similar proof to the analysis of Lemma 8.3.5.
Note that for any unit length w and x drawn from an isotropic log-concave distribution w · x is
also an isotropic log-concave distribution, so E(x,y)∼D[(w · x)2] = 1. Using this in Lemmas 8.3.4
and 8.3.6, using a constant generalization error κ, and τ = errD′(hw∗)

1/4, we have

err
D′

(hw0) ≤ E
(x,y)∼D′

[`τ (w0,x, y)] (hinge loss is greater than 0/1 loss)

≤ 2 E
(x,y)∼D′

[`τ (v0,x, y)] (Since ‖v0‖2 > 0.5)

≤ 2Lτ (v0, T
′) + 2

(κ
6

)
(By Lemma 8.3.3)

≤ 2Lτ (w
∗, T ′) + 4

(κ
6

)
(v0 is an approximate hinge loss minimizer)

≤ 2 E
(x,y)∼D′

[`τ (w
∗,x, y)] + κ (By Lemma 8.3.3)

≤ 2 E
(x,y)∼D

[`τ (w
∗,x, y)] +

2C ′2
τ

√
err
D

(p0) + κ (By Lemma 8.3.4)

≤ 2C ′1τ +
2C ′2
τ

√
err
D

(p0) + κ (By Lemma 8.3.6)

≤ (2C ′1 + 2C ′2)
(

err
D

(p0)
)1/4

+ κ.

For κ = e′KKMS we have

err
D

(hw0) ≤ err
D

(p0) + err
D′

(hw0)

≤ (2 + 2C ′1 + 2C ′2)
(

err
D

(p0)
)1/4

≤ (2 + 2C ′1 + 2C ′2)

(
1

β
e′KKMS

)1/4

(By Lemma 8.2.1)

≤ π

2C1

.

148

8.3.3 Putting Everything Together
Here, we formally prove Theorem 8.3.1. Recall that we use the following parameters in
Algorithm 8.1: rk = e0

C12k
, γk = Crk, where we defer the choice of C to later in the proof,

λ = 3C1

8CC2
, eKKMS = β(λ/(4c1 + 4c2 + 2))4, and τk = λγk−1/(4c1 + 4c2 + 2). Note, that by

Lemma 8.2.1, for any classifier h,

err
D̃

(h)− err
D̃

(hw∗) ≤ Pr
(x,y)∼D̃

[h(x) 6= hw∗(x)] = err
D

(h).

In this proof, we show that Algorithm 8.1 returns ws such that errD(hws) ≤ ε, and in turn, the
excess error of hws is also at most ε.

For the initialization of w0, using the analysis of Section 8.3.2, we have that e0 ≤ π
2C1

. Using
Lemma 8.2.2, part 3, this shows that θ(w0,w

∗) ≤ π
2
. Note that this gives us θ(w,w∗) ≤ π

2
in

the rest of the algorithm, which is a pre-requisite for Lemma 8.2.2 part 5 and other lemmas.
We use induction to show that at the kth step of the algorithm θ(wk,w

∗) ≤ e0
C12k

. Using
Lemma 8.2.2, part 3, it suffices to show that errD(hwk

) ≤ e0/2
k. Assume by the induction

hypothesis that at round k − 1, errD(hwk−1
) ≤ e0/2

k−1. We will show that wk, which is chosen
by the algorithm at round k, also has the property that errD(hwk

) ≤ e0/2
k.

Let Sk = {x | |wk−1 · x| ≤ γk−1} indicate the band at round k. We divide the error of wk

to two parts, error outside the band and error inside the band. That is,

err
D

(hwk
) = Pr

(x,y)∼D
[x /∈ Sk and hwk

(x) 6= hw∗(x)] + Pr
(x,y)∼D

[x ∈ Sk and hwk
(x) 6= hw∗(x)].

(8.2)
By Part 3 of Lemma 8.2.2, θ(wk−1,w

∗) ≤ rk−1. So, for the first part of the above inequality,
which is the error of wk outside the band, we have that

Pr
(x,y)∼D

[x /∈ Sk and hwk
(x) 6= hw∗(x)]

≤ Pr
(x,y)∼D

[
x /∈ Sk and hwk

(x) 6= hwk−1
(x)
]

+ Pr
(x,y)∼D

[
x /∈ Sk and hwk−1

(x) 6= hw∗(x)
]

≤ 2
C1rk−1

16
≤ e0

4× 2k
, (8.3)

where the penultimate inequality follows from the fact that by the choice of wk ∈ B(wk−1, rk−1)
and the induction hypothesis, respectively, θ(wk−1,wk) < rk−1 and θ(wk−1,w

∗) < rk−1; By
choosing large enough constant C in γk−1 = Crk−1, using Part 5 of Lemma 8.2.2, the probability
of disagreement outside of the band is C1rk−1/16.

For the second part of Equation 8.2 we have that

Pr
(x,y)∼D

[x ∈ Sk and hwk
(x) 6= hw∗(x)] = err

Dk
(hwk

) Pr
(x,y)∼D

[x ∈ Sk], (8.4)

and
err
Dk

(hwk
) Pr

(x,y)∼D
[x ∈ Sk] ≤ err

Dk
(hwk

)C2γk−1 ≤ err
Dk

(hwk
)
2C2Ce0

C12k
, (8.5)

149

where the penultimate inequality is based on Part 4 of Lemma 8.2.2. Therefore, by replacing
Equations 8.3 and 8.5 with Equation 8.2, we see that in order to have errD(hwk

) < e0
2k

, it suffices
to show that errDk(hwk

) ≤ 3C1

8CC2
= λ. The rest of the analysis is contributed to proving this

bound. We have

err
Dk

(hwk
) = Pr

(x,y)∼Dk
[hwk

(x) 6= hw∗(x)]

≤ Pr
(x,y)∼Dk

[sign(pk(x)) 6= hw∗(x)] + Pr
(x,y)∼Dk

[hwk
(x) 6= sign(pk(x))].

For the first part, using the assumption in Lemma 8.2.1, we have that

Pr
(x,y)∼Dk

[sign(pk(x)) 6= hw∗(x)] ≤ 1

β

(
err
D̃k

(sign(pk))− err
D̃k

(hw∗)

)
≤ eKKMS

β
. (8.6)

For the second part, using Lemma 8.3.5, we have

Pr
(x,y)∼Dk

[hwk(x) 6= sign(pk(x))] = err
D′k

(hwk
) ≤ 2c1

τk
γk−1

+ 2c2
γk−1

τk

√
eKKMS

β
+
λ

2
.

Therefore, by the choice of parameter τk = λγk−1/(4c1 + 4c2 + 2) = γk−1(eKKMS/β)1/4, we
have

err
Dk

(hwk
) ≤ eKKMS

β
+ 2c1

τk
γk−1

+ 2c2
γk−1

τk

√
eKKMS

β
+
λ

2

≤ eKKMS

β
+ 2c1

(
eKKMS

β

)1/4

+ 2c2

(
eKKMS

β

)1/4

+
λ

2

≤ (2c1 + 2c2 + 1)

(
eKKMS

β

)1/4

+
λ

2
≤ λ

2
+
λ

2
≤ λ.

Sample Complexity and Run-time To get error of eKKMS with probability 1 − s
δ

at every
round, we need a labeled set of size poly(d, ln s

δ
). The sample set T ′ is labeled based on pk, so it

does not contribute to the label complexity. So, at each round, we need mk = poly(d, ln(ln(1/ε)
δ

))

labels. At each round, to get poly(d, ln(ln(1/ε)
δ

)) labels for the polynomial regression algorithm in
the band of Sk we need O(2kmk) samples from D̃. To get d(d+ ln(k/δ)) unlabeled samples in
the band for Step 6, we need O(2k(d(d+ ln(k/δ))) = poly(d, exp(k), ln(1

δ
)) unlabeled samples.

So, overall, we need nk = poly(d, exp(k), ln(1
δ
)) unlabeled samples at each round. The running

time is dominated by the polynomial regression algorithm which takes time dexp(1
β4

). However,
since β is a constant, this is a polynomial in d.

8.4 AVERAGE Does Not Work
Our algorithm described in the previous section uses polynomial regression and hinge loss
minimization in the band as an efficient proxy for minimizing the 0/1 loss. The AVERAGE

150

algorithm introduced by Servedio [246] is another computationally efficient algorithm that has
provable noise tolerance guarantees under certain noise models and distributions. For example,
it achieves arbitrarily small excess error in the presence of random classification noise and
monotonic noise when the distribution is uniform over the unit sphere. Furthermore, even in
presence of a small amount of malicious noise and less symmetric distributions, AVERAGE has
been used to obtain a weak learner, which can then be boosted to achieve a non-trivial noise
tolerance [182]. Therefore it is natural to ask, whether the noise tolerance that AVERAGE exhibits
could be extended to the case of bounded noise under the uniform distribution? We answer
this question in the negative. We show that the lack of symmetry in bounded noise presents a
significant barrier for the one-shot application of AVERAGE, even when the marginal distribution
is completely symmetric. Additionally, we also discuss obstacles in incorporating AVERAGE

as a weak learner—in place of polynomial regression and hinge loss minimization—within the
margin-based framework.

In a nutshell, AVERAGE takesm sample points and their respective labels,W = {(x1, y1), . . . ,
(xm, ym)}, and returns 1

m

∑m
i=1 xiyi. Our main result in this section shows that for a wide range

of distributions that are very symmetric in nature, including the Gaussian and the uniform
distribution, there is an instance of bounded noise under which AVERAGE cannot achieve an
arbitrarily small excess error.

Theorem 8.4.1. For any continuous distribution D with a p.d.f. that is a function of the distance
from the origin only, there is a noisy distribution D̃ over X × {0, 1} that satisfies bounded
noise condition for some parameter β > 0 and AVERAGE returns a classifier with excess error
Ω
(
β(1−β)

1+β

)
.

Proof. Let w∗ = (1, 0, . . . , 0) be the target halfspace. Let the noise distribution be such that for
all x, if x1x2 < 0 then we flip the label of x with probability 1−β

2
, otherwise we keep the label.

Clearly, this satisfies bounded noise with parameter β. Let w be the expected vector returned by
AVERAGE. We first show that w is far from w∗ in angle. Then, using Lemma 8.2.1 we show that
w has large excess error.

First we examine the expected component of w that is parallel to w∗, i.e., w ·w∗ = w1. For
ease of exposition, we divide our analysis to two cases, one for regions with no noise (first and
third quadrants) and second for regions with noise (second and fourth quadrants). Let E be the
event that x1x2 > 0. By symmetry, it is easy to see that Pr[E] = 1/2. Then

E[w ·w∗] = Pr(E) E[w ·w∗|E] + Pr(Ē) E[w ·w∗|Ē]

For the first term, for x ∈ E the label has not changed. So, E[w ·w∗|E] = E[|x1| |E] =
∫ 1

0
zf(z).

For the second term, the label of each point stays the same with probability 1+β
2

and is flipped
with probability 1−β

2
. Hence, E[w ·w∗|E] = β E[|x1| |E] = β

∫ 1

0
zf(z). Therefore, the expected

parallel component of w is E[w ·w∗] = 1+β
2

∫ 1

0
zf(z)

Next, we examine w2, the orthogonal component of w on the second coordinate. Similar to
the previous case for the clean regions E[w2|E] = E[|x2| |E] =

∫ 1

0
zf(z). Next, for the second

and forth quadrants, which are noisy, we have

E
(x,y)∼D̃

[x2y|x1x2 < 0] = (
1 + β

2
)

∫ 0

−1

z
f(z)

2
+ (

1− β
2

)

∫ 0

−1

(−z)
f(z)

2
(Fourth quadrant)

151

+ (
1 + β

2
)

∫ 1

0

(−z)
f(z)

2
+ (

1− β
2

)

∫ 1

0

z
f(z)

2
(Second quadrant)

= −(
1 + β

2
)

∫ 1

0

z
f(z)

2
+ (

1− β
2

)

∫ 1

0

z
f(z)

2

− (
1 + β

2
)

∫ 1

0

z
f(z)

2
+ (

1− β
2

)

∫ 1

0

z
f(z)

2
(By symmetry)

= −β
∫ 1

0

zf(z).

So, w2 =
(

1−β
2

) ∫ 1

0
zf(z). Therefore θ(w,w∗) = arctan(1−β

1+β
) ≥ 1−β

(1+β)
. By Lemma 8.2.1, we

have errD̃(w)− errD̃(w∗) ≥ β θ(w,w∗)
π
≥ β 1−β

π(1+β)
.

Our algorithms rely on using polynomial regression and hinge-loss minimization in the band
at every round to efficiently find a halfspace wk that is a weak learner for Dk, i.e., errDk(wk)
is at most a small constant. Motivated by this more lenient goal of finding a weak learner, one
might ask whether AVERAGE, as an efficient algorithm for finding low error halfspaces, can be
incorporated with the margin-based technique in the same way as hinge loss minimization? We
argue that the margin-based technique is inherently incompatible with AVERAGE.

The Margin-based technique maintains two key properties at every step: First, the angle
between wk and wk−1 and the angle between wk−1and w∗ are small, and as a result θ(w∗,wk)
is small. Second, wk is a weak learner with errDk−1

(wk) at most a small constant. In our work,
polynomial regression together with hinge loss minimization in the band guarantees both of
these properties simultaneously by limiting its search to the halfspaces that are close in angle
to wk−1 and limiting its distribution to Dwk−1,γk−1

. However, in the case of AVERAGE as we
concentrate in the band Dwk−1,γk−1

we bias the distributions towards its orthogonal component
with respect to wk−1. Hence, an upper bound on θ(w∗,wk−1) only serves to assure that most
of the data is orthogonal to w∗ as well. Therefore, informally speaking, we lose the signal that
otherwise could direct us in the direction of w∗. More formally, consider the construction from
Theorem 8.4.1 such that wk−1 = w∗ = (1, 0, . . . , 0). In distribution Dwk−1,γk−1

, the component
of wk that is parallel to wk−1 scales down by the width of the band, γk−1. However, as most
of the probability stays in a band passing through the origin in any log-concave (including
Gaussian and uniform) distribution, the orthogonal component of wk remains almost unchanged.
Therefore, θ(wk,w

∗) = θ(wk,wk−1) ∈ Ω
(

1−β
γk−1(1+β)

)
.

8.5 Hinge Loss Minimization Does Not Work
Hinge loss minimization is a widely used technique in machine learning. As we have shown in
our work [24], which precedes the results discussed in Section 8.3, iteratively using hinge loss
minimization alone within the band—instead of combining it with polynomial regression—can
tolerate a very small amount of bounded noise (of the order of β = 1− 10−7). In this section, we
show that a one-shot application of hinge loss minimization cannot learn halfspaces to arbitrary
accuracy for any β. Indeed, our results go beyond hinge loss minimization and apply to one-shot
optimization of other easy-to-optimize functions [25].

152

w*

w

⍺

⍺

A

A

⍺/2

hw
hw*

B

BD

D

Figure 8.1: Dα,β

More concretely, we show that for every parameter τ and β, τ -hinge loss minimization does
not recover the true halfspace on distributions with a uniform marginal over the unit ball in R2

and bounded noise with parameter β.

Theorem 8.5.1. For every hinge-loss parameter τ ≥ 0 and every bounded noise parameter
0 ≤ β < 1 and true target halfspace w∗, there is a distribution D̃ with marginal that is uniform
over the unit ball in R2 and bounded noise with parameter β, and there exists a constant c such
that for

w̄ = arg min
w,‖w‖2=1

E
(x,y)∼D̃

[`τ (w,x, y)],

we have θ(w̄,w∗) > c.

Note that since the theorem uses a distribution that has a marginal that is uniform over the
unit ball in R2, θ(w̄,w∗) is the disagreement between the two halfspaces. Using Lemma 8.2.1,
the above theorem implies that the excess 0/1 error of the halfspace that minimizes the expected
hinge loss is at least some constant. Since hinge loss is concentrated around its expectation, this
implies that there exists a function m(ε) = O(ε−2) such that for small enough excess error ε and
for any m > m(ε) samples, with high probability the excess error of the empirical hinge loss
minimizer is more than ε.

A remark is in order regarding the fact that we perform hinge loss minimization over all
unit vectors. Our choice is due to the fact that, if w has lower hinge loss than w∗, so does λw
compared to λw∗. More formally,

`τ (λw,x, y) = max

(
0, 1− y(λw · x)

τ

)
= max

(
0, 1− y(w · x)

τ/λ

)
= `τ/λ(w,x, y).

8.5.1 Proof of the Lower Bound
To prove the above result, we consider Pβ be the class of distributions with uniform marginal
over the unit ball in R2 with β-bounded noise with respect to the Bayes classifier halfspace w∗.
We carefully design a subclass of Pα,β ⊆ Pβ , indexed by angle α and bounded noise parameter
β as follows. Let Bayes optimal classifier be h∗ = hw∗ for a unit vector w∗. Let hw be the

153

classifier that is defined by the unit vector w at angle α from w∗. We partition the unit ball into
areas A, B and D as in Figure 8.1. That is A consists of the two wedges of disagreement between
hw and hw∗ and the wedge where the two classifiers agree is divided in B (points that are closer
to hw than to hw∗) and D (points that are closer to hw∗ than to hw). We now flip the label of all
points in areas A and B with probability η = 1−β

2
and we do not introduce any noise in region D.

More formally, points at angle between α/2 and π/2 and points at angle between π + α/2 and
−π/2 from w∗ are labeled with hw∗(x) with probability 1. All other points are labeled −hw∗(x)
with probability η and hw∗(x) with probability (1 − η). Clearly, this distribution satisfies the
bounded noise condition with parameter β.

The goal of the above construction is to design distributions where w has smaller hinge loss
than w∗. We show that for every noise parameter β and hinge loss parameter τ , there is angle α,
for which the expected hinge loss of w∗ is more, by at least a constant, than that of w on D̃α,β .
Since hinge loss is continuous in angle of the halfspaces, this shows that no unit vector that is
close in angle to w∗ is the expected hinge loss minimizer either.

When considering the expected hinge loss of w and w∗, note that

• noise in region A “evens out” the difference in hinge loss of w and w∗. This is due to the
fact that A is symmetric with respect to these two directions.

• noise in region B “helps w”. Since all points in region B are closer to the hyperplane
defined by w than to the one defined by w∗, vector w∗ will pay more in hinge loss for the
noise (and misclassification) in this region.

• there is no noise in region D. This is the region of points that are closer to the hyperplane
defined by w∗ than to the one defined by w. Since both w∗ and w classify the instances
correctly, the cost for either classifier is small.

In the remainder of this section, let cA denote the hinge loss of hw∗ on one wedge (one half
of) region A when all instance are labeled correctly and dA the hinge loss on the same region
when all instance are labeled incorrectly. That is,

cA =
1

π

∫ 1

0

∫ α

0

(1− z

τ
sin(ϕ))z dϕ dz,

dA =
1

π

∫ 1

0

∫ α

0

(1 +
z

τ
sin(ϕ))z dϕ dz.

Moreover, let region C be the set of points at angle between π− α/2 and π + α/2 from w∗ (See
Figure 8.2), and let cC and dC be defined analogously to the above.

The following lemma described the relation between the expected hinge loss of w and w∗.
See Appendix B.1.

Lemma 8.5.2.

E
(x,y)∼D̃τ,β

[`τ (w,x, y)]− E
(x,y)∼D̃τ,β

[`τ (w
∗,x, y)] = β(dA− cA)− (1− β)(dC− cC).

154

w*

w

⍺

⍺

A

A

⍺/2

hw
hw*

B

BD

D

⍺/2C
C

⍺

⍺

Figure 8.2: Area C

The next two lemmas evaluate dA − cA and dC − cC. Their proofs are presented in
Appendices B.2 and B.3.

Lemma 8.5.3. Given τ0 ≥ 0, let α be small enough such that region A is included in the τ0-band
around w∗ (we can always choose the angle α sufficiently small for this). For all τ ≥ τ0:

dA− cA =
2

3πτ
(1− cos(α)).

Lemma 8.5.4. We have

dC− cC

{
= 4

3πτ
sin
(
α
2

)
when τ ≥ 1,

≥ 1
π

(
α
2

+ 2
3τ

sin
(
α
2

)
− τ2

3
tan
(
α
2

))
when τ < 1.

Proof of Theorem 8.5.1. We show that for any τ and β, there is α for which expected hinge loss
of w is less than the expected hinge loss of w∗ on distribution D̃α,β . In particular, let α be such
that

Condition (1): sin
(α

2

)
<

1− β
β

and

Condition (2):
2(1− cos(α))

ατ
2

+ 2
3

sin
(
α
2

)
− τ3

3
tan
(
α
2

) < 1− β
β

.

Let us first show that such α indeed exists. For the first condition, note that sin
(
α
2

)
is a

monotone function with value 0 at α = 0. So, for any β and τ , there is α1 such that for all
α ≤ α1, sin

(
α
2

)
< (1− β)/β. For the second condition note that

lim
α→0

2(1− cos(α))
ατ
2

+ 2
3

sin
(
α
2

)
− τ3

3
tan
(
α
2

) = 0.

Moreover,

lim
α→0

∂

∂α

(
2(1− cos(α))

ατ
2

+ 2
3

sin
(
α
2

)
− τ3

3
tan
(
α
2

)
)

=
6

−2τ 3 + 6τ + 4
> 0.

155

Therefore, the above function is increasing and positive around 0. So, there is α2, for which all
α ≤ α2 satisfies condition (2). Therefore, α ≤ min{α1, α2} satisfies both conditions.

Next we show that for such a choice of α,

E
(x,y)∼D̃τ,β

[`τ (w,x, y)] < E
(x,y)∼D̃τ,β

[`τ (w
∗,x, y)].

By Lemma 8.5.2, it suffices to show that

dA− cA

dC− cC
<

1− β
β

.

For τ ≥ 1, using condition (1), we have

dA− cA

dC− cC
=

1− cos(α)

2 sin
(
α
2

)

= sin
(α

2

)

<
1− β
β

,

as desired. For τ < 1, using condition (2), we have

dA− cA

dC− cC
≤ 2(1− cos(α))

ατ
2

+ 2
3

sin
(
α
2

)
− τ3

3
tan
(
α
2

)

<
1− β
β

.

This proves the theorem.

8.6 Discussion and Subsequent Works
Our work presented in this chapter is the first to provide a computationally efficient algorithm
that is robust to the presence of bounded noise. Several aspects of bounded noise make it
such an interesting noise model to study. First, it is a natural model that captures noise that
may appear in crowd-sourced data sets. Second, it is a natural middleground between the
fully adversarial noise model, where obtaining arbitrarily small excess error is hard even in
restricted settings, and the very stylized random classification noise, where multiple efficient
algorithms are known to be effective. Our results extend the learning guarantees of obtaining
highly accurate classifiers—that was previously only known in the random classification noise—
to bounded noise (under log-concave distributions). Third, bounded noise is a well-studied
distributional assumption that has been identified in statistical learning to yield fast statistical
rates of convergence. While both computational and statistical efficiency are crucial in machine
learning applications, computational and statistical complexity have been studied under disparate
sets of assumptions and models. Our results can be viewed as a step towards bringing these two
lines of research closer together.

156

8.6.1 Subsequent Works
Following the initial publication of the results that appear in this chapter, subsequent efforts have
been made to extend and strengthen these results. Alongside some of the results presented in
this chapter, we [25] also consider the problem of learning halfspaces in presence of bounded
noise in the context of attribute-efficient learning. In this setting, the assumption is that the true
halfspace w∗ is sparse, i.e., ‖w∗‖0 ≤ t, and the goal is to learn a classifier within poly(t, ln(d))
number of samples. In our work [25], excluded from this dissertation, we show that a variant
of Algorithm 8.1 learns a halfspace with excess error ε using a number of labeled or unlabeled
samples that is poly

(
t, 1

ε
, ln(d)

)
.

Yan and Zhang [270] studies a variant of the margin-based approach where a variant of
Perceptron is used within the band, rather than a combination of polynomial regression and hinge
loss minimization. Their algorithm requires O

(
d
β2

)
samples when the marginal distribution

is uniform over the unit ball, which has a better dependence on noise parameter β than our
O
(
d1/β4

)
sample complexity. Subsequently, Zhang [273] showed that when w∗ is sparse, the

number of required labeled samples can be additionally improved to poly
(
t, ln

(
1
ε

)
, ln(d)

)
for

general log-concave distributions.

157

158

Chapter 9

Efficient PAC Learning from the Crowd

9.1 Introduction

Over the last decade, research in machine learning and AI has seen tremendous growth, partly
due to the ease with which we can collect and annotate massive amounts of data across various
domains. This rate of data annotation has been made possible due to crowdsourcing tools, such
as Amazon Mechanical Turk™, that facilitate individuals’ participation in a labeling task. In
the context of classification, a crowdsourced model uses a large pool of workers to gather labels
for a given training data set that will be used for the purpose of learning a good classifier. Such
learning environments that involve the crowd give rise to a multitude of design choices that do
not appear in traditional learning environments. These include: How does the goal of learning
from the crowd differs from the goal of annotating data by the crowd? What challenges does the
high amount of noise typically found in curated data sets [165, 180, 268] pose to the learning
algorithms? How do learning and labeling processes interplay? How many labels are we willing
to take per example? And, how much load can a labeler handle?

In recent years, there have been many exciting works addressing various theoretical aspects
of these and other questions [251], such as reducing noise in crowdsourced data [98], task
assignment [30, 259] in online or offline settings [175], and the role of incentives [161]. In this
chapter we focus on one such aspect, namely, how to efficiently learn and generalize from the
crowd with minimal cost? The standard approach is to view the process of acquiring labeled data
through crowdsourcing and the process of learning a classifier in isolation. In other words, a
typical learning process involves collecting data labeled by many labelers via a crowdsourcing
platform followed by running a passive learning algorithm to extract a good hypothesis from
the labeled data. As a result, approaches to crowdsourcing focus on getting high quality labels
per example and not so much on the task further down in the pipeline. Naive techniques such as
taking majority votes to obtain almost perfect labels have a cost per labeled example that scales
with the data size, namely log(m

δ
) queries per label where m is the training data size and δ is

the desired failure probability. This is undesirable in many scenarios when data size is large.
Furthermore, if only a small fraction of the labelers in the crowd are perfect, such approaches
will inevitably fail. An alternative is to feed the noisy labeled data to existing passive learning
algorithms. However, we currently lack computationally efficient PAC learning algorithms that

159

are provably robust to high amounts of noise that exists in crowdsourced data. Hence separating
the learning process from the data annotation process results in high labeling costs or suboptimal
learning algorithms.

In light of the above, we initiate the study of designing efficient PAC learning algorithms in a
crowdsourced setting where learning and acquiring labels are done in tandem. We consider a
natural model of crowdsourcing and ask the fundamental question of whether efficient learning
with little overhead in labeling cost is possible in this scenario. We focus on the classical PAC
setting of Valiant [263] where there exists a true target classifier f ∗ ∈ F and the goal is to learn
F from a finite training set generated from the underlying distribution. We assume that one
has access to a large pool of labelers that can provide (noisy) labels for the training set. We
seek algorithms that run in polynomial time and produce a hypothesis with small error. We are
especially interested in settings where there are computationally efficient algorithms for learning
F in the consistency model, i.e. the realizable PAC setting. Additionally, we also want our
algorithms to make as few label queries as possible, ideally requesting a total number of labels
that is within a constant factor of the amount of labeled data needed in the realizable PAC setting.
We call this O(1) overhead or cost per labeled example. Furthermore, in a realistic scenario
each labeler can only provide labels for a constant number of examples, hence we cannot ask too
many queries to a single labeler. We call the number of queries asked to a particular labeler the
load of that labeler.

Perhaps surprisingly, we show that when a noticeable fraction of the labelers in our pool are
perfect all of the above objectives can be achieved simultaneously. That is, if F can be efficiently
PAC learned in the realizable PAC model, then it can be efficiently PAC learned in the noisy
crowdsourcing model with a constant cost per labeled example. In other words, the ratio of the
number of label requests in the noisy crowdsourcing model to the number of labeled examples
needed in the traditional PAC model with a perfect labeler is a constant and does not increase
with the size of the data set. Additionally, each labeler is asked to label only a constant number
of examples, i.e., O(1) load per labeler. Our results also answer an open question of Dekel
and Shamir [98] regarding the possibility of efficient noise robust PAC learning by performing
labeling and learning simultaneously. When no perfect labelers exist, a related task is to find a
set of the labelers which are good but not perfect. We show that we can identify the set of all
good labelers, when at least the majority of labelers are good.

9.1.1 Overview of Results
We study various versions of the model described above. In the most basic setting we assume
that a large percentage, say 70% of the labelers are perfect, i.e., they always label according to
the target function f ∗. The remaining 30% of the labelers could behave arbitrarily and we make
no assumptions on them. Since the perfect labelers are in strong majority, a straightforward
approach is to label each example with the majority vote over a few randomly chosen labelers, to
produce the correct label on every instance with high probability. However, such an approach
leads to a query bound of O(log m

δ
) per labeled example, where m is the size of the training

set and δ is the acceptable probability of failure. In other words, the cost per labeled example
is O(log m

δ
) and scales with the size of the data set. Another easy approach is to pick a few

labelers at random and ask them to label all the examples. Here, the cost per labeled example is a

160

constant but the approach is infeasible in a crowdsourcing environment since it requires a single
or a constant number of labelers to label the entire data set. Yet another approach is to label each
example with the majority vote of O(log 1

ε
) labelers. While the labeled sample set created in

this way only has error of ε, it is still unsuitable for being used with PAC learning algorithms
as they are not robust to even small amounts of noise, if the noise is heterogeneous. So, the
computational challenges still persist. Nevertheless, we introduce an algorithm that performs
efficient learning with O(1) cost per labeled example and O(1) load per labeler.

Theorem 9.4.3 (Informal) Let F be a hypothesis class that can be PAC learned in polynomial
time to ε error with probability 1− δ using mε,δ samples. Then F can be learned in polynomial
time using O(mε,δ) samples in a crowdsourced setting with O(1) cost per labeled example,
provided a 1

2
+ Θ(1) fraction of the labelers are perfect. Furthermore, every labeler is asked to

label only 1 example.

Notice that the above theorem immediately implies that each example is queried only O(1)
times on average as opposed to the data size dependent O(log(m

δ
)) cost incurred by the naive

majority vote style procedures. We next extend our result to the setting where the fraction of
perfect labelers is significant but might be less than 1

2
, say 0.4. Here we again show that F can be

efficiently PAC learned using O(mε,δ) queries provided we have access to an “expert” that can
correctly label a constant number of examples. We call such queries that are made to an expert
golden queries. When the fraction of perfect labelers is close to 1

2
, say 0.4, we show that just

one golden query is enough to learn. More generally, when the fraction of the perfect labelers is
some α, we show that O(1/α) golden queries is sufficient to learn a classifier efficiently. We
describe our results in terms of α, but we are particularly interested in regimes where α = Θ(1).

Theorem 9.4.13 (Informal) Let F be a hypothesis class that can be PAC learned in polynomial
time to ε error with probability 1− δ using mε,δ samples. Then F can be learned in polynomial
time using O(mε,δ) samples in a crowdsourced setting with O(1

α
) cost per labeled example, pro-

vided more than an α fraction of the labelers are perfect for some constant α > 0. Furthermore,
every labeler is asked to label only O(1

α
) examples and the algorithm uses at most 2

α
golden

queries.

The above two theorems highlight the importance of incorporating the structure of the
crowd in algorithm design. Being oblivious to the labelers will result in noise models that are
notoriously hard. For instance, if one were to assume that each example is labeled by a single
random labeler drawn from the crowd, one would recover the Malicious Misclassification Noise
of Rivest and Sloan [232]. Getting computationally efficient learning algorithms even for very
simple hypothesis classes has been a long standing open problem in this space. Our results
highlight that by incorporating the structure of the crowd, one can efficiently learn any hypothesis
class with a small overhead.

Finally, we study the scenario when none of the labelers are perfect. Here we assume that the
majority of the labelers are “good”, that is they provide labels according to functions that are
all ε-close to the target function. In this scenario generating a hypothesis of low error is as hard
as agnostic learning1. Nonetheless, we show that one can detect all of the good labelers using

1This can happen for instance when all the labelers label according to a single function f that is ε-far from f∗.

161

expected O(1
ε

log(n)) queries per labeler, where n is the target number of labelers desired in the
pool.

Theorem 9.5.1 (Informal) Assume we have a target set of n labelers that are partitioned into
two sets, good and bad. Furthermore, assume that there are at least n

2
good labelers who always

provide labels according to functions that are ε-close to a target function f ∗. The set of bad
labelers always provide labels according to functions that are at least 4ε away from the target.
Then there is a polynomial time algorithm that identifies, with probability at least 1− δ, all the
good labelers and none of the bad labelers using expected O(1

ε
log(n

δ
)) queries per labeler.

9.1.2 Related Work

Crowdsourcing has received significant attention in the machine learning community. As
mentioned in the introduction, crowdsourcing platforms require one to address several questions
that are not present in traditional modes of learning.

The work of Dekel and Shamir [98] shows how to use crowdsourcing to reduce the noise in a
training set before feeding it to a learning algorithm. Our results answer an open question in their
work by showing that performing data labeling and learning in tandem can lead to significant
benefits.

A large body of work in crowdsourcing has focused on the problem of task assignment. Here,
workers arrive in an online fashion and a requester has to choose to assign specific tasks to
specific workers. Additionally, workers might have different abilities and might charge differently
for the same task. The goal from the requester’s point of view is to finish multiple tasks within a
given budget while maintaining a certain minimum quality [161, 259]. There is also significant
work on dynamic procurement where the focus is on assigning prices to the given tasks so
as to provide incentive to the crowd to perform as many of them as possible within a given
budget [29, 30, 249]. Unlike our setting, the goal in these works is not to obtain a generalization
guarantee or learn a function, but rather to complete as many tasks as possible within the budget.

The work of Karger et al. [174, 175] also studies the problem of task assignment in offline
and online settings. In the offline setting, the authors provide an algorithm based on belief
propagation that infers the correct answers for each task by pooling together the answers from
each worker. They show that their approach performs better than simply taking majority votes.
Unlike our setting, their goal is to get an approximately correct set of answers for the given data
set and not to generalize from the answers. Furthermore, their model assumes that each labeler
makes an error at random independently with a certain probability. We, on the other hand, make
no assumptions on the nature of the bad labelers.

Another related model is the recent work of Steinhardt et al. [254]. Here the authors look at
the problem of extracting top rated items by a group of labelers among whom a constant fraction
are consistent with the true ratings of the items. The authors use ideas from matrix completion to
design an algorithm that can recover the top rated items with an ε fraction of the noise provided
every labeler rates ≈ 1

ε4
items and one has access to ≈ 1

ε2
ratings from a trusted expert. Their

model is incomparable to ours since their goal is to recover the top rated items and not to learn a
hypothesis that generalizes to a test set.

162

Our results also shed insights into the notorious problem of PAC learning with noise. Despite
decades of research into PAC learning, noise tolerant polynomial time learning algorithms remain
elusive. There has been substantial work on PAC learning under realistic noise models such
as the Massart noise or the Tsybakov noise models [65]. However, computationally efficient
algorithms for such models are known in very restricted cases [24, 25]. In contrast, we show
that by using the structure of the crowd, one can indeed design polynomial time PAC learning
algorithms even when the noise is of the type mentioned above.

More generally, interactive models of learning have been studied in the machine learning
community. The most popular among them is the area of active learning [34, 82, 92, 149, 183].
In this model, the learning algorithm can adaptively query for the labels of a few examples in
the training set and use them to produce an accurate hypothesis. The goal is to use as few label
queries as possible. The number of labeled queries used is called the label complexity of the
algorithm. It is known that certain hypothesis classes can be learned in this model using much
fewer labeled queries than predicted by the VC theory. In particular, in many instances the label
complexity scales only logarithmically in 1

ε
as opposed to linearly in 1

ε
. However, to achieve

computational efficiency, the algorithms in this model rely on the fact that one can get perfect
labels for every example queried. This would be hard to achieve in our model since in the worst
case it would lead to each labeler answering log(d

ε
) many queries. In contrast, we want to keep

the query load of a labeler to a constant and hence the techniques developed for active learning
are insufficient for our purposes. Furthermore, in noisy settings most work on efficient active
learning algorithms assumes the existence of an empirical risk minimizer (ERM) oracle that can
minimize training error even when the instances aren’t labeled according to the target classifier.
However, in most cases such an ERM oracle is hard to implement and the improvements obtained
in the label complexity are less drastic in such noisy scenarios.

Another line of work initiated by Zhang and Chaudhuri [274] models related notions of weak
and strong labelers in the context of active learning. The authors study scenarios where the
label queries to the strong labeler can be reduced by querying the weak and potentially noisy
labelers more often. However, as discussed above, the model does not yield relevant algorithms
for our setting as in the worst case one might end up querying for d

ε
high quality labels leading

to a prohibitively large load per labeler in our setting. The work of Yan et al. [271] studies a
model of active learning where the labeler abstains from providing a label prediction more often
on instances that are closer to the decision boundary. The authors then show how to use the
abstentions in order to approximate the decision boundary. Our setting is inherently different,
since we make no assumptions on the bad labelers.

9.2 Model and Notations
Let X be an instance space and Y = {+1,−1} be the set of possible labels. A hypothesis is
a function f : X → Y that maps an instance x ∈ X to its classification y. We consider the
realizable setting where there is a distribution over X ×Y and a true target function in hypothesis
class F . More formally, we consider a distribution D over X × Y and an unknown hypothesis
f ∗ ∈ F , where errD(f ∗) = 0. We denote the marginal of D over X by D|X . The error of a
hypothesis f with respect to distribution D is defined as errD(f) = Pr(x,f∗(x))∼D[f(x) 6= f ∗(x)].

163

In order to achieve our goal of learning f ∗ well with respect to distribution D, we consider
having access to a large pool of labelers, some of whom label according to f ∗ and some who do
not. Formally, labeler i is defined by its corresponding classification function gi : X → Y . We
say that gi is perfect if errD(gi) = 0. We consider a distribution P that is uniform over all labelers
and let α = Pri∼P [errD(gi) = 0] be the fraction of perfect labelers. We allow an algorithm
to query labelers on instances drawn from D|X . Our goal is to design learning algorithms that
efficiently learn a low error classifier while maintaining a small overhead in the number of labels.
We compare the computational and statistical aspects of our algorithms to their PAC counterparts
in the realizable setting.

In the traditional PAC setting with a realizable distribution, mε,δ denotes the number of
samples needed for learning F . That is, mε,δ is the total number of labeled samples drawn from
the realizable distributionD needed to output a classifier f that has errD(f) ≤ ε, with probability
1− δ. We know from the VC theory [11], that for a hypothesis class F with VC-dimension d and
no additional assumptions on F , mε,δ ∈ O

(
ε−1
(
d ln

(
1
ε

)
+ ln

(
1
δ

)))
. Furthermore, we assume

that efficient algorithms for the realizable setting exist. That is, we consider an oracle OF that
for a set of labeled instances S, returns a function f ∈ F that is consistent with the labels in S,
if one such function exists, and outputs “None” otherwise.

Given an algorithm in the noisy crowd-sourcing setting, we define the average cost per
labeled example of the algorithm, denoted by Λ, to be the ratio of the number of label queries
made by the algorithm to the number of labeled examples needed in the traditional realizable
PAC model, mε,δ. The load of an algorithm, denoted by λ, is the maximum number of label
queries that have to be answered by an individual labeler. In other words, λ is the maximum
number of labels queried from one labeler, when P has an infinitely large support. 2 When the
number of labelers is fixed, such as in Section 9.5, we define the load to simply be the number
of queries answered by a single labeler. Moreover, we allow an algorithm to directly query the
target hypothesis f ∗ on a few, e.g., O(1), instances drawn from D|X . We call these “golden
queries” and denote their total number by Γ.

Given a set of labelers L and an instance x ∈ X , we define MajL(x) to be the label assigned
to x by the majority of labelers in L. Moreover, we denote by Maj-sizeL(x) the fraction of
the labelers in L that agree with the label MajL(x). Given a set of classifiers H , we denote by
MAJ (H) the classifier that for each x returns prediction MajH(x). Given a distribution P over
labelers and a set of labeled examples S, we denote by P|S the distribution P conditioned on
labelers that agree with labeled samples (x, y) ∈ S. We consider S to be small, typically of size
O(1). Note that we can draw a labeler from P|S by first drawing a labeler according to P and
querying it on all the labeled instances in S. Therefore, when P has infinitely large support, the
load of an algorithm is the maximum size of S that P is ever conditioned on.

2The concepts of total number of queries and load may be seen as analogous to work and depth in parallel
algorithms, where work is the total number of operations performed by an algorithm and depth is the maximum
number of operations that one processor has to perform in a system with infinitely many processors.

164

9.3 A Baseline Algorithm and a Road-map for Improvement
In this section, we briefly describe a simple algorithm and the approach we use to improve over
it. Consider a very simple baseline algorithm for the case of α > 1

2
:

BASELINE: Draw a sample of size m = mε,δ from D|X and label each x ∈ S
by MajL(x), where L ∼ P k for k = O

(
(α− 0.5)−2 ln

(
m
δ

))
is a set of randomly

drawn labelers. Return classifier OF(S).

That is, the baseline algorithm queries enough labelers on each sample such that with probability
1− δ all the labels are correct. Then, it learns a classifier using this labeled set. It is clear that the
performance of BASELINE is far from being desirable. First, this approach takes log(m/δ) more
labels than it requires samples, leading to an average cost per labeled example that increases
with the size of the sample set. Moreover, when perfect labelers form a small majority of the
labelers, i.e., α = 1

2
+ o(1), the number of labels needed to correctly label an instance increases

drastically. Perhaps even more troubling is that if the perfect labelers are in minority, i.e., α < 1
2
,

S may be mislabeled and OF(S) may return a classifier that has large error, or no classifier at all.
In this work, we improve over BASELINE in both aspects.

In Section 9.4, we improve the log(m/δ) average cost per labeled example by interleaving the
two processes responsible for learning a classifier and querying labels. In particular, BASELINE

first finds high quality labels, i.e., labels that are correct with high probability, and then learns
a classifier that is consistent with those labeled samples. However, interleaving the process of
learning and acquiring high quality labels can make both processes more efficient. At a high
level, for a given classifier h that has a larger than desirable error, one may be able to find regions
where h performs particularly poorly. That is, the classifications provided by h may differ from
the correct label of the instances. In turn, by focusing our effort for getting high quality labels
on these regions we can output a correctly labeled sample set using less label queries overall.
These additional correctly labeled instances from regions where h performs poorly can help
us improve the error rate of h in return. In Section 9.4, we introduce an algorithm that draws
on ideas from boosting and a probabilistic filtering approach that we develop in this work to
facilitate interactions between learning and querying.

In Section 9.4.1, we remove the dependence of label complexity on (α−0.5)−2 usingO(1/α)
golden queries. At a high level, instances where only a small majority of labelers agree are
difficult to label using queries asked from labelers. But, these instances are great test cases that
help us identify a large fraction of imperfect labelers. That is, we can first ask a golden query on
one such instance to get its correct label and from then on only consider labelers that got this
label correctly. In other words, we first test the labelers on one or very few tests questions, if
they pass the tests, then we ask them real label queries for the remainder of the algorithm, if not,
we never consider them again.

9.4 An Interleaving Algorithm
In this section, we improve over the average cost per labeled example of the BASELINE algorithm,
by interleaving the process of learning and acquiring high quality labels. Our Algorithm 9.2

165

facilitates the interactions between the learning process and the querying process using ideas
from classical PAC learning and adaptive techniques we develop in this work. For ease of
presentation, we first consider the case where α = 1

2
+ Θ(1), say α ≥ 0.7, and introduce an

algorithm and techniques that work in this regime. In Section 9.4.1, we show how our algorithm
can be modified to work with any value of α. For convenience, we assume in the analysis below
that distribution D is over a discrete space. This is in fact without loss of generality, since using
uniform convergence one can instead work with the uniform distribution over an unlabeled
sample multiset of size O(d

ε2
) drawn from D|X .

Here, we provide an overview of the techniques and ideas used in this algorithm.

Boosting: In general, boosting algorithms [122, 123, 244] provide a mechanism for producing
a classifier of error ε using learning algorithms that are only capable of producing classifiers
with considerably larger error rates, typically of error p = 1

2
− γ for small γ. In particular, early

work of Schapire [244] in this space shows how one can combine 3 classifiers of error p to get a
classifier of error 3p2 − 2p3, for any p > 0.

Theorem 9.4.1 (Schapire [244]). For any p > 0 and distributionD, consider three classifiers: 1)
classifier h1 such that errD(h1) ≤ p; 2) classifier h2 such that errD2(h2) ≤ p, whereD2 = 1

2
DC+

1
2
DI for distributionsDC andDI that denote distributionD conditioned on {x | h1(x) = f ∗(x)}

and {x | h1(x) 6= f ∗(x)}, respectively; 3) classifier h3 such that errD3(h3) ≤ p, where D3 is D
conditioned on {x | h1(x) 6= h2(x)}. Then, errD(MAJ (h1, h2, h3)) ≤ 3p2 − 2p3.

As opposed to the main motivation for boosting where the learner only has access to a
learning algorithm of error p = 1

2
− γ for a small value of γ, in our setting we can learn a

classifier to any desired error rate p as long as we have a sample set of mp,δ correctly labeled
instances. The larger the error rate p, the smaller the total number of label queries needed for
producing a correctly labeled set of the appropriate size. We use this idea in Algorithm 9.2.
In particular, we learn classifiers of error p = O(

√
ε) using sample sets of size O(m√ε,δ) that

are labeled by majority vote of O(log(m√ε,δ)) labelers, using fewer label queries overall than
BASELINE. We then use Theorem 9.4.1 to produce a classifier of error 3p2 − 2p3 that is O(ε) for
small enough values of ε.

Probabilistic Filtering: Given classifier h1, the second step of the classical boosting algorithm
requires distribution D to be reweighed based on the correctness of h1. This step can be done
by a filtering process as follows: Take a large set of labeled samples from D and divide them to
two sets depending on whether or not the instances are mislabeled by h1. Distribution D2, in
which instances mislabeled by h1 make up half of the weight, can be simulated by picking each
set with probability 1

2
and taking an instance from that set uniformly at random. To implement

filtering in our setting, however, we would need to first get high quality labels for the set of
instances used for simulating D2. Furthermore, this sample set is typically large, since at least
1
p
mp,δ random samples from D are needed to simulate D2 that has half of its weight on the points

that h1 mislabels (which is a p fraction of the total points). In our case where p = O(
√
ε), getting

high quality labels for such a large sample set requires O
(
mε,δ ln

(mε,δ
δ

))
label queries, which is

as large as the total number of labels queried by BASELINE.

166

Algorithm 9.1: FILTER(S, h)

1: Let SI = ∅ and N = log
(

1
ε

)
.

2: for x ∈ S do
3: for t = 1, . . . , N do
4: Draw a random labeler i ∼ P and let yt = gi(x)
5: if t is odd and Maj(y1:t) = h(x) then break end if
6: end for
7: Let SI = SI ∪ {x}. // Reaches this step when for all t,

Maj(y1:t) 6= h(x)
8: end for
9: return SI

In this work, we introduce a probabilistic filtering approach, called FILTER, that only requires
O (mε,δ) label queries, i.e., O(1) cost per labeled example. Given classifier h1 and an unlabeled
sample set S, FILTER(S, h1) returns a set SI ⊆ S such that for any x ∈ S that is mislabeled
by h1, x ∈ SI with probability at least Θ(1). Moreover, any x that is correctly labeled by h1 is
most likely not included in SI . This procedure is described in detail in Algorithm 9.1. Here, we
provide a brief description of its working: For any x ∈ S, FILTER queries one labeler at a time,
drawn at random, until the majority of the labels it has acquired so far agree with h1(x), at which
point FILTER removes x from consideration. On the other hand, if the majority of the labels
never agree with h1(x), FILTER adds x to the output set SI . Consider x ∈ S that is correctly
labeled by h. Since each additional label agrees with h1(x) = f ∗(x) with probability≥ 0.7, with
high probability the majority of the labels on x will agree with f ∗(x) at some point, in which
case FILTER stops asking for more queries and removes x. As we show in Lemma 9.4.9 this
happens within O(1) queries most of the time. On the other hand, for x that is mislabeled by
h, a labeler agrees with h1(x) with probability ≤ 0.3. Clearly, for one set of random labelers
—one snapshot of the labels queried by FILTER— the majority label agrees with h1(x) with a
very small probability. As we show in Lemma 9.4.6, even when considering the progression of
all labels queried by FILTER throughout the process, with probability Θ(1) the majority label
never agrees with h1(x). Therefore, x is added to SI with probability Θ(1).

Super-sampling: Another key technique we use in this work is super-sampling. In short, this
means that as long as we have the correct label of the sampled points and we are in the realizable
setting, more samples never hurt the algorithm. Although this seems trivial at first, it does play
an important role in our approach. In particular, our probabilistic filtering procedure does not
necessarily simulate D2 but a distribution D′, such that Θ(1)d2(x) ≤ d′(x) for all x, where d2

and d′ are the densities of D2 and D′, respectively. At a high level, sampling Θ(m) instances
from D′ simulates a super-sampling process that samples m instances from D2 and then adds in
some arbitrary instances.

Lemma 9.4.2. Given a hypothesis class F consider any two discrete distributions D and D′
such that for all x, d′(x) ≥ c · d(x) for an absolute constant c > 0, and both distributions are
labeled according to f ∗ ∈ F . There exists a constant c′ > 1 such that for any ε and δ, with

167

probability 1− δ over a labeled sample set S of size c′mε,δ drawn from D′, OF(S) has error of
at most ε with respect to distribution D.

Proof. First, notice that because D and D′ are both labeled according to f ∗ ∈ F , for any f ∈ F
we have,

err
D′

(f) =
∑

x

d′(x)1f(x)6=f∗(x) ≥
∑

x

c · d(x)1f(x)6=f∗(x) = c · err
D

(f).

Therefore, if errD′(f) ≤ cε, then errD(f) ≤ ε. Let m′ = mcε,δ, we have

δ > Pr
S′∼D′m′

[∃f ∈ F , s.t. err
S′

(f) = 0 ∧ err
D′

(f) ≥ cε]

≥ Pr
S′∼D′m′

[∃f ∈ F , s.t. err
S′

(f) = 0 ∧ err
D

(f) ≥ ε].

The claim follows by the fact that mcε,δ = O
(

1
c
mε,δ

)
.

With these techniques at hand, we present Algorithm 9.2. At a high level, the algorithm
proceeds in three phases, one for each classifier used by Theorem 9.4.1. In Phase 1, the algorithm
learns h1 such that errD(h1) ≤ 1

2

√
ε. In Phase 2, the algorithm first filters a set of size O(mε,δ)

into the set SI and takes an additional set SC of Θ(m√ε,δ) samples. Then, it queries O(log(
mε,δ
δ

))
labelers on each instance in SI and SC to get their correct labels with high probability. Next, it
partitions these instances to two different sets based on whether or not h1 made a mistake on
them. It then learns h2 on a sample set W that is drawn by weighting these two sets equally. As
we show in Lemma 9.4.8, errD2(h2) ≤ 1

2

√
ε. In phase 3, the algorithm learns h3 on a sample

set S3 drawn from D|X conditioned on h1 and h2 disagreeing. Finally, the algorithm returns
MAJ (h1, h2, h3).

Theorem 9.4.3 (α = 1
2

+ Θ(1) case). Algorithm 9.2 uses oracleOF , runs in time poly(d, 1
ε
, ln(1

δ
))

and with probability 1− δ returns f ∈ F with errD(f) ≤ ε, using Λ = O
(√

ε log
(m√ε,δ

δ

)
+ 1
)

cost per labeled example, Γ = 0 golden queries, and λ = 1 load. Note that when 1√
ε
≥

log
(m√ε,δ

δ

)
, the above cost per labeled sample is O(1).

We start our analysis of Algorithm 9.2 by stating that CORRECT-LABEL(S, δ) labels S
correctly, with probability 1− δ. This is direct application of the Hoeffding bound and its proof
is omitted.

Lemma 9.4.4. For any unlabeled sample set S, δ > 0, and S = CORRECT-LABEL(S, δ), with
probability 1− δ, for all (x, y) ∈ S, y = f ∗(x).

Note that as a direct consequence of the above lemma, Phase 1 of Algorithm 9.2 achieves
error of O(

√
ε).

Lemma 9.4.5. In Algorithm 9.2, with probability 1− δ
3
, errD(h1) ≤ 1

2

√
ε.

Next, we prove that FILTER removes instances that are correctly labeled by h1 with good
probability and retains instances that are mislabeled by h1 with at least a constant probability.

168

Algorithm 9.2: BOOSTING BY PROBABILISTIC FILTERING FOR α = 1
2

+ Θ(1)

1: Input: Given a distribution D|X , a class of hypotheses F , parameters ε and δ.
2: Phase 1
3: Let S1 = CORRECT-LABEL(S1, δ/6), for a set of sample S1 of size 2m√ε,δ/6 from D|X .
4: Let h1 = OF(S1).
5:
6: Phase 2
7: Let SI = FILTER(S2, h1), for a set of samples S2 of size Θ(mε,δ) drawn from D|X .
8: Let SC be a sample set of size Θ(m√ε,δ) drawn from D|X .
9: Let SAll = CORRECT-LABEL(SI ∪ SC , δ/6).

10: Let WI = {(x, y) ∈ SAll | y 6= h1(x)} and Let WC = SAll \WI .
11: Draw a sample set W of size Θ(m√ε,δ) from a distribution that equally weights WI and WC .

12: Let h2 = OF(W).
13:
14: Phase 3
15: Let S3 = CORRECT-LABEL(S3, δ/6), for a sample set S3 of size 2m√ε,δ/6 drawn from D|X

conditioned on h1(x) 6= h2(x).
16: Let h3 = OF(S3).
17:
18: return Maj(h1, h2, h3).

CORRECT-LABEL(S, δ):
19: for x ∈ S do
20: Let L ∼ P k for a set of k = O(log(|S|

δ
)) labelers drawn from P

21: S ← S ∪ {(x,MajL(x))}.
22: end for
23: return S.

Lemma 9.4.6. Given any sample set S and classifier h, for every x ∈ S
1. If h(x) = f ∗(x), then x ∈ FILTER(S, h) with probability <

√
ε.

2. If h(x) 6= f ∗(x), then x ∈ FILTER(S, h) with probability ≥ 0.5.

Proof. For the first claim, note that x ∈ SI only if Maj(y1:t) 6= h(x) for all t ≤ N . Consider
t = N time step. Since each random query agrees with f ∗(x) = h(x) with probability ≥ 0.7
independently, majority of N = O(log(1/

√
ε)) labels are correct with probability at least 1−√ε.

Therefore, the probability that the majority label disagrees with h(x) = f ∗(x) at every time step
is at most

√
ε.

In the second claim, we are interested in the probability that there exists some t ≤ N , for
which Maj(y1:t) = h(x) 6= f ∗(x). This is the same as the probability of return in biased random
walks, also called the probability of ruin in gambling [119], where we are given a random
walk that takes a step to the right with probability ≥ 0.7 and takes a step to the left with the
remaining probability and we are interested in the probability that this walk ever crosses the

169

origin to the left while taking N or even infinitely many steps. Using the probability of return
for biased random walks (see Theorem C.0.1), the probability that Maj(y1:t) 6= f ∗(x) ever is at
most

(
1−

(
0.7

1−0.7

)N)
/
(

1−
(

0.7
1−0.7

)N+1
)
< 3

7
. Therefore, for each x such that h(x) 6= f ∗(x),

x ∈ SI with probability at least 4/7.

In the remainder of the proof, for ease of exposition we assume that not only errD(h1) ≤ 1
2

√
ε

as per Lemma 9.4.5, but in fact errD(h1) = 1
2

√
ε. This assumption is not needed for the

correctness of the results but it helps simplify the notation and analysis. As a direct consequence
of Lemma 9.4.6 and application of the Chernoff bound, we deduce that with high probability
W I , WC , and SI all have size Θ(m√ε,δ).

Lemma 9.4.7. With probability 1− exp(−Ω(m√ε,δ)), W I , WC , and SI all have size Θ(m√ε,δ).

Proof. Let us first consider the expected size of sets SI , W I , and WC . Using Lemma 9.4.6, we
have

O(m√ε,δ) ≥
1

2

√
ε|S2|+

√
ε|S2| ≥ E[|SI |] ≥

1

2

(
1

2

√
ε

)
|S2| ≥ Ω(m√ε,δ).

Similarly,

O(m√ε,δ) ≥ E[SI] + |SC | ≥ E[W I] ≥
1

2

(
1

2

√
ε

)
|S2| ≥ Ω(m√ε,δ).

Similarly,

O(m√ε,δ) ≥ E[SI] + |SC | ≥ E[WC] ≥
(

1− 1

2

√
ε

)
|SC | ≥ Ω(m√ε,δ).

The claim follows by the Chernoff bound.

The next lemma combines the probabilistic filtering and super-sampling techniques to show
that h2 has the desired error O(

√
ε) on D2.

Lemma 9.4.8. Let DC and DI denote distribution D when it is conditioned on {x | h1(x) =
f ∗(x)} and {x | h1(x) 6= f ∗(x)}, respectively, and let D2 = 1

2
DI + 1

2
DC . With probability

1− 2δ/3, errD2(h2) ≤ 1
2

√
ε.

Proof. Consider distributionD′ that has equal probability on the distributions induced byWI and
WC and let d′(x) denote the density of point x in this distribution. Relying on our super-sampling
technique (see Lemma 9.4.2), it is sufficient to show that for any x, d′(x) = Θ(d2(x)).

For ease of presentation, we assume that Lemma 9.4.5 holds with equality, i.e., errD(h1)
is exactly 1

2

√
ε with probability 1 − δ/3. Let d(x), d2(x), dC(x), and dI(x) be the density of

instance x in distributions D, D2, DC , and DI , respectively. Note that, for any x such that
h1(x) = f ∗(x), we have d(x) = dC(x)(1− 1

2

√
ε). Similarly, for any x such that h1(x) 6= f ∗(x),

we have d(x) = dI(x)1
2

√
ε. Let NC(x), NI(x), MC(x) and MI(x) be the number of occurrences

of x in the sets SC , SI , WC and WI , respectively. For any x, there are two cases:

170

If h1(x) = f ∗(x): Then, there exist absolute constants c1 and c2 according to Lemma 9.4.7, such
that

d′(x) =
1

2
E
[
MC(x)

|WC |

]
≥ E[MC(x)]

c1 ·m√ε,δ
≥ E[NC(x)]

c1 ·m√ε,δ
=
|SC | · d(x)

c1 ·m√ε,δ

=
|SC | · dC(x) · (1− 1

2

√
ε)

c1 ·m√ε,δ
≥ c2dC(x) =

c2d2(x)

2
,

where the second and sixth transitions are by the sizes of WC and |SC | and the third transition is
by the fact that if h(x) = f ∗(x), MC(x) > NC(x).
If h1(x) 6= f ∗(x): Then, there exist absolute constants c′1 and c′2 according to Lemma 9.4.7, such
that

d′(x) =
1

2
E
[
MI(x)

|WI |

]
≥ E[MI(x)]

c′1 ·m√ε,δ
≥ E[NI(x)]

c′1 ·m√ε,δ
≥

4
7
d(x)|S2|
c′1 ·m√ε,δ

=
4
7
dI(x)1

2

√
ε · |S2|

c′1 ·m√ε,δ
≥ c′2dI(x) =

c′2d2(x)

2
,

where the second and sixth transitions are by the sizes of WI and |S2|, the third transition is
by the fact that if h(x) 6= f ∗(x), MI(x) > NI(x), and the fourth transition holds by part 2 of
Lemma 9.4.6.

Using the super-sampling guarantees of Lemma 9.4.2, with probability 1−2δ/3, errD2(h2) ≤√
ε/2.

The next claim shows that the probabilistic filtering step queries a few labels only. At a high
level, this is achieved by showing that any instance x for which h1(x) = f ∗(x) contributes only
O(1) queries, with high probability. On the other hand, instances that h1 mislabeled may each
get log(1

ε
) queries. But, because there are only few such points, the total number of queries these

instances require is a lower order term.

Lemma 9.4.9. Let S be a sample set drawn from distributionD and let h be such that errD(h) ≤√
ε. With probability 1− exp(−Ω(|S|√ε)), FILTER(S, h) makes O(|S|) label queries.

Proof. Using Chernoff bound, with probability 1 − exp (−|S|√ε) the total number of points
in S where h disagrees with f ∗ is O(|S|√ε). The number of queries spent on these points is at
most O (|S|√ε log(1/ε)) ≤ O(|S|).

Next, we show that for each x such that h(x) = f ∗(x), the number of queries taken until
a majority of them agree with h(x) is a constant. Let us first show that this is the case in
expectation. Let Ni be the expected number of labels queried until we have i more correct labels
than incorrect ones. Then N1 ≤ 0.7(1) + 0.3(N2 + 1), since with probability at least α ≥ 0.7,
we receive one more correct label and stop, and with probability ≤ 0.3 we get a wrong label in
which case we have to get two more correct labels in future. Moreover, N2 = 2N1, since we
have to get one more correct label to move from N2 to N1 and then one more. Solving these, we
have that N1 ≤ 2.5. Therefore, the expected total number of queries is at most O(|S|). Next,
we show that this random variable is also well-concentrated. Let Lx be a random variable that

171

indicates the total number of queries on x before we have one more correct label than incorrect
labels. Note that Lx is an unbounded random variable, therefore concentration bounds such as
Hoeffding or Chernoff do not work here. Instead, to show that Lx is well-concentrated, we prove
that the Bernstein inequality (see Appendix C) holds.

We prove that the Bernstein inequality holds for the total number of queries y1, y2, . . . , made
before their majority agrees with f ∗(x). Let Lx be the random variable denoting the number of
queries the algorithm makes on instance x for which h(x) = f ∗(x). Consider the probability
that Lx = 2k + 1 for some k. That is, Maj(y1:t) = f ∗(x) for the first time when t = 2k + 1.
This is at most the probability that Maj(y1:2k−1) 6= f ∗(x). By Chernoff bound, we have that

Pr[Lx = 2k + 1] ≤ Pr[Maj(y1:2k−1) 6= f ∗(x)] ≤ exp

(
−0.7(2k − 1)(

2

7
)2/2

)

≤ exp (−0.02(2k − 1)) .

For each i > 1, we have

E[(Lx − E[Lx])
i] ≤

∞∑

k=0

Pr[Lx = 2k + 1](2k + 1− E[Lx])
i

≤
∞∑

k=0

e−0.02(2k−1)(2k + 1)i

≤ e0.04

∞∑

k=0

e−0.02(2k+1)(2k + 1)i

≤ e0.04

∞∑

k=0

e−0.02kki

≤ 50(i+ 1)! e4i+0.04,

where the last inequality is done by integration. This satisfies the Bernstein condition (See
Appendix C). Therefore,

Pr

[∑

x∈S

Lx − |S|E[Lx] ≥ O(|S|)]
]
≤ exp (−|S|) .

Therefore, the total number of queries over all points in x ∈ S where h(x) = f ∗(x) is at most
O(|S|) with very high probability.

Finally, we have all of the ingredients needed for proving our main theorem.

Proof of Theorem 9.4.3. We first discuss the number of label queries Algorithm 9.2 makes. The
total number of labels queried in Phases 1 and 3 is attributed to CORRECT-LABEL(S1, δ) and
CORRECT-LABEL(S3, δ/6), which is O

(
m√ε,δ log(m√ε,δ/δ)

)
. By Lemma 9.4.7, |SI ∪ SC | ≤

O(m√ε,δ) almost surely. So CORRECT-LABEL(SI ∪ SC , δ/6) takes O
(
m√ε,δ log(m√ε,δ/δ)

)

labels. Moreover, as we showed in Lemma 9.4.9, FILTER(S2, h1) queries O(mε,δ) labels, almost

172

surely. So, the total number of labels queried by Algorithm 9.2 is O
(
m√ε,δ log

(m√ε,δ
δ

)
+mε,δ

)
.

This leads to Λ = O
(√

ε log
(m√ε,δ

δ

)
+ 1
)

cost per labeled example.
It remains to show that MAJ (h1, h2, h3) has error≤ ε onD. Since CORRECT-LABEL(S1, δ/6)

and CORRECT-LABEL(S3, δ/6) return correctly labeled sets , errD(h1) ≤ 1
2

√
ε and errD3(h3) ≤

1
2

√
ε, where D3 is distribution D conditioned on {x | h1(x) 6= h2(x)}. As we showed in

Lemma 9.4.8, errD2(h2) ≤ 1
2

√
ε with probability 1 − 2δ/3. Using the boosting technique of

Schapire [244] described in Theorem 9.4.1, we conclude that MAJ (h1, h2, h3) has error ≤ ε on
D.

9.4.1 The General Case of Any α

In this section, we extend Algorithm 9.2 to handle any value of α, that does not necessarily
satisfy α > 1

2
+ Θ(1). We show that by using O(1

α
) golden queries, it is possible to efficiently

learn any function class with a small overhead.
There are two key challenges that one needs to overcome when α < 1

2
+o(1). First, we can no

longer assume that by taking the majority vote over a few random labelers we get the correct label
of an instance. Therefore, CORRECT-LABEL(S, δ) may return a highly noisy labeled sample
set. This is problematic, since efficiently learning h1, h2, and h3 using oracle OF crucially
depends on the correctness of the input labeled set. Second, FILTER(S, h1) no longer “filters”
the instances correctly based on the classification error of h1. In particular, FILTER may retain a
constant fraction of instances where h1 is in fact correct, and it may throw out instances where
h1 was incorrect with high probability. Therefore, the per-instance guarantees of Lemma 9.4.6
fall apart, immediately.

We overcome both of these challenges by using two key ideas outlined below.
Pruning: As we alluded to in Section 9.3, instances where only a small majority of labelers
are in agreement are great for identifying and pruning away a noticeable fraction of the bad
labelers. We call these instances good test cases. In particular, if we ever encounter a good
test case x, we can ask a golden query y = f ∗(x) and from then on only consider the labelers
who got this test correctly, i.e., P ← P|{(x,y)}. Note that if we make our golden queries when
Maj-sizeP (x) ≤ 1 − α

2
, at least an α

2
fraction of the labelers would be pruned. This can be

repeated at most O(1
α

) times before the number of good labelers form a strong majority, in which
case Algorithm 9.2 succeeds. The natural question is how would we measure Maj-sizeP (x) using
few label queries? Interestingly, CORRECT-LABEL(S, δ) can be modified to detect such good
test cases by measuring the empirical agreement rate on a set L of O(1

α2 log(|S|
δ

)) labelers. This
is shown in procedure PRUNE-AND-LABEL as part Algorithm 9.3. That is, if Maj-sizeL(x) >
1 − α/4, we take MajL(x) to be the label, otherwise we test and prune the labelers, and
then restart the procedure. This ensures that whenever we use a sample set that is labeled by
PRUNE-AND-LABEL, we can be certain of the correctness of the labels.

Lemma 9.4.10. For any unlabeled sample set S, δ > 0, with probability 1 − δ, we have that
either PRUNE-AND-LABEL(S, δ) prunes the set of labelers or S = PRUNE-AND-LABEL(S, δ)
is such that for all (x, y) ∈ S, y = f ∗(x).

173

Proof. By Chernoff bound, with probability ≥ 1− δ, for every x ∈ S we have that

|Maj-sizeP (x)−Maj-sizeL(x)| ≤ α

8
,

where L is the set of labelers PRUNE-AND-LABEL(S, δ) queries on x. Hence, if x is such that
Maj-sizeP (x) ≤ 1 − α

2
, then it will be identified and the set of labelers is pruned. Otherwise,

MajL(x) agrees with the good labelers and x gets labeled correctly according to the target
function.

As an immediate result, the first phase of Algorithm 9.3 succeeds in computing h1, such
that errD(h1) ≤ 1

2

√
ε. Moreover, every time PRUNE-AND-LABEL prunes the set of labelers,

the total fraction of good labeler among all remaining labelers increase. As we show, after
O(1/α) prunings, the set of good labelers is guaranteed to form a large majority, in which case
Algorithm 9.2 for the case of α = 1

2
+ Θ(1) can be used. This is stated in the next lemma.

Lemma 9.4.11. For any δ, with probability 1− δ, the total number of times that Algorithm 9.3
is restarted as a result of pruning is O(1

α
).

Proof. Recall that δ′ = c · αδ for some small enough constant c > 0. For every call to
PRUNE-AND-LABEL(S, δ′), by Hoeffding bound, it is guaranteed that with probability ≥ 1− δ′,
for each x ∈ S,

|Maj-sizeP (x)−Maj-sizeL(x)| ≤ α

8
,

where L is the set of labelers PRUNE-AND-LABEL(S, δ′) queries on x. Hence, when we issue
a golden query for x such that Maj-sizeL(x) ≤ 1 − α

4
and prune away bad labelers, we are

guaranteed to remove at least an α
8

fraction of the labelers. Furthermore, no good labeler is ever
removed. Hence, the fraction of good labelers increases from α to α/(1− α

8
). So, in O(1

α
) calls,

the fraction of the good labelers surpasses 3
4

and we switch to using Algorithm 9.2. Therefore,
with probability 1− δ overall, the total number of golden queries is O(1/α).

Robust Super-sampling: The filtering step faces a completely different challenge: Any point
that is a good test case can be filtered the wrong way. However, instances where still a strong
majority of the labelers agree are not affected by this problem and will be filtered correctly.
Therefore, as a first step we ensure that the total number of good test cases that were not caught
before FILTER starts is small. For this purpose, we start the algorithm by calling CORRECT-
LABEL on a sample of size O(1

ε
log(1

δ
)), and if no test points were found in this set, then with

high probability the total fraction of good test cases in the underlying distribution is at most ε
2
.

Since the fraction of good test cases is very small, one can show that except for an
√
ε fraction,

the noisy distribution constructed by the filtering process will, for the purposes of boosting,
satisfy the conditions needed for the super-sampling technique. Here, we introduce a robust
version of the super-sampling technique to argue that the filtering step will indeed produce h2 of
error O(

√
ε).

Lemma 9.4.12 (Robust Super-Sampling Lemma). Given a hypothesis class F consider any two
discrete distributions D and D′ such that except for an ε fraction of the mass under D, we have

174

that for all x, d′(x) ≥ c · d(x) for an absolute constant c > 0 and both distributions are labeled
according to f ∗ ∈ F . There exists a constant c′ > 1 such that for any ε and δ, with probability
1− δ over a labeled sample set S of size c′mε,δ drawn from D′, OF(S) has error of at most 2ε
with respect to D.

Proof. Let B be the set of points that do not satisfy the condition that d′(x) ≥ c · d(x). Notice
that because D and D′ are both labeled according to f ∗ ∈ F , for any f ∈ F we have,

err
D′

(f) =
∑

x∈B

d′(x)1f(x) 6=f∗(x) +
∑

x/∈B

d′(x)1f(x) 6=f∗(x) ≥
∑

x/∈B

c ·d(x)1f(x)6=f∗(x) ≥ c ·(err
D

(f)−ε).

Therefore, if errD′(f) ≤ cε, then errD(f) ≤ 2ε. Let m′ = mcε,δ, we have

δ > Pr
S′∼D′m′

[∃f ∈ F , s.t. err
S′

(f) = 0 ∧ err
D′

(f) ≥ cε]

≥ Pr
S′∼D′m′

[∃f ∈ F , s.t. err
S′

(f) = 0 ∧ err
D

(f) ≥ 2ε].

The claim follows by the fact that mcε,δ = O
(

1
c
mε,δ

)
.

By combining these techniques at every execution of our algorithm we ensure that if a good
test case is ever detected we prune a small fraction of the bad labelers and restart the algorithm,
and if it is never detected, our algorithm returns a classifier of error ε.

Theorem 9.4.13 (Any α). Suppose the fraction of the perfect labelers is α and let δ′ = cαδ for
small enough constant c > 0. Algorithm 9.3 uses oracle OF , runs in time poly(d, 1

α
, 1
ε
, ln(1

δ
)),

uses a training set of size O(1
α
mε,δ′) size and with probability 1 − δ returns f ∈ F with

errD(f) ≤ ε using O(1
α

) golden queries, load of 1
α

per labeler, and a total number of queries

O

(
1

α
mε,δ′ +

1

αε
log(

1

δ′
) log(

1

εδ′
) +

1

α3
m√ε,δ′ log(

m√ε,δ′

δ′
)

)
.

Note that when 1
α2
√
ε
≥ log

(m√ε,δ
αδ

)
and log(1

αδ
) < d, the cost per labeled query is O(1

α
).

Proof. Recall that δ′ = c · αδ for a small enough constant c > 0. Let B = {x | Maj-sizeP (x) ≤
1 − α/2} be the set of good test cases and and let β = D[B] be the total density on such
points. Note that if β > ε

4
, with high probability S0 includes one such point, in which case

PRUNE-AND-LABEL identifies it and prunes the set of labelers. Therefore, we can assume that
β ≤ ε

4
. By Lemma 9.4.10, it is easy to see that errD(h1) ≤ 1

2

√
ε.

We now analyze the filtering step of Phase 2. As in Section 9.4, our goal is to argue that
errD2(h2) ≤ 1

2

√
ε. Consider distribution D′ that has equal probability on the distributions

induced by WI and WC and let d′(x) denote the density of point x in this distribution. We
will show that for any x /∈ B we have that d′(x) = Θ(d2(x)). Since D[B] ≤ ε

4
, we have that

D2[B] ≤ 1
4

√
ε. Therefore, D′ and D2 satisfy the conditions of the robust super-sampling lemma

(Lemma 9.4.12) where the fraction of bad points is at most
√
ε

4
. Hence, errD2(h2) ≤ 1

2

√
ε.

175

Algorithm 9.3: BOOSTING BY PROBABILISTIC FILTERING FOR ANY α

1: Input: Given a distribution D|X and P , a class of hypothesis F , parameters ε, δ, and α.
2:
3: Phase 0
4: If α > 3

4
, run Algorithm 9.2 and quit.

5: Let δ′ = cαδ for small enough c > 0 and draw S0 of O(1
ε

log(1
δ′

)) examples from D.
6: PRUNE-AND-LABEL(S0, δ

′).
7:
8: Phase 1
9: Let S1 = PRUNE-AND-LABEL(S1, δ

′), for a set of sample S1 of size 2m√ε,δ′ from D.
10: Let h1 = OF(S1).
11:
12: Phase 2
13: Let SI = FILTER(S2, h1), for a set of samples S2 of size Θ(mε,δ′) drawn from D.
14: Let SC be a sample set of size Θ(m√ε,δ′) drawn from D.
15: Let SAll = PRUNE-AND-LABEL(SI ∪ SC , δ′).
16: Let WI = {(x, y) ∈ SAll | y 6= h1(x)} and Let WC = SAll \WI .
17: Draw a sample set W of size Θ(m√ε,δ′) from a distribution that equally weights WI and

WC .
18: Let h2 = OF(W).
19:
20: Phase 3
21: Let S3 = PRUNE-AND-LABEL(S3, δ

′), for a sample set S3 of size 2m√ε,δ′ drawn from D
conditioned on h1(x) 6= h2(x).

22: Let h3 = OF(S3).
23:
24: return Maj(h1, h2, h3).

Algorithm 9.4: PRUNE-AND-LABEL(S, δ)

1: for x ∈ S do
2: Let L ∼ P k for a set of k = O(1

α2 log(|S|
δ

)) labelers drawn from P .
3: if Maj-sizeL(x) ≤ 1− α

4
then

4: Get a golden query y∗ = f ∗(x).
5: Restart Algorithm 9.3 with distribution P ← P|{(x,y∗)} and α← α

1−α
8

.
6: else
7: S ← S ∪ {(x,MajL(x))}
8: end if
9: end for

10: return S

176

We now show that for any x ∈ B, d′(x) = Θ(d2(x)). The proof is identical to the one
in Lemma 9.4.8. For ease of representation, we assume that errD(h1) is exactly 1

2

√
ε. Let

d(x), d2(x), dC(x), and dI(x) be the density of instance x in distributions D, D2, DC , and DI ,
respectively. Note that, for any x such that h1(x) = f ∗(x), we have d(x) = dC(x)(1 − 1

2

√
ε).

Similarly, for any x such that h1(x) 6= f ∗(x), we have d(x) = dI(x)1
2

√
ε. Let NC(x), NI(x),

MC(x) andMI(x) be the number of occurrences of x in the sets SC , SI ,WC andWI , respectively.
For any x, there are two cases:

If h1(x) = f ∗(x): Then, there exist absolute constants c1 and c2 according to Lemma 9.4.7, such
that

d′(x) =
1

2
E
[
MC(x)

|WC |

]
≥ E[MC(x)]

c1 ·m√ε,δ
≥ E[NC(x)]

c1 ·m√ε,δ
=
|SC | · d(x)

c1 ·m√ε,δ

=
|SC | · dC(x) · (1− 1

2

√
ε)

c1 ·m√ε,δ
≥ c2dC(x) =

c2d2(x)

2
,

where the second and sixth transitions are by the sizes of WC and |SC | and the third transition is
by the fact that if h(x) = f ∗(x), MC(x) > NC(x).

If h1(x) 6= f ∗(x): Then, there exist absolute constants c′1 and c′2 according to Lemma 9.4.7, such
that

d′(x) =
1

2
E
[
MI(x)

|WI |

]
≥ E[MI(x)]

c′1 ·m√ε,δ
≥ E[NI(x)]

c′1 ·m√ε,δ
≥ 0.5 d(x)|S2|

c′1 ·m√ε,δ

=
0.5 dI(x)1

2

√
ε · |S2|

c′1 ·m√ε,δ
= c′2dI(x) =

c′2d2(x)

2
,

where the second and sixth transitions are by the sizes of WI and |S2|, the third transition is
by the fact that if h(x) 6= f ∗(x), MI(x) > NI(x), and the fourth transition holds by part 2 of
Lemma 9.4.6.

Finally, we have that errD3(h3) ≤ 1
2

√
ε, where D3 is distribution D conditioned on {x |

h1(x) 6= h2(x)}. Using the boosting technique of Schapire [244] describe in Theorem 9.4.1, we
conclude that MAJ (h1, h2, h3) has error ≤ ε on D.

The label complexity claim follows by the fact that we restart Algorithm 9.3 at most O(1/α)
times, take an additional O(1

ε
log(1

δ′
)) high quality labeled set, and each run of Algorithm 9.3

uses the same label complexity as in Theorem 9.4.3 before getting restarted.

9.5 No Perfect Labelers
In this section, we consider a scenario where our pool of labelers does not include any perfect
labelers. Unfortunately, learning f ∗ in this setting reduces to the notoriously difficult agnostic
learning problem. A related task is to find a set of the labelers which are good but not perfect. In
this section, we show how to identify the set of all good labelers, when at least the majority of
the labelers are good.

177

We consider a setting where the fraction of the perfect labelers, α, is arbitrarily small or 0.
We further assume that at least half of the labelers are good, while others have considerably worst
performance. More formally, we are given a set of labelers g1, . . . , gn and a distribution D with
an unknown target classifier f ∗ ∈ F . We assume that more than half of these labelers are “good”,
that is they have error of ≤ ε on distribution D. On the other hand, the remaining labelers, which
we call “bad”, have error rates ≥ 4ε on distribution D. We are interested in identifying all of the
good labelers with high probability by querying the labelers on an unlabeled sample set drawn
from D|X .

This model presents an interesting community structure: Two good labelers agree on at least
1− 2ε fraction of the data, while a bad and a good labeler agree on at most 1− 3ε of the data.
Note that the rate of agreement between two bad labelers can be arbitrary. This is due to the fact
that there can be multiple bad labelers with the same classification function, in which case they
completely agree with each other, or two bad labelers who disagree on the classification of every
instance. This structure serves as the basis of Algorithm 9.5 and its analysis. Here we provide an
overview of its working and analysis.

Algorithm 9.5: GOOD LABELER DETECTION

1: Input: Given n labelers, parameters ε and δ
2: Let G = ([n], ∅) be a graph on n vertices with no edges.
3: Take set Q of 16 ln(2)n random pairs of nodes from G.
4: for (i, j) ∈ Q do
5: if DISAGREE(i, j) < 2.5ε then add edge (i, j) to G end if
6: end for
7: Let C be the set of connected components of G each with ≥ n/4 nodes.
8: for i ∈ [n] \

(⋃
C∈C C

)
and C ∈ C do

9: Take one node j ∈ C, if DISAGREE(i, j) < 2.5ε add edge (i, j) to G.
10: end for
11: return The largest connected component of G
12: DISAGREE(i, j):
13: Take set S of Θ(1

ε
ln(n

δ
)) samples from D.

14: return 1
|S|
∑

x∈S 1(gi(x)6=gj(x)).

Theorem 9.5.1 (Informal). Suppose that any good labeler i is such that errD(gi) ≤ ε. Further-
more, assume that errD(gj) 6∈ (ε, 4ε) for any j ∈ [n]. And let the number of good labelers be at
least bn

2
c + 1. Then, Algorithm 9.5, returns the set of all good labeler with probability 1 − δ,

using an expected load of λ = O
(

1
ε

ln
(
n
δ

))
per labeler.

We view the labelers as nodes in a graph that has no edges at the start of the algorithm. In
step 4, the algorithm takesO(n) random pairs of labelers and estimates their level of disagreement
by querying them on an unlabeled sample set of size O

(
1
ε

ln
(
n
δ

))
and measuring their empirical

disagreement. By an application of Chernoff bound, we know that with probability 1− δ, for
any i, j ∈ [n], ∣∣∣∣DISAGREE(i, j)− Pr

x∼D|X
[gi(x) 6= gj(x)]

∣∣∣∣ <
ε

2
.

178

Therefore, for any pair of good labelers i and j tested by the algorithm, DISAGREE(i, j) < 2.5ε,
and for any pair of labelers i and j that one is good and the other is bad, DISAGREE(i, j) ≥ 2.5ε.
Therefore, the connected components of such a graph only include labelers from a single
community.

Next, we show that at step 7 of Algorithm 9.5 with probability 1− δ there exists at least one
connected component of size n/4 of good labelers.

To see this we first prove that for any two good labelers i and j, the probability of (i, j)
existing is at least Θ(1/n). Let Vg be the set of nodes corresponding to good labelers. For
i, j ∈ Vg, we have

Pr[(i, j) ∈ G] = 1−
(

1− 1

n2

)4 ln(2)n

≈ 4 ln(2)

n
≥ 2 ln(2)

|Vg|
.

By the properties of random graphs, with very high probability there is a component of size
β|Vg| in a random graph whose edges exists with probability c/|Vg|, for β + e−βc = 1 [166].
Therefore, with probability 1− δ, there is a component of size |Vg|/2 > n/4 over the vertices in
Vg.

Finally, at step 8 the algorithm considers smaller connected components and tests whether
they join any of the bigger components, by measuring the disagreement of two arbitrary labelers
from these components.,At this point, all good labelers form one single connected component of
size > n

2
. So, the algorithm succeeds in identifying all good labelers.

Next, we briefly discuss the expected load per labeler in Algorithm 9.5. Each labeler
participates in O(1) pairs of disagreement tests in expectation, each requiring O(1

ε
ln(n/δ))

queries. So, in expectation each labeler labels O(1
ε

ln(n/δ)) instances.

179

180

Part III

Learning by People

181

Chapter 10

Collaborative PAC Learning

10.1 Introduction

With the wide application of machine learning methods to many aspects of day-to-day life,
many simultaneous learning processes may be analyzing the same or related concepts at any
given moment. In this chapter, we consider collaborative learning, where two or more learners
attempt to learn together, capitalizing on one another’s resources and by asking one another for
information. Indeed, it is self-evident that collaboration, and the sharing of information, can
make learning more efficient. In this chapter, we formalize and quantify this intuition and study
its implications.

As an example, suppose k branches of a department store, which have sales data for different
items in different locations, wish to collaborate on learning which items should be sold at each
location. In this case, we would like to use the sales information across different branches to
learn a good policy for each branch. Another example is given by k hospitals with different
patient demographics, e.g., in terms of racial or socio-economic factors, which want to predict
occurrence of a disease in patients. In addition to requiring a classifier that performs well on the
population served by each hospital, it is natural to assume that all hospitals deploy a common
classifier.

Motivated by these examples, we consider a model of collaborative PAC learning, in which
k players attempt to learn the same underlying concept. We then ask how much information is
needed for all players to simultaneously succeed in learning a desirable classifier. Specifically,
we focus on the classic probably approximately correct (PAC) setting of Valiant [263], where
there is an unknown target function h∗ ∈ H. We consider k players with distributionsD1, . . . ,Dk
that are labeled according to h∗. Our goal is to learn h∗ up to an error of ε on each and every
player distribution while requiring only a small number of samples overall.

A natural but naı̈ve algorithm that forgoes collaboration between players can achieve our
objective by taking, from each player distribution, a number of samples that is sufficient for
learning the individual task, and then training a classifier over all samples. Such an algorithm uses
k times as many samples as needed for learning an individual task — we say that this algorithm
incurs O(k) overhead in sample complexity. By contrast, we are interested in algorithms that
take advantage of the collaborative environment, learn k tasks by sharing information, and incur

183

o(k) overhead in sample complexity.
We study two variants of the aforementioned model: personalized and centralized. In the

personalized setting (as in the department store example), we allow the learning algorithm to
return different functions for different players. That is, our goal is to return classifiers h1, . . . , hk
that have error of at most ε on player distributions D1, . . . ,Dk, respectively. In the centralized
setting (as in the hospital example), the learning algorithm is required to return a single classifier
h that has an error of at most ε on all player distributions D1, . . . ,Dk. Our results provide upper
and lower bounds on the sample complexity overhead required for learning in both settings.

10.1.1 Overview of Results
In Section 10.3, we provide algorithms for personalized and centralized collaborative learning
that obtain exponential improvements over the sample complexity of the naı̈ve approach. In
Theorem 10.3.1, we introduce an algorithm for the personalized setting that has O(ln(k))
overhead in sample complexity. For the centralized setting, in Theorem 10.3.3, we develop an
algorithm that has O(ln2(k)) overhead in sample complexity. At a high level, the latter algorithm
first learns a series of functions on adaptively chosen mixtures of player distributions. These
mixtures are chosen such that for any player a large majority of the functions perform well.
This allows us to combine all functions into one classifier that performs well on every player
distribution. Our algorithm is an improper learning algorithm, as the combination of these
functions may not belong toH.

In Section 10.4, we present lower bounds on the sample complexity of collaborative PAC
learning for the personalized and centralized variants. In particular, in Theorem 10.4.1 we
show that any algorithm that learns in the collaborative setting requires Ω(ln(k)) overhead in
sample complexity. This shows that our upper bound for the personalized setting, as stated
in Theorem 10.3.1, is tight. Furthermore, in Theorem 10.4.5, we show that obtaining uniform
convergence acrossH over all k player distributions requires Ω(k) overhead in sample complexity.
Interestingly, our centralized algorithm (Theorem 10.3.3) bypasses this lower bound by using
arguments that do not depend on uniform convergence. Indeed, this can be seen from the fact
that it is an improper learning algorithm.

In Section 10.5, we discuss the extension of our results to the non-realizable setting. Specifi-
cally, we consider a setting where there is a “good” but not “perfect” target function h∗ ∈ H that
has a small error with respect to every player distribution, and prove that our upper bounds carry
over.

10.1.2 Related Work
Related work in computational and statistical learning has examined some aspects of the general
problem of learning multiple related tasks simultaneously. Below we discuss papers on multi-
task learning [43, 44, 45, 69, 187, 226], domain adaptation [46, 202, 203], and distributed
learning [36, 99, 269], which are most closely related.

Multi-task learning considers the problem of learning multiple tasks in series or in parallel.
In this space, Baxter [44] studied the problem of model selection for learning multiple related
tasks. In their work, each learning task is itself randomly drawn from a distribution over related

184

tasks, and the learner’s goal is to find a hypothesis space that is appropriate for learning all
tasks. Ben-David and Schuller [45] also studied the sample complexity of learning multiple
related tasks. However, in their work similarity between two tasks is represented by existence of
“transfer” functions though which underlying distributions are related.

Mansour et al. [202, 203] consider a multi-source domain adaptation problem, where the
learner is given k distributions and k corresponding predictors that have error at most ε on
individual distributions. The goal of the learner is to combine these predictors to obtain error
of kε on any unknown mixture of player distributions. Our work is incomparable to this line of
work, as our goal is to learn classifiers, rather than combining existing ones, and our benchmark is
to obtain error ε on each individual distribution. Indeed, in our setting one can learn a hypothesis
that has error kε on any mixture of players with no overhead in sample complexity.

Distributed learning [36, 99, 269] also considers the problem of learning from k different
distributions simultaneously. However, the main objective in this space is to learn with limited
communication between the players, rather than with low sample complexity.

10.2 Model
Let X be an instance space and Y = {−1,+1} be the set of labels. A hypothesis is a function
h : X → Y that maps any instance x ∈ X to a label y ∈ Y . We consider a hypothesis classH
with VC dimension d. Given a distribution D over X × Y , the error of a hypothesis h is defined
as errD(h) = Pr(x,y)∼D [h(x) 6= y].

In the collaborative learning setting, we consider k players with distributions D1, . . . ,Dk
over X × Y . We focus on the realizable setting, where all players’ distributions are labeled
according to a common target function h∗ ∈ H, i.e., errDi(h

∗) = 0 for all i ∈ [k] (but see
Section 10.5 for an extension to the non-realizable setting). We represent an instance of the
collaborative PAC learning setting with the 3-tuple (H, h∗, {D}i∈[k]).

Our goal is to learn a good classifier with respect to every player distribution. We call this
(ε, δ)-learning in the collaborative PAC setting, and study two variants: the personalized setting,
and the centralized setting. In the personalized setting, our goal is to learn functions h1, . . . , hk,
such that with probability 1 − δ, errDi(hi) ≤ ε for all i ∈ [k]. In the centralized setting, we
require all the output functions to be identical. Put another way, our goal is to return a single
h, such that with probability 1− δ, errDi(h) ≤ ε for all i ∈ [k]. In both settings, we allow our
algorithm to be improper, that is, the learned functions need not belong toH.

We compare the sample complexity of our algorithms to their PAC counterparts in the
realizable setting. In the traditional realizable PAC setting, mε,δ denotes the number of samples
needed for (ε, δ)-learningH. That is, mε,δ is the total number of samples drawn from a realizable
distribution D, such that, with probability 1 − δ, any classifier h ∈ H that is consistent with
the sample set satisfies errD(h) ≤ ε. We denote by OH(·) the function that, for any set S
of labeled samples, returns a function h ∈ H that is consistent with S if such a function
exists (and outputs “none” otherwise). It is well-known that sampling a set S of size mε,δ =
O
(

1
ε

(
d ln

(
1
ε

)
+ ln

(
1
δ

)))
, and applying OH(S), is sufficient for (ε, δ)-learning a hypothesis

classH of VC dimension d [11]. We refer to the ratio of the sample complexity of an algorithm
in the collaborative PAC setting to that of the (non-collaborative) realizable PAC setting as

185

the overhead. For ease of exposition, we only consider the dependence of the overhead on
parameters k, d, and ε.

10.3 Sample Complexity Upper Bounds
In this section, we prove upper bounds on the sample complexity of (ε, δ)-learning in the
collaborative PAC setting. We begin by providing a simple algorithm with O(ln(k)) overhead (in
terms of sample complexity, see Section 10.2) for the personalized setting. We then design and
analyze an algorithm for the centralized setting with O(ln2(k)) overhead, following a discussion
of additional challenges that arise in this setting.

10.3.1 Personalized Setting

The idea underlying the algorithm for the personalized setting is quite intuitive: If we were
to learn a classifier that is on average good for the players, then we have learned a classifier
that is good for a large fraction of the players. Therefore, a large fraction of the players can be
simultaneously satisfied by a single good global classifier. This process can be repeated until
each player receives a good classifier.

In more detail, let us consider an algorithm that pools together a sample set of total size
mε/4,δ from the uniform mixture D = 1

k

∑
i∈[k]Di over individual player distributions, and finds

h ∈ H that is consistent with this set. Clearly, with probability 1− δ, h has a small error of ε/4
with respect to distribution D. However, we would like to understand how well h performs on
each individual player’s distribution.

Since errD(h) ≤ ε/4 is also the average error of h on player distributions, with probability
1−δ, hmust have error of at most ε/2 on at least half of the players. Indeed, one can identify such
players by taking additional Õ(1

ε
) samples from each player and asking whether the empirical

error of h on these sample sets is at most 3ε/4. Using a variant of the VC theorem, it is not hard
to see that for any player i such that errDi(h) ≤ ε/2, the empirical error of h is at most 3ε/4,
and no player with empirical error at most 3ε/4 has true error that is worst than ε. Once players
with empirical error 3ε/4 are identified, one can output hi = f for any such player, and repeat
the procedure for the remaining players. After log(k) rounds, this process terminates with all
players having received functions with error of at most ε on their respective distributions, with
probability 1− log(k)δ.

We formalize the above discussion via Algorithm 10.1 and Theorem 10.3.1. For completeness,
a more rigorous proof of the theorem is given in Appendix A.

Theorem 10.3.1. For any ε, δ > 0, and hypothesis classH of VC dimension d, Algorithm 10.1
(ε, δ)-learnsH in the personalized collaborative PAC setting using m samples, where

m = O

(
ln(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
k

δ

)))
.

Note that when k = O(d), this shows an overhead of O(ln(k)).

186

Algorithm 10.1: PERSONALIZED LEARNING

1: Initialize N1 ← [k]; δ′ ← δ/2 log(k).
2: for r = 1, . . . , dlog(k)e do
3: D̃r ← 1

|Nr|
∑

i∈Nr Di.
4: Let S be a sample of size mε/4,δ′ drawn from D̃r, and h(r) ← OH(S).
5: Let Gr ← TEST(h(r), Nr, ε, δ

′).
6: Nr+1 ← Nr \Gr.
7: for i ∈ Gr do hi ← h(r) end for
8: end for
9: return h1, . . . , hk

Algorithm 10.2: TEST(h,N, ε, δ)

1: for i ∈ N do
2: Take sample set Ti of size O

(
1
ε

ln
(
|N |
εδ

))
from Di.

3: end for
4: return {i | errTi(h) ≤ 3

4
ε}.

Let us first introduce a lemma that shows that the procedure TEST in Algorithm 10.2 identifies
the players who have a small error with respect to a given classifier. The proof of this lemma
follows from the VC theorem and Chernoff bound (See Section 5.5 in [11]).

Lemma 10.3.2. For any h, N , ε, and δ, with probability 1 − δ, G = TEST(h,N, ε, δ) is such
that

1. for any i ∈ G, errDi(h) ≤ ε, and

2. for all i ∈ N , if errDi(h) ≤ ε
2
, then i ∈ G.

We now use the above lemma to prove Theorem 10.3.1.

Proof of Theorem 10.3.1. Using Lemma 10.3.2, we have that for any iteration r of Algo-
rithm 10.3, Gr ← TEST(h(r), Nr, ε, δ

′) includes all players i ∈ Nr for whom errDi(h
(r)) ≤ ε/2

and no players i ∈ Nr for whom errDi(h
(r)) > ε. Therefore, it is sufficient to prove that for every

r = 1, . . . , dlog(k)e, |Gr| ≥ 1
2
|Nr|, in which case the algorithm ends after dlog(k)e iterations

and every player has received a function with error at most ε on his distribution.
In the remainder of the proof, we show that |Gr| ≥ 1

2
|Nr| for any r with probability

1 − δ/ log(k). Recall that h(r) is learned by taking a sample of size mε/4,δ′ over distribution
D̃r = 1

|Nr|
∑

i∈Nr Di. Therefore, with probability 1 − δ′, errD̃r(h
(r)) ≤ ε/4. By Markov’s

inequality, with probability 1− δ′, h(r) has an error of ε/2 for at least half of the players in Nr.
Using Lemma 10.3.2, with probability at most δ′, one or more such players are not included in
Gr. Therefore, with overall probability 1− 2δ′ = 1− δ/ log(k), |Gr| ≥ |Nr|/2.

As for the sample complexity, TEST is called log(k) times, and requests

O

(
k log(k)

ε
· ln
(
k

εδ

))
= O

(
ln(k)

ε

(
k ln

(
1

ε

)
+ k ln

(
k

δ

)))

187

samples overall. Moreover, we learn a total of log(k) classifiers h(r), requesting

log(k) ·mε/4,δ′ = O

(
log(k)

ε

(
d ln

(
1

ε

)
+ ln

(
log(k)

δ

)))
.

samples overall. The sample complexity follows from these two bounds.

10.3.2 Centralized Setting
We next present a learning algorithm with O(ln2(k)) overhead in the centralized setting. Recall
that our goal is to learn a single function h that has an error of ε on every player distribution, as
opposed to the personalized setting where players can receive different functions.

A natural first attempt at learning in the centralized setting is to combine the classifiers
h1, . . . , hk that we learned in the personalized setting (Algorithm 10.1), say, through a weighted
majority vote. One challenge with this approach is that, in general, it is possible that many
of the functions hj perform poorly on the distribution of a different player i. The reason is
that when Algorithm 10.1 finds a suitable h(r) for players in Gr, it completely removes them
from consideration for future rounds; subsequent functions may perform poorly with respect to
the distributions associated with those players. Therefore, this approach may lead to a global
classifier with large error on some player distributions.

To overcome this problem, we instead design an algorithm that continues to take additional
samples from players for whom we have already found suitable classifiers. The key idea behind
the centralized learning algorithm is to group the players at every round based on how many
functions learned so far have large error rates on those players’ distributions, and to learn from
data sampled from all the groups simultaneously. This ensures that the function learned in
each round performs well on a large fraction of the players in each group, thereby reducing the
likelihood that in later stages of this process a player appears in a group for which a large fraction
of the functions perform poorly.

In more detail, our algorithm learns t = Θ(ln(k)) classifiers h(1), h(2), . . . , h(t), such that
for any player i ∈ [k], at least 0.6t functions among them achieve an error below ε′ = ε/6 on
Di. The algorithm then returns the classifier maj({h(r)}tr=1), where, for a set of hypotheses H ,
maj(H) denotes the classifier that, given x ∈ X , returns the label that the majority of hypotheses
in H assign to x. Note that any instance that is mislabeled by this classifier must be mislabeled
by at least 0.1t functions among the 0.6t good functions, i.e., 1/6 of the good functions. Hence,
maj({h(r)}tr=1) has an error of at most 6ε′ = ε on each distribution Di.

Throughout the algorithm, we keep track of counters α(r)
i for any round r ∈ [t] and player

i ∈ [k], which, roughly speaking, record the number of classifiers among h(1), h(2), . . . , h(r) that
have an error of more than ε′ on distribution Di. To learn h(r+1), we first group distributions
D1, . . . ,Dk based on the values of α(r)

i , draw about mε′,δ samples from the mixture of the
distributions in each group, and return a function h(r+1) that is consistent with all of the samples.
Similarly to Section 10.3.1, one can show that h(r+1) achieves O(ε′) error with respect to a large
fraction of player distributions in each group. Consequently, the counters are increased, i.e.,
α

(r+1)
i > α

(r)
i , only for a small fraction of players. Finally, we show that with high probability,

α
(t)
i ≤ 0.4t for any player i ∈ [k], i.e., on each distribution Di, at least 0.6t functions achieve

error of at most ε′.

188

The algorithm is formally described in Algorithm 10.3. The next theorem states our sample
complexity upper bound for the centralized setting.

Algorithm 10.3: CENTRALIZED LEARNING

1: Set α(0)
i ← 0 for all i ∈ [k], t←

⌈
5
2

log8/7(k)
⌉
, ε′ ← ε/6, N (0)

0 ← [k], N (0)
c ← ∅ for each

c ∈ [t]
2: for r = 1, 2, . . . , t do
3: for c = 0, 1, . . . , t− 1 do
4: if N (r−1)

c 6= ∅ then
5: Draw a sample set S(r)

c of size mε′/16,δ/(2t2) from D̃(r−1)
c = 1

|N(r−1)
c |

∑
i∈N(r−1)

c
Di

6: else S(r)
c ← ∅.

7: end if
8: end for
9: h(r) ← OH

(⋃t−1
c=0 S

(r)
c

)
;

10: Gr ← TEST(h(r), [k], ε′, δ/(2t));
11: for i = 1, . . . , k do α(r)

i ← α
(r−1)
i + I (i /∈ Gr) end for

12: for c = 0, . . . , t do N (r)
c ← {i ∈ [k] : α

(r)
i = c} end for

13: end for

Theorem 10.3.3. For any ε, δ > 0, and hypothesis classH of VC dimension d, Algorithm 10.3
(ε, δ)-learnsH in the centralized collaborative PAC setting using m samples, where

m = O

(
ln2(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
1

δ

)))
.

In particular, Algorithm 10.3 has O(ln2(k)) overhead when k = O(d).
Turning to the theorem’s proof, note that in Algorithm 10.3, N (r−1)

c represents the set of
players for whom c out of the r − 1 functions learned so far have a large error, and D̃(r−1)

c

represents the mixture of distribution of players in N (r−1)
c . Moreover, Gr is the set of players

for whom h(r) has a small error. The following lemma, whose proof appears in Appendix B.1,
shows that with high probability each function h(r) has a small error on D̃(r−1)

c for all c. Here
and in the following, t stands for

⌈
5
2

log8/7(k)
⌉

as in Algorithm 10.3.

Lemma 10.3.4. With probability 1− δ, the following two properties hold for all r ∈ [t]:

1. For any c ∈ {0, . . . , t− 1} such that N (r−1)
c is non-empty, errD̃(r−1)

c
(h(r)) ≤ ε′/16.

2. For any i ∈ Gr, errDi(h
(r)) ≤ ε′, and for any i /∈ Gr, errDi(h

(r)) > ε′/2.

Proof. Recall that for any r, c such that N (r−1)
c is non-empty, h(r) is consistent with the

mε′/16,δ/(2t2) samples drawn from D̃(r−1)
c . By the VC theorem, errD̃(r−1)

c
(h(r)) ≤ ε′/16 holds

with probability at least 1− δ/(2t2). Also, by Lemma 10.3.2, the second statement holds with

189

probability 1− δ/(2t) for each r ∈ [t]. It follows from the union bound that with probability at
least

1− t2 · δ/(2t2)− t · δ/(2t) = 1− δ,
the two statements holds for any r ∈ [t] simultaneously.

The next lemma gives an upper bound on |N (r)
c |— the number of players for whom c out of

the r learned functions have a large error.

Lemma 10.3.5. With probability 1− δ, for any r, c ∈ {0, . . . , t}, we have |N (r)
c | ≤

(
r
c

)
· k

8c
.

Proof. Let nr,c = |N (r)
c | = |{i ∈ [k] : α

(r)
i = c}| be the number of players for whom c functions

in h(1), . . . , h(r) do not have a small error. We note that n0,0 = k and n0,c = 0 for c ∈ {1, . . . , t}.
The next technical claim asserts that to prove this lemma, it is sufficient to show that for any
r ∈ {1, . . . , t} and c ∈ {0, . . . , t}, nr,c ≤ nr−1,c + 1

8
nr−1,c−1. Here we assume that nr−1,−1 = 0.

Lemma 10.3.6. Suppose that n0,0 = k, n0,c = 0 for c ∈ {1, . . . , t}, and nr,c ≤ nr−1,c+
1
8
nr−1,c−1

holds for any r ∈ {1, . . . , t} and c ∈ {0, . . . , t}. Then for any r, c ∈ {0, . . . , t}, nr,c ≤
(
r
c

)
· k

8c
.

Proof. We prove the claim by induction on r. Since n0,0 = k and n0,c = 0 for any c ∈ [t], the
inequality holds for r = 0. Suppose that for some r ∈ [t], the inequality

nr′,c ≤
(
r′

c

)
· k

8c

holds for r′ = r − 1 and any c ∈ {0, 1, . . . , t}. Then we have for any c ∈ {0, 1, . . . , t},

nr,c ≤ nr−1,c + nr−1,c−1/8 ≤
(
r − 1

c

)
· k

8c
+

(
r − 1

c− 1

)
· k

8c−1 × 8
=

(
r

c

)
· k

8c
.

Therefore, we conclude that the inequality holds for any r, c ∈ {0, 1, . . . , t}.

By definition of α(r)
c , N (r)

c , and nr,c, we have

nr,c =
∣∣∣{i ∈ [k] : α

(r)
i = c}

∣∣∣ ≤
∣∣∣{i ∈ [k] : α

(r−1)
i = c}

∣∣∣+
∣∣∣{i ∈ [k] : α

(r−1)
i = c− 1 ∧ i /∈ Gr}

∣∣∣

=nr−1,c +
∣∣∣N (r−1)

c−1 \Gr

∣∣∣ .

It remains to show that |N (r−1)
c−1 \ Gr| ≤ 1

8
nr−1,c−1. Recall that D̃(r−1)

c−1 is the mixture of all
distributions in N (r−1)

c−1 . By Lemma 10.3.4, with probability 1− δ, errD̃(r−1)
c−1

(h(r)) < ε′/16. Put

another way,
∑

i∈N(r−1)
c−1

errDi(h
(r)) < ε′

16
· |N (r−1)

c−1 |. Thus, at most 1
8
|N (r−1)

c−1 | players i ∈ N (r−1)
c−1

can have errDi(h
(r)) > ε′/2. Moreover, by Lemma 10.3.4, for any i /∈ Gr, we have that

errDi(h
(r)) > ε′/2. Therefore,
∣∣∣N (r−1)

c−1 \Gr

∣∣∣ ≤
∣∣∣∣{i ∈ N

(r−1)
c−1 : err

Di
(h(r)) > ε′/2}

∣∣∣∣ ≤
1

8

∣∣∣N (r−1)
c−1

∣∣∣ =
1

8
nr−1,c−1.

This completes the proof.

190

We now prove Theorem 10.3.3 using Lemma 10.3.5.

Proof of Theorem 10.3.3. We first show that, with high probability, for any i ∈ [k], at most 0.4t

functions among h(1), . . . , h(t) have error greater than ε′, i.e., α(t)
i < 0.4t for all i ∈ [k]. Note

that by our choice of t =
⌈

5
2

log8/7(k)
⌉
, we have (8/7)0.4t ≥ k. By Lemma 10.3.5 and an upper

bound on binomial coefficients, with probability 1− δ, for any integer c ∈ [0.4t, t],

|N (t)
c | ≤

(
t

c

)
· k

8c
<

(
et

c

)c
· k

8c
<

k

(8/7)c
≤ 1,

which implies that N (t)
c = ∅. Therefore, with probability 1− δ, α(t)

i < 0.4t for all i ∈ [k].
Next, we prove that f = maj({h(r)}tr=1) has error at most ε on every player distribution.

Consider distribution Di of player i. By definition, t − α
(t)
i functions have error at most ε′

on Di. We refer to these functions as “good” functions. Note that for any instance x that is
mislabeled by h, at least 0.5t− α(t)

i good functions must make a wrong prediction. Therefore,
(t−α(t)

i)ε′ ≥ (0.5t−α(t)
i) · errDi(h). Moreover, with probability 1− δ, α(t)

i < 0.4t for all i ∈ [k].
Hence,

err
Di

(h) ≤ t− α(t)
i

0.5t− α(t)
i

ε′ ≤ 0.6t

0.1t
ε′ ≤ ε,

with probability 1 − δ. This proves that Algorithm 10.3 (ε, δ)-learns H in the centralized
collaborative PAC setting.

Finally, we bound the sample complexity of Algorithm 10.3. Recall that t = Θ(ln(k)) and
ε′ = ε/6. At each iteration of Algorithm 10.3, we draw total of t ·mε′/16,δ/(4t2) samples from t
mixtures. Therefore, over t time steps, we draw a total of

t2 ·mε′/16,δ/(4t2) = O

(
ln2(k)

ε
·
(
d ln

(
1

ε

)
+ ln

(
1

δ

)
+ ln ln(k)

))

samples for learning h(1), . . . , h(t). Moreover, the total number samples requested for subroutine
TEST(h(r), [k], ε′, δ/(4t)) for r = 1 . . . , t is

O

(
tk

ε
· ln
(
k

εδ

))
= O

(
ln(k)

ε
·
(
k ln

(
1

ε

)
+ k ln

(
1

δ

))
+

ln2(k)

ε
k

)
.

We conclude that the total sample complexity is

O

(
ln2(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
1

δ

)))
.

10.4 Sample Complexity Lower Bounds
In this section, we present lower bounds on the sample complexity of collaborative PAC learning.
In Section 10.4.1, we show that any learning algorithm for the collaborative PAC setting incurs
Ω(log(k)) overhead in terms of sample complexity. In Section 10.4.2, we consider the sample
complexity required for obtaining uniform convergence acrossH in the collaborative PAC setting.
We show that Ω(k) overhead is necessary to obtain such results.

191

10.4.1 Tight Lower Bound for the Personalized Setting
We now turn to establishing the Ω(log(k)) lower bound mentioned above. This lower bound
implies the tightness of the O(log(k)) overhead upper bound obtained by Theorem 10.3.1 in
the personalized setting. Moreover, the O(log2(k)) overhead obtained by Theorem 10.3.3 in the
centralized setting is nearly tight, up to a log(k) multiplicative factor. Formally, we prove the
following theorem.

Theorem 10.4.1. For any k ∈ N, ε, δ ∈ (0, 0.1), and (ε, δ)-learning algorithm A in the collabo-
rative PAC setting, there exist an instance with k players, and a hypothesis class of VC-dimension
k, on which A requires at least 3k ln[9k/(10δ)]/(20ε) samples in expectation.

Hard instance distribution

We show that for any k ∈ N and ε, δ ∈ (0, 0.1), there is a distribution Dk,ε of “hard” instances,
each with k players and a hypothesis class with VC-dimension k, such that any (ε, δ)-learning
algorithm A requires Ω(k log(k)/ε) samples in expectation on a random instance drawn from
the distribution, even in the personalized setting. This directly implies Theorem 10.4.1, since
A must take Ω(k log(k)/ε) samples on some instance in the support of Dk,ε. We define Dk,ε as
follows:

• Instance space: Xk = {1, 2, . . . , k,⊥}.

• Hypothesis class: Hk is the collection of all binary functions on Xk that map ⊥ to 0.

• Target function: h∗ is chosen fromHk uniformly at random.

• Players’ distributions: The distribution Di of player i is either a degenerate distribution
that assigns probability 1 to ⊥, or a Bernoulli distribution on {i,⊥} with Di(i) = 2ε and
Di(⊥) = 1− 2ε. Di is chosen from these two distributions independently and uniformly
at random.

Note that the VC-dimension of Hk is k. Moreover, on any instance in the support of Dk,ε,
learning in the personalized setting is equivalent to learning in the centralized setting. This is
due to the fact that given functions h1, h2, . . . , hk for the personalized setting, where hi is the
function assigned to player i, we can combine these functions into a single function h ∈ Hk

for the centralized setting by defining h(⊥) = 0 and h(i) = hi(i) for all i ∈ [k]. Then,
errDi(h) ≤ errDi(hi) for all i ∈ [k].1 Therefore, without loss of generality we focus below on
the centralized setting.

Lower bound for k = 1

As a building block in our proof of Theorem 10.4.1, we establish a lower bound for the special
case of k = 1. For brevity, let Dε denote the instance distribution D1,ε. We say that A is an
(ε, δ)-learning algorithm for the instance distribution Dε if and only if on any instance in the

1In fact, when hi ∈ Hk, errDi(h) = errDi(hi) for all i ∈ [k].

192

support of Dε, with probability at least 1− δ, A outputs a function h with error below ε. The
following lemma states that any (ε, δ)-learning algorithm for Dε takes Ω(log(1/δ)/ε) samples
on a random instance drawn from Dε.2

Lemma 10.4.2. For any ε, δ ∈ (0, 0.1) and (ε, δ)-learning algorithm A for Dε, A takes at least
ln(1/δ)/(6ε) samples in expectation on a random instance drawn from Dε. Here the expectation
is taken over both the randomness in the samples and the randomness in drawing the instance
from Dε.

Proof. Recall that in any instance in the support of Dε, the instance space is X = {1,⊥}, while
the hypothesis class isH = {h0, h1}, where hi(⊥) = 0 and hi(1) = i for i ∈ {0, 1}.

Fix an (ε, δ)-learning algorithm A for distribution Dε. Suppose A runs on an instance drawn
from Dε with a degenerate distribution D. For i ∈ {0, 1}, let Ei denote the event that A outputs
hi. Define random variable T as the number of samples drawn by A before it terminates, and let
pn = Pr[T = n|E0].

Now we consider the situation that A runs on the instance with D′(1) = 2ε, D′(⊥) = 1− 2ε,
and the target function is h1. On this instance, with probability at least pn · (1− 2ε)n, A outputs
h0 after drawing exactly n samples, all of which are ⊥. Since D′(1) = 2ε and the target function
is h1, errD′(h0) = 2ε > ε, i.e., A outputs a function with error greater than ε on D′. Since A is
an (ε, δ)-learning algorithm for Dε,

δ ≥
∞∑

n=0

pn · (1− 2ε)n = E
[
(1− 2ε)T

∣∣ E0

]
.

By Jensen’s inequality and the convexity of the function log1−2ε x for ε ∈ (0, 0.1), we have

E [T |E0] ≥ log1−2ε E
[
(1− 2ε)T |E0

]
≥ log1−2ε δ =

ln(1/δ)

ln[1/(1− 2ε)]
≥ ln(1/δ)

3ε
.

Here the last step holds since ln[1/(1− 2ε)] ≤ 3ε for any ε ∈ (0, 0.1). A similar argument (using
the same distribution D′, but the target function h0 instead of h1) gives E [T |E1] ≥ ln(1/δ)/(3ε).

Therefore, A takes at least ln(1/δ)/(3ε) samples in expectation when the distribution D is
degenerate, which happens with probability 1/2 for an instance drawn from Dε. Therefore, the
expected sample complexity of A on a random instance sampled from Dε is lower bounded by

1

2
· ln(1/δ)

3ε
=

ln(1/δ)

6ε
.

Lower bound for general k

Now we prove Theorem 10.4.1 by Lemma 10.4.2 and a reduction from a random instance
sampled from Dε to instances sampled from Dk,ε. Intuitively, a random instance drawn from

2 Here we only assume that A is correct for instances in the support of Dε, rather than being correct on every
instance.

193

Dk,ε is equivalent to k independent instances from Dε. We show that any learning algorithm
A that simultaneously solves k tasks (i.e., an instance from Dk,ε) with probability 1 − δ can
be transformed into an algorithm A′ that solves a single task (i.e., an instance from Dε) with
probability 1 − O(δ/k). Moreover, the expected sample complexity of A′ is only an O(1/k)
fraction of the complexity of A. This transformation, together with Lemma 10.4.2, gives a lower
bound on the sample complexity of A.

Proof of Theorem 10.4.1. We construct an algorithm A′ for the instance distribution Dε from an
algorithm A that (ε, δ)-learns in the centralized setting. Recall that on an instance drawn from
Dε, A′ has access to a distribution D, i.e., the single player’s distribution.

• A′ generates an instance (Hk, h
∗, {Di}i∈[k]) from the distribution Dk,ε (specifically, A′

knows the target function h∗ and the distributions), and then chooses l ∈ [k] uniformly at
random.

• A′ simulates A on instance (Hk, h
∗, {Di}i∈[k]), with Dl replaced by the distribution D.

Specifically, every time A draws a sample from Dj for some j 6= l, A′ samples Dj and
forwards the sample to A. When A asks for a sample from Dl, A′ samples the distribution
D instead and replies to A accordingly, i.e., A′ returns l, together with the label, if the
sample is 1 (recall that X1 = {1,⊥}), and returns ⊥ otherwise.

• Finally, whenA terminates and returns a function h onXk,A′ checks whether errDj(h) < ε
for every j 6= l. If so,A′ returns the function f ′ defined as h′(1) = h(l) and h′(⊥) = h(⊥).
Otherwise, A′ repeats the simulation process on a new instance drawn from Dk,ε.

Let mi be the expected number of samples drawn from the i-th distribution when A runs on
an instance drawn from Dk,ε.

Claim 10.4.3. A′ is an (ε, 10δ/(9k))-learning algorithm for Dε.

Proof of Claim 10.4.3. Let pi be the probability that, on a random instance drawn from Dk,ε, the
function f returned by A satisfies errDi(h) > ε and errDj(h) ≤ ε for any j 6= i. By assumption,∑k

i=1 pi ≤ δ.
Let random variable T denote the number of times that A′ repeats the simulation process (it

repeats the process every time the condition ∀j 6= l, errDj(h) < ε is violated). Let Ei denote the
event that A′ returns a function with error greater than ε and T = i. Clearly, Ei implies:

1. The simulated algorithm A fails to return a function with an error smaller than ε on every
distribution in each of the first i− 1 simulations, which happens with probability at most
δi−1.

2. In the i-th iteration,A returns a function f such that errDj(h) ≤ ε for j 6= l, yet errDl(h) >
ε. This happens with probability pl.

Recall that l is drawn uniformly at random from [k]. Thus,

Pr[Ei] ≤ δi−1 · 1

k

k∑

i=1

pi ≤ δi/k.

194

Overall, the probability that A′ returns a function with error greater than ε is bounded by

∞∑

i=1

Pr[Ei] ≤
∞∑

i=1

δi/k =
δ

k(1− δ) ≤
10δ

9k
.

which proves that A′ is an (ε, 10δ/(9k))-learning algorithm for Dε.

Claim 10.4.4. A′ takes at most 10/(9k)
∑k

i=1mi samples in expectation.

Proof of Claim 10.4.4. Let random variable T denote the number of times that A′ repeats the
simulation process. Let X1, X2, . . . be the number of samples drawn from distribution D in each
simulation. Note that these random variables are independently and identically distributed, so by
Wald’s equation,

E

[
T∑

i=1

Xi

]
= E [T] · E [X1] .

For any positve integer i, T ≥ i holds only if the simulated algorithm A fails to return a
function with an error smaller than ε on every distribution in each of the first i− 1 simulations.
By assumption, this happens with probability at most δi−1. Therefore,

E [T] =
∞∑

i=1

Pr[T ≥ i] ≤
∞∑

i=0

δi ≤ 1

1− δ ≤
10

9
.

Note that conditioning on the value of l in the first iteration of A′, A′ draws ml samples from D
in expectation. Since l is uniformly distributed in [k],

E [X1] =
1

k

k∑

i=1

mi,

and the expected number of samples taken by A′ in total is at most

E [T] · E [X1] ≤ 10

9k

k∑

i=1

mi.

Applying Lemma 10.4.2 to A′ gives
∑k

i=1mi ≥ 3k ln[9k/(10δ)]
20ε

, which proves Theorem 10.4.1.

10.4.2 Lower Bound for Uniform Convergence
We next examine the sample complexity required for obtaining uniform convergence across
the hypothesis classH in the centralized collaborative PAC setting, and establish an overhead
lower bound of Ω(k). Interestingly, our centralized learning algorithm (Algorithm 10.3) achieves
O(log2(k)) overhead — it circumvents the lower bound by not relying on uniform convergence.

195

To be more formal, we first need to define uniform convergence in the cooperative PAC
learning setting. We say that a hypothesis classH has the uniform convergence property with
sample size m(k)

ε,δ if for any k distributions D1, . . . ,Dk, there exist integers m1, . . . ,mk that sum
up to m(k)

ε,δ , such that when mi samples are drawn from Di for each i ∈ [k], with probability
1− δ, any function inH that is consistent with all the m(k)

ε,δ samples achieves error at most ε on
every distribution Di.

Note that the foregoing definition is a relatively weak adaptation of uniform convergence to
the cooperative setting, as the integers mi are allowed to depend on the distributions Di. But this
observation only strengthens our lower bound, which holds despite the weak requirement.

Theorem 10.4.5. For any k, d ∈ N and (ε, δ) ∈ (0, 0.1), there exists a hypothesis class H of
VC-dimension d, such that m(k)

ε,δ ≥ dk(1− δ)/(4ε).

Proof. Fix k, d ∈ N and ε, δ ∈ (0, 0.1). We define instance (H, h∗, {Di}ki=1) as follows:

• Instance space: X = ([k]× [d]) ∪ {⊥}.

• Hypothesis class: H is the collection of all binary functions on X that map ⊥ to 0 and take
value 1 on at most d points.

• Target function: h∗ maps every element in X to 0.

• Players’ distributions: for each player i ∈ [k], Di((i, j)) = 2ε/d for any j ∈ [d] and
Di(⊥) = 1− 2ε.

Let m1,m2, . . . ,mk be integers such that m1 +m2 + · · ·+mk = m
(k)
ε,δ , and when mi samples

are drawn from Di for each i ∈ [k], with probability 1− δ, any consistent function inH has an
error at most ε on every Di. We consider the following algorithm A that proceeds in rounds:
in each round, A draws mi samples from Di for each i ∈ [k]. A terminates if at the end of
some round, errDi(h) ≤ ε for all i ∈ [k] and any function h ∈ H that is consistent with the
m

(k)
ε,δ samples. In expectation, A terminates after at most 1/(1 − δ) rounds, and takes at most

m
(k)
ε,δ /(1− δ) samples.

Note that if a sample set contains strictly less than d/2 elements in {(i∗, 1), (i∗, 2), . . . , (i∗, d)}
for some i∗, there is a consistent function in H with error strictly above ε on Di∗ , namely, the
function that maps (i, j) to 1 if and only if i = i∗ and (i∗, j) is not in the sample set. Therefore,
when A terminates, at least d/2 elements from X \ {⊥} have been drawn from each distribution.

Note that the probability that each sample is different from ⊥ is 2ε, so, in expectation,
(d/2) · (1/(2ε)) = d/(4ε) samples from each distribution are required to draw d/2 samples from
X \ {⊥}. Therefore, we have m(k)

ε,δ /(1− δ) ≥ dk/(4ε), which proves the theorem.

10.5 Extension to the Non-realizable Setting
In this section, we generalize our sample complexity upper bounds in Section 10.3 to the non-
realizable setting, where we have a weaker assumption on the consistency between players’

196

distributions. Instead of assuming a perfect target function in H with zero error on every
distribution, we consider the case that there exists h∗ ∈ H with errDi(h

∗) ≤ ε/100 for all i ∈ [k].
Our goal is still to output a single function or multiple functions, such that the function assigned
to each player has an error below ε on that player’s distribution. We call this the non-realizable
collaborative PAC setting, and prove analogues of Theorems 10.3.1 and 10.3.3.

Theorem 10.5.1. There is an (ε, δ)-learning algorithm in the non-realizable personalized col-
laborative PAC setting using m samples, where

m = O

(
log(k)

ε

(
(d+ k) log

(
1

ε

)
+ k log

(
k

δ

)))
.

Theorem 10.5.2. There is an (ε, δ)-learning algorithm in the non-realizable centralized collabo-
rative PAC setting using m samples, where

m = O

(
log2(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
1

δ

)))
.

We prove Theorem 10.5.2 by slightly adapting Algorithm 10.3; Theorem 10.5.1 can be
proved similarly.

Proof of Theorem 10.5.2. Recall that in each round r of Algorithm 10.3, we draw

mε′/16,δ/(2t2) = mε/96,δ/(2t2)

samples from each mixture D̃(r−1)
c and query the oracleOH on the union of all the samples. Now

suppose that, instead, we draw from D̃(r−1)
c a dataset S(r)

c of size

C · d ln(1/ε) + ln(2t2/δ)

ε
.

By [11, Theorem 5.7], we can choose a sufficiently large constant C such that with probability
1− δ/(2t2), for any function h ∈ H:

1. errD̃(r−1)
c

(h) ≤ ε/100 implies err
S
(r)
c

(h) ≤ ε/98.

2. errD̃(r−1)
c

(h) > ε/96 implies err
S
(r)
c

(h) > ε/98.

Then we choose h(r) such that the empirical error of h(r) on every dataset S(r)
c is upper bounded

by ε/98. Note that given that the two conditions above hold, such a function h(r) always exists,
since we assume that errD̃(r−1)

c
(h∗) ≤ ε/100. Other parts of Algorithm 10.3 remain unchanged.

The modified algorithm indeed (ε, δ)-learns in the non-realizable collaborative PAC setting.
Since we guarantee that with probability 1 − δ/(2t2), the error of h(r) on D̃(r)

c is bounded by
ε/96, Lemma 10.3.4 and the rest of the proof still holds. Furthermore, the (asymptotic) sample
complexity of the algorithm does not change, as the number of samples drawn from each mixture
only increases by a constant factor.

197

10.6 Discussion and Subsequent Works
We remark that Algorithm 10.3 is inspired by the classic boosting scheme. Indeed, an al-
gorithm that is directly adapted from boosting attains a similar performance guarantee as in
Theorem 10.3.3. The algorithm assigns a uniform weight to each player, and learns a classifier
with O(ε) error on the mixture distribution. Then, depending on whether the function achieves
an O(ε) error on each distribution, the algorithm updates the players’ weights, and learns the
next classifier from the weighted mixture of all distributions. An analysis similar to that of
AdaBoost [123] shows that the majority vote of all the classifiers learned over Θ(ln(k)) itera-
tions of the above procedure achieves a small error on every distribution. However, similar to
Algorithm 10.3, this algorithm achieves an O(ln2(k)) overhead for the centralized setting.

Following the initial publication of our results, Chen et al. [76] considered the same weighting
scheme inspired by boosting and Multiplicative Weight Update. They showed that by coupling
this weighting scheme with changes to TEST (Algorithm 10.2)—which requires fewer samples,
but may occasionally be wrong—they have a centeralized collaborative PAC learning algorithm
that has O(ln(k)) overhead.

198

Part IV

Learning for People

199

Chapter 11

A Near Optimal Kidney Exchange with a
Few Queries

11.1 Introduction

The best treatment for people who suffer from chronic kidney disease is transplanting a healthy
kidney. Transplanted kidneys are usually harvested from deceased donors; but as of June 2018,
there are 114877 people on the U.S. national waiting list [262], making the median waiting time
dangerously long. Fortunately, kidneys are an unusual organ in that donation by living donors is
also a possibility—as long as patients happen to be medically compatible with their potential
donors.

In its simplest form—pairwise exchange—two incompatible donor-patient pairs exchange
kidneys: the donor of the first pair donates to the patient of the second pair, and the donor of
the second pair donates to the patient of the first pair. This setting can be represented as an
undirected compatibility graph, where each vertex represents an incompatible donor-patient pair,
and an edge between two vertices represents the possibility of a pairwise exchange. A matching
in this graph specifies which exchanges take place. Modern kidney exchange programs regularly
employ swaps involving three donor-patient pairs, which are known to provide significant benefit
compared to pairwise swaps alone [14, 235].

The edges of the compatibility graph can be determined based on the medical characteristics—
blood type and tissue type—of donors and patients. However, the compatibility graph only
tells part of the story. Before a transplant takes place, a more accurate medical test known as a
crossmatch test takes place. This test involves mixing samples of the blood of the patient and
the donor (rather than simply looking up information in a database), making the test relatively
costly and time consuming. Moreover, crossmatch test may can fail with significant probability.
Of interest, then are procedures that perform crossmatches for a subset of donor-patient pairs to
find ones that are compatible, and based on these tests, match as many donor-patient pairs as
possible.

Motivated by this, we consider the stochastic matching problem. In this problem, we are
given an undirected graph G = (V,E), where we do not know which edges in E actually exist.
Rather, for each edge e ∈ E, we are given an existence probability pe. Our goal is to find

201

algorithms that first query some subset of edges to find ones that exist, and based on these
queries, produce a matching that is as large as possible. The stochastic matching problem is a
special case of stochastic k-cycle packing, where each cycle exists only when all of its edges
exists, and the goal is to find a (vertex disjoint) packing of existing cycles that collectively cover
the maximum number of vertices possible.

Without any constraints, one can simply query all edges, and then output the maximum
matching or packing over those that exist—hereafter, referred to as the omniscient optimal
solution. But this level of freedom may not always be available, therefore, we are interested in
the tradeoff between the number of queries and the fraction of the omniscient optimal solution
achieved. Specifically, we ask: In order to perform as well as the omniscient optimum in the
stochastic matching problem, do we need to query (almost) all the edges, that is, do we need
a budget of Θ(n) queries per vertex, where n is the number of vertices? Or, can we, for any
arbitrarily small ε > 0, achieve a (1− ε) fraction of the omniscient optimum by using an o(n)
per-vertex budget? We answer these questions, as well as their extensions to the k-cycle packing
problem. We support our theoretical results empirically on both generated and real data from a
large fielded kidney exchange in the United States.

11.1.1 Our theoretical results and techniques

Our main theoretical result gives a positive answer to the latter question for stochastic match-
ing, by showing that, surprisingly, a constant per-vertex budget is sufficient to get ε-close to
the omniscient optimum. Indeed, we design a polynomial-time algorithm with the following
properties: for any constant ε > 0, the algorithm queries at most Oε(1) edges incident to any
particular vertex, requires Oε(1) rounds of parallel queries, and achieves (1− ε) fraction of the
omniscient optimum. This guarantee holds as long as all the non-zero pe’s are bounded away
from zero by some constant that is independent of n (See Section 11.9 for a discussion of cases
where pe may be arbitrarily small for a few edges).1

The foregoing algorithm is adaptive, in the sense that its queries are conditioned on the
answers to previous queries. Even though it requires only a constant number of rounds, it is
natural to ask whether a non-adaptive algorithm—one that issues all its queries in one round—can
also achieve a similar guarantee. We do not give a complete answer to this question, but we do
present a non-adaptive algorithm that achieves a 0.5(1− ε)-approximation (for arbitrarily small
ε > 0) to the omniscient optimum.

We also extend our results to the stochastic k-cycle packing problem, where we are given
a directed graph and the collection of all of its cycles of length at most k. The goal is to find
the collection of mutually vertex-disjoint cycles, called a packing, that covers the maximum
number of vertices possible. Stochastic matching is a special case of stochastic k-cycle packing:
each undirected edge in stochastic matching corresponds to a cycle of length 2, that is, k = 2.
In stochastic k-cycle packing, each cycle exists if and only if all of its edges exist. That is,
when p represents the probability of a directed edge existing, then a cycle of length ` exists with
probability p`, although these events are correlated across cycles that share an edge. Our goal is

1Notation Oε(1) refers to asympthotic behavior that is constant when ε is a fixed constant. When it is clear from
the context, we use O(1) instead of Oε(1).

202

to query the edges and output a collection of existing vertex-disjoint cycles that covers a large
number of vertices. We present an adaptive polynomial-time algorithms that for any constant
ε > 0, returns a collection of vertex-disjoint cycles that covers a number of vertices that is at least
4
k2

(1− ε) of the omniscient optimum using Oε,k(1) queries per element, hence Oε,k(n) queries
overall.

To better appreciate the challenge we face, we note that even in the stochastic matching
setting, we do not have a clear idea of how large the omniscient optimum is. Indeed, there is a
significant body of work on the expected cardinality of matching in complete random graphs
(see, e.g., [61, Chapter 7]), where the omniscient optimum is known to be close to n. But in our
work we are dealing with arbitrary graphs where it can be a much smaller number. In addition,
naı̈ve algorithms fail to achieve our goal, even if they are allowed many queries. For example,
querying a sublinear number of edges incident to each vertex, chosen uniformly at random, gives
a vanishing fraction of the omniscient optimum—as we show in Section 11.4.

The primary technical ingredient in the design of our adaptive algorithm is that if, in any
round r of the algorithm, the solution computed by round r (based on previous queries) is small
compared to the omniscient optimum, then the current structure must admit a large collection
of disjoint constant-sized ‘augmenting’ structures. These augmenting structures are composed
of edges that have not been queried so far. Of course, we do not know whether these structures
we are counting on to help augment our current matching actually exist; but we do know
that these augmenting structures have constant size (and so each structure exists with some
constant probability) and are disjoint (and therefore the outcomes of the queries to the different
augmenting structures are independent). Hence, by querying all these structures in parallel in
round r, in expectation, we can close a constant fraction of the gap between our current solution
and the omniscient optimum. By repeating this argument over a constant number of rounds, we
achieve a (1− ε) fraction of the omniscient optimum. In the case of stochastic matching, these
augmenting structures are simply augmenting paths; in the more general case of k-cycle packing,
we borrow the notion of augmenting structures from Hurkens and Schrijver [162].

11.1.2 Our experimental results: Application to kidney exchange
Our work is directly motivated by applications to kidney exchange. Mathematically, we can
consider a directed graph G = (V,E), where each node represents a donor-patient pair, an
edge (u, v) means that the donor of pair u is possibly compatible with the patient of pair v. In
this graph, pairwise and 3-way exchanges correspond to 2-cycles and 3-cycles, respectively.
The edges of the compatibility graph E are determined by the medical characteristics—blood
type and tissue type—of donors and patients. Querying an e ∈ E refers to performing the
corresponding crossmatch test. While some patients are more likely to pass crossmatch tests than
others the average is as low as 30% in major kidney exchange programs [15, 107, 190]. This
means that, if we only tested a perfect pairwise matching over n donor-patient pairs, we would
expect only 0.09n of the patients to actually receive a kidney. In contrast, the omniscient solution
that runs crossmatch tests on all possible pairwise exchanges (in the compatibility graph) may be
able to provide kidneys to all n patients; but this solution is impractical.

Our adaptive algorithms for stochastic pairwise matching uncovers a sweet spot between these
two extremes. On the one hand, it only mildly increases medical expenses, from one crossmatch

203

u

v1 v2 v3 v4 · · · vn

u

w

v1 v2 v3 · · · vn

Figure 11.1: Compatibility graphs for pairwise and three-way exchanges. Solid blue edges
represent successful crossmatch tests, dashed blue edges represent failed crossmatch tests, and
black edges represent potential compatibilities that have not been tested. Note that when pairwise
exchanges are considered, the number of incoming edge tests of a node is the same as the number
of its outgoing edge tests—a patient and its willing but incompatible donor are always involved
in an equal number of tests—while in three-way exchanges the number of incoming and outgoing
edge tests may be different.

test per patient, to a larger, yet constant, number; and it is highly parallelizable, requiring only a
constant number of rounds, so the time required to complete all crossmatch tests does not scale
with the number of donors and patients. On the other hand, the adaptive algorithm essentially
recovers the entire benefit of testing all potentially feasible pairwise exchanges. The qualitative
message of this theoretical result is clear: a mild increase in number of crossmatch tests provides
nearly the full benefit of exhaustive testing. When 3-way exchanges are considered, our adaptive
algorithm for 3-cycle packing provides a (4/9)-approximation to the omniscient optimum, using
only O(1) crossmatch tests per patient and O(n) overall. While the practical implications of this
result are currently not as crisp as those of its pairwise counterpart, future work may improve the
approximation ratio (using O(n) queries and an exponential-time algorithm), as we explain in
Section 11.9.1.

To bridge the gap between theory and practice, we provide experiments for pairwise and
3-way exchanges on both simulated data and real data from the first 169 match runs of the United
Network for Organ Sharing (UNOS) US nationwide kidney exchange, which now includes 153
transplant centers—approximately 66% of the transplant centers in the US. The exchange began
matching in October 2010 and now matches on a biweekly basis. Using adaptations of the
algorithms presented in this chapter, we show that even a small number of non-adaptive rounds,
followed by a single period during which only those edges selected during those rounds are
queried, results in large gains relative to the omniscient pairwise or 3-way exchanges. We discuss
the policy implications of this promising result in Section 11.9.2.

11.2 Related work

While works on stochastic matching often draw on kidney exchange for motivation—or at least
mention it in passing—these two research areas are almost disjoint. We therefore discuss them
separately in Sections 11.2.1 and 11.2.2.

204

11.2.1 Stochastic matching

Prior work has considered multiple variants of stochastic matching. A popular variant is the
query-commit problem, where the algorithm is forced to add any queried edge to the matching
if the edge is found to exist. Goel and Tripathi [130] establish an upper bound of 0.7916 for
graphs in which no information is available about the edges, while Costello et al. [87] establish a
lower bound of 0.573 and an upper bound of 0.898 for graphs in which each edge e exists with a
given probability pe. Molinaro and Ravi [210] propose an algorithm for 2-cycle matching in the
query-commit model that is nearly optimal given additional theoretical assumptions. Similarly
to our work, these approximation ratios are with respect to the omniscient optimum, but the
informational disadvantage of the algorithm stems purely from the query-commit restriction.

Within the query-commit setting, another thread of work [4, 42, 77] imposes an additional
per-vertex budget constraint where the algorithm is not allowed to query more than a specified
number, bv, of edges incident to vertex v. With this additional constraint, the benchmark that the
algorithm is compared to switches from the omniscient optimum to the constrained optimum,
i.e., the performance of the best decision tree that obeys the per-vertex budget constraints and
the query-commit restriction. In other words, the algorithm’s disadvantage compared to the
benchmark is only that it is constrained to run in polynomial-time. Here, again, the best known
approximation ratios are constant. A generalization of these results to packing problems has
been studied by Gupta and Nagarajan [136].

Similarly to our work, Blum et al. [55] consider a stochastic matching setting without the
query-commit constraint. They set the per-vertex budget to exactly 2, and ask which subset
of edges is queried by the optimal collection of queries subject to this constraint. They prove
structural results about the optimal solution, which allow them to show that finding the optimal
subset of edges to query is NP-hard. In addition, they give a polynomial-time algorithm that finds
an almost optimal solution on a class of random graphs (inspired by kidney exchange settings).
Crucially, the benchmark of Blum et al. [55] is also constrained to two queries per vertex.

There is a significant body of work in stochastic optimization more broadly, for instance, the
papers of Dean et al. [97] (Stochastic Knapsack), Gupta et al. [137] (Stochastic Orienteering),
and Asadpour et al. [13] (Stochastic submodular maximization).

11.2.2 Kidney exchange

Early models of kidney exchange did not explicitly consider the setting where an edge that is
chosen to be matched only exists probabilistically. Recent research by Dickerson et al. [107] and
Anderson et al. [9] focuses on the kidney exchange application and restricts attention to a single
crossmatch test per patient (the current practice), with a similar goal of maximizing the expected
number of matched vertices, in a realistic setting (for example, they allow 3-cycles and chains
initiated by altruistic donors, who enter the exchange without a paired patient). They develop
integer programming techniques, which are empirically evaluated using real and synthetic data.
As opposed to that line of work, which takes into account a single compatibility test per patient,
our work considers the benefit that multiple tests per patient can bring to the quality of the
matching. Manlove and OMalley [200] discuss the integer programming formulation used by
the national exchange in the United Kingdom, which takes edge failures into account in an ad

205

hoc way by, for example, preferring shorter cycles to longer ones. To our knowledge, our work is
the first to describe a general method for testing any number of edges before the final match run
is performed—and to provide experiments on real data showing the expected effect on fielded
exchanges of such edge querying policies.

Another form of stochasticity present in fielded kidney exchanges is the arrival and departure
of donor-patient pairs over time (and the associated arrival and departure of their involved edges
in the compatibility graph). Recent work has addressed this added form of dynamism from
a theoretical [6, 8, 261] and experimental [22, 104, 106] point of view. Theoretical models
have not addressed the case where an edge in the current graph may not exist (as we do in this
chapter); the more recent experimental papers have incorporated this possibility, but have not
considered the problem of querying edges before recommending a final matching. We leave as
future research the analysis of edge querying in stochastic matching in such a dynamic model.

11.2.3 Subsequent Work
The publication of our results [58] motivated a followup work by Assadi et al. [19]. In their
work, Assadi et al. [19] consider the stochastic matching (2-cycle packing) problem, and show
that pre-processing the graph before applying our algorithm achieves the same approximation
guarantee using fewer queries per vertex. In particular, for both our adaptive and non-adaptive
algorithms, the number of queries per vertex, even though independent of the number of vertices,
is exponential in 1/ε. For the particular case of 2-cycle matching, Assadi et al. [19] show
that performing a vertex sparsification step before applying our algorithm obtains a similar
approximation guarantee, i.e., (1− ε) for adaptive and 0.5(1− ε) for the non-adaptive algorithms,
using a number of queries that is polynomial in 1/ε.

11.3 The Model
For any graph G = (V,E), let M(E) denote its maximum (cardinality) matching. In the notation
M(E), we intentionally suppress the dependence on the vertex set V , since we are only interested
in the maximum matchings of different subsets of edges for a fixed vertex set. In addition, for two
matchingsM andM ′, we denote their symmetric difference byM∆M ′ = (M ∪M ′)\(M ∩M ′);
it includes only paths and cycles consisting of alternating edges of M and M ′.

In the stochastic setting, given a set of edges X , define Xp to be the random subset formed
by including each edge of X independently with probability p. We will assume for ease of
exposition that pe = p for all edges e ∈ E. Our results hold when p is a lower bound, i.e., pe ≥ p
for all e ∈ E.

Given a graph G = (V,E), define M(E) to be E[|M(Ep)|], where the expectation is taken
over the random draw Ep. In addition, given the results of queries on some set of edges T , define
M(E|T) to be E[|M(Xp ∪ T ′)|], where T ′ ⊆ T is the subset of edges of T that are known to
exist based on the queries, and X = E \ T .

In the non-adaptive version of our problem, the goal is to design an algorithm that, given a
graph G = (V,E) with |V | = n, queries a subset X of edges in parallel such that |X| = O(n),
and maximizes the ratio M(X)/M(E).

206

In contrast, an adaptive algorithm proceeds in rounds, and in each round queries a sub-
set of edges in parallel. Based on the results of the queries up to the current round, it can
choose the subset of edges to test in the next round. Formally, an R-round adaptive stochastic
matching algorithm selects, in each round r, a subset of edges Xr ⊆ E, where Xr can be
a function of the results of the queries on

⋃
i<rXi. The objective is to maximize the ratio

E[|M(
⋃

1≤i≤RXi)|]/M(E), where the expectation in the numerator is taken over the outcome
of the query results and the sets Xi chosen by the algorithm.

11.4 Understanding the Challenges
To gain some intuition for our goal of arbitrarily good approximations to the omniscient optimum,
and why it is challenging, let us consider a naı̈ve algorithm and understand why it fails. This
non-adaptive algorithm schedules R = O(log(n)/p) queries for each vertex as follows. First,
order all vertices arbitrarily and start with an empty set of queries. In order, for each vertex v, let
NR(v) be the set of neighbors of v for whom at most R queries have been scheduled. Schedule
min{R,NR(v)} queries, each between v and an element of NR(v), where these elements are
selected uniformly at random from NR(v).

The next example shows that this proposed algorithm only achieves 5
6

fraction of the omni-
scient optimal solution, as opposed to our goal of achieving arbitrarily good (1−ε) approximations
to the omniscient optimal. Furthermore, in the following example when each edge exists with
probability p > 5

6
, this algorithm still only achieves a 5

6
fraction of the omniscient optimal

solution, which is worse than a trivial algorithm of just picking one maximum matching that
guarantees a matching of size pn.

Example 11.4.1. Consider the graph G = (V,E) whose vertices are partitioned into sets A, B,
C, and D, such that |A| = |B| = n

2
and |C| = |D| = n. Let E consist of two random bipartite

graphs of degree R = O(log(n)/p) between A and B and similarly between C and D. And let
B and C be connected with a complete bipartite graph. Let p be the existence probability of any
edge.

With high probability, there is a perfect matching that matches A to B and C to D. However,
by the time the algorithm has processed half of the vertices, in expectation half of the vertices
in A, B, C, and D are processed. For every vertex in B, this vertex has more neighbors in C
than in D. So, at this point, with high probability all of the vertices of B already have R queries
scheduled from half of the vertices in C. Therefore, after this point in the algorithm, no edges
between A and B will be queried. So, half of the vertices in A remain unmatched. Compared to
the omniscient optimum—which is a perfect matching with high probability—the approximation
ratio of this algorithm is at most 5

6
.

In the aforementioned example, NR(v) is restricted to vertices that have received at most R
queries in order to bias the choice of queries towards vertices with fewer scheduled queries. At a
high level, this is done to avoid scheduling queries for vertices that have already found existing
and suitable matches. In the next example, we show that a naı̈ve algorithm that uniformly queries
o(n) neighbors of each vertex—and therefore does not bias the queries towards vertices with
fewer existing queries—suffers from even worse performance.

207

B C DA

Figure 11.2: Illustration of the construction in Example 11.4.2, for t = 4 and β = 1/2.

Example 11.4.2. Consider the graph G = (V,E) whose vertices are partitioned into sets A,
B, C, and D, such that |A| = |D| = tβ and |B| = |C| = t, for some 1 > β > 0. Note that in
this graph n = Θ(t). Let E consist of one perfect matching between the vertices of B and C,
and two complete bipartite graphs, one between A and B, and another between C and D. See
Figure 11.2 for an illustration. Let p = 0.5 be the existence probability of any edge.

The omniscient optimal solution can use any edge, and, in particular, it can use the edges
between B and C. Since, these edges form a matching of size t and p = 0.5, they alone provide
a matching of expected size t/2. Hence, M(E) ≥ t/2.

Now, for any α < β, consider the algorithm that queries tα random neighbors for each vertex.
For every vertex in B, the probability that its edge to C is chosen is at most tα

tβ+1
(similarly for

the edges from C to B). Therefore, the expected number of edges chosen between B and C is at
most 2t1+α

tβ+1
, and the expected number of existing edges between B and C, after the coin tosses,

is at most t1+α

tβ+1
. A and D each have tβ vertices, so they contribute at most 2tβ edges to any

matching. Therefore, the expected size of the overall matching is no more than t1+α−β + 2tβ.
Using n = Θ(t), we conclude that the approximation ratio of the naı̈ve algorithm approaches
0, as n → ∞. For α = 0.5 and β = 0.75, the approximation ratio of the naı̈ve algorithm is
O(1/n0.25), at best.

11.5 Adaptive Algorithm: (1− ε)-approximation
In this section, we present our main result: an adaptive algorithm—formally given as Algo-
rithm 11.1—that achieves a (1 − ε) approximation to the omniscient optimum for arbitrarily
small ε > 0, using O(1) queries per vertex and O(1) rounds.

The algorithm is initialized with the empty matching M0. At the end of each round r, our
goal is to maintain a maximum matching Mr on the set of edges that are known to exist (based
on queries made so far). To this end, at round r, we compute the maximum matching Or on the
set of edges that are known to exist and the ones that have not been queried yet (Step 5). We
consider augmenting paths in Or∆Mr−1, and query all the edges in them (Steps 6 and 7). Based
on the results of these queries (Qr), we update the maximum matching (Mr). Finally, we return
the maximum matching MR computed after R = log(2/ε)

p2/ε
rounds. (Let us assume that R is an

integer for ease of exposition.)
It is easy to see that this algorithm queries at most log(2/ε)

p2/ε
edges per vertex: In a given round

208

Algorithm 11.1: Adaptive Algorithm for Stochastic Matching: (1− ε) approximation
1: Input: A graph G = (V,E), parameters ε, and p.
2: Let R = log(2/ε)

p2/ε

3: Initialize M0 to the empty matching and W1 ← ∅.
4: for r = 1, . . . , R do
5: Compute a maximum matching, Or, in (V,E \Wr).
6: Set Qr to the collection of all augmenting paths of Mr−1 in Or∆Mr−1.
7: Query the edges in Qr. Let Q′r and Q′′r be the set of existing and non-existing edges.
8: Wr+1 ← Wr ∪Q′′r .
9: Set Mr to the maximum matching in

(
V,
⋃r
j=1 Q

′
j

)
.

10: end for
11: return MR.

r, the algorithm queries edges that are in augmenting paths of Or∆Mr−1. Since there is at most
one augmenting path using any particular vertex, the algorithm queries at most one edge per
vertex in each round. Furthermore, the algorithm executes log(2/ε)

p2/ε
rounds. Therefore, the number

of queries issued by the algorithm per vertex is as claimed.
The rest of the section is devoted to proving that the matching returned by this algorithm

after R rounds has cardinality that is, in expectation, at least a (1− ε) fraction of M(E).

Theorem 11.5.1. For any graph G = (V,E) and any ε > 0, Algorithm 11.1 returns a matching
whose expected cardinality is at least (1− ε) M(E) in R = log(2/ε)

p(2/ε)
rounds.

As mentioned in Section 11.1, one of the insights behind this result is the existence of many
disjoint augmenting paths of bounded length that can be used to augment a matching that is far
from the omniscient optimum, that is, a lower bound on the number of elements in Qr of a given
length L. This observation is formalized in the following lemma. (We emphasize that the lemma
pertains to the non-stochastic setting.)

Lemma 11.5.2. Consider a graphG = (V,E) with two matchingsM1 andM2. Suppose |M2| >
|M1|. Then in M1∆M2, for any odd length L ≥ 1, there exist at least |M2| − (1 + 2

L+1
)|M1|

augmenting paths of length at most L, which augment the cardinality of M1.

Proof. Let xl be the number of augmenting paths of length l (for any odd l ≥ 1) found in
M1∆M2 that augment the cardinality of M1. Each augmenting path increases the size of M1

by 1, so the total number of augmenting paths
∑

l≥1 xl is at least |M2| − |M1|. Moreover, each
augmenting path of length l has l−1

2
edges in M1. Hence,

∑
l≥1

l−1
2
xl ≤ |M1|. In particular, this

implies that L+1
2

∑
l≥L+2 xl ≤ |M1|. We conclude that

L∑

l=1

xl =
∑

l≥1

xl −
∑

l≥L+2

xl ≥ (|M2| − |M1|)−
2

L+ 1
|M1| = |M2| −

(
1 +

2

L+ 1

)
|M1|.

209

The rest of the theorem’s proof requires some additional notation. At the beginning of any
given round r, the algorithm already knows about the existence (or non-existence) of the edges in⋃r−1
i=1 Qi. We use Zr to denote the expected size of the maximum matching in graph G = (V,E)

given the results of the queries
⋃r−1
i=1 Qi. More formally, Zr = M(E|⋃r−1

i=1 Qi). Note that
Z1 = M(E).

For a given r, we use the notation EQr [X] to denote the expected value of X where the
expectation is taken only over the outcome of query Qr, and fixing the outcomes on the results
of queries

⋃r−1
i=1 Qi. Moreover, for a given r, we use EQr,...,QR [X] to denote the expected value

of X with the expectation taken over the outcomes of queries
⋃R
i=rQi, and fixing an outcome on

the results of queries
⋃r−1
i=1 Qi.

In Lemma 11.5.3, for any round r and for any outcome of the queries
⋃r−1
i=1 Qi, we lower-

bound the expected increase in the size of Mr over the size of Mr−1, with the expectation being
taken only over the outcome of edges in Qr. This lower bound is a function of Zr.

Lemma 11.5.3. For any r ∈ [R], odd L, and Q1, · · · , Qr−1, it holds that EQr [|Mr|] ≥ (1 −
γ)|Mr−1|+ αZr, where γ = p(L+1)/2

(
1 + 2

L+1

)
and α = p(L+1)/2.

Proof. By Lemma 11.5.2, there exist at least |Or| − (1 + 2
L+1

)|Mr−1| augmenting paths in
Or∆Mr−1 that augment Mr−1 and are of length at most L. The Or part of every augmenting
path of length at most L exists independently with probability at least p(L+1)/2. Therefore, the
expected increase in the size of the matching is:

E
Qr

[|Mr|]− |Mr−1| ≥ p
L+1
2

(
|Or| −

(
1 +

2

L+ 1

)
|Mr−1|

)

= α|Or| − γ|Mr−1| ≥ αZr − γ|Mr−1|,

where the last inequality holds by the fact that Zr, which is the expected size of the optimal
matching with expectation taken over non-queried edges, cannot be larger than Or, which is the
maximum matching assuming that every non-queried edge exists.

We are now ready to prove the theorem.

Proof of Theorem 11.5.1. Let L = 4
ε
−1; it is assumed to be an odd integer for ease of exposition.

Otherwise there exists ε/2 ≤ ε′ ≤ ε such that 4
ε′
− 1 is an odd integer. We use a similar

simplification in the proofs of other results. By Lemma 11.5.3, we know that for every r ∈ [R],
EQr [|Mr|| ≥ (1 − γ)|Mr−1| + αZr, where γ = p(L+1)/2(1 + 2

L+1
), and α = p(L+1)/2. We will

use this inequality repeatedly to derive our result. We will also require the equality

E
Qr−1

[Zr] = E
Qr−1

[
M(E|

r−1⋃

i=1

Qi)

]
= M(E|

r−2⋃

i=1

Qi) = Zr−1. (11.1)

First, applying Lemma 11.5.3 at round R, we have that EQR [|MR|] ≥ (1− γ)|MR−1|+αZR.
This inequality is true for any fixed outcomes of Q1, . . . , QR−1. In particular, we can take the
expectation over QR−1, and obtain

E
QR−1,QR

[|MR|] ≥ (1− γ) E
QR−1

[|MR−1|] + α E
QR−1

[ZR].

210

By Equation (11.1), we know that EQR−1
[ZR] = ZR−1. Furthermore, we can apply Lemma 11.5.3

to EQR−1
[|MR−1|] to get the following inequality:

E
QR−1,QR

[|MR|] ≥ (1− γ) E
QR−1

[|MR−1|] + α E
QR−1

[ZR]

≥ (1− γ) ((1− γ) |MR−2|+ α ZR−1) + α ZR−1

= (1− γ)2 |MR−2|+ α (1 + (1− γ)) ZR−1.

We repeat the above steps by sequentially taking expectations over QR−2 through Q1, and at
each step applying Equation (11.1) and Lemma 11.5.3. This gives us

E
Q1,...,QR

[|MR|] ≥ (1− γ)R|M0|+ α (1 + (1− γ) + · · ·+ (1− γ)R−1)Z1

= α
1− (1− γ)R

γ
Z1,

where the second transition follows from the initialization of M0 as an empty matching. Since
L = 4

ε
− 1 and R = log(2/ε)

p2/ε
, we have

α

γ

(
1− (1− γ)R

)
=

(
1− 2

L+ 1

)(
1− (1− γ)R

)
≥ 1− 2

L+ 1
− e−γR ≥ 1− ε

2
− ε

2
= 1− ε,
(11.2)

where the second transition is true because e−x ≥ 1 − x for all x ∈ R. We conclude that
EQ1,...,QR [|MR|] ≥ (1 − ε) Z1. Because Z1 = M(E), it follows that the expected size of the
algorithm’s output is at least (1− ε) M(E).

11.6 Non-adaptive algorithm: 0.5-approximation
The adaptive algorithm, Algorithm 11.1, augments the current matching by computing a maxi-
mum matching on queried edges that are known to exist, and edges that have not been queried.
One way to extend this idea to the non-adaptive setting is the following: we can simply choose
several edge-disjoint matchings, and hope that they help in augmenting each other. In this section,
we ask: How close can this non-adaptive interpretation of our adaptive approach take us to the
omniscient optimum?

In more detail, our non-adaptive algorithm—formally given as Algorithm 11.2—iterates
R = log(2/ε)

p2/ε
times. In each iteration, it picks a maximum matching and removes it. The set of

edges queried by the algorithm is the union of the edges chosen in some iteration. We will show
that, for any arbitrarily small ε > 0, the algorithm finds a 0.5(1− ε)-approximate solution. Since
we allow an arbitrarily small (though constant) probability p for stochastic matching, achieving
a 0.5-approximation independently of the value of p, while querying only a linear number of
edges, is nontrivial. For example, a naı̈ve algorithm that only queries one maximum matching
clearly does not guarantee a 0.5-approximation—it would guarantee only a p-approximation.
In addition, the example given in Section 11.3 shows that choosing edges at random performs
poorly.

211

Algorithm 11.2: Non-adaptive algorithm for Stochastic Matching: 0.5-approximation
1: Input: A graph G(V,E), parameters ε and p.
2: Let R = log(2/ε)

p2/ε

3: Initialize W0 ← ∅.
4: for r = 1, . . . , R do
5: Compute a maximum matching, Or, in (V,E \Wr−1).
6: Wr ← Wr−1 ∪Or.
7: end for
8: Query all the edges in WR, and output the maximum matching among the edges that are

found to exist in WR.

The number of edges incident to any particular vertex that are queried by the algorithm is at
most log(2/ε)

p2/ε
, because the vertex can be matched with at most one neighbor in each round. The

next theorem establishes the approximation guarantee of Algorithm 11.2.

Theorem 11.6.1. Given a graph G = (V,E) and any ε > 0, the expected size M(WR) of the
matching produced by Algorithm 11.2 is at least a 0.5(1− ε) fraction of M(E).

Similar to the adaptive procedure of Section 11.5, the proof of Theorem 11.6.1 relies on
analyzing how much matching Or increases the size of the expected matching, M(Wr−1), at
every round. As opposed to the adaptive procedure, here we do not query the edges in Wr−1.
Hence, we need to reason about the expected size of the matching up to round r, M(Wr−1), and
the expected size of the matching in the remaining graph, M(E \Wr−1). The following Lemma
can be used to bound M(E \Wr−1) in terms of M(Wr−1) and M(E).

Lemma 11.6.2. Let E1 be an arbitrary subset of edges of E, and let E2 = E \ E1. Then
M(E) ≤M(E1) +M(E2).

Proof. Let E ′ be an arbitrary subset of edges of E, and let E ′1 = E1 ∩ E ′ and E ′2 = E2 ∩ E ′.
We claim that |M(E ′)| ≤ |M(E ′1)| + |M(E ′2)|. This is because if T is the set of edges in a
maximum matching in graph (V,E ′), then clearly T ∩ E ′1 and T ∩ E ′2 are valid matchings in E ′1
and E ′2 respectively, and thereby it follows that |M(E ′1)| ≥ |T ∩ E ′1| and |M(E ′2)| ≥ |T ∩ E ′2|,
and hence |M(E ′)| ≤ |M(E ′1)|+ |M(E ′2)|. Expectation is a convex combination of the values
of the outcomes. For every subset E ′ of edges in E, multiplying the above inequality by the
probability that the outcome of the coin tosses on the edges of E is E ′, and then summing the
various inequalities, we get M(E) ≤M(E1) +M(E2).

In order to lower bound M(WR), we first show that for any round r, either our current
collection of edges has an expected matching size M(Wr−1) that compares well with M(E), or
in round r, we have a significant increase in M(Wr) over M(Wr−1).

Lemma 11.6.3. At any iteration r ∈ [R] of Algorithm 11.2 and odd L, if M(Wr−1) ≤M(E)/2,
then

M(Wr) ≥
α

2
M(E) + (1− γ)M(Wr−1),

where γ = p(L+1)/2(1 + 2
L+1

) and α = p(L+1)/2.

212

Proof. Assume that M(Wr−1) ≤M(E)/2. By Lemma 11.6.2, we know that M(E \Wr−1) ≥
M(E) − M(Wr−1). Recall that Or is the maximum matching left in E \ Wr−1, therefore,
|Or| = |M(E \Wr−1)| ≥M(E \Wr−1) ≥M(E)−M(Wr−1) ≥M(E)/2.

In a thought experiment, say at the beginning of round r, we query the set Wr−1 and
let W ′

r−1 be the set of edges that are found to exist. By Lemma 11.5.2, there are at least
|Or| − (1 + 2

L+1
)|M(W ′

r−1)| augmenting paths of length at most L in Or∆M(W ′
r−1) that

augment M(W ′
r−1). Each of these paths succeeds with probability at least p(L+1)/2. We have,

M(Or ∪W ′
r−1|W ′

r−1)− |M(W ′
r−1)| ≥ p(L+1)/2

(
|Or| − (1 +

2

L+ 1
)|M(W ′

r−1)|
)

(11.3)

≥ p(L+1)/2

(
1

2
M(E)− (1 +

2

L+ 1
)|M(W ′

r−1)|
)
,

(11.4)

where the expectation on the left hand side is taken only over the outcome of the edges in Or.
Therefore, we have M(Or ∪W ′

r−1|W ′
r−1) ≥ α

2
M(E) + (1− γ)|M(W ′

r−1)|, where α = p(L+1)/2

and γ = p(L+1)/2 (1+ 2
L+1

). Taking expectation over the coin tosses onWr−1 that create outcome
W ′
r−1, we have our result, i.e.,

M(Wr) ≥ E
Wr−1

[M(Or ∪W ′
r−1|W ′

r−1)] ≥M(Or ∪Wr−1) ≥ α

2
M(E) + (1− γ)M(Wr−1).

We are now ready to prove Theorem 11.6.1.

Proof of Theorem 11.6.1. For ease of exposition, assume L = 4
ε
− 1 is an odd integer. Then,

either M(WR) ≥ M(E)/2 in which case we are done. Or otherwise, by repeatedly applying
Lemma 11.6.3 for R steps, we have

M(WR) ≥ α

2
(1 + (1− γ) + (1− γ)2 + · · ·+ (1− γ)R−1)M(E) ≥ α

2

(1− (1− γ)R)

γ
M(E).

Now, α
γ
(1− (1−γ)R) ≥ 1− 2

L+1
−e−γR ≥ 1− ε for R = log(2/ε)

p2/ε
. Hence, we have our 0.5(1− ε)

approximation.

11.6.1 Upper Bound on the Performance of the Non-Adaptive Algorithm
As we explain in more details in Section 11.9.1, we do not know whether in general non-adaptive
algorithms can achieve a (1− ε)-approximation with Oε(1) queries per vertex. However, if there
is such an algorithm, it is not Algorithm 11.2! Indeed, the next theorem shows that the algorithm
cannot give an approximation ratio better than 11/12 to the omniscient optimum. This fact holds
even when R = Θ(log n).

Theorem 11.6.4. Let p = 0.5. For any ε > 0 there exists n and a graph (V,E) with |V | ≥ n
such that Algorithm 11.2, with R = O(log n), returns a matching with expected size of at most
11
12
M(E) + ε.

213

...

...

...

...

...
...

B1

B2

C1

C2

DA

Figure 11.3: Illustration of the upper bound on the performance of non-adaptive algorithm. Blue
and red edges represent the matching picked at rounds 1 and 2, respectively. The green edges
represent the edges picked at round 3 and above. The dashed edges are never picked by the
algorithm.

Before proving Theorem 11.6.4, let us first show that the expected size of a matching, i.e.,
M(E), is large in a complete bipartite graph.

Lemma 11.6.5. Let G = (U ∪ V, U × V) be a complete bipartite graph between U and V with
|U | = |V | = n. For any constant probability p, M(E) ≥ n− o(n).

Proof. Denote by Ep the random set of edges formed by including each edge in U × V indepen-
dently with probability p. We show that with probability at least 1− 1

n8 , over the draw Ep, the
maximum matching in the graph (U ∪ V,Ep) is at least n− c log(n), where c = 10/ log(1

1−p),
and this will complete our claim.

In order to show this, we prove that with probability at least 1− 1
n8 , over the draw Ep, all

subsets S ⊆ U of size at most n− c log(n), have a neighborhood of size at least |S|. By Hall’s
theorem, our claim will follow.

Consider any set S ⊆ U of size at most n− c log(n). We will call set S ‘bad’ if there exists
some set T ⊆ V of size (|S| − 1) such that S does not have edges to V \ T . Fix any set T ⊆ V
of size |S| − 1. Over draws of Ep, the probability that S has no outgoing edges to V \ T is at
most (1− p)|S||V \T | = (1− p)|S|(n−|S|+1). Hence, by union bound, the probability that S is bad
is at most

(
n
|S|−1

)
(1− p)|S|(n−|S|+1).

Again, by union bound, the probability that some set S ⊆ U of size at most n− c log(n) is
bad is at most

∑
1≤|S|≤n−c log(n)

(
n
|S|

)(
n
|S|−1

)
(1− p)|S|(n−|S|+1) and this in turn is at most

∑

1≤|S|≤n−c log(n)

n|S|n|S|(1− p)|S|(n−|S|+1) ≤
∑

1≤|S|≤n−c log(n)

e|S|·(2 log(n)+(n+1) log(1−p)−|S| log(1−p))

Note that the exponent in the summation achieves its maximum for |S| = 1. For c =
10/ log(1

1−p), we have that the given sum is at most exp(−n
2

log(1
1−p)), and hence with high

probability, no set S ⊆ U of size at most n− c log(n) is bad.

Proof of Theorem 11.6.4. Let (V,E) be a graph, illustrated in Figure 11.3, whose vertices are
partitioned into sets A, B, C, and D, such that |A| = |D| = t

2
, |B| = |C| = t. The edge set E

214

consists of one perfect matching between vertices of B and C, and two complete bipartite graphs,
one between A and B, and another between C and D. Let p = 0.5 be the existence probability
of any edge.

We first examine the value of the omniscient optimal, M(E). Since p = 0.5, in expectation,
half of the edges in the perfect matching between B and C exist, and therefore half of the
vertices of B and C will get matched. As we showed in Lemma 11.6.5, with high probability, the
complete bipartite graph between the remaining half of B and A has a matching of size at least
t/2− o(t). And similarly, with high probability, the complete bipartite graph between remaining
half of C and D has a matching of size at least t/2− o(t). Therefore, M(E) is at least 3

2
t− o(t).

Next, we look at Algorithm 11.2. For ease of exposition, let B1 and B2 denote the top and
bottom half of the vertices in B. Similarly, define C1 and C2. Since Algorithm 11.2 picks
maximum matchings arbitrarily, we show that there exists a way of picking maximum matchings
such that the expected matching size of the union of the edges picked in the matching is at most
11
8
t (= 11

12
3
2
t).

Consider the following choice of maximum matching picked by the algorithm: In the first
round, the algorithm picks the perfect matching between B1 and C1, and a perfect matching
betweenA andB2, and a perfect matching between C2 andD. In the second round, the algorithm
picks the perfect matching between B2 and C2, and a perfect matching each between A and
B1, and between C1 and D. After these two rounds, we can see that there are no more edges
left between B and C. For the subsequent R− 2 rounds, in each round, the algorithms picks a
perfect matching between A and B1, and a perfect matching between C1 and D. It is easy to
verify that in every round, the algorithm has picked a maximum matching from the remnant
graph.

We analyze the expected size of matching output by the algorithm. For each of the vertices in
B2 and C2, the algorithm has picked only two incident edges. For any vertex in B2 and C2, with
probability at least (1− p)2 = 1

4
, none of these two incident edges exist. Hence, the expected

number of vertices that are unmatched in B2 and C2 is at least 1
4
(t

2
+ t

2
) = t

4
. Hence, the total

number of edges included in the matching is at most 1
2

(3t− t/4) = 11
8
t. This completes our

claim.

Despite this somewhat negative result, in Section 11.8, we show experimentally on realistic
kidney exchange compatibility graphs that Algorithm 11.2 performs very well for even very
small values of R, across a wide range of values of p.

11.7 Generalization to stochastic k-cycle packing
So far we have focused on stochastic matching, where the goal is equivalent to finding the largest
2-cycle packing. In this section, we generalize our approach to the case of k-cycle packing for
any k ≥ 2.

Formally, for a directed graph G = (V,E), the corresponding k-cycle packing instance
(V,A) consists of the set of vertices V and the collection A ⊆ V ≤k of vertices that form a
directed cycle of length at most k in G. Given graph G and its corresponding k-cycle packing
instance (V,A), a feasible solution to the k-cycle packing instance is a collection B ⊆ A such

215

that the cycles in B are vertex-disjoint. Let V (A) ⊆ V denote the largest set of vertices that can
be covered by a feasible k-cycle packing B ⊆ A, i.e., vertices in

⋃
c∈B c. Moreover, let K(A)

denote the feasible k-cycle packing B with largest |B|.
In the stochastic variant of k-cycle packing, given a graph G = (V,E), we represent by

Ep ∼ E a random subset of edges where each edge in E is included in Ep with probability p
independently. We represent by (V,A(Ep)) the k-cycle packing instance that corresponds to the
graph (V,Ep). Note that for any Ep, A(Ep) ⊆ A is the set of those cycles in A whose edges
appear in Ep. We denote by V (A) = EEp∼E [|V (A(Ep))|] and K(A) = EEp∼E [|K(A(Ep))|],
respectively, the expected maximum number of vertices covered in a k-cycle packing, and the
expected maximum cardinality of a k-cycle packing.

Note that our goal in kidney exchange is to match the largest number of donor-patient pairs,
therefore, our omniscient optimum benchmark is V (A). However, a k-cycle packing B such
that |B| ≥ αK(A) covers a number of vertices that is at least 2

k
αV (A), because every cycle

in B covers at least 2 vertices and the cycles in A cover at most k vertices each. Therefore,
for the majority of this section, we focus on finding a k-cycle packing whose expected size is
a good approximation of K(A) and as a result the number of vertices covered by it is a good
approximation of V (A). We present a polynomial-time adaptive algorithm, Algorithm 11.4, that
obtains a (1− ε) 2

k
-approximation of K(A) and (1− ε) 4

k2
-approximation of V (A).

Theorem 11.7.1. There exists an adaptive polynomial-time algorithm that, given a graph
G = (V,E), its corresponding k-cycle packing instance (V,A), and ε > 0, uses R = Oε,k(1)
rounds and Oε,k(n) edge queries overall, and returns a cycle-packing BR, such that |BR| ≥
(1− ε) 2

k
K(A). Moreover,

∑
c∈BR |c| ≥ (1− ε) 4

k2
V (A).

Importantly, the statement of Theorem 11.5.1 for adaptive stochastic matching is a special
case of the statement of Theorem 11.7.1 for k = 2. By contrast, we leave the case of non-adaptive
algorithms for k-cycle packing for general k ≥ 2 as an open problem—despite having presented
Theorem 11.6.1 for the special case of k = 2—and describe some of the challenges one may
face in obtaining such a general result for k > 2 in Section 11.9.1.

11.7.1 Augmenting structures for k-cycle packing

Finding an optimal solution to the k-cycle packing problem is NP-hard [3]. On the other hand,
multiple approximation algorithms are known for k-cycle packing and its generalization to k-set
packing, where A includes arbitrary subsets of ≤ k elements of V . One such algorithm is a local
search algorithm of Hurkens and Schrijver [162] that uses a notion of augmenting structures.
Given a k-cycle packing instance (V,A) and a feasible packing (one with disjoint cycles) B ⊆ A,
(C,D) is said to be an augmenting structure for B if removing D and adding C to B increases
its cardinality and maintains the feasibility of the packing. That is, if (B ∪C) \D is a collection
of vertex-disjoint k-cycles and |(B ∪ C) \D| > |B|, where C ⊆ A and D ⊆ B.

Hurkens and Schrijver [162] show that for any η there is a polynomial time (assuming η and
k are constants) approximation algorithm that repeatedly augments a feasible solution using
augmenting structures of size sη,k, a constant that depends on k and η, and obtains a packing
of cardinality ≥ (2

k
− η)K(A). Hurkens and Schrijver [162] also show that an approximation

216

ratio better than 2/k cannot be achieved with local search of structures of constant size. The
following theorem summarizes the results of Hurkens and Schrijver [162].

Lemma 11.7.2 ([162]). Given a k-cycle packing instance (V,A) and a feasible packing B
such that |B| <

(
2
k
− η
)
|K(A)|, there exists an augmenting structure (C,D) for B such that

|C| ≤ |sη,k| and |D| ≤ sη,k for some constant sη,k that depends only on η and k.

Similarly to the case of 2-cycle matchings, we require many augmenting structures, since
some may fail to exist when edges appear at random. In the following lemma, we show how to
find a large number of small augmenting structures.

Lemma 11.7.3. Given a k-cycle packing instance (V,A) and a feasible packing B such
that |B| <

(
2
k
− η
)
|K(A)|, there are T = 1

ksη,k

(
|K(A)| − |B|

2
k
−η

)
augmenting structures

(C1, D1), . . . , (CT , DT) such that |Ct| ≤ sη,k and |Dt| ≤ sη,k for all t ∈ [T], and the set
of cycles appearing in Cts are vertex-disjoint, i.e., for all t, t′ ∈ [T] such that t 6= t′, for any
c ∈ Ct and c′ ∈ Ct′ , we have c ∩ c′ = ∅. Moreover, this collection of augmenting structures can
be found in polynomial time, assuming k and η to be constants.

Algorithm 11.3: Finding constant-size disjoint augmenting structures for k-cycles
1: input: k-cycle packing instance (V,A) and a collection B ⊆ A of disjoint sets, and

parameter sη,k.
2: Initialize A1 ← A and Q← ∅.
3: for t = 1, · · · , |A| do
4: Find an augmenting structure (Ct, Dt) of size sη,k for B on the k-cycle packing instance

(V,At).
5: Add (Ct, Dt) to Q. (If Ct is an empty set, break out of the loop.
6: Let At+1 ← At \ {c|∃c′ ∈ Ct, such that c ∩ c′ 6= ∅}.
7: end forreturn Q.

Proof. We prove this lemma using Algorithm 11.3. Note that in Step 6 of this algorithm all cycles
that share any vertex with a cycle that is already in Q are removed. Therefore, by design the
collection Q of augmenting structures returned by the algorithm satisfies the property that for any
two augmenting structuresCt, Ct′ and any two cycles c ∈ Ct and c′ ∈ Ct′ , c∩c′ = ∅. It remains to
show that |Q| ≥ 1

ksη,k
(|K(A)| − |B|

2
k
−η). That is, in the first T = 1

ksη,k

(
|K(A)| − |B|

2
k
−η

)
iterations

of Step 4, we are able to find a nonempty augmenting structure for B. Using Lemma 11.7.2, it is
sufficient to show that K(At+1) ≥ |B|/(2

k
− η) for all t ≤ T .

Note that for all t, |Ct| ≤ sη,k and for each c ∈ Ct, |c| ≤ k. Therefore, by time t+ 1, there
are at most t · k · sη,k vertices of V that are covered by cycles that appear in C1, . . . , Ct. At most
t · k · sη,k cycles in the largest cardinality packing of A may have one or more of these t · k · sη,k
vertices. Note that removing these cycles from the largest cardinality packing K(A) yields a
packing for At+1, so, we have that

K(At+1) ≥ K(A)− t · k · sη,k ≥
|B|

2
k
− η ,

217

for all t ≤ T . Using Lemma 11.7.2 completes the proof.

11.7.2 Adaptive algorithm for k-set packing

We use the following polynomial-time algorithm for stochastic k-cycle packing to prove Theo-
rem 11.7.1. In each round r, the algorithm maintains a feasible k-cycle packing Br based on
the k-cycles that have been queried so far. It then computes a collection Qr of vertex-disjoint,
small augmenting structures with respect to the current solution Br (as in Lemma 11.7.3), where
the augmenting structures are composed of cycles which may have unqueried edges. It then
queries all edges that appear in some cycle in these augmenting structures, and uses those that
are found to exist to augment the current solution and removes all cycles with a failed edge from
consideration for the future rounds. The augmented solution is fed into the next round and the
process is repeated.

Algorithm 11.4: Adaptive Algorithm for Stochastic k-cycle packing
1: Input: Graph G = (V,E), k ≥ 2, the corresponding k-cycle packing instance (V,A), and

parameters ε, and p.
2: Let η = ε

k
and R =

(2
k
−η)k·sη,k
p
k·sη,k log(2

ε
) (For a (1− ε)(2

k
)-approximation to K(A))

3: Initialize r ← 1, B1 ← ∅ and A1 ← A.
4: for r = 1, . . . , R do
5: Let Qr be the set of augmenting structures given by Algorithm 11.3 on the input of the

k-cycle packing instance of (V,Ar), the collection Br, and the parameter sη,k.
6: for each augmenting structure (C,D) ∈ Qr. do
7: for all cycles c ∈ C, do query all edges end for
8: if for all c ∈ C all edges of c exist, then Br+1 ← (Br \D) ∪ C end if
9: end for

10: Ar+1 ← Ar \ {c | One or more edges in cycle c failed to exist}.
11: end for
12: returnBR.

Similar to our matching results, for any element v ∈ V , the number of cycles in BR that v
belongs to and are queried is at most R. Indeed, in each of the R rounds, Algorithm 11.4 issues
queries to vertex-disjoint augmenting structures—vertex disjoint set of cycles—and each such
structure includes at most one cycle that uses vertex v.

Let us first introduce some notation that is helpful in proving Theorem 11.4. For a given r, we
use the notation EQr [X] to denote EQr [X | Q1, . . . , Qr−1], i.e., the expected value of X where
the expectation is taken over the outcomes of Qr when outcomes of Q1, . . . , Qr−1 are fixed
based on queries in the first r − 1 rounds. Similarly, we use the notation EQr,...,QR [X] to denote
EQr,...,QR [X | Q1, . . . , Qr−1]. Moreover, we denote by K(A | Q1, . . . , Qr−1) the expected size
of the largest cardinality cycle-packing for (V,A) given the result of queries in Q1, . . . , Qr−1.

Lemma 11.7.4. For every r ∈ [R], outcome of queries Q1, . . . , Qr−1, and the corresponding

218

Br−1, we have

E
Qr

[|Br|] ≥ (1− γ)|Br−1|+ γ(
2

k
− η)K(A | Q1, . . . , Qr−1),

where γ = p
k·sη,k

(2
k
−η)·k·sη,k

.

Proof. By Lemma 11.7.3, Qr is a collection of at least 1
k·sη,k

(
K(Ar)− |Br−1|

2
k
−η

)
augmenting

structures of size at most sη,k whose cycles are all mutually vertex-disjoint. Note that at Step 10
of round 1, . . . , r − 1, we remove any cycles that had an edge that was queried and did not exist.
Therefore, all cycles that appear in the augmenting structures in Qr consist of edges that either
have never been queried, or have been queried and exist. Therefore, each augmenting structure
exists with probability at least pk·sη,k . So, conditioned on Q1, . . . , Qr−1, the expected increase in
the size of the solution at Step 6 is:

E
Qr

[|Br|]− |Br−1| ≥ pk·sη,k |Qr| ≥
pk·sη,k

k · sη,k

(
|K(Ar)| −

|Br−1|
2
k
− η

)

≥ γ

((
2

k
− η
)
|K(Ar)| − |Br−1|

)

≥ γ

((
2

k
− η
)
K(A | Q1, . . . , Qr−1)− |Br−1|

)
,

where the last inequality follows by the fact that |K(Ar)| ≥ K(A | Q1, . . . , Qr−1). Rearranging
the above proves the claim.

We are now ready to prove Theorem 11.7.1.

Proof of Theorem 11.7.1. Let us start with a technical observation, that for every r,

E
Qr−1

[K(A | Q1, . . . , Qr−1)] = K(A | Q1, . . . , Qr−2). (11.5)

Using Lemma 11.7.3 on the Rth step of Algorithm 11.4, and conditioning on Q1, . . . , QR−1

we have that

E
QR

[|BR|] ≥ (1− γ)|BR−1|+ γ

(
2

k
− η
)
K(A | Q1, . . . , QR−1).

219

Taking expectation over QR−1 in the above inequality, we have

E
QR−1,QR

[|BR|] ≥ (1− γ) E
QR−1

[|BR−1|] + γ

(
2

k
− η
)

E
QR−1

[
K(A | Q1, . . . , QR−1)

]

≥ (1− γ) E
QR−1

[|BR−1|] + γ

(
2

k
− η
)
K(A | Q1, . . . , QR−2)

≥ (1− γ)

(
(1− γ)|BR−2|+ γ

(
2

k
− η
)
K(A|Q1, . . . , QR−2)

)

+ γ

(
2

k
− η
)
K(A | Q1, . . . , QR−2)

≥ (1− γ)2|BR−2|+ γ

(
2

k
− η
)

(1 + (1− γ))K(A|Q1, . . . , QR−2),

where the second transition is by Equation 11.5, the third transition is due to applying Lemma 11.7.3
on the (R− 1)th step. Repeating the steps above, by sequentially taking expectation over QR−2

through Q1, and applying Lemma 11.7.3 and Equation 11.5 at each step, we have

E
Q1,...,QR

[|BR|] ≥ (1− γ)R|B0|+ γ

(
2

k
− η
)

(1 + (1− γ) + . . . , (1− γ)R−1)K(A)

≥ γ

(
2

k
− η
)

(1− (1− γ)R)K(A).

Note that, when η = ε
k

and R = 1
γ

log(2
ε
) =

(2
k
−η)k·sη,k
p
k·sη,k log(2

ε
), we have

γ

(
2

k
− η
)

(1− (1− γ)R) ≥ 2

k

(
1− ηk

2

)
(1− (1− γ)R) ≥ 2

k

(
1− ε

2

)(
1− ε

2

)
≥ 2

k
(1− ε).

Therefore, EQ1,...,QR [|BR|] ≥ 2
k
(1− ε)K(A). We complete the proof by noting that since every

cycle in A (and by extension BR) has between 2 to k vertices, the resulting approximation ratio
for the optimal number of vertices covered is

E
Q1,...,QR

[∑

c∈BR

|c|
]
≥ 4

k2
(1− ε)V (A).

11.8 Experimental Results
Our theoretical results show that our adaptive and non-adaptive algorithms recover (1− ε) and
(1

2
− ε) fraction of the omniscient optimum matching using R = Oε,p(1) queries per vertex,

respectively. While R is a constant regardless of the number of vertices, its dependence on ε and
p may lead to values of R that are impractical for a kidney exchange platform. To bridge this

220

gap, we use empirical simulations from two kidney exchange compatibility graph distributions
to show that our algorithms perform well in practice even for a number of per-vertex queries that
is as low as R ≤ 5.

The first distribution, due to Saidman et al. [243], was designed to mimic the characteristics
of a nationwide exchange in the United States in steady state. Fielded kidney exchanges have
not yet reached that point, though; with this in mind, we also include results on real kidney
exchange compatibility graphs drawn from the first 169 match runs of the UNOS nationwide
kidney exchange. While these two families of graphs differ substantially, we find that even a
small number R of non-adaptive rounds, followed by a single period during which only those
edges selected during the R rounds are queried, results in large gains relative to the omniscient
matching.

As is common in the kidney exchange literature, in the rest of this section we will loosely
use the term “matching” to refer to both 2-cycle packing (equivalent to the traditional definition
of matching, where two vertices connected by directed edges are translated to two vertices
connected by a single undirected edge) and k-cycle packing, possibly with the inclusion of
altruist-initiated chains.

This section does not directly test the algorithms presented in this chapter. For the 2-cycles-
only case, we do directly implement Algorithm 11.2. However, for the cases involving longer
cycles and/or chains, we do not restrict ourselves to polynomial-time algorithms (unlike in
the theoretical part of this chapter), instead choosing to optimally solve matching problems
using integer programming during each round, as well as for the final matching and for the
omniscient benchmark matching. This decision is informed by the current practice in kidney
exchange, where computational resources are much less of a problem than human or monetary
resources—of which the latter two are necessary for querying edges.

In our experiments, the planning of which edges to query proceeds in rounds as follows.
Each round of matching calls as a subsolver the matching algorithm presented by Dickerson
et al. [107], which includes edge failure probabilities in the optimization objective to provide
a maximum-discounted-utility matching. The set of cycles and chains present in a round’s
discounted matching are added to a set of edges to query, and then those cycles and chains are
constrained from appearing in future rounds. After all rounds are completed, this set of edges is
queried, and a final maximum discounted utility matching is compared against an omniscient
matching that knows the set of non-failing edges up front.

11.8.1 Experiments on dense generated graphs
We begin by looking at graphs drawn from a distribution due to Saidman et al. [243], hereafter
referred to as “the Saidman generator.” This generator takes into account the blood types of
patients and donors (such that the distribution is drawn from the general United States population),
as well as three levels of PRA and various other medical characteristics of patients and donors
that may affect the existence of an edge. Fielded kidney exchanges currently do not uniformly
sample their pairs from the set of all needy patients and able donors in the US, as assumed
by the Saidman generator; rather, exchanges tend to get hard-to-match patients who have not
received an organ through other means. Because of this, the Saidman generator tends to produce
compatibility graphs that are significantly denser than those seen in fielded kidney exchanges

221

today (see, e.g., [16, 17]).
Figure 11.4 presents the fraction of the omniscient objective achieved by R ∈ {0, 1, . . . , 5}

non-adaptive rounds of edge testing for generated graphs with 250 patient-donor pairs and no
altruistic donors, constrained to 2-cycles only (left) and both 2- and 3-cycles (right). Note that
the case R = 0 corresponds to no edge testing, where a maximum discounted utility matching
is determined by the optimization method of Dickerson et al. [107] and then compared directly
to the omniscient matching. The x-axis varies the uniform edge failure rate f from 0.0, where
edges do not fail, to 0.9, where edges only succeed with a 10% probability. Given an edge failure
rate of f in the figures below, we can translate to the p used in the theoretical section of the
chapter as follows: a 2-cycle in a matching represents both directions of an edge and therefore
exists with probability p2-cycle = (1 − f)2, while an edge in a 3-cycle packing only represents
a single direction of compatibility and exists with probability p3-cycle = 1− f while a 3-cycle
exists with probability (1− f)3.

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

Saidman, 2-cycles, no chains
R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

Saidman, 2- and 3-cycles, no chains
R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 11.4: Saidman generator graphs constrained to 2-cycles only (left) and both 2- and
3-cycles (right).

The utility of even a small number of edge queries is evident in Figure 11.4. Just a single
round of testing (R = 1) results in 50.6% of omniscient—compared to just 29.8% with no edge
testing—for edge failure probability f = 0.5 in the 2-cycle case, and there are similar gains in
the 2- and 3-cycle case. For the same failure rate, settingR = 5 captures 84.0% of the omnsicient
2-cycle matching and 69.3% in the 2- and 3-cycle case—compared to just 22.2% when no edges
are queried. Interestingly, we found no statistical difference between non-adaptive and adaptive
matching on these graphs.

11.8.2 Experiments on real match runs from the UNOS nationwide kid-
ney exchange

We now analyze the effect of querying a small number of edges per vertex on graphs drawn from
the real world. Specifically, we use the first 169 match runs of the UNOS nationwide kidney
exchange, which began matching in October 2010 on a monthly basis and now includes 153

222

transplant centers—that is, 66% of the centers in the U.S.—and performs match runs twice per
week. These graphs, as with other fielded kidney exchanges [17], are substantially less dense
than those produced by the Saidman generator. This disparity between generated and real graphs
has led to different theoretical results (e.g., efficient matching does not require long chains in a
deterministic dense model [14, 105] but does in a sparse model [16, 109]) and empirical results
(both in terms of match composition and experimental tractability [9, 86, 129]) in the past—a
trend that continues here.

Figure 11.5 shows the fraction of the omniscient 2-cycle and 2-cycle with chains match
size achieved by using only 2-cycles or both 2-cycles and chains and some small number of
non-adaptive edge query rounds R ∈ {0, 1, . . . , 5}. For each of the 169 pre-test compatibility
graphs and each of edge failure rates, 50 different ground truth compatibility graphs were
generated. Chains can partially execute; that is, if the third edge in a chain of length 3 fails,
then we include all successful edges (in this case, 2 edges) until that point in the final matching.
More of the omniscient matching is achieved (even for the R = 0 case) on these real-world
graphs than on those from the Saidman generator presented in Section 11.8.1. Still, the gain
realized even by a small number of edge query rounds is stark, with R = 5 achieving over 90%
of the omniscient objective for every failure rate in the 2-cycles-only case, and over 75% of the
omniscient objective when chains are included (and typically much more).

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 11.5: Real UNOS match runs constrained to 2-cycles (left) and both 2-cycles and chains
(right).

Figure 11.6 expands these results to the case with 2- and 3-cycles, both without and with
chains. Slightly less of the omniscient matching objective is achieved across the board, but the
overall increases due to R ∈ {1, . . . , 5} non-adaptive rounds of testing is once again prominent.
Interestingly, we did not see a significant difference in results for adaptive and non-adaptive edge
testing on the UNOS family of graphs, either.

Next we consider the above experiments again, only this time including in the analysis empty
omniscient matchings. If an omniscient matching is empty, then our algorithm will achieve at
most zero matches as well. Previously, we removed these cases from the experimental analysis
because achieving zero matches (using any method) out of zero possible matches trivially

223

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

O
m

ni
sc

ie
nt

UNOS, 2- and 3-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 11.6: Real UNOS match runs with 2- and 3-cycles and no chains (left) and with chains
(right).

achieves 100% of the omniscient matching; by not including those cases, we provided a more
conservative experimental analysis. Here, we include those cases and rerun the analysis.

Figure 11.7 mimics Figure 11.5. It shows results for 2-cycle matching on the UNOS
compatibility graphs, without chains (left) and with chains (right), for R ∈ {0, 1, . . . , 5} and
varying levels of f ∈ {0, 0.1, . . . , 0.9}. We witness a marked increase in the fraction of
omniscient matching achieved as f gets close to 0.9; this is due to the relatively sparse UNOS
graphs admitting no matchings for high failure rates.

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 11.7: Real UNOS match runs, restricted matching of 2-cycles only, without chains (left)
and with chains (right), including zero-sized omnsicient matchings.

Figure 11.8 shows the same experiments as Figure 11.7, only this time allowing both 2-
and 3-cycles, without (left) and with (right) chains. It corresponds to Figure 11.6 and exhibits
similar but weaker behavior to Figure 11.7 for high failure rates. This demonstrates the power of

224

including 3-cycles in the matching algorithm—we see that far fewer compatibility graphs admit
no matchings under this less-restrictive matching policy.

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, no chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

0.0 0.2 0.4 0.6 0.8 1.0

Edge Failure Rate
0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
O

m
ni

sc
ie

nt

UNOS, 2- and 3-cycles, with chains

R = 0

R = 1

R = 2

R = 3

R = 4

R = 5

Figure 11.8: Real UNOS match runs, matching with 2- and 3-cycles, without chains (left) and
with chains (right), including zero-sized omnsicient matchings.

11.9 Discussion & future research
In this chapter, we addressed stochastic matching and its generalization to k-cycle packing
from both a theoretical and experimental point of view. For the stochastic matching problem,
we designed an adaptive algorithm that queries only a constant number of edges per vertex
and achieves a (1− ε) fraction of the omniscient solution, for an arbitrarily small ε > 0—and
performs the queries in only a constant number of rounds. We complemented this result with a
non-adaptive algorithm that achieves a (0.5− ε) fraction of the omniscient optimum.

We then extended our results to the more general problem of stochastic k-cycle packing by
designing an adaptive algorithm that achieves a (2

k
− ε) fraction (res. (4

k2
− ε) fraction) of the

cardinality of (res. number of vertices covered in) the omniscient optimal solution, again with
only O(1) queries per element. This guarantee is quite close to the best known polynomial-time
approximation ratio of 3

k+1
− ε for the cardinality of the optimal k-cycle packing in the standard

non-stochastic setting [126].
We adapted these algorithms to the kidney exchange problem and, on both generated and real

data from the first 169 runs of the UNOS US nationwide kidney exchange, explored the effect of
a small number of edge query rounds on matching performance. In both cases—but especially
on the real data—a very small number of non-adaptive edge queries per donor-patient pair results
in large gains in expected successful matches across a wide range of edge failure probabilities.

In the theoretical part of this chapter, we considered a setting where every edge e exists with
probability pe ≥ p for a constant value of p and gave algorithms that queried a number of edges
that increased as p→ 0. In kidney exchange, however, a small fraction of patients may be highly
sensitized; there is a low probability that their crossmatch test with potentially compatible donors

225

would be successful. This gives rise to compatibility graphs that include a small fraction of edges
with success probability pe ≈ 0. In this case, setting p = mine∈E pe in our theoretical results
would require a large number of tests per vertex, leading to an impractical algorithm that tests
every edge and finds the omniscient optimal solution. To avoid this problem, we note that when
the number of edges with small pe is small, ignoring them affects the size of the omniscient
optimal solution only to a small degree. This allows us to essentially recover our theoretical
approximation guarantees. Of course, in practice these edges are not ignored, rather they may
receive specialized treatments, hence allowing for an even better outcome.

11.9.1 Open theoretical problems

Three main open theoretical problems remain open. First, our adaptive algorithm for the matching
setting achieves a (1− ε)-approximation in O(1) rounds and using O(1) queries per vertex. Is
there a non-adaptive algorithm that achieves the same guarantee? Such an algorithm would
make the practical message of the theoretical results even more appealing: instead of changing
the status quo in two ways—more rounds of crossmatch tests, more tests per patient—we would
only need to change it in the latter way.

Second, for the case of optimal cardinality k-cycle packing, we achieve a (2
k
−ε)-approximation

using O(n) queries—in polynomial time. In kidney exchange, however, our scarcest resource is
the ability to query edges. In particular, computational hardness is circumvented in many cases
through integer programming techniques [3, 86, 108]. Therefore, it would be interesting to see if
there is an exponential-time adaptive algorithm for k-cycle packing that requires O(1) rounds
and O(n) queries, and achieves (1− ε)-approximation to the omniscient optimum. A positive
answer would require a new approach, because ours is inherently constrained to constant-size
augmenting structures, which cannot yield an approximation ratio better than 2

k
− ε, even if we

could compute optimal solutions to k-cycle packing [162].
Third, while we provided an adaptive algorithm for stochastic k-cycle packing for the general

case of k ≥ 2, our non-adaptive results were restricted to the case of k = 2. A natural question is
whether there exists a non-adaptive algorithm with a good approximation guarantee for stochastic
k-cycle packing when k > 2. One of the key ingredients in the analysis of our non-adaptive
stochastic matching algorithm was to show that the benefit we drew from a new matching (whose
edges were to be tested at the end of the algorithm) was (1) a large fraction of the size of
the matching in the remaining graph and (2) independent of the outcome of the queries in the
earlier matchings (See Equation 11.4). For the case of k = 2, these properties hold because the
optimal matching in the remaining graph at step r is a large fraction of the total matching and
the matching at step r shares no edges with prior matchings. For the case of k > 2, however, to
assure that property (2) holds, we need to choose a k-cycle packing at step r using only those
cycles that share no edges with the k-cycle packings in steps 1, . . . , r − 1. Therefore, at every
step we need to remove from consideration all cycles that share an edge with an earlier packing.
However, doing so results in a graph that has a small (or no) cycle packing, invalidating property
(1). We conclude that new algorithms and techniques may be needed for the non-adaptive
stochastic k-cycle packing problem.

226

11.9.2 Discussion of policy implications of experimental results
Policy decisions in kidney exchange have been linked to economic and computational studies
since before the first large-scale exchange was fielded in 2003–2004 [233, 234]. A feedback
loop exists between the reality of fielded exchanges—now not only in the United States but
internationally as well—and the theoretical and empirical models that inform their operation,
such that the latter has grown substantially closer to accurately representing the former in recent
years. That said, many gaps still exist between the mathematical models used in kidney exchange
studies and the systems that actually provide matches on a day-to-day basis.

Better approaches are often not adopted quickly, if at all, by exchanges. One reason for
this is complexity—and not in the computational sense. Humans—doctors, lawyers, and other
policymakers who are not necessarily versed in optimization, economics, or computer science—
and the organizations they represent understandably wish to understand the workings of an
exchange’s matching policy. The techniques described in this chapter are particularly exciting in
that they are quite easy to explain in accessible language and they involve only mild changes
to the status quo. At a high level, we are proposing to test some small number of promising
potential matches for some subset of patient-donor pairs in a pool. As Section 11.8.2 shows,
even a single extra edge test per pair will produce substantially better results.

Any new policy for kidney exchange has to address three practical restrictions in this space:
(i) the monetary cost of crossmatches, (ii) the number of crossmatches that can be performed per
person, as there is an inherent limit on the amount of blood that can be drawn from a person, and
(iii) the time it takes to find the matches, as time plays a major role in the health of patients and
crossmatches become less accurate as time passes and the results become stale. For both our
non-adaptive and adaptive algorithms, even a very small number of rounds (R ≤ 5) results in
a very large gain in the objective. This is easily within the limits of considerations (i) and (ii)
above. Our non-adaptive algorithm performs all chosen crossmatches in parallel, so the time
taken by this method is similar to the current approach. Our adaptive algorithm, in practice, can
be implemented by a one-time retrieval of R rounds worth of blood from each donor-patient
pair, then sending that blood to a central laboratory. Most crossmatches are performed via an
“immediate spin”, where the bloods are mixed together and either coagulate (which is bad) or do
not (which is good). These tests are very fast, so a small number of rounds could be performed
in a single day (assuming that tests in the same round are performed in parallel). Therefore, the
timing constraint (iii) is not an issue for small R (such as that used in our experiments) for the
adaptive algorithm.

More extensive studies would need to be undertaken before an exact policy recommendation
can be made. These studies could take factors like the monetary cost of an extra crossmatch
test or variability in testing prowess across different medical laboratories into account explicitly
during the optimization process. Various prioritization schemes could also be implemented to
help, for example, hard-to-match pairs find a feasible match by assigning them a higher edge
query budget than easier-to-match pairs. Moreover, there is a need for a closer look at other
uncertainties in kidney exchange, such as the dynamic nature of participation of donors and
patients, and how they interact with our proposed algorithms. But, the positive theoretical results
presented in this chapter, combined with the promising experimental results on real data, provide
a firm basis and motivation for this type of policy analysis in the future.

227

228

Chapter 12

Individually Rational Multi-Hospital
Kidney Exchange

12.1 Introduction
As kidney exchange programs have become more prevalent, multi-hospital are being deployed at
the national and international levels. These programs create an environment where patient-donor
pairs can be matched across different hospitals and exchanges. The reason why such programs
are desirable is clear: By increasing the number of potential matches that a donor-patient pair
can be matched to—from those in a single hospital to all hospitals—we can match more patients
to compatible donors. Despite this, there are serious concerns regarding the practicality of such
systems. Based on their work with practicioners, Ashlagi and Roth [14] convincingly argue that
as kidney exchange programs outgrow their regional origins, the incentives of hospitals and local
exchanges—which have little to no interaction outside of the kidney exchange program—become
misaligned. In particular, hospitals cannot be certain that if they opt into a multi-hospital kidney
exchange program, which optimizes overall efficiency, their patients would be better off overall
than under the optimal internal matching (which relies only on donor-patient pairs associated
with the hospital). This is called lack of individual rationality.

In this chapter, we study individual rationality of matching markets, including multi-hospital
kidney exchange programs, more closely. Specifically, we study situations where the vertices of
the graph are partitioned between a set of players, and each player is interested in matching as
many of his own vertices as possible. An individually rational matching is one that matches at
least as many vertices of each player as he can match on his own.

How bad is lack of individual rationality in kidney exchange? A bad example (due to Ashlagi

v1 v2 v3 v4

v5 v6 v7

Figure 12.1: A compatibility graph where individual rationality fails.

229

and Roth) is given in Figure 12.1: the maximum cardinality matching selects the 3-cycles
{v1, v2, v5} and {v3, v4, v7}, but the blue player can do better by internally matching the single
3-cycle {v2, v3, v6}. That is, the global matching matches twice as many nodes than the number
of nodes collectively covered by the local matchings. Furthermore, the unique individually
rational matching in this graph is the internal matching. So, ensuring that the matching is
individually rational comes at the cost of losing half of the size of the globally optimal matching.

12.1.1 Our Approach
In our work, we take a new perspective on individual rationality. Our goal is to analytically
demonstrate that, in fact, individual rationality (or an almost perfect approximation thereof) can
be achieved with nearly no loss of efficiency under mild conditions. Our key insight is that it
suffices to assume that each vertex of the graph is owned by a random player.

In more detail, we consider an arbitrary graph with n vertices v1, . . . , vn, and a set of k players
1, . . . , k. For each vertex, we draw its owner independently from the probability distribution
p1, . . . , pk over the players, that is, each vertex is assigned to player i with probability pi. In the
kidney exchange setting, for example, the rationale is very simple: the graph represents medical
compatibility information, and there is no special reason why a patient-donor pair with particular
medical characteristics would belong to a particular hospital — the probability of that happening
depends chiefly on the size of the hospital.

To see how randomization helps, let us revisit the example given in Figure 12.1, and suppose
that the two players (red and blue) have probability 1/2 each: p1 = p2 = 1/2. The expected utility
of a player under the maximum cardinality matching is 6/2 = 3. In contrast, a straightforward
upper bound on the expected cardinality of an internal matching can be derived by observing that
each of the three 3-cycles is owned by a single player with probability 1/8 and adds at most 3 to
the cardinality of the matching, leading to an upper bound of 3 · 3 · (1/8) = 9/8. Now, suppose
we made t copies of the graph of Figure 12.1, for a large t; then a simple measure concentration
argument would imply that it is very likely that each player is better off in the optimal solution
than he is working alone.

Our goal is to establish this phenomenon in some generality. Indeed, our qualitative message
(a few technical caveats apply) is that

... in an arbitrary graph, under a random assignment of vertices to players, it is
likely that any fixed optimal matching is individually rational, up to lower order
terms, for each player; and there is a practical mechanism that yields an individually
rational matching that is likely to be optimal up to lower order terms.

12.1.2 Our Results and Techniques
In Section 12.2, we formalize the first part of the above statement. Specifically, we prove the
following theorem:

Theorem 12.2.2 (informally stated). Let G be a directed graph, and let OPT(G) be the set of
vertices matched under a specific maximum cardinality matching on G. Assume that one of the
following conditions holds:

230

1. Matchings are restricted to 2-cycles, and pi ≤ 1/2 for each player i, or

2. Matchings are restricted to cycles of constant length, and for each player i, 1/pi is an
integer.

Then for each player i ∈ [k], the difference between the size of his optimal internal matching,
and his share of OPT(G), is at most O(

√
|OPT(G)| · ln(k/δ)) with probability 1− δ.

The theorem’s first case deals with 2-cycles, a common abstraction for kidney exchange
in theoretical studies [6, 18, 19, 55, 58, 68, 234, 258]. Of course in this case there always
exists an optimal and individually rational matching (find the optimal internal matchings and
then add augmenting paths), but nonetheless this statement is appealing because it applies to
any optimal solution that the exchange — which might also be optimizing some secondary
objective — might produce. Also note that this case is essentially unrestrictive in terms of the
probability distribution. The second case is the opposite: its assumption of constant length cycles
is essentially unrestrictive, as chains can be represented as cycles by adding an edge from every
patient-donor pair to every altruistic donor; and major kidney exchanges — such as the US
national program, run by the United Network for Organ Sharing (UNOS) — use only cycles of
length at most 3, and chains of length at most 4 [14, 16, 105, 235]. But the assumption regarding
the probability distribution is, of course, somewhat restrictive. Note, however, that probabilities
can be “rounded” at a cost, as we discuss later; and that the natural case of equal probabilities is
captured by the second case.

The proof of Theorem 12.2.2 relies on two main ingredients. The first is the claim that
the expected size of the maximum internal matching of player i is at most a pi fraction of the
optimal (global) matching. This statement is almost trivial in Case 2; to establish it in Case 1, we
decompose the maximum cardinality matching via the Edmonds-Gallai Decomposition [115],
and show that the inequality holds for each component separately.

The second ingredient is the concentration of the cardinality of the optimal internal match-
ing of each player around its expectation. To this end, we leverage machinery from modern
probability theory that is little known in theoretical computer science, including a concentration
inequality for so-called self-bounding functions [64].

The power of Theorem 12.2.2 is that it applies to any maximum cardinality matching. In
the context of kidney exchange, the theorem captures the matching algorithms currently in use
(including the ones employed by UNOS); its conceptual message is that hospitals need not worry
about opting into kidney exchange programs, even under the status quo.

By contrast, in Section 12.3 we give the designer more power in choosing the matching, with
the goal of constructing a mechanism that is (perfectly) individually rational, and almost optimal.
As noted earlier, this is quite trivial when only 2-cycles are allowed, as there always exists an
optimal, individually rational matching. When longer cycles are allowed, we can derive the
following corollary from the proof of Theorem 12.2.2.

Corollary 12.3.1 (informally stated). LetG be a directed graph with n vertices, and let OPT(G)
be the set of vertices matched under a specific maximum cardinality matching on G. Suppose
that matchings are restricted to cycles of constant length, and pi = pj for any two players i, j.
Then, with probability 1− δ, there exists a matching that is individually rational for each player
i, and has maximum cardinality up to O(k

√
|OPT(G)| · ln(k/δ)).

231

Importantly, such an individually rational and almost optimal matching can be found with a
practical1 mechanism: (i) compute a maximum cardinality matching, (ii) any player who wishes
to work alone is allowed to defect.

Furthermore, we show that our results are tight. Among other things, we construct an example
with two players and cycles up to length 3 such that, with constant probability, any individually
rational matching is smaller than the optimal matching by Ω(

√
|OPT(G)|).

12.1.3 Related Work
The two papers that are most closely related to ours are the ones by Ashlagi and Roth [14] and
Toulis and Parkes [258]. Ashlagi and Roth show that under some technical assumptions, and
under a random graph model of kidney exchange, large random graphs admit an individually
rational matching that is optimal up to a certain constant fraction of the number of vertices,
with high probability. Toulis and Parkes [258] independently study a very similar random graph
model (it does make different assumptions about the size of hospitals), and obtain a similar result
regarding individual rationality.

These important results have inspired our own work, but — in addition to a number of
significant technical advantages2 — we believe our high-level approach is significantly more
compelling. In a nutshell, the random graph model studied by Ashlagi and Roth [14] and Toulis
and Parkes [258] draws blood types for each donor and patient from a distribution that gives
each of the four blood types (O, A, B, and AB) constant probability. For each pair of blood
type compatible vertices (e.g., an O donor is blood type compatible with an A patient, but a B
donor is not), a directed edge exists with constant probability. This model clearly gives rise to
very dense graphs; the key to the abovementioned results is that, with high probability, there
exist matchings between blood type compatible groups (such as A patient and B donor, and B
patient and A donor) that are perfect in the sense that they match all the vertices in the smaller
group. Consequently, the structure of the optimal matching can be accurately predicted with
high probability. This model has subsequently been employed in several other papers [55, 105].

However, more recent work by Ashlagi and Roth themselves — together with collabora-
tors [16] — introduces a completely different random graph model of kidney exchange, which
gives rise to sparse graphs, and better captures some real-world phenomena. This model was
later employed by Dickerson et al. [107]. At this point it is fair to say that, on the question of
whether random graph models are a valid approach for the analysis of kidney exchange, the jury
is still out. But we are convinced that an analysis that holds for arbitrary graphs — when it is
feasible, as in this chapter — is the right approach.

Individual rationality limits players to two possible strategies: work alone or participate fully.
More generally, players can choose to reveal a subset of their vertices, and internally match
the rest. Several papers seek to design mechanisms that incentivize players to reveal all their

1By “practical” we mean that it can be easily implemented in practice. It is not a polynomial-time algorithm, as
computing a maximum cardinality matching isNP-hard when 3-cycles are allowed [3]; but the problem is routinely
solved via integer programming.

2In contrast to their work, we obtain optimality up to lower-order terms (instead of up to a constant fraction of
n), and our results have a good dependence on the number of players (instead of assuming a very large [14] or a
very small [258] number) and on the size of the graph (instead of assuming that n goes to infinity).

232

vertices, either as a dominant strategy [18, 146] or in equilibrium [14, 258]. These known results
are quite limited; obtaining stronger results is a central open problem. Our own approach does
not seem to extend beyond individual rationality.

Needless to say, matching is a major research topic in theoretical computer science. In
particular, there are many papers that are directly motivated by market design applications,
especially kidney exchange [4, 42, 77, 87, 130, 136]. These papers are largely orthogonal to our
work.

12.2 Optimal Matchings Are Almost Individually Rational
Designing and implementing new matching mechanisms can require significant changes to
current policies and deployed algorithms. In this section, we show that even without any changes
to the existing (optimal) matching mechanisms — at least in the case of kidney exchange — it is
likely that each player matches almost as many vertices as what he could have obtained on his
own.

Consider an arbitrary directed graph G with n vertices. Recall that for each player i ∈ [k]
with corresponding probability pi, the player owns each vertex with probability pi, independently.
We denote by Hi ∼pi G the random subgraph of player i, which is a subgraph of G induced by
assigning each vertex to i with probability pi. We suppress pi from this notation when it is clear
from the context. We use OPT(G) to denote the set of vertices of an arbitrary but fixed matching
of G. Furthermore, OPT(G) � Hi denotes the restriction of OPT(G) to subgraph Hi, i.e., the
vertices of Hi that are matched under OPT(G). Therefore, to compare the size of the internal
matching of Hi with the number of vertices of Hi that are matched under the global matching,
we compare |OPT(Hi)| to |OPT(G) � Hi|, and show that these values are within Õ(

√
|OPT(G)|)

of one another.
Let us first describe a graph in which, with a constant probability, a player’s internal matching

is larger by Ω(
√
|OPT(G)|) than the player’s share of any fixed optimal matching.

Example 12.2.1. Suppose one of the players has probability p = 1
2
, and consider a graph that

consists of n/ log(n) stars, each with log(n) vertices that are connected to the center via 2-cycles.
Fix an optimal global matching, OPT(G), and note that |OPT(G)| = 2n/ log(n). We informally
argue that there is a constant c > 0 such that

Pr
H∼pG

[
|OPT(H)| − |OPT(G) � H| > Ω(

√
|OPT(G)|)

]
> c.

Indeed, let us consider the subgraph internal to the player, H ∼p G. While the expected
number of centers in H is 1

4
|OPT(G)|, it is easy to see (by looking up the standard deviation

of the binomial distribution) that, with constant probability, H includes t = 1
4
|OPT(G)| +

Θ(
√
|OPT(G)|) centers. Moreover, with probability 1

2
, H includes no more than half of the

non-center vertices matched by OPT(G). If both events occur, |OPT(G) � H| ≤ t+ 1
4
|OPT(G)|,

where t of the matched vertices correspond to the center vertices and at most 1
4
|OPT(G)| vertices

correspond to non-center vertices of H that coincide with OPT(G). On the other hand, each star
is large enough so that with constant probabilityH includes at least one non-center vertex in each

233

star. In that case, for every center vertex in H , OPT(H) gets two matched vertices. Therefore,
|OPT(H)| ≥ 2t internally. It follows that the player can gain an additional Θ(

√
|OPT(G)|)

matched vertices when deviating from a fixed global optimal matching.

Our main result shows that Example 12.2.1 is asymptotically tight.

Theorem 12.2.2. Let G be a directed graph and let OPT(G) be the set of vertices matched under
some fixed maximum cardinality matching on G. Assume that one of the following conditions
holds:

1. Matchings are restricted to 2-cycles, and pi ≤ 1/2 for each player i ∈ [k], or

2. Matchings are restricted to cycles of constant length, and for each player i ∈ [k], 1/pi is
an integer.

Then for any δ > 0,

Pr
Hi∼piG

[
∀i ∈ [k], |OPT(Hi)| − |OPT(G) � Hi| < O

(√
|OPT(G)| ln k

δ

)]
≥ 1− δ.

The proof of Theorem 12.2.2 involves two main lemmas. The first shows that in expectation
|OPT(Hi)| is at most |OPT(G) � Hi|. The second asserts that |OPT(Hi)| is concentrated nicely
around its expectation. We formally state these two lemmas without further ado, but defer their
proofs to Section 12.2.1 and Section 12.2.2, respectively.

Lemma 12.2.3. Let G be a directed graph and let OPT(G) be the set of vertices matched under
some fixed maximum cardinality matching on G. Then EH∼pG[|OPT(H)|] ≤ p|OPT(G)| if (i)
matchings are restricted to 2-cycles, and p ≤ 1/2, or (ii) 1/p is an integer.

Lemma 12.2.4. Let G be a directed graph and let OPT(G) be the set of vertices matched under
some fixed maximum cardinality matching on G. Assume matchings are restricted to cycles of
length up to a constant L. Then for any δ > 0, with probability 1− δ over random choices of
Hi ∼pi G, for all i ∈ [k],

E
Hi∼piG

[|OPT(Hi)|]− L
√

2 · E[|OPT(Hi)|] ln
2k

δ
< |OPT(Hi)|

and

E
Hi∼piG

[|OPT(Hi)|] + 2L

√
|OPT(G)| ln 2k

δ
> |OPT(Hi)|.

We now easily prove our main result — Theorem 12.2.2 — by directly leveraging the two
lemmas we just stated.

Proof of Theorem 12.2.2. Since OPT(G) is fixed and Hi is drawn from G independently of
OPT(G), the expected number of vertices player i has in OPT(G) is

E
Hi∼piG

[|OPT(G) � Hi|] = pi · |OPT(G)|. (12.1)

234

Moreover, |OPT(G) � Hi| =
∑

v∈OPT(G) Iv∈Hi , where Iv∈Hi is an indicator variable with value 1
if v is owned by player i and 0 otherwise. So, Iv∈Hi is a random variable that has value 1 with
probability pi, and value 0 otherwise. Using Hoeffding’s inequality over |OPT(G)| i.i.d. variables
for a fixed i ∈ [k], as well as Equation (12.1),

Pr
Hi∼piG

[
|OPT(G) � Hi| ≥ pi · |OPT(G)| −

√
1

2
|OPT(G)| ln 2k

δ

]
≥ 1− δ

2k
. (12.2)

Putting this together with Lemmas 12.2.3 and 12.2.4, we have that for all i ∈ [k], with probability
1− δ,

|OPT(Hi)| ≤ E
Hi∼piG

[|OPT(Hi)|] + 2L

√
|OPT(G)| ln 4k

δ

≤ pi |OPT(G)|+ 2L

√
|OPT(G)| ln 4k

δ

≤ |OPT(G) � Hi|+ (2L+ 1)

√
|OPT(G)| ln 4k

δ
,

where the first inequality follows from Lemma 12.2.4 (using δ′ = δ/2), the second from
Lemma 12.2.3, and the third from applying Equation (12.2) to each i ∈ [k].

Note the logarithmic dependence of Theorem 12.2.2 on the number of players k. A subtle
point is that if the number of players is large, some will have a small pi, which means that the
expectation of |OPT(G) � Hi| is small compared to |OPT(G)|, by Equation (12.1). In that case,
a gain of

√
|OPT(G)| is significant. Nevertheless, the theorem’s conceptual message — that

following the global matching is individually rational up to lower order terms — holds for any
pi = ω(1/

√
|OPT(G)|).

In addition, recall that Theorem 12.2.2 considers two cases, (i) 1/pi is an integer and (ii)
pi ≤ 1/2 and OPT(G) is restricted to 2-cycles. Importantly, these two assumptions are only
needed for Lemma 12.2.3. We conjecture that indeed Lemma 12.2.3 holds for any p ≤ 1

2
,

whenever OPT(G) is restricted to cycles of constant length — in which case Theorem 12.2.2,
too, would hold under this weaker assumption. One might wonder why assuming p ≤ 1

2
is

even necessary. But in Appendix 12.4.1 we construct examples that violate the conclusion of
Theorem 12.2.2 for certain values of p > 1/2.

Finally, we remark that if 1/pi is close to an integer but not itself an integer, one can first
round down pi to the largest qi < pi such that 1/qi is an integer, and then apply Theorem 12.2.2.
This would give the same result, up to an additional constant fraction of |OPT(G)|. As pi
becomes smaller the rounding error also diminishes.

12.2.1 Proof of Lemma 12.2.3
First, let us address Case 2 of the lemma. Consider p such that 1/p is an integer; OPT(G)
may include cycles of any length. Imagine there are 1

p
players, each with probability p. By

symmetry between the players, the expected size of the optimal matching in all subgraphs is

235

equal. Furthermore, the total number of vertices matched by players individually is at most
OPT(G). Therefore,

|OPT(G)| ≥
1/p∑

i=1

E
Hi∼pG

[|OPT(Hi)|] =
1

p
E

H∼pG
[|OPT(H)|] ,

which proves the claim.
In the remainder of this section we focus on Case 1 of Lemma 12.2.3, where the matchings

are restricted to 2-cycles and p ≤ 1/2. For ease of exposition, we treat G as an undirected graph:
each directed 2-cycle corresponds to an undirected edge, and we may remove directed edges that
are not involved in 2-cycles (as they are useless).

Assume there is a partition G = G1] G2] · · ·] G` of (the undirected graph) G into
edge-disjoint (but not necessarily vertex-disjoint) subgraphs that preserve the size of the optimal
matching, i.e.,

|OPT(G)| =
∑̀

i=1

|OPT(Gi)|. (12.3)

Moreover, assume that each of these subgraphs has the property that

E
H∼pGi

[|OPT(H)|] ≤ p |OPT(Gi)|. (12.4)

Then, the next equation proves that this property also holds for G at the global level. That is,

E
H∼pG

[|OPT(H)|] ≤
∑̀

i=1

E
H∼pG

[|OPT(H ∩Gi)|]

=
∑̀

i=1

E
H∼pGi

[|OPT(H)|]

≤
∑̀

i=1

p |OPT(Gi)|

= p |OPT(G)|.
For the first transition, H ∩ Gi is the graph with edges that are present in both H and Gi; the
intuition behind this inequality is that we are essentially allowed to match the same vertices mul-
tiple times on the right hand side. The third and fourth transitions follow from Equations (12.3)
and (12.4).

So, it remains to find a partition of G into edge-disjoint subgraphs, G1]G2]· · ·]G`, which
satisfies (12.3) and (12.4). We prove that the Edmonds-Gallai Decomposition [115] can be used
to construct a partition satisfying these properties.

Lemma 12.2.5 (Edmonds-Gallai Decomposition). LetG = (V,E) be an undirected graph, letB
be the set of vertices matched by every maximum cardinality matching in G, and let D = V \B.
Furthermore, partition B into subsets A and C = B \ A, where A is the set of vertices with at
least one neighbor outside B. And let D1, . . . , Dr, be the connected components of the induced
subgraph G[D]. Then the following properties hold.

236

A

C

D

B

1
Figure 12.2: A graph demonstrating the Edmonds-Gallai Decomposition and the edge-disjoint graph
partition for the proof of Lemma 12.2.3. In this graph, each color represents one Gi in the partition
G =

⊎
iGi and the wavy edges represent the matched edges in OPT(G).

1. OPT(G) matches each node in A to a distinct connected component of G[D].

2. Each Di is factor-critical, i.e., deleting any one vertex of Di leads to a perfect matching in
the remainder of Di.

We now describe how the Edmonds-Gallai Decomposition is used to construct the desired
partition of G. For the ith connected component of G[C] and G[D], create a subgraph Gi corre-
sponding to its edges. Furthermore, for each vertex i ∈ A, create a subgraph Gi corresponding
to the set of edges incident on i. If there is an edge between two vertices of A, i and i′, then
include the edge in only one of Gi or Gi′ . Since the Edmonds-Gallai Decomposition has no
edges between C and D, G =

⊎
iGi forms a partition of the edge set of G. See Figure 12.2 for

an example of this construction.
We argue that the foregoing partition satisfies Equation (12.3).

Claim 12.2.6. |OPT(G)| = ∑i |OPT(Gi)|.

Proof. Let us define OPT(G) �∗ Gi to be the vertices of OPT(G) � Gi that are matched by
edges that lie within Gi. Since the decomposition is edge-disjoint, it holds that |OPT(G)| =∑

i |OPT(G) �∗ Gi|. It is therefore sufficient to show that for all i, |OPT(Gi)| = |OPT(G) �∗ Gi|.
There are three cases:

1. Gi corresponds to a component of G[C]. Recall that OPT(G) matches all vertices of
C ⊆ B. Moreover, C has no edges to D, and A is only matched with D, so the vertices
of Gi have no matched edges outside Gi. It follows that OPT(G) �∗ Gi is itself a perfect
matching on Gi, and |OPT(Gi)| = |OPT(G) �∗ Gi|.

2. Gi corresponds to a star with vertex i ∈ A: For each i ∈ A, by the first property of the
Edmonds-Gallai Decomposition, i is matched to a distinct component of G[D]. Therefore,
OPT(G) �∗ Gi includes an edge from OPT(G). Since any star can have at most one
matched edge, we have that |OPT(G) �∗ Gi| = OPT(G).

237

3. Gi corresponds to a component of G[D]: Since such a component is factor-critical, it has
an odd number of vertices, and, for any vertex, a maximum matching that covers all other
vertices. Therefore, both OPT(Gi) and OPT(G) �∗ Gi match all but one vertex of this
component, and |OPT(Gi)| = |OPT(G) �∗ Gi|.

Next, we show that G =
⊎
iGi satisfies (12.4). There are three types of Gi in this partition:

(i) Gi is a star, (ii) Gi is a component of G[D] and has a matching that covers all but one vertex,
and (iii) Gi is a component of G[C] and has a perfect matching.

Let us first address case (i) — that of a star. Clearly it holds that |OPT(Gi)| = 2. Now,
|OPT(H)| ∈ {0, 2}, and for OPT(H) to be non-empty, H must include the center of the star,
which happens with probability p.

The following claim establishes Equation (12.4) in cases (ii) and (iii). Note that this is the
only place where the assumption p ≤ 1/2 is used.

Claim 12.2.7. For any p ≤ 1
2
, and any graph G with n vertices such that |OPT(G)| ≥ n− 1,

E
H∼pG

[|OPT(H)|] ≤ p |OPT(G)|.

Proof. Let t ∈ N and p ∈ [0, 1/2]. It holds that

1

2
− 1

2
(1− 2p)2t+1 ≥ p, (12.5)

because the left hand side is concave and has value 0 for p = 0 and 1/2 for p = 1/2. We also
use the equalities

k∑

i=0

(
k

i

)
xi = (1 + x)k, (12.6)

and
k∑

i=1

i

(
k

i

)
xi−1 = k(1 + x)k−1. (12.7)

Assume that n = 2t+1 for some t ≥ 0. By the claim’s assumption, it holds that OPT(G) = 2t.
Any matching among a set of i vertices matches at most 2bi/2c vertices. Hence, the expected
matching size of the subgraph induced by a random set of vertices when each vertex is included

238

independently with probability p is

E
H∼pG

[|OPT(H)|] ≤
2t+1∑

i=1

2bi/2c
(

2t+ 1

i

)
pi(1− p)2t+1−i

= p(1− p)2t

2t+1∑

i=1

i

(
2t+ 1

i

)(
p

1− p

)i−1

−1

2
(1− p)2t+1

2t+1∑

i=0

(
2t+ 1

i

)(
p

1− p

)i

+
1

2
(1− p)2t+1

2t+1∑

i=0

(
2t+ 1

i

)(
p

1− p

)i
(−1)i

= (2t+ 1)p− 1

2
+

1

2
(1− 2p)2t+1

≤ 2tp,

where the penultimate transition follows by applying Equation (12.7) to the first term on the left
hand side, and Equation (12.7) to the second and third terms; and the last transition follows from
Equation (12.5).

If n = 2t and OPT(G) ≥ n − 1, it must hold that OPT(G) = 2t, because each edge
corresponds to two matched vertices. Moreover,

E
H∼pG

[|OPT(H)|] ≤
2t∑

i=1

2bi/2c
(

2t

i

)
pi(1− p)2t−i

≤ p(1− p)2t−1

2t∑

i=1

i

(
2t

i

)(
p

1− p

)i−1

= p(1− p)2t−12t

(
1 +

p

1− p

)2i−1

= 2tp.

Having established (12.4), the proof of Lemma 12.2.3 is now complete.

12.2.2 Proof of Lemma 12.2.4
We will prove the following equivalent formulation of Lemma 12.2.4:

Pr
H∼G

[
|OPT(H)| ≥ E

H∼G
[|OPT(H)|] + ε

]
≤ exp

(
− ε2

4L2 |OPT(G)|

)
, (12.8)

and

Pr
H∼G

[
|OPT(H)| ≤ E

H∼G
|[OPT(H)|]− ε

]
≤ exp

(
− ε2

2L2 E[|OPT(H)|]

)
. (12.9)

239

Let us first describe a failed approach for proving the lemma, which brings to light some
subtleties in the above inequalities. Consider an explicit description of |OPT(H)| as a function
of n random variables, X1, . . . , Xn, where Xi = 1 if vertex i is in H and 0 otherwise. Then
|OPT(H)| = f(X1, . . . , Xn) is the size of the optimal matching on H . One can show that f(·)
is L-Lipschitz, that is, changing Xi to ¬Xi, which corresponds to adding or removing one vertex
from H , changes the size of the maximum matching by at most L. Lipschitz functions are known
to enjoy strong concentration guarantees, as shown by McDiarmid’s inequality,

Pr [|f − E[f]| > ε] ≤ 2 exp

(−2ε2∑n
i=1 c

2
i

)
,

where ci is the Lipschitz constant for the ith variable, that is, for all i and for every possible input
x1, . . . , xn, |f(x1, . . . , xi, . . . , xn)− f(x1, . . . ,¬xi, . . . , xn)| ≤ ci.

While there are only |OPT(G)| variables that truly participate in OPT(G), even vertices that
are not in OPT(G) can participate in matchings of subsets of G, and as a result have a non-zero
Lipschitz constant. Therefore, using McDiarmid’s inequality for the concentration of OPT(H)
gives an O(

√
n) gap between OPT(H) and EH∼G[OPT(H)].

Instead, in order to prove a gap of Õ(
√
|OPT(G)|), we use two alternative concentration

bounds from statistical learning theory, which have recently been used to simplify and prove
tight concentration and sample complexity results for learning combinatorial functions [266].

Lemma 12.2.8. [63, Theorem 12] Let X1, X2, . . . , Xn be independent random variables, each
taking values in a set X . Let f : X n → R be a measurable function. Let X ′1, . . . , X

′
n be

independent copies of X1, . . . , Xn and for all i ∈ [n], define f ′i = f(X1, . . . , X
′
i, . . . , Xn). For

all i ∈ [n] and x ∈ X n assume that there exists C > 0, such that

E

[
n∑

i=1

(f − f ′i)2 · If>f ′i

∣∣∣∣∣x
]
≤ C,

then for all ε > 0,
Pr[f > E[f] + ε] ≤ e−ε

2/4C .

We show that the conditions of Lemma 12.2.8 hold for f(x1, . . . , xn) = OPT(H). Let
x = (x1, . . . , xn) and x′i = (x1, . . . x

′
i, . . . , xn). For all x, let Hx be the subgraph corresponding

to non-zero variables of x. Note that if xi is replaced by x′i and the matching size is reduced,
then the decrease is at most the maximum cycle length L. Furthermore, the only variables that
can lead to a non-zero decrease from |OPT(Hx)| to |OPT(Hx′i

)| are variables that are in every
optimal matching on Hx. Therefore, there are at most |OPT(Hx)| ≤ |OPT(G)| such variables.
We conclude that for all x,

E

[
n∑

i=1

(f − f ′i)2 · If>f ′i

∣∣∣∣∣x
]
≤ L2 |OPT(G)|.

The proof of the upper tail (12.8) follows immediately by using Lemma 12.2.8 with C =
L2 |OPT(G)|.

240

Unfortunately, Lemma 12.2.8 and its variants for lower-tail concentration cannot be used to
establish the desired lower-tail bound (12.9). Indeed, consider the condition E[

∑n
i=1 (f − f ′i)2 ·

If<f ′i |x] ≤ C; while removing one of only |OPT(G)| vertices can reduce the size of a matching, it
may be possible that for some subgraph of G, adding any of the remaining vertices increases the
size of the matching. Instead, we use the lower-tail concentration of self-bounding functions [64].

Definition 12.2.9. [64] A function g : X n → R is (a, b)-self-bounding if there exist functions
g−i : X n−1 → R for all i ∈ [n] such that for all x = (x1, . . . , xn) ∈ X n and i ∈ [n],

0 ≤ g(x)− g−i(x−i) ≤ 1,

and
n∑

i=1

(g(x)− g−i(x−i)) ≤ a · g(x) + b,

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) is obtained by dropping the ith component of x.

Lemma 12.2.10. [64] If Z = g(X1, . . . , Xn), where Xi ∈ {0, 1} are independent random
variables and g is an (a, b)-self-bounding function with a ≥ 1

3
, then for any 0 < t < E[Z],

Pr[Z ≤ E[Z]− t] ≤ exp

(
− t2

2a · E[Z] + 2b

)
.

Let g(x) be 1
L

times the size of optimal matching on the subgraph whose vertices correspond
to the non-zero xi’s, i.e., g(x) = 1

L
|OPT(Hx)|. Define g−i(x−i) = minxi g(x). We show that

g(·) is (L, 0)-self-bounding.
Since g−i(x−i) is the matching size in Hx−i and |OPT(Hx)| ≥ |OPT(Hx−i)| ≥ |OPT(Hx)|−

L, we have that 0 ≤ g(x) − g−i(x−i) ≤ 1. Furthermore, g(x) − g−i(x−i) is non-zero only if
vertex i was in every OPT(Hx). Since there are at most |OPT(Hx)| such variables, we have

n∑

i=1

(g(x)− g−i(x−i)) ≤ |OPT(Hx)| = L · g(x).

Because L > 1
3
, we can use Lemma 12.2.10 with ε = tL, and obtain

Pr [|OPT(Hi)| ≤ E[|OPT(Hi)|]− ε] ≤ exp

(
− (ε/L)2

2L(1
L
E[|OPT(Hi)|])

)

≤ exp

(
− ε2

2L2 E[|OPT(Hi)|]

)
.

Discussion on Self-Bounding Functions One might wonder whether the existing upper-tail
bound of self-bounding functions could be used similarly to achieve an improved upper bound

of L
√

2 · E[|OPT(Hi)|] ln 2k
δ

for Lemma 12.2.4 — that is, a bound that depends on |OPT(Hi)|
instead of |OPT(Gi)|. Here, we answer this question in the negative. The next lemma bounds the
upper tail of (a, b)-self-bounding functions.

241

Lemma 12.2.11. [64] If Z = g(X1, . . . , Xn), where Xi ∈ {0, 1} are independent random
variables and g is an (a, b)-self-bounding function, then for any 0 < t < E[Z],

Pr[Z ≥ E[Z] + t] ≤ exp

(
− t2

2a · E[Z] + 2b+ 2ct

)
,

where c = max{0, (3a− 1)/6}.

Note that for a = L > 1
3
, the additional 2ct term in the denominator causes the upper-tail

bound to decay only as a simple exponential, and leads to significantly weaker concentration.
Whether the upper-tail bound of self-bounding functions can be improved to remove this term is
an open problem in probability theory, with the first bound appearing in the work of Boucheron
et al. [62], and improved bounds due to McDiarmid and Reed [206] and Boucheron et al. [64].
Successfully removing the 2ct term from the denominator would improve the result stated in The-
orem 12.2.2 fromO

(√
|OPT(G)| ln(k/δ)

)
toO

(√
pi|OPT(G)| ln(k/δ)

)
, and Corollary 12.3.1

from O
(
k
√
|OPT(G)| ln(k/δ)

)
to O

(√
k|OPT(G)| ln(k/δ)

)
.

12.3 Individually Rational Matchings that Are Almost Opti-
mal

In this section, we provide a simple and practical mechanism for kidney exchange that guarantees
individual rationality, and with high probability yields a matching that is optimal up to lower-
order terms. In comparison to the results of Section 12.2, its disadvantage is that it requires
modifying deployed matching mechanisms, which simply return some optimal matching — our
mechanism selects a specific matching (which may be suboptimal). However, it is only a minor
modification, and therefore has the potential to inform practice.

Let us first consider the case where OPT(G) is restricted to 2-cycles. In this case we can
represent G as an undirected graph, as in Section 12.2.1. Let H1, . . . , Hk be the subgraphs
corresponding to the players. Consider the following matching mechanism,M(H1, . . . , Hk):
First, compute the matching M =

⋃
i OPT(Hi); then grow M to a globally maximum cardinality

matching by repeatedly applying augmenting paths. While an augmenting path changes the
structure of a matching by adding and removing edges, it strictly expands the set of matched
vertices. Therefore, this mechanism leads to a maximum cardinality matching on G, with the
property thatM(H1, . . . , Hk) ⊇

⋃
i OPT(Hi) for all i ∈ [k]. That is,M is individually rational.

The performance of the above mechanism for 2-cycles holds even when the subgraphs owned
by players are chosen adversarially, rather than through a random process. Furthermore, this
mechanism enjoys the stronger guarantee that every vertex that is matched under OPT(Hi) is
also matched underM(H1, . . . , Hk). As we discussed earlier (see Figure 12.1), these strong
guarantees are unattainable when cycles of length 3 are allowed. But in our model for randomly
generating H1, . . . , Hk, there is a mechanism that is individually rational and almost optimal, as
we show next.

242

Corollary 12.3.1. Let G be a directed graph. Consider optimal matchings on G that are
restricted to constant-length cycles. For all i ∈ [k], let pi = 1/k. Then there exists a mechanism
M such thatM(H1, . . . , Hk) is individually rational, and for any δ > 0,

Pr

[
|M(H1, . . . , Hk)| ≥ |OPT(G)| −O

(
k

√
|OPT(G)| ln k

δ

)]
≥ 1− δ.

As advertised, the mechanism underlying Corollary 12.3.1 is very simple: Choose an arbi-
trary optimal matching OPT(G), independently of H1, . . . , Hk. If for all players i ∈ [k] we have
|OPT(Hi)| ≤ |OPT(G) � Hi|, thenM(H1, . . . , Hk) = OPT(G). Else, letM(H1, . . . , Hk) =⋃
i OPT(Hi). We call this mechanism the Veto mechanism, as any player can veto the proposed

optimal matching. Alternatively, we can let players defect if they wish, while allowing the
remaining players to continue to work together; for our mathematical purposes this is the same
as the Veto mechanism, but the latter interpretation may be even more appealing from a practical
viewpoint.

In a nutshell, the idea is that because |OPT(Hi)| is concentrated around its expectation
by Lemma 12.2.4, if some player wants to veto the proposed matching then it is likely that
E[OPT(Hi)] is close to |OPT(G) � Hi|, which is tightly concentrated around |OPT(G)|/k by
Hoeffding’s inequality. But due to symmetry, this is true for all players, so the players can obtain
on their own almost what they can obtain by collaborating.

Proof of Corollary 12.3.1. Let p = 1/k. If

E
Hi∼pG

[OPT(Hi)] ≤ p |OPT(G)| − (2L+ 1)

√
|OPT(G) ln

2k

δ

then

Pr
Hi∼G

[|OPT(Hi)| > |OPT(G) � Hi|]

≤ Pr
Hi∼G

[|OPT(Hi)| − |OPT(G) � Hi|

+

(
p |OPT(G)| − E[OPT(Hi)]− (2L+ 1)

√
|OPT(G)| ln 2k

δ

)
> 0

]

≤ Pr
Hi∼G

[
|OPT(Hi)| − E[OPT(Hi)] > 2L

√
|OPT(G)| ln 2k

δ

]

+ Pr
Hi∼G

[
p |OPT(G)| − |OPT(G) � Hi| >

√
|OPT(G)| ln 2k

δ

]

≤ δ

k
,

where the last inequality holds by the upper-tail bound of Lemma 12.2.4 and Hoeffding’s
inequality. Therefore, with probability 1− δ, no player vetoes the proposed optimal matching,
andM(H1, . . . , Hk) = OPT(G) is optimal.

243

On the other hand, if

E
Hi∼pG

[OPT(Hi)] ≥ p |OPT(G)| − (2L+ 1)

√
|OPT(G) ln

2k

δ
,

then the expected total size of the internal matching is large, and we can fall back to the internal
matchings. Indeed, note that EHi∼pG[|OPT(Hi)|] ≤ p|OPT(G)| by symmetry. By the lower-tail
bound of Lemma 12.2.4, with probability 1− δ, for all i ∈ [k],

|OPT(Hi)| ≥ E
Hi∼pG

[|OPT(Hi)|]− L
√

2p|OPT(G)| ln 2k

δ
.

Therefore, with probability 1− δ,
k∑

i=1

|OPT(Hi)| ≥ k E
Hi∼G

[|OPT(Hi)|]− kL
√

2

k
|OPT(G)| ln 2k

δ

≥ |OPT(G)| − k(2L+ 1)

√
|OPT(G) ln

2k

δ
− kL

√
2

k
|OPT(G)| ln 2k

δ

= |OPT(G)| −O
(
k

√
|OPT(G)| ln k

δ

)
.

So,M(H1, . . . , Hk) =
⋃
i OPT(Hi) is a near optimal.

We remark — without proof — that Corollary 12.3.1 still holds even if the probabilities,
instead of being equal, are of the form 1/sti for a fixed s ∈ N, and possibly different t1, . . . , tn.
Similarly to Theorem 12.2.2, we conjecture that the statement actually holds for any p1, . . . , pn
such that pi ≥ 1/2 for all i ∈ [k]. To prove this, one would need to strengthen Lemma 12.2.3,
as discussed in Section 12.2. But now there is another difficulty: One would need to show that
if E[OPT(Hi)] is close to pi|OPT(G)| for one player, then the same is true for all players — in
which case falling back to the internal matchings is almost optimal. In the symmetric case, this
claim trivially holds, which is precisely why we assume that pi = 1/k for all i ∈ [k].

While we require a relatively strong assumption on the probabilities, it is satisfying that the
theorem’s bound is asymptotically tight. To show this, we present and analyze an example of
a graph with n vertices where, with constant probability, any individually rational matching is
smaller than the optimal matching by Ω(

√
n).

Example 12.3.2. Suppose that there are two players, each with probability p = 1
2
. Consider

the graph G shown in Figure 12.3, which consists of four layers A, B, C and D, each with
n/4 vertices. Any two layers of the graph are fully connected if there is an edge between them
according to Figure 12.3. That is, the edge set of this graph is such that any 3 vertices from A, B,
and C, respectively, form a directed 3-cycle, and any 2 vertices from C and D, respectively, form
a directed 2-cycle. It is optimal to match the vertices in A, B, and C via 3-cycles, and therefore
|OPT(G)| = 3n/4.

It is easy to show, using the standard deviation of the binomial distribution, that the number
of vertices a player owns in each layer deviates by ±Θ(

√
n) from its expectation (either larger

244

. . .Layer A

. . .Layer B

. . .Layer C

. . .Layer D

Figure 12.3: The graph construction of Example 12.3.2.

or smaller) with constant probability. Denote the number of vertices owned by player 1 in
layers A, B, C, and D by a, b, c, and d, respectively. We focus on the case where c ∈ {n/8 +√
n, . . . , n/8 + (3/2)

√
n}, a and b are both in {n/8− (3/2)

√
n, . . . , n/8−√n}, and d ≥ 3

√
n

— which happens with constant probability. Intuitively, player 1 is doing well, because he owns
significantly more than half of the vertices in layer C, which is especially important.

In the foregoing case, OPT(H1) is obtained by taking min{a, b} 3-cycles between A, B, and
C (as many as possible), and then c−min{a, b} 2-cycles between D and the unmatched vertices
of C. Therefore,

|OPT(H1)| = 3 ·min{a, b}+ 2(c−min{a, b}) = 2 · c+ min{a, b} = 3n/8 + Θ(
√
n).

On the other hand, consider some matchingM with x 3-cycles and y 2-cycles, such that
(without loss of generality) x+ y = n/4 — as the total number is constrained by the n/4 vertices
in layer C. Note that under the optimal matching we have x = n/4, and

|OPT(G) � H1| = a+ b+ c = 3n/8−Θ(n).

More generally, we have that |M � H1| ≤ a + b + c + y. In order to guarantee thatM is
individually rational for player 1, we must close the gap between |OPT(H1)| and |M � H1|,
which implies that y = Ω(

√
n). That is, we must sacrifice Ω(

√
n) 3-cycles in favor of 2-cycles.

But that means that |M| ≤ |OPT(G)| − Ω(
√
n).

Finally, note that Corollary 12.3.1 assumes cycles of constant length (as does Theorem 12.2.2).
As noted in Section 12.1, major kidney exchanges do, in fact, only use very short cycles and
chains (which can also be represented as cycles) in each match run. But it is nevertheless
interesting to point out that the same statement is false when long cycles are allowed. Indeed, in
Section 12.4.2 we present an example of a graph with long cycles, where (with high probability)
every individually rational matching is smaller than the optimal matching by Ω(n).

12.4 Justification for Conditions on p and L
In this section we present two examples that demonstrate that the requirement of p < 1

2
and

L = O(1) are necessarily for Theorem 12.2.2.

245

d

Altruistic
donor

Chain of length 3n
9

. . .

Layer 1 Layer 2 Layer 3 Layer 2n
9

. . .

Figure 12.4: A graph demonstrating the problem with long cycles.

12.4.1 The Case of Large p
We first provide an example where the conclusion of Theorem 12.2.2 is violated under pi > 1/2.
This happens because the examples violate Lemma 12.2.3, that is, they satisfy

E
H∼pG

[|OPT(H)|] > E
H∼pG

[|OPT(G) � H|] = p · |OPT(G)|.

First, suppose that only 2-cycles are allowed. Consider a graph with three vertices v1, v2, v3,
and 2-cycles between v1 and v2, v2 and v3, and v3 and v1. Suppose p = 2/3. Then p|OPT(G)| =
2 · (2/3). On the other hand, |OPT(H)| = 2 if H contains at least two vertices (otherwise it is 0),
hence

E
H∼pG

[|OPT(H)|] = 2

((
3

2

)
p2(1− p) +

(
3

3

)
p3

)
= 2 · 20

27
> 2 · 2

3
.

Now consider a graph that contains many disjoint copies of the one just discussed. We have that
both OPT(H) and |OPT(G) � H| are concentrated around their expectations (by Hoeffding’s
inequality), so, with high probability, |OPT(H)| > |OPT(G) � H|+ Ω(n).

When 3-cycles are allowed too, it is possible to show that the same phenomenon happens, for
a value of p sufficiently close to 1, in a graph with five vertices v1, . . . , v5, and 2-cycles between
vi and vi+1 for i = 1, . . . , 4, as well as between v5 and v1.

12.4.2 The Case of Long Cycles
We construct an example where long cycles are allowed, and every individually rational matching
is smaller than the optimal matching by Ω(n). Motivated by kidney exchange, the example
includes an altruistic donor, and matchings may include chains initiated by the altruist. However,
we can easily transform the example into one where matchings can only include cycles, by
adding directed edges from every vertex in the graph to the altruistic donor.

Consider the graph G in Figure 12.4. The altruistic donor d is shown as a triangle (we do
not count him as one of the n vertices). The vertices consist of (i) a chain of 3n

9
vertices, and

(ii) a network of 2n
9

layers — shown as dashed ellipses — with each layer consisting of three

246

vertices. All vertices in layer i have edges to all vertices in layers (i+ 1), . . . , 2n
9

, and there are
edges from d to all vertices in each layer. Observe that since there are no cycles in this graph,
all matches must happen only via a chain that originates in d. The longest chain consists of 3n

9

vertices. Thus, there is a unique optimal matching in G, and its size is |OPT(G)| = 3n
9

.
Let us now assume the there are two players with probability p = 1

2
each. We first observe

that the expected share of a subgraph H ∼p G in the optimal matching is EH∼pG[|OPT(G) �
H|] = 3n

18
.

Next we examine OPT(H). We can assume that d ∈ H , as this is always true for one of the
two players (so we focus on that player without loss of generality). For any given assignment of
the other vertices to the players, we say that a layer is good if at least one of the vertices in that
layer is in H . It is easy to see that — under the assumption of d ∈ H — OPT(H) is at least the
number of good layers (via a chain that starts at d and visits each good layer in order). Notice
that each layer is good with probability 1− (1/2)3 = 7/8. Therefore, the expected number of
layers that are good is 7

8
· 2n

9
. It follows that EH∼p[|OPT(H)|] ≥ 14

72
n.

Since both |OPT(H)| and |OPT(G) � H| are almost always within O(
√
n) of their expected

values, we have that with high probability, |OPT(H)| − |OPT(G) � H| ≥ 2
72
n−O(

√
n). That is,

OPT(G) is not individually rational, and an individually rational matching would have to use d
to initiate a chain into the layered network. But such a chain can have length at most 2n

9
, whereas

OPT(G) = 3n
9

— the difference is Ω(n), as desired.

12.5 Conclusions and Open Problems
Our work offers a new perspective on the design of optimal and individually rational matching
mechanisms. Motivated by kidney exchange, we considered a setting where vertices of any graph
(donor/patient pairs) are assigned at random to one of the players (hospitals). We showed that in
any arbitrary graph, any optimal matching is almost individually rational, up to a lower order
term of O(

√
|OPT(G)|). Furthermore, we introduced a simple matching mechanism that is fully

individually rational and with high probability finds a matching that is within O(
√
|OPT(G)|) of

the optimal matching.
From the theoretical perspective, two interesting extensions remain open. First, it would

be interesting to extend these results to edge-weighted or vertex-weighted graphs. This is
specifically motivated by kidney exchange, where edge weights represent the quality of a match
between donors and patients, and vertex weights represent the urgency of the patients’ health
conditions and the expected improvement in their quality of life. Another interesting direction is
to extend our results to a wider range of parameters pi, which are induced by the size of each
hospital, when the matching can consider any constant length cycles. It is not hard to see that
Lemma 12.2.4, our concentration results, holds under both of these extensions. However, our
proof of Lemma 12.2.3 relies on the structural properties the Edmonds-Gallai decomposition
that do not immediately extend to edge-weighted and vertex-weights graphs or matchings with
longer cycles. So, in order to address the above scenarios one only has to extend Lemma 12.2.3
to hold under these conditions.

247

248

Appendix A

Omitted Proofs for Chapter 5

A.1 Proof of Equation 5.4

Consider any vector of reserves r ∈ I and let r′ ∈ Im be the vector obtained by rounding
each reserve price down to the nearest multiple of 1/m, except for reserves that lie in the range
[0, 1/m), which are rounded up to 1/m.

First it is easy to see that by rounding up all reserves in r that are below 1/m, up to 1/m, we
cannot decrease the revenue by more than s/m. Let r′′ be this new vector. The reason is that
any bidder that is now not allocated, could only have contributed a payment of at most 1/m.
Moreover, the revenue lost from other allocated bidders by doing this switch is at most 1/m: the
payment of another bidder i′, changes only if his price setter was one of the bidders i that is no
longer allocated, because he doesn’t pass his new reserve r′′i . But then the payment of i′ was at
most 1/m, since the value of i is at most 1/m. Thus Rev(r,v)− Rev(r′′,v) ≤ s/m.

Now we assume that we start with a reserve price r, such that ri ≥ 1/m for all i, and let r′

be the reserve vector where all reserves in r are rounded down to the nearest multiple of 1/m. If
vi > ri, then vi > r′i, so any bidder who would have been included in the basic VCG auction
using reserves r is still included with r′. This can only increase the number of bidders who are
serviced and therefore pay a charge. We now show also that the total decrease in payment from
bidders with value at least 1/m is at most s/m.

Consider the amount that serviced bidder i is charged. This is the maximum of ri and the
highest bid of a bidder in the basic VCG auction who was not serviced (or 0 if all bidders
were serviced); let b denote this highest unserviced bid in the basic VCG auction under r, and
similarly let b′ denote such a bid under r′. Since the set of bidders entering the basic VCG
auction increases from r to r′, we must have b′ ≥ b.

Let U be the set of bidders serviced under r, and U ′ the set under r′. The difference in
revenue is

∑

i∈U

max{ri, b} −
∑

i∈U ′
max{r′i, b′}

=
∑

i∈U∩U ′
(max{ri, b} −max{r′i, b′}) +

∑

i∈U\U ′
max{ri, b} −

∑

i′∈U ′\U

max{r′i′ , b′}. (A.1)

249

We begin by analyzing the last two terms. For any i ∈ U \ U ′ and i′ ∈ U ′ \ U ,

r′i′ + 1/m > ri′ > vi′ ≥ vi > ri,

where vi′ ≥ vi follows, because i enters the basic VCG auction for r′, but is not allocated the
item. Therefore,

max{r′i′ , b′} ≥ max
{
ri − 1/m, b

}
≥ max{ri, b} − 1/m.

Since |U \ U ′| ≤ |U ′ \ U |, we can pick V ⊆ U ′ \ U such that |V | = |U \ U ′| and obtain

∑

i∈U\U ′
max{ri, b} −

∑

i′∈U ′\U

max{r′i′ , b′} ≤
∑

i∈U\U ′
max{ri, b} −

∑

i′∈V

max{r′i′ , b′} ≤
|U \ U ′|
m

.

Note that each term in the first sum of Equation (A.1) is at most 1/m, because

max{r′i, b′} ≥ max
{
ri − 1/m, b

}
≥ max{ri, b} − 1/m.

Thus, we have

Rev(r,v)− Rev(r′,v) ≤ |U ∩ U
′|

m
+
|U \ U ′|
m

≤ s

m
.

Thus if we start from any reserve price vector r, we can first round up to 1/m all reserves
that are below 1/m and then round down any other reserve to the nearest multiple of 1/m. The
combination of this two separate modification, can drop the revenue by at most 2s/m. This
yields the approximation result

max
r∈I

T∑

t=1

Rev(r,vt)−max
r∈Im

T∑

t=1

Rev(r,vt) ≤
2Ts

m
. (A.2)

A.2 Proof of Lemma 5.2.1

We first prove an approximate variant of Be-the-Leader Lemma.

Lemma A.2.1 (Be-the-Approximate-Leader Lemma). In the Generalized FTPL algorithm, for
any x ∈ X ,

T∑

t=1

f(xt+1, yt) +α · Γx1 ≥
T∑

t=1

f(x, yt) +α · Γx − εT.

Proof. For T = 1 the inequality holds trivially, by the definition of x2 = OPT(x1, ε). Assume

250

that the claim holds for some T . Then, for all x

T+1∑

t=1

f(xt+1, yt) +α · Γx1 =
T∑

t=1

f(xt+1, yt) +α · Γx1 + f(xT+2, yT+1)

≥
T∑

t=1

f(xT+2, yt) +α · ΓxT+2
− εT + f(xT+2, yT+1)

(by induction hypothesis)

=
T+1∑

t=1

f(xT+2, yt) +α · ΓxT+2
− εT

≥
T+1∑

t=1

f(x, yt) +α · Γx − ε(T + 1),

(by approximate optimality of xT+2)

proving the lemma.

Proof of Lemma 5.2.1. Let x∗ = arg maxx∈X
∑T

t=1 f(x, yt). Then by Lemma A.2.1,

REGRET = E

[
T∑

t=1

f(x∗, yt)−
T∑

t=1

f(xt, yt)

]

= E

[
T∑

t=1

f(x∗, yt)−
T∑

t=1

f(xt+1, yt)

]
+ E

[
T∑

t=1

f(xt+1, yt)−
T∑

t=1

f(xt, yt)

]

≤ E [α · (Γx1 − Γx∗)] + E

[
T∑

t=1

f(xt+1, yt)−
T∑

t=1

f(xt, yt)

]
+ εT.

A.3 Proof of Lemma 5.3.9
Single-minded setting. In the single-minded setting, each bidder i is interested in one particu-
lar bundle of items q̂i. That is, vi(qi) = vi(q̂i) for all qi ⊇ q̂i and 0 otherwise. Consider any
vector of prices a ∈ P and let a′ ∈ Pm be the vector obtained by rounding each price down to
the nearest multiple of 1/m, except any price below 1/m, which is rounded up to 1/m. First, it
is easy to observe that by rounding item prices below 1/m up to 1/m, can only lose n · k/m of
revenue. In a second step, by then rounding all reserve prices down to the nearest multiple of
1/m can only lose an extra n · k/m. Since the price of every bundle is reduced, any bidder i who
received bundle q̂i in auction a, also receives q̂i in auction a′. So, the revenue of the mechanism
reduces by at most 2nk/m. That is,

max
a∈P

T∑

t=1

Rev(a,vt)− max
a∈Pm

T∑

t=1

Rev(a,vt) ≤
2Tnk

m
.

251

Unit-demand setting. In the unit-demand setting with infinite supply, each bidder i has vi(e`)
for item `, and wishes to purchase at most one item, i.e., item arg max` (vi(e`)− a`). We
show that for any a ∈ P there is a′′ ∈ Pm such that for any valuation profile v, Rev(a,v) −
Rev(a′′,v) ≤ O(nk/m). At a high level, we first choose a′, with a′` ∈ {0, 1/m, · · · ,m/m}, as
discounted prices such that items with higher prices are discounted at higher rates. It is not hard
to see that under this condition, no bidder purchases a less expensive item in auction a′. So, the
loss in the revenue of the auction is bounded by the discount on the items. Using this intuition,
it is sufficient to find a′, with a` ∈ {0, 1/m, · · · ,m/m}, such that a` ≥ a′` ≥ a` −O(1/m) for
all ` ≤ k, and a` − a′` > a`′ − a′`′ when a` > a`′ . We then show how to derive a′′ ∈ Pm whose
revenue is at least as good as a′.

In the following, we provide one such mapping between a and a′ ∈ Pm that has an additive
approximation guarantee. Hartline and Koltun [152] also provided a discretization of P that has
multiplicative approximation guarantee, but using a discretized set different from Pm.

Without loss of generality, assume a1 ≤ a2 ≤ · · · ≤ ak. For ease of exposition, let ε = 1/m.
To begin, let a′1 be the largest multiple of ε less than or equal to a1. For ` = 2, . . . , k, let a′` be the
largest multiple of ε less than or equal to a` such that a` − a′` ≥ a`−1 − a′`−1. Note that a′` is well
defined, since we can begin by considering a′` = a′`−1 and then increase by ε until the condition
is violated. This construction means that pricing of items with a larger ` is more attractive in a′

than it was in a. Thus, no bidder that prefers an item ` under a, would prefer any item `′ < `
under a′. Therefore, the revenue obtained from the bidder i who prefers ` under a is at least a′`
under a′, which implies the bound

Rev(a,v)− Rev(a′,v) ≤ nmax
`≤k

(a` − a′`).

To complete the proof, we argue by induction that a`− a′` ≤ `ε. This clearly holds for ` = 1. For
` ≥ 2, the definition of a′`, in the absence of discretization to ε, would yield a′` = a`−(a`−1−a′`−1).
With the discretization, we have

a′` ≥ a` − (a`−1 − a′`−1)− ε ≥ a` − (`− 1)ε− ε = a` − `ε,

where we used the inductive hypothesis at `− 1.
Next, we construct a′′, such that a′′` = ε if a′` = 0 and a′′` = a′`, otherwise. We show that any

bidder i that purchased some item ` in auction a′ with price a′` ≥ ε, purchases item ` in auction
a′′ as well.

Assume to the contrary that bidder i purchases another item `′. Since there is infinite supply,
bidder i could have purchased item `′ in auction a′, but preferred to purchase item `. Therefore,

vi(e`)− a′` ≥ vi(e`′)− a′`′ .

Note that a′′` = a′` and a′′`′ ≥ a′`′ for all `′ 6= `. So,

vi(e`)− a′′` ≥ vi(e`′)− a′′`′ .

Therefore, bidder i purchases item ` in auction a′′ as well.
Since only the bidder who receive items at price 0 may not be allocated the same items, we

have that Rev(a′′,v) ≥ Rev(a′,v). This completes the proof.

252

A.4 Proof of Lemma 5.4.1
Let x∗ = arg maxx∈X Ey∼F [f(x, y)]. By the definition of regret we have that for any y1, . . . , yT ,

T∑

t=1

E
xt

[f(xt, yt)] ≥ sup
x∈X

T∑

t=1

f(x, yt)− REGRET ≥
T∑

t=1

f(x∗, yt)− REGRET. (A.3)

Observe that the random variablesZt = f(x∗, yt) are drawn i.i.d. with expected value Ey∼F [f(x∗, y)]
and are bounded in [0, 1]. Hence, by the Hoeffding bound, we get that with probability at least
1− 2e−2Tε2:

1

T

T∑

t=1

f(x∗, yt) ≥ E
y∼F

[f(x∗, y)]− ε. (A.4)

By setting ε =
√

log(2/δ)
2T

and combining the two bounds we get the result.

A.5 Proof of Lemma 5.4.3
Let x∗ = arg maxx∈X Ey∼F [f(x, y)]. By the definition of regret we have that for any sequence
y1, . . . , yT ,

T∑

t=1

E
xt

[f(xt, yt)] ≥ sup
x∈X

T∑

t=1

f(x, yt)− REGRET ≥
T∑

t=1

f(x∗, yt)− REGRET. (A.5)

Since y1, . . . , yT are a Markov chain, by applying Theorem 5.4.2 to this chain and to the function
f(x∗, ·), we obtain that with probability at least 1− 2 exp

(
− Tγε2

4+10ε

)
,

1

T

T∑

t=1

f(x∗, yt) ≥ E
y∼F

[f(x∗, y)]− ε. (A.6)

If we set ε =
√

14 log(2/δ)
γT

then we have, either ε > 1, in which case the inequality is trivial, since

f(x, y) ∈ [0, 1], or if ε ≤ 1, then ε =
√

14 log(2/δ)
γT

≥
√

(4+10ε) log(2/δ)
γT

, which implies that the
inequality holds with probability 1− δ.

253

254

Appendix B

Omitted Proofs of Chapter 8

B.1 Proof of Lemma 8.5.2

For ease of presentation let η = 1−β
2

be the probability of flipping the label in noisy regions. For
hw∗ we have

Lτ (hw∗) = 2
(
η(dA + dB) + (1− η)(cA + cB) + cD

)
.

For hw, note that area B relates to hw as area D relates to hw∗ (and vice versa). Thus, the roles
of B and D are exchanged for hw. We have

Lτ (hw) = 2
(
η(cA + dD) + (1− η)(dA + cD) + cB

)
.

Hence,

Lτ (hw)− Lτ (hw∗) = 2

(
(1− 2η)(dA− cA)− η

(
(dB− cB)− (dD− cD)

))
.

Note that dA + dB− dD = dC and cA + cB− cD = cC. Thus we get

Lτ (hw)− Lτ (hw∗) = 2

(
(1− 2η)(dA− cA)− η

(
(dB− cB)− (dD− cD)

))

= 2

(
(1− η)(dA− cA)− η

(
(dB− cB) + (dA− cA)− (dD− cD)

))

= 2
(

(1− η)
(
dA− cA

)
− η
(
dC− cC

))

= β
(
dA− cA

)
− (1− β)

(
dC− cC

)
.

255

B.2 Proof of Lemma 8.5.3
We have

dA− cA =
2

π

∫ 1

0

∫ α

0

z2

τ
sin(ϕ) dϕ dz

=
2

3π

∫ α

0

1

τ
sin(ϕ) dϕ

=
2

3πτ
[− cos(ϕ)]α0

=
2

3πτ
(1− cos(α)).

B.3 Proof of Lemma 8.5.4
When τ ≥ 1,

dC− cC =
4

π

∫ 1

0

∫ π
2

π−α
2

z2

τ
sin(ϕ) dϕ dz

=
4

3π

∫ π
2

π−α
2

1

τ
sin(ϕ) dϕ

=
4

3πτ
cos

(
π − α

2

)

=
4

3πτ
sin
(α

2

)
.

For the case of τ < 1, we have

dC =
2

π

∫ 1

0

∫ π
2

π−α
2

z +
z2

τ
sin(ϕ) dϕ dz

=
α

2π
+

2

π

∫ 1

0

∫ π
2

π−α
2

z2

τ
sin(ϕ) dϕ dz

=
α

2π
+

2

3τπ
sin
(α

2

)
.

We now provide an upper bound on cC by integrating over a the triangular shape T (see
Figure B.1). Note that this bound on cC is actually exact if τ ≤ cos(α/2) and only a strict upper
bound for cos(α/2) < τ < 1. We have

cC ≤ (cT) =
2

π
·
∫ τ

0

(1− z

τ
)(z tan(α/2)) dz

=
2

π
·
∫ τ

0

z tan(α/2)− z2

τ
tan(α/2) dz

=
τ 2

3π
tan
(α

2

)
.

256

hw*

⍺/2C

𝜏

T

Figure B.1: Area T

Thus we get

(dC− cC) ≥ (dC− (cT)) =
1

π

(
α

2
+

2

3τ
sin
(α

2

)
− τ 2

3
tan
(α

2

))
.

257

258

Appendix C

Probability Lemmas for Chapter 9

Theorem C.0.1 (Probability of Ruin [119]). Consider a player who starts with i dollars against
an adversary that has N dollars. The player bets one dollar in each gamble, which he wins with
probability p. The probability that the player ends up with no money at any point in the game is

1−
(

p
1−p

)N

1−
(

p
1−p

)N+i
.

Theorem C.0.2 (Bernstein Inequality). Let X1, . . . , Xn be independent random variables with
expectation µ. Supposed that for some positive real number L and every k > 1,

E[(Xi − µ)k] ≤ 1

2
E[(Xi − µ)2]Lk−2k!.

Then,

Pr

n∑

i=1

Xi − nµ ≥ 2t

√√√√
n∑

i=1

E[(Xi − µ)2]

 < exp(−t2), for 0 < t ≤ 1

2L

√
E[(Xi − µ)2].

259

260

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement
learning. In Proceedings of the 21st International Conference on Machine Learning
(ICML), pages 1–9. ACM, 2004. 1

[2] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal
strategies and minimax lower bounds for online convex games. In Proceedings of the 21st
Conference on Computational Learning Theory (COLT), pages 415–424, 2008. 6.6

[3] D. J. Abraham, Avrim Blum, and Tuomas Sandholm. Clearing algorithms for barter
exchange markets: Enabling nationwide kidney exchanges. In Proceedings of the 8th
ACM Conference on Economics and Computation (EC), pages 295–304, 2007. 11.7.1,
11.9.1, 1

[4] Marek Adamczyk. Improved analysis of the greedy algorithm for stochastic matching.
Information Processing Letters, 111(15):731–737, 2011. 11.2.1, 12.1.3

[5] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the monster: A fast and simple algorithm for contextual bandits. In Proceedings
of the 31st International Conference on Machine Learning (ICML), pages 1638–1646,
2014. 5.1

[6] Mohammad Akbarpour, Shengwu Li, and Shayan Oveis Gharan. Dynamic matching mar-
ket design. In Proceedings of the 15th ACM Conference on Economics and Computation
(EC), pages 355—255, 2014. 11.2.2, 12.1.2

[7] Nima Anari, Nika Haghtalab, Seffi (Joseph) Naor, Sebastian Pokutta, Mohit Singh, and
Alfredo Torrico. Robust submodular maximization: Offline and online algorithms. arXiv
preprint arXiv:1710.04740, 2017. 1.4

[8] Ross Anderson, Itai Ashlagi, David Gamarnik, and Yash Kanoria. A dynamic model of
barter exchange. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1925–1933, 2015. 11.2.2

[9] Ross Anderson, Itai Ashlagi, David Gamarnik, and Alvin E Roth. Finding long chains
in kidney exchange using the traveling salesman problem. Proceedings of the National
Academy of Sciences, 112(3):663–668, 2015. 11.2.2, 11.8.2

261

[10] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 39–48, 2016. 1

[11] Martin Anthony and Peter L Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999. 1.1.2, 7.1.3, 7.3, 9.2, 10.2, 10.3.1, 10.5

[12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:
a meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012. 1.2

[13] Arash Asadpour, Hamid Nazerzadeh, and Amin Saberi. Stochastic submodular maximiza-
tion. In Proceedings of the 4th Conference on Web and Internet Economics (WINE), pages
477–489, 2008. 11.2.1

[14] Itai Ashlagi and Alvin E Roth. Free riding and participation in large scale, multi-hospital
kidney exchange. Theoretical Economics, 9(3):817–863, 2014. 11.1, 11.8.2, 12.1, 12.1.2,
12.1.3, 2

[15] Itai Ashlagi, Duncan S. Gilchrist, Alvin E. Roth, and Michael Rees. Nonsimultane-
ous chains and dominos in kidney-paired donation—revisited. American Journal of
Transplantation, 11(5):984–994, 2011. 11.1.2

[16] Itai Ashlagi, David Gamarnik, Michael A Rees, and Alvin E Roth. The need for (long)
chains in kidney exchange, 2012. 11.8.1, 11.8.2, 12.1.2, 12.1.3

[17] Itai Ashlagi, Patrick Jaillet, and Vahideh H Manshadi. Kidney exchange in dynamic
sparse heterogenous pools. In Proceedings of the 14th ACM Conference on Economics
and Computation (EC), pages 25–26, 2013. 11.8.1, 11.8.2

[18] Itai Ashlagi, Felix Fischer, Ian Kash, and Ariel D. Procaccia. Mix and match: A strate-
gyproof mechanism for multi-hospital kidney exchange. Games and Economic Behavior,
91:284–296, 2015. 12.1.2, 12.1.3

[19] Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with
(very) few queries. In Proceedings of the 17th ACM Conference on Economics and
Computation (EC), pages 43–60. ACM, 2016. 11.2.3, 12.1.2

[20] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. Gambling in a
rigged casino: The adversarial multi-armed bandit problem. In Proceedings of the 36th
Symposium on Foundations of Computer Science (FOCS), pages 322–331, 1995. 4.1.2

[21] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The non-stochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002. 1.1.3

[22] Pranjal Awasthi and Tuomas Sandholm. Online stochastic optimization in the large:
Application to kidney exchange. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), pages 405–411, 2009. 11.2.2

262

[23] Pranjal Awasthi, Maria-Florina Balcan, and Philip M. Long. The power of localization for
efficiently learning linear separators with noise. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing (STOC), pages 449–458. ACM, 2014. 8.1, 8.1.3

[24] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. Efficient
learning of linear separators under bounded noise. In Proceedings of the 28th Conference
on Computational Learning Theory (COLT), pages 167–190, 2015. 1.2, 1.3, 8.1, 8.1.2,
8.1.3, 8.5, 9.1.2

[25] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning
and 1-bit compressed sensing under asymmetric noise. In Proceedings of the 29th
Conference on Computational Learning Theory (COLT), pages 152–192, 2016. 1.2, 1.3,
8.1, 8.1.1, 8.1.3, 8.5, 8.6.1, 9.1.2

[26] Pranjal Awasthi, Avrim Blum, Nika Haghtalab, and Yishay Mansour. Efficient PAC
learning from the crowd. In Proceedings of the 30th Conference on Computational
Learning Theory (COLT), pages 127–150, 2017. 1.3

[27] Baruch Awerbuch and Robert Kleinberg. Online linear optimization and adaptive routing.
Journal of Computer and System Sciences, 74(1):97–114, February 2008. 1.1.3, 1.2, 4.1.2,
4.6.1, 4.6.3, 4.6.3, 5.1

[28] Yakov Babichenko and Aviad Rubinstein. Communication complexity of approximate
nash equilibria. In Proceedings of the 49th Annual ACM Symposium on Theory of
Computing (STOC), pages 878–889. ACM, 2017. 1

[29] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Yaron Singer. Learning on a budget:
posted price mechanisms for online procurement. In Proceedings of the 13th ACM
Conference on Economics and Computation (EC), pages 128–145. ACM, 2012. 9.1.2

[30] Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with
knapsacks: Dynamic procurement for crowdsourcing. In The 3rd Workshop on Social
Computing and User Generated Content, co-located with ACM EC, 2013. 9.1, 9.1.2

[31] Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online mecha-
nisms for item pricing. In Proceedings of the 7th ACM Conference on Economics and
Computation (EC), pages 29–35. ACM, 2006. 1.1.3, 5.1, 5.1.2, 5.1.3, 5.3.2, 5.5.1

[32] Maria-Florina Balcan and Vitaly Feldman. Statistical active learning algorithms. In
Proceedings of the 27th Annual Conference on Neural Information Processing Systems
(NIPS), 2013. 8.1

[33] Maria-Florina Balcan and Phil Long. Active and passive learning of linear separators
under log-concave distributions. In Proceedings of the 26th Conference on Computational
Learning Theory (COLT), pages 288–316, 2013. 8.2

263

[34] Maria-Florina Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In
Proceedings of the 23rd International Conference on Machine Learning (ICML), pages
65–72. ACM, 2006. 9.1.2

[35] Maria-Florina Balcan, Andrei Broder, and Tong Zhang. Margin based active learning. In
Proceedings of the 20th Conference on Computational Learning Theory (COLT), pages
35–50, 2007. 8.1.2, 8.3.1

[36] Maria-Florina Balcan, Avrim Blum, Shai Fine, and Yishay Mansour. Distributed learning,
communication complexity and privacy. In Proceedings of the 25th Conference on
Computational Learning Theory (COLT), pages 26.1–26.22, 2012. 10.1.2

[37] Maria-Florina Balcan, Avrim Blum, Nika Haghtalab, and Ariel D. Procaccia. Commitment
without regrets: Online learning in stackelberg security games. Proceedings of the 16th
ACM Conference on Economics and Computation (EC), pages 61–78, 2015. 1.1.3, 1.3,
3.1.2

[38] Maria-Florina Balcan, Nika Haghtalab, and Colin White. k-center clustering under
perturbation resilience. In Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming (ICALP), pages 68:1–68:14, 2016. 1.4

[39] Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. Private and online optimization of
piecewise lipschitz functions. arXiv preprint arXiv:1212.2015, 2017. 1

[40] Pierre Baldi and Søren Brunak. Bioinformatics: the machine learning approach. MIT
press, 2001. 1

[41] Keith Ball, Eric A Carlen, and Elliott H Lieb. Sharp uniform convexity and smoothness
inequalities for trace norms. Inventiones mathematicae, 115(1):463–482, 1994. 6.6

[42] Nikhil Bansal, Anupam Gupta, Jian Li, Julián Mestre, Viswanath Nagarajan, and Atri
Rudra. When LP is the cure for your matching woes: Improved bounds for stochastic
matchings. Algorithmica, 63(4):733–762, 2012. 11.2.1, 12.1.3

[43] Jonathan Baxter. A Bayesian/information theoretic model of learning to learn via multiple
task sampling. Machine learning, 28(1):7–39, 1997. 10.1.2

[44] Jonathan Baxter. A model of inductive bias learning. Journal of Artifificial Intellegience
Research (JAIR), 12:149–198, 2000. 10.1.2

[45] Shai Ben-David and Reba Schuller. Exploiting task relatedness for mulitple task learning.
In Proceedings of the 16th Conference on Computational Learning Theory (COLT), pages
567–580, 2003. 10.1.2

[46] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. A theory of learning from different domains. Machine
learning, 79(1):151–175, 2010. 10.1.2

264

[47] Kshipra Bhawalkar and Tim Roughgarden. Welfare guarantees for combinatorial auctions
with item bidding. In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 700–709. SIAM, 2011. 5.6.2

[48] David Blackwell. Controlled random walks. In Proceedings of the International Congress
of Mathematicians, volume 3, pages 336–338, 1954. 1.1.3

[49] David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal
of Mathematics, 6(1):1–8, 1956. 1.1.3

[50] Avrim Blum. Machine learning: a tour through some favorite results, directions, and
open problems. FOCS 2003 tutorial slides, available at http://www.cs.cmu.edu/
˜avrim/Talks/FOCS03/tutorial.ppt, 2003. 8.1.3

[51] Avrim Blum and Nika Haghtalab. Algorithms for generalized topic modeling. In Proceed-
ings of the 32nd AAAI Conference on Artificial Intelligence (AAAI), pages 2730–2737,
2018. 1.4

[52] Avrim Blum and Jason D Hartline. Near-optimal online auctions. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1156–1163.
SIAM, 2005. 1.1.3, 5.1

[53] Avrim Blum and Yishay Mansour. Learning, regret minimization, and equilibria. In
N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani, editors, Algorithmic Game Theory,
chapter 4. Cambridge University Press, 2007. 1.2, 4.3.1, 5.2

[54] Avrim Blum, A. Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time algorithm
for learning noisy linear threshold functions. Algorithmica, 22(1-2):35–52, 1998. 1.2, 8.1,
1, 8.1.3

[55] Avrim Blum, Anupam Gupta, Ariel D. Procaccia, and Ankit Sharma. Harnessing the
power of two crossmatches. In Proceedings of the 14th ACM Conference on Economics
and Computation (EC), pages 123–140, 2013. 11.2.1, 12.1.2, 12.1.3

[56] Avrim Blum, Nika Haghtalab, and Ariel D. Procaccia. Learning optimal commitment to
overcome insecurity. In Proceedings of the 28th Annual Conference on Neural Information
Processing Systems (NIPS), pages 1826–1834, 2014. 1.3, 3.1.2, 4.1, 4.4, 4.4

[57] Avrim Blum, Nika Haghtalab, and Ariel D. Procaccia. Lazy defenders are almost optimal
against diligent attackers. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence (AAAI), pages 573–579, 2014. 1.4

[58] Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas Sandholm,
and Ankit Sharma. Ignorance is almost bliss: Near-optimal stochastic matching with few
queries. In Proceedings of the 16th ACM Conference on Economics and Computation
(EC), pages 325–342, 2015. 1.3, 11.2.3, 12.1.2

265

http://www.cs.cmu.edu/~avrim/Talks/FOCS03/tutorial.ppt
http://www.cs.cmu.edu/~avrim/Talks/FOCS03/tutorial.ppt

[59] Avrim Blum, Ioannis Caragiannis, Nika Haghtalab, Ariel D. Procaccia, Eviatar B. Procac-
cia, and Rohit Vaish. Opting into optimal matchings. In Proceedings of the 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2351–2363. SIAM, 2017.
1.3

[60] Avrim Blum, Nika Haghtalab, Ariel D. Procaccia, and Mingda Qiao. Collaborative PAC
learning. In Proceedings of the 31st Annual Conference on Neural Information Processing
Systems (NIPS), pages 2392–2401, 2017. 1.3

[61] Béla Bollobás. Random graphs. In Modern graph theory, pages 215–252. Springer, 1998.
11.1.1

[62] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. A sharp concentration inequality
with applications. Random Structures and Algorithms, 16(3):277–292, 2000. 12.2.2

[63] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities.
In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine
Learning, pages 208–240. Springer, 2004. 12.2.8

[64] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. On concentration of self-
bounding functions. Electronic Journal of Probability, 14(64):1884–1899, 2009. 12.1.2,
12.2.2, 12.2.9, 12.2.10, 12.2.11, 12.2.2

[65] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Theory of classification: a
survey of recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005. 1.2, 1.2,
8.1, 8.1.3, 8.2.1, 9.1.2

[66] Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham Kakade. Towards minimax policies
for online linear optimization with bandit feedback. In Annual Conference on Learning
Theory, volume 23, pages 1–41, 2012. 1.1.3, 4.3.1

[67] Colin F Camerer. Behavioral game theory: Experiments in strategic interaction. Princeton
University Press, 2011. 1.2

[68] Ioannis Caragiannis, Aris Filos-Ratsikas, and Ariel D. Procaccia. An improved 2-agent
kidney exchange mechanism. Theoretical Computer Science, 589:53–60, 2015. 12.1.2

[69] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997. 10.1.2

[70] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006. 1.1.3, 6.1

[71] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. On the generalization ability of
on-line learning algorithms. IEEE Transactions on Information Theory, 50(9):2050–2057,
2004. 1.2, 5.1, 5.5

[72] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds
for prediction with expert advice. Machine Learning, 66(2-3):321–352, 2007. 4.3.1

266

[73] Nicolo Cesa-Bianchi, Claudio Gentile, and Yishay Mansour. Regret minimization for
reserve prices in second-price auctions. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1190–1204. SIAM, 2013. 1.1.3, 5.1

[74] Jeff Cheeger. A lower bound for the smallest eigenvalue of the Laplacian. 1969. 5.4.4

[75] Danqi Chen and Christopher Manning. A fast and accurate dependency parser using
neural networks. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 740–750, 2014. 1

[76] Jiecao Chen, Qin Zhang, and Yuan Zhou. Tight bounds for collaborative pac learning via
multiplicative weights. arXiv preprint arXiv:1805.09217, 2018. 10.6

[77] Ning Chen, Nicole Immorlica, Anna R Karlin, Mohammad Mahdian, and Atri Rudra.
Approximating matches made in heaven. In Proceedings of the 36th International Collo-
quium on Automata, Languages and Programming (ICALP), pages 266–278, 2009. 11.2.1,
12.1.3

[78] Chao-Kai Chiang and Chi-Jen Lu. Online learning with queries. In Proceedings of the
21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 616–629,
2010. 6.2

[79] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong
Jin, and Shenghuo Zhu. Online optimization with gradual variations. In Proceedings of
the 25th Conference on Computational Learning Theory (COLT), pages 6–1, 2012. 6.2

[80] George Christodoulou, Annamária Kovács, and Michael Schapira. Bayesian combinatorial
auctions. In Proceedings of the 35th International Colloquium on Automata, Languages
and Programming (ICALP), pages 820–832. Springer, 2008. 5.6.2, 5.6.2

[81] Vincent Cohen-Addad and Varun Kanade. Online optimization of smoothed piecewise
constant functions. In Artificial Intelligence and Statistics, pages 412–420, 2017. 7.1.4

[82] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active learning.
Machine learning, 15(2):201–221, 1994. 9.1.2

[83] Richard Cole and Tim Roughgarden. The sample complexity of revenue maximization.
In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC),
pages 243–252. ACM, 2014. 5.1, 5.1.3

[84] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning (ICML), pages 160–167. ACM, 2008. 1

[85] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to.
In Proceedings of the 7th ACM Conference on Economics and Computation (EC), pages
82–90. ACM, 2006. 2.3

267

[86] Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. New insights on
integer-programming models for the kidney exchange problem. European Journal of
Operational Research, 231(1):57–68, 2013. 11.8.2, 11.9.1

[87] Kevin P Costello, Prasad Tetali, and Pushkar Tripathi. Stochastic matching with commit-
ment. In Proceedings of the 39th International Colloquium on Automata, Languages and
Programming (ICALP), pages 822–833, 2012. 11.2.1, 12.1.3

[88] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, 2000. 8.1

[89] Amit Daniely. A PTAS for agnostically learning halfspaces. In Proceedings of the 28th
Conference on Computational Learning Theory (COLT), pages 484–502, 2015. 8.1.3

[90] Amit Daniely. Complexity theoretic limitations on learning halfspaces. pages 105–117,
2016. 8.1.3

[91] Partha Dasgupta, Peter Hammond, and Eric Maskin. The implementation of social choice
rules: Some general results on incentive compatibility. The Review of Economic Studies,
46(2):185–216, 1979. 1

[92] Sanjoy Dasgupta. Coarse sample complexity bounds for active learning. In Proceedings
of the 19th Annual Conference on Neural Information Processing Systems (NIPS), pages
235–242, 2005. 8.1.1, 9.1.2

[93] Constantinos Daskalakis and Christos H Papadimitriou. Three-player games are hard. In
Electronic colloquium on computational complexity, volume 139, pages 81–87, 2005. 1

[94] Constantinos Daskalakis and Vasilis Syrgkanis. Learning in auctions: Regret is hard,
envy is easy. In Proceedings of the 57th Symposium on Foundations of Computer Science
(FOCS), pages 219–228, 2016. 1.2, 4.9, 5.1, 2, ??, 5.1.3, 5.2, 5.5, 5.6.2

[95] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complexity
of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195–259, 2009. 1

[96] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Applied statistics, pages 20–28, 1979. 8.1

[97] Brian C Dean, Michel X Goemans, and Jan Vondrdk. Approximating the stochastic
knapsack problem: The benefit of adaptivity. In Proceedings of the 45th Symposium on
Foundations of Computer Science (FOCS), pages 208–217, 2004. 11.2.1

[98] Ofer Dekel and Ohad Shamir. Vox populi: Collecting high-quality labels from a crowd.
In Proceedings of the 22nd Conference on Computational Learning Theory (COLT), 2009.
9.1, 9.1.2

[99] Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online
prediction. In Proceedings of the 28th International Conference on Machine Learning
(ICML), pages 713–720, 2011. 10.1.2

268

[100] Ofer Dekel, Claudio Gentile, and Karthik Sridharan. Selective sampling and active
learning from single and multiple teachers. Journal of Machine Learning Research, 13(1):
2655–2697, 2012. 8.1.3

[101] Ofer Dekel, Authur Flajolet, Nika Haghtalab, and Patrick Jaillet. Online learning with a
hint. In Proceedings of the 31st Annual Conference on Neural Information Processing
Systems (NIPS), pages 5299–5308, 2017. 1.3

[102] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009. 1

[103] Nikhil R. Devanur, Zhiyi Huang, and Christos-Alexandros Psomas. The sample complex-
ity of auctions with side information. In Proceedings of the 48th Annual ACM Symposium
on Theory of Computing (STOC), pages 426–439. ACM, 2016. 5.1, 5.1.3, 5.4.2

[104] John P. Dickerson and Tuomas Sandholm. FutureMatch: Combining human value judg-
ments and machine learning to match in dynamic environments. In Proceedings of the
29th AAAI Conference on Artificial Intelligence (AAAI), pages 622–628, 2015. 11.2.2

[105] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. Optimizing kidney ex-
change with transplant chains: Theory and reality. In Proceedings of the 11th International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 711–718,
2012. 11.8.2, 12.1.2, 12.1.3

[106] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. Dynamic matching via
weighted myopia with application to kidney exchange. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence (AAAI), pages 1340–1346, 2012. 11.2.2

[107] John P. Dickerson, Ariel D. Procaccia, and Tuomas Sandholm. Failure-aware kidney
exchange. In Proceedings of the 14th ACM Conference on Economics and Computation
(EC), pages 323–340, 2013. 11.1.2, 11.2.2, 11.8, 11.8.1, 12.1.3

[108] John P. Dickerson, David F. Manlove, Benjamin Plaut, Tuomas Sandholm, and James
Trimble. Position-indexed formulations for kidney exchange. In Proceedings of the 17th
ACM Conference on Economics and Computation (EC), pages 25–42, 2016. 11.9.1

[109] Yichuan Ding, Dongdong Ge, Simai He, and Christopher Thomas Ryan. A non-asymptotic
approach to analyzing kidney exchange graphs. In Proceedings of the 16th ACM Confer-
ence on Economics and Computation (EC), pages 257–258, 2015. 11.8.2

[110] Shahar Dobzinski and Noam Nisan. Mechanisms for multi-unit auctions. In Proceedings
of the 8th ACM Conference on Economics and Computation (EC), pages 346–351. ACM,
2007. 5.1.3, 5.6.1, 5.6.1, 5.6.1

[111] Dimitris C Dracopoulos and Simon Kent. Genetic programming for prediction and control.
Neural Computing & Applications, 6(4):214–228, 1997. 1

269

[112] Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karampatziakis, John Langford, Lev
Reyzin, and Tong Zhang. Efficient optimal learning for contextual bandits. In Proceedings
of theAnnual Conference on Uncertainty in Artificial Intelligence (UAI), pages 169–178,
2011. 5.1

[113] Miroslav Dudı́k, Nika Haghtalab, Haipeng Luo, Robert E Schapire, Vasilis Syrgkanis,
and Jennifer Wortman Vaughan. Oracle-efficient online learning and auction design. In
Proceedings of the 58th Symposium on Foundations of Computer Science (FOCS), pages
528–539, 2017. 1.1.3, 1.3, 4.9, 1, 5.1.3, 5.2.2, 5.1.1

[114] John Dunagan and Santosh Vempala. A simple polynomial-time rescaling algorithm for
solving linear programs. Mathematical Programming, 114(1):101–114, 2008. 8.1.3

[115] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,
1965. 12.1.2, 12.2.1

[116] Fei Fang, Peter Stone, and Milind Tambe. When security games go green: Designing
defender strategies to prevent poaching and illegal fishing. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJCAI), pages 2589–2595, 2015.
1, 1.1.1, 3.1

[117] Uriel Feige, Yishay Mansour, and Robert Schapire. Learning and inference in the presence
of corrupted inputs. In Proceedings of the 28th Conference on Computational Learning
Theory (COLT), pages 637–657, 2015. 8.1.3

[118] Michal Feldman, Hu Fu, Nick Gravin, and Brendan Lucier. Simultaneous auctions are
(almost) efficient. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC), pages 201–210. ACM, 2013. 5.6.2, 5.6.2

[119] Willliam Feller. An introduction to probability theory and its applications, volume 2. John
Wiley & Sons, 2008. 9.4, C.0.1

[120] Peter J Fleming and Robin C Purshouse. Evolutionary algorithms in control systems
engineering: a survey. Control engineering practice, 10(11):1223–1241, 2002. 1

[121] Mark French, Csaba Szepesvári, and Eric Rogers. Performance of nonlinear approximate
adaptive controllers. John Wiley & Sons, 2003. 3.3.3

[122] Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the
22nd Conference on Computational Learning Theory (COLT), volume 90, pages 202–216,
1990. 9.4

[123] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line
learning and an application to boosting. In European conference on computational
learning theory, pages 23–37. Springer, 1995. 9.4, 10.6

270

[124] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sciences, 55(1):
119–139, 1997. 1.1.3, 1.2, 5.1, 7.3

[125] Komei Fukuda and Alain Prodon. Double description method revisited. In Combinatorics
and computer science, pages 91–111. Springer, 1996. 2.4.1

[126] Martin Fürer and Huiwen Yu. Approximate the k-set packing problem by local improve-
ments. CoRR, abs/1307.2262, 2013. 11.9

[127] Peter Gács and Laszlo Lovász. Khachiyan’s algorithm for linear programming. In
Mathematical Programming at Oberwolfach, pages 61–68. Springer, 1981. 2.4.4

[128] Walter Gautschi. On inverses of vandermonde and confluent vandermonde matrices.
Numerische Mathematik, 4(1):117–123, 1962. 3.3.2

[129] Kristiaan M. Glorie, J. Joris van de Klundert, and Albert P. M. Wagelmans. Kidney
exchange with long chains: An efficient pricing algorithm for clearing barter exchanges
with branch-and-price. Manufacturing & Service Operations Management, 16(4):498–512,
2014. 11.8.2

[130] Gagan Goel and Pushkar Tripathi. Matching with our eyes closed. In Proceedings of the
53rd Symposium on Foundations of Computer Science (FOCS), pages 718–727, 2012.
11.2.1, 12.1.3

[131] Sally A Goldman, Michael J Kearns, and Robert E Schapire. Exact identification of read-
once formulas using fixed points of amplification functions. SIAM Journal on Computing,
22(4):705–726, 1993. 5.1, 5.6.5, 5.6.3

[132] Michael F Goodchild and J Alan Glennon. Crowdsourcing geographic information
for disaster response: a research frontier. International Journal of Digital Earth, 3(3):
231–241, 2010. 1

[133] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization. Springer, 2nd edition, 1993. 2.4

[134] Theodore Groves, Roy Radner, and Stanley Reiter. Information, Incentives, and Economic
Mechanisms: Essays in Honor of Leonid Hurwicz. U of Minnesota Press, 1987. 1

[135] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 3389–3396. IEEE, 2017.
1

[136] Anupam Gupta and Viswanath Nagarajan. A stochastic probing problem with applications.
In Proceedings of the 16th Conference on Integer Programming and Combinatorial
Optimization (IPCO), pages 205–216, 2013. 11.2.1, 12.1.3

271

[137] Anupam Gupta, Ravishankar Krishnaswamy, Viswanath Nagarajan, and R Ravi. Ap-
proximation algorithms for stochastic orienteering. In Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1522–1538, 2012. 11.2.1

[138] Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm
selection. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 123–134. ACM, 2016. 7.1.4

[139] Rishi Gupta and Tim Roughgarden. A pac approach to application-specific algorithm
selection. SIAM Journal on Computing, 46(3):992–1017, 2017. 1

[140] Venkatesan Guruswami and Prasad Raghavendra. Hardness of learning halfspaces with
noise. In Proceedings of the 47th Symposium on Foundations of Computer Science
(FOCS), pages 742–765, 2006. 1.2

[141] Venkatesan Guruswami, Jason D Hartline, Anna R Karlin, David Kempe, Claire Kenyon,
and Frank McSherry. On profit-maximizing envy-free pricing. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1164–1173.
SIAM, 2005. 5.1.2, 5.3.2, 5.3.2

[142] Nika Haghtalab, Aron Laszka, Ariel D. Procaccia, Yevgeniy Vorobeychik, and Xenofon D.
Koutsoukos. Monitoring stealthy diffusion. In Proceedings of the IEEE International
Conference on Data Mining (ICDM), pages 151–160, 2015. 1.4

[143] Nika Haghtalab, Fei Fang, Thanh Hong Nguyen, Arunesh Sinha, Ariel D. Procaccia,
and Milind Tambe. Three strategies to success: Learning adversary models in security
games. In Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI), pages 308–314, 2016. 1, 1.3

[144] Nika Haghtalab, Simon Mackenzie, Ariel D. Procaccia, Oren Salzman, and Sid-
dhartha S. Srinivasa. The provable virtue of laziness in motion planning. arXiv preprint
arXiv:1710.04101, 2017. 1.4

[145] Nika Haghtalab, Ritesh Noothigattu, and Ariel D. Procaccia. Weighted voting via no-
regret learning. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence
(AAAI), pages 1055–1062, 2018. 1.4

[146] Chen Hajaj, John P Dickerson, Avinatan Hassidim, Tuomas Sandholm, and David Sarne.
Strategy-proof and efficient kidney exchange using a credit mechanism. In Proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI), pages 921–928, 2015. 12.1.3

[147] James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory
of Games, 3:97–139, 1957. 1.1.3

[148] S. Hanneke. A bound on the label complexity of agnostic active learning. In Proceedings
of the 24th International Conference on Machine Learning (ICML), pages 353–360, 2007.
8.1.1

272

[149] S. Hanneke. Rates of convergence in active learning. The Annals of Statistics, 39(1):
333–361, 2011. 9.1.2

[150] Steve Hanneke. Theory of disagreement-based active learning. Foundations and Trends in
Machine Learning, 7(2-3):131–309, 2014. ISSN 1935-8237. doi: 10.1561/2200000037.
8.1.1

[151] Jason D Hartline. Mechanism design and approximation. Book draft. October, 122, 2013.
5.4.2

[152] Jason D Hartline and Vladlen Koltun. Near-optimal pricing in near-linear time. In
Workshop on Algorithms and Data Structures, pages 422–431. Springer, 2005. A.3

[153] Jason D Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In Proceed-
ings of the 10th ACM Conference on Economics and Computation (EC), pages 225–234.
ACM, 2009. 5.1.2, 5.3.1, 5

[154] Elad Hazan. The convex optimization approach to regret minimization. Optimization for
machine learning, pages 287–303, 2012. 6.1

[155] Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. In Proceedings of the 23th Conference on Computational Learning
Theory (COLT), pages 165–188, 2008. 6.5

[156] Elad Hazan and Satyen Kale. Online submodular minimization. Journal of Machine
Learning Research, 13(Oct):2903–2922, 2012. 1.2, 5.1, 5.2

[157] Elad Hazan and Tomer Koren. The computational power of optimization in online learning.
In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC),
pages 128–141. ACM, 2016. 1.2, 5.1

[158] Elad Hazan and Nimrod Megiddo. Online learning with prior knowledge. In Proceedings
of the 20th Conference on Computational Learning Theory (COLT), pages 499–513.
Springer, 2007. 6.2, 6.7.1

[159] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online
convex optimization. Machine Learning, 69(2-3):169–192, 2007. 6.1, 6.3, 6.3.2

[160] Xiuli He, Ashutosh Prasad, Suresh P. Sethi, and Genaro J. Gutierrez. A survey of
stackelberg differential game models in supply and marketing channels. Journal of
Systems Science and Systems Engineering, 16(4):385–413, Dec 2007. 1.1.1

[161] Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive task assignment
for crowdsourced classification. Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 534–542, 2013. 9.1, 9.1.2

[162] Cor A. J. Hurkens and Alexander Schrijver. On the size of systems of sets every t of
which have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Computing, 2(1):68–72, 1989. 11.1.1, 11.7.1, 11.7.2, 11.9.1

273

[163] Leonid Hurwicz. Optimality and informational efficiency in resource allocation processes.
Mathematical methods in the social sciences, 1960. 1

[164] Marcus Hutter and Jan Poland. Adaptive online prediction by following the perturbed
leader. Journal of Machine Learning Research, 6:639–660, 2005. 2, 5.2

[165] Panagiotis G Ipeirotis, Foster Provost, and Jing Wang. Quality management on amazon
mechanical turk. In Proceedings of the International Conference on Knowledge Discovery
and Data Mining (KDD), pages 64–67. ACM, 2010. 1.2, 9.1

[166] Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs, volume 45. John
Wiley & Sons, 2011. 9.5

[167] Daniel Kahneman. Maps of bounded rationality: Psychology for behavioral economics.
American economic review, 93(5):1449–1475, 2003. 1.2

[168] Sham Kakade and Adam Tauman Kalai. From batch to transductive online learning. In
Proceedings of the 18th Annual Conference on Neural Information Processing Systems
(NIPS), pages 611–618, 2005. 1.2, 5.1

[169] Sham M Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approxi-
mation algorithms. SIAM Journal on Computing, 39(3):1088–1106, 2009. 5.5

[170] Adam Tauman Kalai and Santosh Vempala. Efficient algorithms for online decision
problems. Journal of Computer and System Sciences, 71(3):291–307, 2005. 1.2, 4.1.2,
4.3.1, 5.1, 5.1.1, 5.1.1, 5.2, 5.2.1, 5.5.1, 5.5.1, 6.1, 7.3

[171] Adam Tauman Kalai and Santosh Vempala. Simulated annealing for convex optimization.
Mathematics of Operations Research, 31(2):253–266, 2006. 2.1, 2.3, 2.3.1, 2.4.2

[172] Adam Tauman Kalai, Adam R Klivans, Yishay Mansour, and Rocco A Servedio. Agnos-
tically learning halfspaces. SIAM Journal on Computing, 37(6):1777–1805, 2008. 8.1,
8.1.2, 8.1.3, 8.3, 5, 8.3.1, 8.3.2, 8.3.2

[173] Sampath Kannan, Jamie Morgenstern, Aaron Roth, Bo Waggoner, and Zhiwei Steven Wu.
A smoothed analysis of the greedy algorithm for the linear contextual bandit problem.
arXiv preprint arXiv:1801.03423, 2018. 7.1.4

[174] David R Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowd-
sourcing systems. In Proceedings of the 25th Annual Conference on Neural Information
Processing Systems (NIPS), pages 1953–1961, 2011. 9.1.2

[175] David R Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal task allocation for
reliable crowdsourcing systems. Operations Research, 62(1):1–24, 2014. 9.1, 9.1.2

[176] Andrej Karpathy and Fei-Fei Li. Deep visual-semantic alignments for generating image
descriptions. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 3128–3137, 2015. 1

274

[177] Michael Kearns and Umesh Vazirani. An introduction to computational learning theory.
MIT Press, Cambridge, MA, 1994. 1.2, 8.1.3

[178] Michael Kearns, Robert E. Schapire, and Linda M. Sellie. Toward efficient agnostic
learning. Mach. Learn., 17(2-3), November 1994. 8.1.3

[179] Christopher Kiekintveld, Janusz Marecki, and Milind Tambe. Approximation methods
for infinite Bayesian Stackelberg games: Modeling distributional payoff uncertainty. In
Proceedings of the 10th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 1005–1012, 2011. 2.1, 4.8

[180] Aniket Kittur, Ed H Chi, and Bongwon Suh. Crowdsourcing user studies with mechanical
turk. In Proceedings of the SIGCHI conference on human factors in computing systems,
pages 453–456. ACM, 2008. 1.2, 9.1

[181] Robert Kleinberg and Tom Leighton. The value of knowing a demand curve: Bounds
on regret for online posted-price auctions. In Proceedings of the 44th Symposium on
Foundations of Computer Science (FOCS), pages 594–605. IEEE, 2003. 5.1

[182] Adam R. Klivans, Philip M. Long, and Rocco A. Servedio. Learning halfspaces with
malicious noise. Journal of Machine Learning Research, 10:2715–2740, 2009. 8.1, 8.4

[183] Vladimir Koltchinskii. Rademacher complexities and bounding the excess risk in active
learning. Journal of Machine Learning Research, 11:2457–2485, 2010. 9.1.2

[184] Dmytro Korzhyk, Vincent Conitzer, and Ronald Parr. Complexity of computing optimal
Stackelberg strategies in security resource allocation games. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI), pages 805–810, 2010. 2.3, 2.5

[185] Dmytro Korzhyk, Zhengyu Yin, Christopher Kiekintveld, Vincent Conitzer, and Milind
Tambe. Stackelberg vs. nash in security games: An extended investigation of interchange-
ability, equivalence, and uniqueness. Journal of Artifificial Intellegience Research (JAIR),
41:297–327, 2011. 2.2

[186] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 404–413. Springer, 1999.
1

[187] Abhishek Kumar and Hal Daumé III. Learning task grouping and overlap in multi-task
learning. In Proceedings of the 29th International Conference on Machine Learning
(ICML), pages 1103–1110, 2012. 10.1.2

[188] Pedro Larranaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano, Inaki
Inza, José A Lozano, Rubén Armañanzas, Guzmán Santafé, Aritz Pérez, et al. Machine
learning in bioinformatics. Briefings in bioinformatics, 7(1):86–112, 2006. 1

275

[189] Daniel Lehmann, Liadan Ita Oćallaghan, and Yoav Shoham. Truth revelation in ap-
proximately efficient combinatorial auctions. Journal of the ACM, 49(5):577–602, 2002.
1

[190] Ruthanne Leishman, Richard Formica, Kenneth Andreoni, John Friedewald, Elizabeth
Sleeman, Catherine Monstello, Darren Stewart, and Tuomas Sandholm. The Organ
Procurement and Transplantation Network (OPTN) Kidney Paired Donation Pilot Program
(KPDPP): Review of current results. In American Transplant Congress (ATC), 2013. Talk
abstract. 11.1.2

[191] Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating
the optimal strategy to commit to. In Proceedings of the 2nd International Symposium on
Algorithmic Game Theory (SAGT), pages 250–262, 2009. 1.2, 2.1, 2.1, 2.4, 3.1.2, 4.1

[192] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016. 1

[193] Fei-Fei Li, Rob Fergus, and Pietro Perona. Learning generative visual models from few
training examples: An incremental bayesian approach tested on 101 object categories.
Computer vision and Image understanding, 106(1):59–70, 2007. 1

[194] Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-
threshold algorithm. Machine learning, 2(4):285–318, 1988. 1.2, 7.1

[195] Nick Littlestone and Manfred Warmuth. Relating data compression and learnability.
Technical report, Technical report, University of California, Santa Cruz, 1986. 1.1.3

[196] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. In Proceed-
ings of the 30th Symposium on Foundations of Computer Science (FOCS), pages 256–261.
IEEE, 1989. 1.1.3

[197] Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information
and computation, 108(2):212–261, 1994. 4.1.2, 7.3

[198] László Lovász and Santosh Vempala. The geometry of logconcave functions and sampling
algorithms. Random Structures and Algorithms, 30(3):307–358, 2007. 8.2

[199] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corporation,
2005. 3.2

[200] David F Manlove and Gregg OMalley. Paired and altruistic kidney donation in the uk:
Algorithms and experimentation. In International Symposium on Experimental Algorithms,
pages 271–282. Springer, 2012. 11.2.2

[201] Christopher D Manning, Christopher D Manning, and Hinrich Schütze. Foundations of
statistical natural language processing. MIT press, 1999. 1

276

[202] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learn-
ing bounds and algorithms. In Proceedings of the 22nd Conference on Computational
Learning Theory (COLT), pages 19–30, 2009. 10.1.2

[203] Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation with
multiple sources. In Proceedings of the 23rd Annual Conference on Neural Information
Processing Systems (NIPS), pages 1041–1048, 2009. 10.1.2

[204] Janusz Marecki, Gerry Tesauro, and Richard Segal. Playing repeated Stackelberg games
with unknown opponents. In Proceedings of the 11th International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), pages 821–828, 2012. 4.1, 4.8

[205] Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of
Statistics, pages 2326–2366, 2006. 8.1

[206] Colin McDiarmid and Bruce Reed. Concentration for self-bounding functions and an
inequality of Talagrand. Random Structures and Algorithms, 29(4):549–557, 2006. 12.2.2

[207] Daniel L McFadden. Quantal choice analaysis: A survey. Annals of Economic and Social
Measurement, 5(4):363–390, 1976. 3.2

[208] Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form
games. Games and economic behavior, 10(1):6–38, 1995. 1.2

[209] H Brendan McMahan. Analysis techniques for adaptive online learning. arXiv preprint
arXiv:1403.3465, 2014. 6.5

[210] Marco Molinaro and R. Ravi. The query-commit problem. CoRR, abs/1110.0990, 2011.
11.2.1

[211] Jamie H Morgenstern and Tim Roughgarden. On the pseudo-dimension of nearly optimal
auctions. In Proceedings of the 29th Annual Conference on Neural Information Processing
Systems (NIPS), pages 136–144, 2015. 5.1, 5.1.2, 5.1.3, 5.3.3, 5.4.2, 5.4.2, 5.4.2

[212] Theodore S Motzkin. The double description method, in contributions to the theory of
games ii. Annals of Mathematics Study, 28, 1953. 2.4.1

[213] Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):
58–73, 1981. 1, 5.1, 5.1.2, 5.3.3, 5.4.2

[214] Thanh H Nguyen, Francesco M Delle Fave, Debarun Kar, Aravind S Lakshminarayanan,
Amulya Yadav, Milind Tambe, Noa Agmon, Andrew J Plumptre, Margaret Driciru, Fred
Wanyama, et al. Making the most of our regrets: Regret-based solutions to handle payoff
uncertainty and elicitation in green security games. In Proceedings of the 6th Conference
on Decision and Game Theory for Security (GameSec), pages 170–191, 2015. 3.1

[215] Thanh Hong Nguyen, Rong Yang, Amos Azaria, Sarit Kraus, and Milind Tambe. Analyz-
ing the effectiveness of adversary modeling in security games. In Proceedings of the 27th
AAAI Conference on Artificial Intelligence (AAAI), 2013. 1.2, 3.1.1, 3.2

277

[216] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the
31st Annual ACM Symposium on Theory of Computing (STOC), pages 129–140. ACM,
1999. 1

[217] Noam Nisan and Amir Ronen. Computationally feasible VCG mechanisms. Journal of
Artifificial Intellegience Research (JAIR), 29(1):19–47, May 2007. 5.1, 5.1.3

[218] Ida Norheim-Hagtun and Patrick Meier. Crowdsourcing for crisis mapping in haiti.
Innovations: Technology, Governance, Globalization, 5(4):81–89, 2010. 1

[219] Christos H Papadimitriou and Tim Roughgarden. Computing equilibria in multi-player
games. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 82–91, 2005. 1

[220] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando Ordonez,
and Sarit Kraus. Playing games for security: An efficient exact algorithm for solving
Bayesian Stackelberg games. In Proceedings of the 7th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 895–902, 2008. 2.3

[221] D. Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral
methods. arXiv preprint arXiv:1212.2015, 2012. 5.4.1, 5.4.2

[222] Chris Piech, Jonathan Huang, Zhenghao Chen, Chuong Do, Andrew Ng, and Daphne
Koller. Tuned models of peer assessment in moocs. arXiv preprint arXiv:1307.2579,
2013. 1

[223] Gilles Pisier. Martingales in banach spaces (in connection with type and cotype).
Manuscript., Course IHP, Feb, pages 2–8, 2011. 6.3.1

[224] James Pita, Manish Jain, Fernando Ordónez, Christopher Portway, Milind Tambe, Craig
Western, Praveen Paruchuri, and Sarit Kraus. Using game theory for los angeles airport
security. AI magazine, 30(1):43, 2009. 3.1

[225] James Pita, Manish Jain, Milind Tambe, Fernando Ordóñez, and Sarit Kraus. Robust
solutions to Stackelberg games: Addressing bounded rationality and limited observations
in human cognition. Artificial Intelligence, 174(15):1142–1171, 2010. 2.1

[226] Massimiliano Pontil and Andreas Maurer. Excess risk bounds for multitask learning
with trace norm regularization. In Proceedings of the 26th Conference on Computational
Learning Theory (COLT), pages 55–76, 2013. 10.1.2

[227] Alexander Rakhlin and Karthik Sridharan. Statistical learning theory and sequential
prediction. Lecture Notes in University of Pennsylvania, 2012. URL http://stat.
wharton.upenn.edu/˜rakhlin/book_draft.pdf. 7.5.1

[228] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In
Proceedings of the 25th Conference on Computational Learning Theory (COLT), pages
993–1019, 2013. 6.2, 6.7.1

278

http://stat.wharton.upenn.edu/~rakhlin/book_draft.pdf
http://stat.wharton.upenn.edu/~rakhlin/book_draft.pdf

[229] Alexander Rakhlin and Karthik Sridharan. Bistro: An efficient relaxation-based method
for contextual bandits. In Proceedings of the 33rd International Conference on Machine
Learning (ICML), pages 1977–1985, 2016. 5.1

[230] Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Online learning: Stochastic,
constrained, and smoothed adversaries. In Proceedings of the 25th Annual Conference on
Neural Information Processing Systems (NIPS), pages 1764–1772, 2011. 7.1.4

[231] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable
sequences. In Proceedings of the 27th Annual Conference on Neural Information Process-
ing Systems (NIPS), pages 3066–3074, 2013. 6.2, 6.7.1

[232] Ronald L Rivest and Robert Sloan. A formal model of hierarchical concept-learning.
Information and Computation, 114(1):88–114, 1994. 1.2, 8.1, 8.1.3, 9.1.1

[233] Alvin E. Roth, Tayfun Sönmez, and M Utku Ünver. Kidney exchange. The Quarterly
Journal of Economics, 119(2):457–488, 2004. 11.9.2

[234] Alvin E. Roth, Tayfun Sönmez, and M Utku Ünver. Pairwise kidney exchange. Journal of
Economic theory, 125(2):151–188, 2005. 11.9.2, 12.1.2

[235] Alvin E Roth, Tayfun Sönmez, and M Utku Ünver. Efficient kidney exchange: Coincidence
of wants in markets with compatibility-based preferences. American Economic Review,
97(3):828–851, 2007. 11.1, 12.1.2

[236] Yannig Roth, F Petavy, and J Céré. The state of crowdsourcing in 2015. eYeka Analyst
Report, 2015. 1

[237] Tim Roughgarden. Selfish routing and the price of anarchy, volume 174. MIT press
Cambridge, 2005. 1

[238] Tim Roughgarden and Okke Schrijvers. Ironing in the dark. In Proceedings of the 17th
ACM Conference on Economics and Computation (EC), pages 1–18. ACM, 2016. 5.1,
5.1.3

[239] Tim Roughgarden and Éva Tardos. How bad is selfish routing? Journal of the ACM, 49
(2):236–259, 2002. 1

[240] Tim Roughgarden and Joshua R Wang. Minimizing regret with multiple reserves. In
Proceedings of the 17th ACM Conference on Economics and Computation (EC), pages
601–616. ACM, 2016. 1.1.3, 5.1, 5.3.1, 5, 5.5.1

[241] Ariel Rubinstein. Modeling bounded rationality. MIT press, 1998. 1.2

[242] Aviad Rubinstein. Settling the complexity of computing approximate two-player nash
equilibria. ACM SIGecom Exchanges, 15(2):45–49, 2017. 1

279

[243] Susan L Saidman, Alvin E Roth, Tayfun Sönmez, M Utku Ünver, and Francis L Delmonico.
Increasing the opportunity of live kidney donation by matching for two and three way
exchanges. Transplantation, 81:773–782, 2006. 11.8, 11.8.1

[244] Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197–227,
1990. 9.4, 9.4.1, 9.4, 9.4.1

[245] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM computing
surveys (CSUR), 34(1):1–47, 2002. 1

[246] Rocco Anthony Servedio. Efficient algorithms in computational learning theory. Harvard
University, 2001. 8.1, 8.1.1, 8.4

[247] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014. 7.3

[248] Shai Shalev-Shwartz, Ohad Shamir, and Karthik Sridharan. Learning kernel-based halfs-
paces with the 0-1 loss. SIAM Journal on Computing, 40(6):1623–1646, December 2011.
8.1.3

[249] Adish Singla and Andreas Krause. Truthful incentives in crowdsourcing tasks using regret
minimization mechanisms. In Proceedings of the 22nd international conference on World
Wide Web, pages 1167–1178. ACM, 2013. 9.1.2

[250] Arunesh Sinha, Debarun Kar, and Milind Tambe. Learning adversary behavior in security
games: A pac model perspective. In Proceedings of the 15th International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), pages 214–222, 2016. 3.1, 3.1.2,
3.2, 3.2

[251] Aleksandrs Slivkins and Jennifer Wortman Vaughan. Online decision making in crowd-
sourcing markets: Theoretical challenges. ACM SIGecom Exchanges, 12(2):4–23, 2014.
9.1

[252] Robert H Sloan. PAC learning, noise, and geometry. In Learning and Geometry: Compu-
tational Approaches, pages 21–41. Springer, 1996. 1.2, 8.1, 8.1.3

[253] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the
simplex algorithm usually takes polynomial time. Journal of the ACM (JACM), 51(3):
385–463, 2004. 1.2, 7.1.1, 7.5

[254] Jacob Steinhardt, Gregory Valiant, and Moses Charikar. Avoiding imposters and delin-
quents: Adversarial crowdsourcing and peer prediction. In Proceedings of the 30th Annual
Conference on Neural Information Processing Systems (NIPS), pages 4439–4447, 2016.
9.1.2

[255] Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert E. Schapire. Efficient algorithms
for adversarial contextual learning. In Proceedings of the 33rd International Conference
on Machine Learning (ICML), pages 2159–2168, 2016. 5.1, 5.6.2

280

[256] Vasilis Syrgkanis, Haipeng Luo, Akshay Krishnamurthy, and Robert E Schapire. Improved
regret bounds for oracle-based adversarial contextual bandits. In Proceedings of the 30th
Annual Conference on Neural Information Processing Systems (NIPS), pages 3135–3143,
2016. 5.1

[257] Milind Tambe. Security and game theory: algorithms, deployed systems, lessons learned.
Cambridge University Press, 2011. 1, 1.1.1, 2.1, 2.5

[258] Panos Toulis and David C. Parkes. Design and analysis of multi-hospital kidney exchange
mechanisms using random graphs. Games and Economic Behavior, 91:360–382, 2015.
12.1.2, 12.1.3, 2

[259] Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R Jennings. Efficient
crowdsourcing of unknown experts using bounded multi-armed bandits. Artificial Intelli-
gence, 214:89–111, 2014. 9.1, 9.1.2

[260] A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of
Statistics, 32(1):135–166, 2004. 8.1.3

[261] M Utku Ünver. Dynamic kidney exchange. The Review of Economic Studies, 77(1):
372–414, 2010. 11.2.2

[262] U.S. Department of Health and Human Services. Organ procurement and transplantation
network, 2016. URL http://optn.transplant.hrsa.gov. 11.1

[263] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142,
1984. 1.2, 9.1, 10.1

[264] Vladimir N Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998. 1.1.2

[265] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of relative
frequencies of events to their probabilities. In Measures of complexity, pages 11–30.
Springer, 2015. 1.2, 7.1

[266] Jan Vondrák. A note on concentration of submodular functions. arXiv:1005.2791, 2010.
12.2.2

[267] V Vovk. A game of prediction with expert advice. Journal of Computer and System
Sciences, 56(2):153–173, 1998. 1.1.3

[268] Paul Wais, Shivaram Lingamneni, Duncan Cook, Jason Fennell, Benjamin Goldenberg,
Daniel Lubarov, David Marin, and Hari Simons. Towards building a high-quality work-
force with mechanical turk. Presented at the NIPS Workshop on Computational Social
Science and the Wisdom of Crowds, pages 1–5, 2010. 1.2, 9.1

[269] Jialei Wang, Mladen Kolar, and Nathan Srerbo. Distributed multi-task learning. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 751–760, 2016. 10.1.2

281

http://optn.transplant.hrsa.gov

[270] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal
learning of halfspaces. In Proceedings of the 31st Annual Conference on Neural Informa-
tion Processing Systems (NIPS), pages 1056–1066, 2017. 8.6.1

[271] Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. Active learning from imperfect
labelers. In Proceedings of the 30th Annual Conference on Neural Information Processing
Systems (NIPS), pages 2128–2136, 2016. 9.1.2

[272] Rong Yang, Benjamin Ford, Milind Tambe, and Andrew Lemieux. Adaptive resource
allocation for wildlife protection against illegal poachers. In Proceedings of the 13th
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 453–460, 2014. 3.1

[273] Chicheng Zhang. Efficient active learning of sparse halfspaces. In Proceedings of the 31st
Conference on Computational Learning Theory (COLT), pages 1856–1880, 2018. 8.6.1

[274] Chicheng Zhang and Kamalika Chaudhuri. Active learning from weak and strong labelers.
In Proceedings of the 29th Annual Conference on Neural Information Processing Systems
(NIPS), pages 703–711, 2015. 9.1.2

[275] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th International Conference on Machine Learning (ICML),
pages 928–936, 2003. 4.3.1, 6.1

282

	1 Introduction
	1.1 Background
	1.1.1 Stackelberg Games
	1.1.2 Offline Learning
	1.1.3 Online Learning

	1.2 Overview of Thesis Contributions and Structure
	1.3 Bibliographical Remarks
	1.4 Excluded Research

	I Learning about People
	2 Learning in Stackelberg Security Games
	2.1 Introduction
	2.2 The Model
	2.3 Problem Formulation and Technical Approach
	2.4 Main Result
	2.4.1 Characteristics of the Optimization Region
	2.4.2 Finding Initial Points
	2.4.3 An Oracle for the Convex Region
	2.4.4 The Algorithms

	2.5 Discussion

	3 Learning about a Boundedly Rational Attacker in Stackelberg Games
	3.1 Introduction
	3.1.1 Our Results
	3.1.2 Related Work

	3.2 Preliminaries
	3.3 Theoretical Results
	3.3.1 Linear Utility Functions
	3.3.2 Polynomial Utility Functions
	3.3.3 Lipschitz Utilities
	3.3.4 Learning the Optimal Strategy

	3.4 Discussion and Open Problems

	4 Online Learning in Multi-attacker Stackelberg Games
	4.1 Introduction
	4.1.1 Overview of Our Results
	4.1.2 Related work

	4.2 Preliminaries
	4.3 Problem Formulation
	4.3.1 Methodology

	4.4 Characteristics of the Offline Optimum
	4.5 Upper bounds – Full Information
	4.6 Upper bounds – Partial Information
	4.6.1 Overview of the Approach
	4.6.2 Partial Information to Full Information
	4.6.3 Creating Unbiased Estimators
	4.6.4 Putting It All Together

	4.7 Lower Bound
	4.8 Discussion
	4.9 Subsequent Works

	5 Oracle-Efficient Online Learning and Auction Design
	5.1 Introduction
	5.1.1 Oracle-Efficient Learning with Generalized FTPL
	5.1.2 Main Application: Online Auction Design
	5.1.3 Extensions and Additional Applications

	5.2 Generalized FTPL and Oracle-Efficient Online Learning
	5.2.1 Regret Analysis
	5.2.2 Oracle-Efficient Online Learning

	5.3 Online Auction Design
	5.3.1 VCG with Bidder-Specific Reserves
	5.3.2 Envy-free Item Pricing
	5.3.3 Level Auctions

	5.4 Stochastic Adversaries and Stronger Benchmarks
	5.4.1 Stochastic Adversaries
	5.4.2 Implications for Online Optimal Auction Design

	5.5 Approximate Oracles and Approximate Regret
	5.5.1 Approximation through Relaxation
	5.5.2 Approximation by Maximal-in-Range Algorithms

	5.6 Additional Applications and Connections
	5.6.1 Fully Efficient Online Welfare Maximization in Multi-Unit Auctions
	5.6.2 Oracle Efficient Online Bidding in Simultaneous Second Price Auctions
	5.6.3 Universal Identification Sequences

	6 Online Learning with a Hint
	6.1 Introduction
	6.2 Related work
	6.3 Preliminaries
	6.4 Improved Regret Bounds for Strongly Convex K
	6.5 Improved Regret Bounds for (C, q)-Uniformly Convex K
	6.6 Lack of uniform Convexity
	6.7 Discussion
	6.7.1 Comparison with other Notions of Hint

	7 Smoothed Analysis of Online Learning
	7.1 Introduction
	7.1.1 Smoothed Analysis
	7.1.2 Smoothed Analysis in Online Learning
	7.1.3 Our Results
	7.1.4 Related Work

	7.2 Preliminaries
	7.3 Main Results
	7.4 Lower Bound for Non-adaptive Non-smooth Adversaries
	7.5 Discussion and Open Problem
	7.5.1 An Open Problem

	II Learning from People
	8 Learning with Bounded Noise
	8.1 Introduction
	8.1.1 Our Results
	8.1.2 Our Techniques
	8.1.3 Related Work

	8.2 Preliminaries
	8.3 Bounded Noise Algorithm
	8.3.1 Outline of the Proof and Related Lemmas
	8.3.2 Initializing bold0mu mumu wwwwww0
	8.3.3 Putting Everything Together

	8.4 Average Does Not Work
	8.5 Hinge Loss Minimization Does Not Work
	8.5.1 Proof of the Lower Bound

	8.6 Discussion and Subsequent Works
	8.6.1 Subsequent Works

	9 Efficient PAC Learning from the Crowd
	9.1 Introduction
	9.1.1 Overview of Results
	9.1.2 Related Work

	9.2 Model and Notations
	9.3 A Baseline Algorithm and a Road-map for Improvement
	9.4 An Interleaving Algorithm
	9.4.1 The General Case of Any

	9.5 No Perfect Labelers

	III Learning by People
	10 Collaborative PAC Learning
	10.1 Introduction
	10.1.1 Overview of Results
	10.1.2 Related Work

	10.2 Model
	10.3 Sample Complexity Upper Bounds
	10.3.1 Personalized Setting
	10.3.2 Centralized Setting

	10.4 Sample Complexity Lower Bounds
	10.4.1 Tight Lower Bound for the Personalized Setting
	10.4.2 Lower Bound for Uniform Convergence

	10.5 Extension to the Non-realizable Setting
	10.6 Discussion and Subsequent Works

	IV Learning for People
	11 A Near Optimal Kidney Exchange with a Few Queries
	11.1 Introduction
	11.1.1 Our theoretical results and techniques
	11.1.2 Our experimental results: Application to kidney exchange

	11.2 Related work
	11.2.1 Stochastic matching
	11.2.2 Kidney exchange
	11.2.3 Subsequent Work

	11.3 The Model
	11.4 Understanding the Challenges
	11.5 Adaptive Algorithm: (1-)-approximation
	11.6 Non-adaptive algorithm: 0.5-approximation
	11.6.1 Upper Bound on the Performance of the Non-Adaptive Algorithm

	11.7 Generalization to stochastic k-cycle packing
	11.7.1 Augmenting structures for k-cycle packing
	11.7.2 Adaptive algorithm for k-set packing

	11.8 Experimental Results
	11.8.1 Experiments on dense generated graphs
	11.8.2 Experiments on real match runs from the UNOS nationwide kidney exchange

	11.9 Discussion & future research
	11.9.1 Open theoretical problems
	11.9.2 Discussion of policy implications of experimental results

	12 Individually Rational Multi-Hospital Kidney Exchange
	12.1 Introduction
	12.1.1 Our Approach
	12.1.2 Our Results and Techniques
	12.1.3 Related Work

	12.2 Optimal Matchings Are Almost Individually Rational
	12.2.1 Proof of Lemma 12.2.3
	12.2.2 Proof of Lemma 12.2.4

	12.3 Individually Rational Matchings that Are Almost Optimal
	12.4 Justification for Conditions on p and L
	12.4.1 The Case of Large p
	12.4.2 The Case of Long Cycles

	12.5 Conclusions and Open Problems

	A Omitted Proofs for Chapter 5
	A.1 Proof of Equation 5.4
	A.2 Proof of Lemma 5.2.1
	A.3 Proof of Lemma 5.3.9
	A.4 Proof of Lemma 5.4.1
	A.5 Proof of Lemma 5.4.3

	B Omitted Proofs of Chapter 8
	B.1 Proof of Lemma 8.5.2
	B.2 Proof of Lemma 8.5.3
	B.3 Proof of Lemma 8.5.4

	C Probability Lemmas for Chapter 9
	Bibliography

