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More	Data	…	More	Stakeholders
Learning	guarantees	that	hold	over	agents,	with	individualized	objectives,	
needs,	and	limitations.

Ownership:	Data	is	spread	across	several	sources.	

Learning	Guarantees: Solutions	must	be	deployed	across	communities	with	different	
localities,	populations,	models,	and	resources.	

Costly	samples:	Taking	samples	in	physical	domains	is	costly	to	individuals	and	data	
curators,	e.g.,	medical	tests,	lead	pipe	testing,	…



1.	Data	is	spread	across	several	sources

2.	Individualized	and	heterogenous	learning	objectives

3.	Procurement	of	resources	from	multiple	agents	and	sources

More	Data	…	More	Stakeholders	…	New	challenges



Enabling	learning	processes	that	benefit	

multiple	agents	to	learn	from	collectively	

fewer	resources.

Practical	Applications:	Data	sharing	and	joint	learning
• Starting	to	be	used	across	network	of	devices,	hospitals,	etc.
• Behind	recent	major	scientific	discoveries,	especially	in	genomic	
studies.

Theoretical	Foundation:
• Multi-agent	collaboration,	welfare,	and	fairness,
• Fundamental	to	robust	learning.

Learning	Across	Multiple	Distributions



Large	Scale	Impact	from
Mass	Participation

Recruit	and	Retain



Fundamental	Questions	We	Need	to	Answer
Q1.	How	to	measure	learning	performance	across	different	tasks	and	distributions.
àWhat	objective	functions	capture	this	performance?
àThis	tutorial:	One	unifying	model	(without	too	much	detail).

Q2.	How	much	resources	are	needed	for	learning	and	meeting	these	objectives?
à Sample	complexity	and	computational	complexity.
à Relying	on	decades	of	efforts	for	learning	a	single	distribution.	
àThis	Tutorial:	Focus	on	a	unifying	view	of	multi-distribution	learning	problems	and	a	
powerful	toolset.

Q3.	How	should	we	procure	these	resources?
àAgents’	incentives	in	providing	resources	in	return	for	high	quality	solutions.
àThis	tutorial:	Quantifying	tradeoffs,	highlighting	technical	challenges,	and	a	call	to	action!



How	should	we	measure	the	learning	
performance	across	different	tasks?

Question	1



The	Issue	with	Average	Guarantees
Typical	learning	algorithms	work	well	on	average	over	the	data	sources
• Good	for	learning	across	data	centers.
• Good	for	when	the	data	is	homogenous	across	sources.

Human	and	organization	data:
• For	non-homogenous	tasks,	a	model	that	has	5%	error	on	average can	have	
50%	error	for	 ⁄𝟏 𝟏𝟎 of	the	agents.

Task	difficulty	varies	significantly
à Some	populations	are	easier	to	learn	than	others.
à Also	depends	on	similarity	across	different	populations.
à Bad	idea	to	have	pre-fixed	allocation	of	statistical/computational	
resources.



The	Issue	with	Average	Guarantees
Typical	learning	algorithms	work	well	on	average	over	the	data	sources
• Good	for	learning	across	data	centers.
• Good	for	when	the	data	is	homogenous	across	sources.

Human	and	organization	data:
• For	non-homogenous	tasks,	a	model	that	has	5%	error	on	average can	have	
50%	error	for	 ⁄𝟏 𝟏𝟎 of	the	agents.

Every	agent	uses	40	
iterations.

Every	agent	has	to
use	75	iterations.

Iteration	=	#samples/64

Va
lid
at
io
n	
ac
cu
ra
cy

Avg	accuracy	>0.7 min	accuracy	>0.7

Blum,	H,	Phillips,	Shao	‘21



Multi-distribution	Learning:	Per-Group	Guarantees
There	are	𝑘 populations/distributions.	Represented	by	
unknown	𝒟!, 𝒟", … , 𝒟# .	

max
$∈[#]

L 𝒟$ , 𝑓 ≤ 𝜖

𝒟!
𝒟" 𝒟#

𝒟$

We	want	the	to	learn	a	function	𝑓 that	is	good	for	every	population.

max
$∈ #

L 𝒟$ , 𝑓 ≤ min
)∗∈*

max
$∈[#]

L 𝒟$ , ℎ∗ + 𝜖 (More	general)

(uncovering	a	universally	good	model)

A	known	loss	function



From	a	One	to	Multiple	Distributions

Well-developed	theory	for	how	much	resources	are	needed	to	learn	a	single	
distribution.

Import	insights,	algorithms,	techniques,	etc.,	from	the	single	distribution	setting	to	
multi-distribution.

Given	sample	access	to	an	unknown	𝒟,

find	𝑓,	s.t.	with	high	probability,	

L 𝒟, 𝑓 ≤ min
!∗∈#

L 𝒟, ℎ∗ + 𝜖

One	Distribution Multiple	Distributions
Given	sample	access	to	unknown	𝒟%, … , 𝒟& ,

find	𝑓,	s.t.	with	high	probability,	

max
'∈[&]

L 𝒟' , 𝑓 ≤ min
!∗∈#

max
'∈ &

L 𝒟' , ℎ∗ + 𝜖



Multi-distribution	Learning:	A	Unifying	Perspective
We	want	to	learn	a	function	𝑓 that	is	good	for	every	population.

max
5∈[8]

L 𝒟5, 𝑓 ≤ 𝜖

max
5∈ 8

L 𝒟5, 𝑓 ≤ min
:∗∈;

max
5∈[8]

L 𝒟5, ℎ∗ + 𝜖 (More	general)

(uncovering	a	universally	good	model)

Losses	in	this	talk:	
àL 𝒟, 𝑓 = 𝔼=∼𝒟 ℓ 𝑧, 𝑓 and	ℓ 𝑧, 𝑓 in	finite	range.
à Take	binary	classification	loss	for	convenience,	i.e.,	L 𝒟, 𝑓 is	expected	error.
à To	emphasize,	use	notation	Loss𝒟 𝑓 .
àNot	every	loss	falls	in	this	category	(e.g. multi-calibration	loss	can	be	addressed	with	the	
same	toolset,	but	does	not	follow	this	formulation)



Multi-distribution	Learning:	A	Unifying	Perspective

Within	a	span	of	2-3	years,	same	study	was	initiated	by	3	different	communities.	Mostly	
inspired	by	ideas	of	fairness,	robustness,	and	collaborations.

àCollaborative	Learning	[Blum,	H,	Procaccia,	Qiao	’17]
à𝒟5s	represent	agent	distributions.	Agents	are	willing	to	collaborate.

àAgnostic	(Fair)	Federated	Learning	[Mohri,	Sivek,	Suresh’19]
à𝒟5s	represent	client	distributions.	Fairness	goals	and	implications.

à (Group)	Distributionally	Robust	optimization	[Sagawa,	Koh,	Hashimoto,	Liang	’19]:
à𝒟5s	represent	possible	distribution	shifts.	Robustness	and	fairness	goals.

àAnd	many	more	…
Beyond	this	talk:	Economic	and	welfare	perspective	on	minmax	objectives
àAxiomatic	and	non-axiomatic	approaches	in	cardinal	welfare	theory.	
àAccuracy-fairness	tradeoffs	[Liang,	Lu,	Mu’21]



How	much	resources	do	we	need	to	meet	
the	multi-distribution	learning	objective?

Question	2



Information:	From	a	Single	to	Multiple	Distributions

We	will	focus	on	the	“number	of	samples”	as	a	resource.
àWhat	we	discuss	also	has	implications	on	“computational	power”	as	a	resource.

Given	sample	access	to	an	unknown	𝒟,

how	many	samples	sufficient	to	learn	𝑓,	s.t.	

with	high	probability,	

Loss𝒟 𝑓 ≤ min
!∗∈#

Loss𝒟 ℎ∗ + 𝜖

Single	Distribution Multiple	Distributions
Given	sample	access	to	unknown	𝒟%, … , 𝒟& ,

how	many	samples	sufficient	to	learn	𝑓,	s.t.	

with	high	probability,	

max
'∈[&]

Loss𝒟" 𝑓 ≤ min
!∗∈#

max
'∈ &

Loss𝒟 ℎ∗ + 𝜖

For	comparison



• 𝐻 finite:	concentration	and	union	bound	gives

Basics:	Learning	a	Single	Distribution

Avg.	Regret	=	nΘ 𝑉𝐶𝐷(𝐻)/𝑇Sample	complexity	=	nΘ @AB ;
C" ≤ 𝑂 DEF ;

C"

For	any	𝐻,	optimal	sample	complexity	(worst-case	over	all	𝐷)	is
Sample	Complexity	(Single	Task)

HoeffdingUnion	bound

Pr For at least one ℎ ∈ 𝐻
LossG ℎ − Loss𝒟 ℎ > 𝜖 ≤ |𝐻| × 2 exp(−2𝑚𝜖+)

Recall	goal:	Using	samples	from	𝒟 learn	a	hypothesis	with	near-optimal	error.

ERM:	Given	a	sample	set	𝑆,	choose	ℎ ∈ 𝐻 that	has	the	smallest	error	on	the	sample	set.

How	many	sample	to	make	this	work?
à Sufficient	to	have:	For	all	ℎ ∈ 𝐻,	estimated	error	of	ℎ is	within	,

+
of	its	true	error.

• 𝐻 infinite:	“VC	dimension”	controls	the	effective	size	of	the	hypothesis	class



What	Can	We	Hope	for?
How	does	the	sample	complexity	of	multi-distribution	should	compare	to	the	sample	
complexity	or	learning	1 or	𝑘 distributions	in	isolation?

Two	forces	at	play:
1.	Distributions	could	be	related	to	each	other,	so	we	can	cross-learn.
àAs	𝑘 grows,	impossible	to	have	𝒟%, … , 𝒟& that	are	all	independent and	hard.

2.	Needs	some	coordination	in	addition	to	learning.
à Finding	same	function	𝑓 to	perform	well	on	all	𝒟%, … , 𝒟& .
à Could	potentially	result	in	worst	dependence	on	learning	parameters,	like	𝜖, 𝛿, 𝑑,…		
à Thought	exercise:	Same	target	function	ℎ∗ labeled	all	distributions	(realizability)

à Identifying	which	distribution	is	the	hard	one	and	only	learning	that	distribution.

𝑂 sample complexty of
learning 1 distribution

max
'∈[&]

Loss𝒟" 𝑓 ≤ min
!∗∈#

max
'∈ &

Loss𝒟 ℎ∗ + 𝜖

𝑂 𝑘× sample complexty of
learning 1 distribution

𝑂 log(𝑘)× sample complexty of
learning 1 distribution

[BHPQ17,	HJZ22]

[MSS19,SKHL19]



Coordination,	Interactions,	Adaptivity
Lack	of	interactions:	
• #	of	samples,	learning	rates,	and	update	frequencies	decided	non-interactively.
• Ignores	varying	distribution	difficulty	and	relevance.	

To	benefit	from	cross-learning,	the	distributions	need	to	interact	adaptively.
àDecisions	about	𝒟5 must	depend	on	how	well	𝒟5 has	done	so	far,	compared	to	𝒟 .

Sample	complexity	of		existing	
algorithms,	for	𝑘 agents

Learning	for	1	agent	separately
1	agent	#	samples

= Θ 𝑘 ×

Without	an	“interactive”	protocol,	
Collaborative	learning	(almost)	as	ineffective	as	not	collaborating	at	all.

[Blum,	H,	Procaccia,	Qiao	’17]



Optimal	Sample	Complexity
Interactions/Coordination/Adaptivity:	All	enabled	by	online	algorithms.

Back	to	the	Basics:	The	MinMax	Formulation	of	these	problems

max
!∈[$]

L 𝒟! , 𝑓 ≤ min
&∗∈'

max
!∈ $

L 𝒟! , ℎ∗ + 𝜖

𝟏 𝟐Minimizing	Agent Maximizing	Agent

We	want	to	find	𝑓 that’s	an	approximate	MinMax	strategy	for	the	minimizing	agent.



MinMax	Games
Equilibria

and	Regret



Basics:	Two	player	Games

𝑢"(𝑥, 𝑦)

𝑢!(𝑥, 𝑦)

𝑦

𝑥

𝟏

𝟐Players:	Player	1 and	2

Strategies:	Sets	of	actions	𝑋,	𝑌
Payoffs:	When	1 plays	𝑥 and	2 plays	𝑦.

1’s payoff	∶ 𝑢%(𝑥, 𝑦) 2’s payoff	∶ 𝑢+(𝑥, 𝑦)

Zero-sum	games: focus	of	this	section
−𝑢%(𝑥, 𝑦) = 𝑢+ 𝑥, 𝑦

We’ll	call	one	of	the	loss	and	one	gain/utility
ℓ 𝑥, 𝑦 = −𝑢%(𝑥, 𝑦)			(in	this	section)



Basics:	Solution	Concepts

𝑃, 𝑄 is	a	Nash	equilibrium	if									can’t	improve	their	utility	by	unilaterally	

changing	𝑃,	and can’t	improve	their	utility	by	changing	𝑄.

Mixed	Strategies: picks 𝑃 ∈ Δ(𝑋) and						 picks 𝑄 ∈ Δ 𝑌 . L(P, Q) is	expected	loss.	

𝟏

𝟐

𝟏 𝟐

MinMax	value MaxMin	value

min
e
max
f

L(P, Q) max
f

min
e
L(P, Q)

(player	1	goes	first) (player	2	goes	first)

MinMax	value	=	MaxMin	value
Under	some	conditions,	e.g.,	𝑋 and	𝑌 finite.

Von	Neumann’s	MinMax	Theorem



Basics:	Why	does	MinMax	Theorem	hold?

min
"
max
#

L(P, Q) ≥ max
#

min
"

L(P, Q)

min
"
max
#

L(P, Q) ≤ max
#

min
"

L P, Q + 𝐴𝑣𝑔. 𝑅𝑒𝑔𝑟𝑒𝑡

1. Easy	to	see:	Whoever	goes	second	does	a	better	job	(minimizing	or	maximizing)

2.	Interesting:	One	player	plays	no-regret,	the	other	best	responds	(or	also	no-regret)

𝟏 𝟐
1
𝑇
A𝐿 𝑃$, 𝑄$ −min

"

1
𝑇
A𝐿 𝑃, 𝑄$ ≤ 𝐴𝑣𝑔 𝑅𝑒𝑔𝑟𝑒𝑡

Online	learnability	andMinMax	are	about	interactions	with	an	adversary.

𝑄$ = max
#

𝐿(𝑃$, 𝑄)

�𝑃 =
1
𝑇
�𝑃g �𝑄 =

1
𝑇
�𝑄g

MinMax	through	online	learning [Freund-Schapire’96]



MinMax	Games
Equilibria

and	Regret



Multi-Distribution	Learning	as	Game	Solving

Imagine	two	players:	
• Min	Player:	Minimizing	the	loss	over	function	class	𝐻.
• Max	Player:	Maximizing	the	loss	over	the	class	of	distributions	𝒟h, … , 𝒟8.
• No-regret algorithms	to	learn	an	approximate	minmax	equilibrium

Game	loss:	Unknown	Loss𝒟# 𝑓 ,	we	must	estimate	the	game	to	solve	it.
• Sample	complexity: Loss𝒟# 𝑓 is	estimated	through	sampling	from	𝒟5.

Re-imagining	the	multi-distribution	learning	objective	as	a	zero–sum	
game.

max
$∈[#]

Loss𝒟% 𝑓 ≤ min
)∗∈*

max
$∈[#]

Loss𝒟% ℎ
∗ + 𝜖

Approximate	MinMax	equilibrium



A	Good	(but	not	optimal)	approach
An	approach:	Solve	with	a	no-regret	algorithm	against	a	best-responding	agent.

Max	Player:	The	no-regret	learning	agent.	Maintains	a	distribution	over	[𝑘],	say	weights	

𝛼%- , … , 𝛼&- over	the	agents.		Proxy	of	how	poorly	they’ve	been	doing	so	far.

Min	Player:	The	best-responding	agent.	For	any	distribution	over	[k],	𝛼%- , … , 𝛼&- ,	it	uses	an	

Empirical	Risk	Minimizer	to	learn	ℎ- ∈ 𝐻 on	the	distribution	𝑃- = ∑𝛼'-𝐷'

Sample

Sample

The	No-regret	algorithm	tells	how	to	split	our	resources		across	distributions.	
Every	round,	𝛼'- fraction	of	the	samples	come	from	distribution	𝐷' .	



Analysis
Simplifying	assumption:	

min
:∗∈;

max
5∈[8]

Loss𝒟# ℎ
∗ = 0 i.e.,	there	is	realizability	with	respect	to	ℎ∗

See the whiteboard!	



Pointers	to	the	Optimal	Approach
Stochastic	Mirror-Prox	Algorithm:	Use	tools	for	solving	stochastic	games	optimally.
• Two	intertwined	no-regret	algorithm.
• Assumes	stochastic	gradients:	noisy	estimated	of	any	Losse$ ℎg .
• (deterministic/stochastic)	Faster	convergence	than	a	No-regret+Best-response	
algorithm.

What	is	missing	from	Stochastic	Mirror-Prox?
• We	can	control	how	accurate	the	noisy	estimates	of	Losse$ ℎg should	be.
àWe	choose	where,	when,	how	much,	to	sample.	Like	adaptive	sampling	methods.

There	is	an	Alg
Overall	#	samples

= log 𝑘 sample complexity of
learning 1 distribution

[H,	Jordan,	Zhao	’22]	[Blum,	H.,	Procaccia,	Qiao	17]



Online	Learning	as	a	Powerful	Medium	
for	Interactions	in	Learning

(beyond	adversarial)

Important	Message



Beyond	Accuracy	Guarantees

Agents	also	incur	cost	for	collecting	information:

• E.g.,	cost	for	data	set	curation,	privacy	cost,	etc.

• The	protocol	shouldn’t	ask	for	“unreasonable”	amount	of	data.

àCollaboration	should	be	beneficial	to	all	of its	users.



How	should	we	procure	resources	
needed	for	learning?

Theory	for	Multi-agent	Sample	
Complexity!

Question	3



[Blum,	H,	Phillips,	Shao	’21]

Reasonable	Share	of	Data
What	we	ask	of	agent 𝑖 is	unreasonable if:
• Ask	𝑖 for	more	data	than	necessary,	if	he	were	to	learn	by	himself.
• Part	of	𝑖’s	contribution	is	exclusively	used	to	meet	the	accuracy	constraint	of	other	
agents	and	did	not	affect	agent 𝑖.

(𝑚!, 𝑚", …𝑚$ …𝑚#)

1.	Every	agent’s	accuracy	constraint	is	met,	and
2.	No	agent	collects	more	data	than	he	needs,	by	himself.

(0,0, … ,𝑚I
$ , … 0)

Individually	Rational

If													‘s	accuracy	constraint	is	
met,	𝑚5 ≤ 𝑚′5

#	of	collected	samples



1.	Every	agent’s	accuracy	constraint	is	met,	and
2.	No	agent	can	reduce	her	contribution	and	still	meet	her	accuracy	constraint.		

(𝑚!, 𝑚", …𝑚′$ …𝑚#)

Stable	Equilibrium

𝑚′' < 𝑚'

‘s	accuracy	constraint	won’t	
be	met

(𝑚!, 𝑚", …𝑚$ …𝑚#)

What	we	ask	of	agent 𝑖 is	unreasonable if:
• Ask	𝑖 for	more	data	than	necessary,	if	he	were	to	learn	by	himself.
• Part	of	𝑖’s	contribution	is	exclusively	used	to	meet	the	accuracy	constraint	of	other	
agents	and	did	not	affect	agent 𝑖.

[Blum,	H,	Phillips,	Shao	’21]

Reasonable	Share	of	Data



Rationality	and	Equilibria	Matter

𝑖

Welfare	of	the	agents:
• Receiving	a	reasonable	return	in	what	resources	you	put	in.

Usability	and	stability	of	systems	over	time:
• Even	a	small	reduction	in	contribution	across	the	agents	impacts	algorithmic	
performance.

60%	of	agents	can	unilaterally	
reduce	their	contributions	to	5%	
of	current	levels.

Fr
ac
.	d
ef
ec
to
rs
	sa
tis
fie
d

Frac.	contribution	for	defectors

State	of	the	art	learning	algorithms	are	VERY	far	from	equilibrium



Do	these	solution	concepts	exist?

Unfortunately,	some	learning	
problems	have	no	stable	equilibrium!

But	stable	equilibria	generally	exist	
under	mild	assumptions.

Individually	Rational	allocations	always	
exists,	e.g.,	in	a	non-collaborative	way.



Bad	case	for	Equilibria
Each	agent	is	much	better	at	completing	the	next	agent’s	task,	then	their	own.

Let	the	feature	of	an	instance	in													‘s	distribution	encode	the	target	function	for	

the	next	agent,	and	its	label	reveal	the	target	on	their	own	data.
Samples

Not	
SamplesSamples

Not	Samples

Cycling	behavior:
• Non-continuous	functions	and	actions
• More	of	a	pure	strategy	equilibrium.



Good	Case	for	Equilibria
Equilibria	are	guaranteed	to	exist,	when	the	loss	is	monotone	
decreasing and	Lipchitz in	the	sampling	effort.

These	are	similar	in	nature	to	“pure”	Nash	equilibria,	since	we	need	
to	identify	a	deterministic	number	of	samples.

Lipschitzness	assumption	allows	us	to	talk	about	a	random	number	
of	samples,	without	losing	the	integrity	of	learning	problems.

Types	of	randomness:
Fine:	Take	500	samples	or	501	samples	with	with	probability	½	½.
Not	Ok:	Take	1000	or	1	samples	with	probability	½,	½.	



Are	Equilibria	Efficient?
They	may	require	more	collective	resources	
than	the	optimal	collaboration!

Judiciously	introduce	small	inefficiencies,	so	
everyone	can	continue	benefitting	from	the	system.	

In	some	cases,

Best	equilibrium	à Some	agents	don’t	contribute.



Price	of	Rationality	and	Stability
Individually	rational	or	stable	equilibria,	require	more	collective	resources	than	the	
optimal	collaboration.

Optimal:											does	all	the	work,	
others	do	nothing.

Stable/Rational:											does	(almost)	no	
work.	Other	agents	have	to do	the	work.

Overall	#	samples	in	the	
best	IR/Stable	allocation = Ω 𝑘 × Overall	#	samples	in	the	

optimal	collaboration

Equilibrium/Individual	Rationality:	Total	work	required	to	be	done	by	other	agents	is	large.



Optimality,	Equilibria,	and	Free	Riding
In	some	cases,	equilibria	are	highly	structured.

If	the	utility/loss	of	agents	are	linear	functions	of	the	contribution:

Difference	between	optimal:
• Any	equilibrium is	an	optimal	collaboration	among	a	subset	of	agents.
• Free	riding	is	part	of	equilibria.	
• Free-riders	don’t	fundamentally	change	the	optimal	collaboration	
structure	between	participating	agents.



Important	Message

New	mathematical	foundation	needed	to	

design	learning	algorithms	that	act	globally,	

and	consider	per-agent	incentives	and	objectives.	



Fundamental	Questions	We	Discussed
Q1.	How	to	measure	learning	performance	across	different	tasks	and	distributions.
àWhat	objective	functions	capture	this	performance?
àThis	tutorial:	One	unifying	model	(without	too	much	detail).

Q2.	How	much	resources	are	needed	for	learning	and	meeting	these	objectives?
à Sample	complexity	and	computational	complexity.
àRelying	on	decades	of	efforts	for	learning	a	single	distribution.	
àThis	Tutorial:	Focus	on	a	unifying	view	of	multi-distribution	learning	problems	and	a	
powerful	toolset.

Q3.	How	should	we	procure	these	resources?
àAgents’	incentives	in	providing	resources	in	return	for	high	quality	solutions.
àThis	tutorial:	Quantifying	tradeoffs,	highlighting	technical	challenges,	and	a	call	to	action!


