# Multi-Distribution Learning

Simons Institute

Data-Driven Decision Processes Bootcamp

Nika Haghtalab

EECS, UC Berkeley

#### More Data ... More Stakeholders

Learning guarantees that hold over agents, with individualized objectives, needs, and limitations.

**Ownership:** Data is spread across several sources.

**Learning Guarantees:** Solutions must be deployed across communities with different localities, populations, models, and resources.

**Costly samples:** Taking samples in physical domains is costly to individuals and data curators, e.g., medical tests, lead pipe testing, ...

#### More Data ... More Stakeholders ... New challenges

1. Data is spread across several sources

2. Individualized and heterogenous learning objectives

3. Procurement of resources from multiple agents and sources



# Learning Across Multiple Distributions

Enabling learning processes that benefit

multiple agents to learn from collectively

#### fewer resources.

Practical Applications: Data sharing and joint learning

- Starting to be used across network of devices, hospitals, etc.
- Behind recent major scientific discoveries, especially in genomic studies.

**Theoretical Foundation:** 

- Multi-agent collaboration, welfare, and fairness,
- Fundamental to robust learning.



Large Scale Impact from Mass Participation

#### **Recruit and Retain**



### Fundamental Questions We Need to Answer

Q1. How to measure learning performance across different tasks and distributions. →What objective functions capture this performance?

→This tutorial: One unifying model (without too much detail).

Q2. How much resources are needed for learning and meeting these objectives?

- $\rightarrow$  Sample complexity and computational complexity.
- $\rightarrow$  Relying on decades of efforts for learning a single distribution.

→This Tutorial: Focus on a unifying view of multi-distribution learning problems and a powerful toolset.

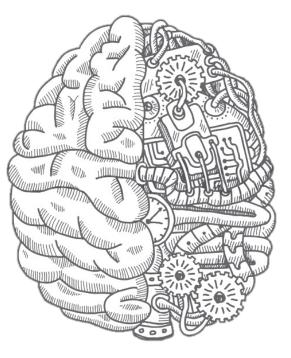
Q3. How should we procure these resources?

 $\rightarrow$ Agents' incentives in providing resources in return for high quality solutions.

→This tutorial: Quantifying tradeoffs, highlighting technical challenges, and a call to action!

#### **Question 1**

How should we measure the learning performance across different tasks?



# The Issue with Average Guarantees

Typical learning algorithms work well **on average** over the data sources

- Good for learning across data centers.
- Good for when the data is homogenous across sources.

Human and organization data:

For non-homogenous tasks, a model that has 5% error on average can have 50% error for <sup>1</sup>/<sub>10</sub> of the agents.

Task difficulty varies significantly

- $\rightarrow$  Some populations are easier to learn than others.
- $\rightarrow$  Also depends on similarity across different populations.
- → Bad idea to have pre-fixed allocation of statistical/computational resources.

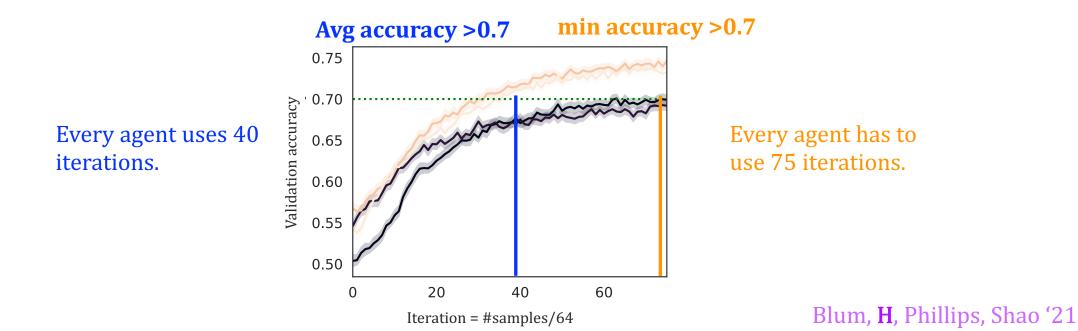
# The Issue with Average Guarantees

Typical learning algorithms work well **on average** over the data sources

- Good for learning across data centers.
- Good for when the data is homogenous across sources.

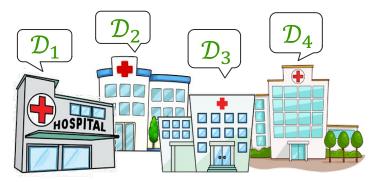
Human and organization data:

For non-homogenous tasks, a model that has 5% error on average can have 50% error for <sup>1</sup>/<sub>10</sub> of the agents.



#### Multi-distribution Learning: Per-Group Guarantees

There are k populations/distributions. Represented by unknown  $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_k$ .



We want the to learn a function *f* that is good **for every population**.

A known loss function  $\max_{i \in [k]} L(\mathcal{D}_{i}, f) \leq \epsilon \qquad (\text{uncovering a universally good model})$   $\max_{i \in [k]} L(\mathcal{D}_{i}, f) \leq \min_{h^{*} \in H} \max_{i \in [k]} L(\mathcal{D}_{i}, h^{*}) + \epsilon \qquad (\text{More general})$ 

### From a One to Multiple Distributions

Well-developed theory for how much resources are needed to learn a single distribution.

Import insights, algorithms, techniques, etc., from the single distribution setting to multi-distribution.

#### **One Distribution**

Given sample access to an unknown  $\mathcal{D}$ ,

find *f*, s.t. with high probability,

 $L(\mathcal{D}, f) \leq \min_{h^* \in H} L(\mathcal{D}, h^*) + \epsilon$ 

#### **Multiple Distributions**

Given sample access to unknown  $\mathcal{D}_1, \dots, \mathcal{D}_k$ ,

find *f*, s.t. with high probability,

 $\max_{i \in [k]} L(\mathcal{D}_i, f) \leq \min_{h^* \in H} \max_{i \in [k]} L(\mathcal{D}_i, h^*) + \epsilon$ 

#### Multi-distribution Learning: A Unifying Perspective

We want to learn a function *f* that is good **for every population**.

 $\max_{i \in [k]} L(\mathcal{D}_i, f) \leq \epsilon \qquad (\text{uncovering a universally good model})$  $\max_{i \in [k]} L(\mathcal{D}_i, f) \leq \min_{h^* \in H} \max_{i \in [k]} L(\mathcal{D}_i, h^*) + \epsilon \qquad (\text{More general})$ 

Losses in this talk:

 $\rightarrow L(\mathcal{D}, f) = \mathbb{E}_{z \sim \mathcal{D}}[\ell(z, f)] \text{ and } \ell(z, f) \text{ in finite range.}$ 

- → Take binary classification loss for convenience, i.e.,  $L(\mathcal{D}, f)$  is expected error.
- → To emphasize, use notation  $\text{Loss}_{\mathcal{D}}(f)$ .
- → Not every loss falls in this category (e.g. multi-calibration loss can be addressed with the same toolset, but does not follow this formulation)

#### Multi-distribution Learning: A Unifying Perspective

Within a span of 2-3 years, same study was initiated by 3 different communities. Mostly inspired by ideas of fairness, robustness, and collaborations.

→ Collaborative Learning [Blum, H, Procaccia, Qiao '17]

 $\rightarrow \mathcal{D}_i$ s represent agent distributions. Agents are willing to collaborate.

→ Agnostic (Fair) Federated Learning [Mohri, Sivek, Suresh'19]

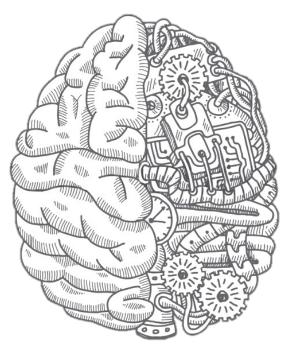
 $\rightarrow \mathcal{D}_i$ s represent client distributions. Fairness goals and implications.

→ (Group) Distributionally Robust optimization [Sagawa, Koh, Hashimoto, Liang '19]:
 → D<sub>i</sub>s represent possible distribution shifts. Robustness and fairness goals.
 → And many more ...

Beyond this talk: Economic and welfare perspective on minmax objectives →Axiomatic and non-axiomatic approaches in cardinal welfare theory. →Accuracy-fairness tradeoffs [Liang, Lu, Mu'21]

#### **Question 2**

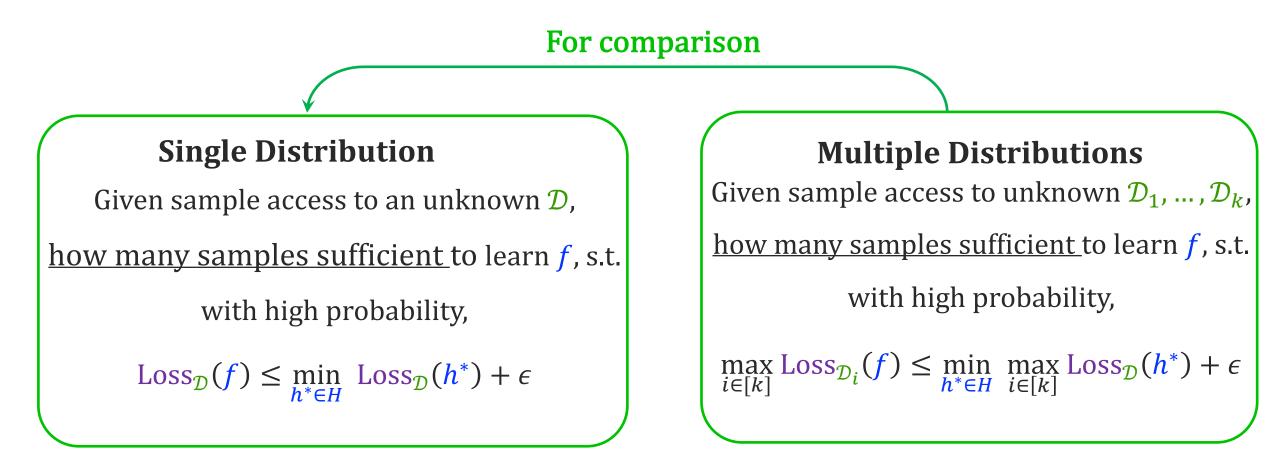
How much resources do we need to meet the multi-distribution learning objective?



#### Information: From a Single to Multiple Distributions

We will focus on the "number of samples" as a resource.

 $\rightarrow$  What we discuss also has implications on "computational power" as a resource.



# Basics: Learning a Single Distribution

**Recall goal:** Using samples from  $\mathcal{D}$  learn a hypothesis with near-optimal error.

**ERM:** Given a sample set *S*, choose  $h \in H$  that has the smallest error on the sample set.

#### How many sample to make this work?

→ Sufficient to have: For all  $h \in H$ , estimated error of h is within  $\frac{\epsilon}{2}$  of its true error.

- *H* finite: concentration and union bound gives  $\begin{aligned} & \text{Union bound} & \text{Hoeffding} \\ & \text{Pr} \begin{bmatrix} \text{For at least one } h \in H \\ |\text{Loss}_{\mathcal{S}}(h) - \text{Loss}_{\mathcal{D}}(h)| > \epsilon \end{bmatrix} \leq \underbrace{|H|}_{h} \times 2 \exp(-2m\epsilon^{2}) \end{aligned}$
- *H* infinite: "VC dimension" controls the effective size of the hypothesis class

#### Sample Complexity (Single Task)

Avg. Regret =  $\widetilde{\Theta}\left(\sqrt{VCD(H)/T}\right)$ 

For any *H*, optimal sample complexity (worst-case over all *D*) is

Sample complexity =  $\widetilde{\Theta}\left(\frac{VCD(H)}{\epsilon^2}\right) \le O\left(\frac{\log(|H|)}{\epsilon^2}\right)$ 

# What Can We Hope for?

How does the sample complexity of multi-distribution should compare to the sample complexity or learning 1 or k distributions in isolation?

 $\max_{i \in [k]} \text{Loss}_{\mathcal{D}_i}(f) \leq \min_{h^* \in H} \max_{i \in [k]} \text{Loss}_{\mathcal{D}}(h^*) + \epsilon$ 

Two forces at play:

1. Distributions could be related to each other, so we can cross-learn.

 $\rightarrow$  As *k* grows, impossible to have  $\mathcal{D}_1, \dots, \mathcal{D}_k$  that are all **independent** and **hard**.

2. Needs some coordination in addition to learning.

→ Finding same function f to perform well on all  $\mathcal{D}_1, ..., \mathcal{D}_k$ .

→ Could potentially result in worst dependence on learning parameters, like  $\epsilon, \delta, d, ...$ 

 $\rightarrow$  Thought exercise: Same target function  $h^*$  labeled all distributions (realizability)

 $\rightarrow$  Identifying which distribution is the hard one and only learning that distribution.

 $O\left(k \times \frac{\text{sample complexty of}}{\text{learning 1 distribution}}\right)$  [MSS19,SKHL19]

 $O\left(\log(k) \times \underset{\text{learning 1 distribution}}{\text{sample complexty of}}\right)$ [BHPQ17, HJZ22]

 $O\left(\begin{array}{c} \text{sample complexty of} \\ \text{learning 1 distribution} \end{array}\right)$ 

### Coordination, Interactions, Adaptivity

Lack of interactions:

- # of samples, learning rates, and update frequencies decided non-interactively.
- Ignores varying distribution difficulty and relevance.

To benefit from cross-learning, the distributions need to interact adaptively.  $\rightarrow$  Decisions about  $\mathcal{D}_i$  must depend on how well  $\mathcal{D}_i$  has done so far, compared to  $\mathcal{D}_j$ .

Sample complexity of existing<br/>algorithms, for k agents $= \Theta(k) \times$  Learning for 1 agent separately<br/>1 agent # samples

[Blum, H, Procaccia, Qiao '17]

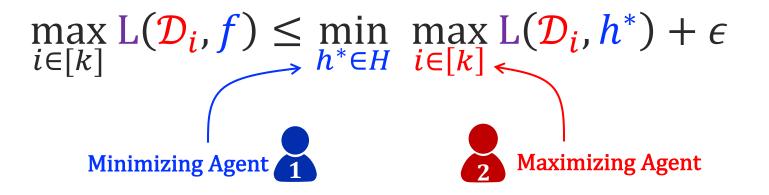
Without an "interactive" protocol,

Collaborative learning (almost) as ineffective as not collaborating at all.

### **Optimal Sample Complexity**

Interactions/Coordination/Adaptivity: All enabled by online algorithms.

Back to the Basics: The MinMax Formulation of these problems



We want to find f that's an approximate MinMax strategy for the minimizing agent.

#### MinMax Games Equilibria and Regret



# Basics: Two player Games

<u>Players</u>: Player **1** and **2** 

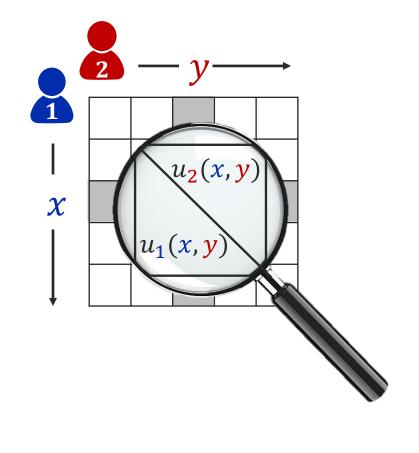
<u>Strategies</u>: Sets of actions *X*, *Y* 

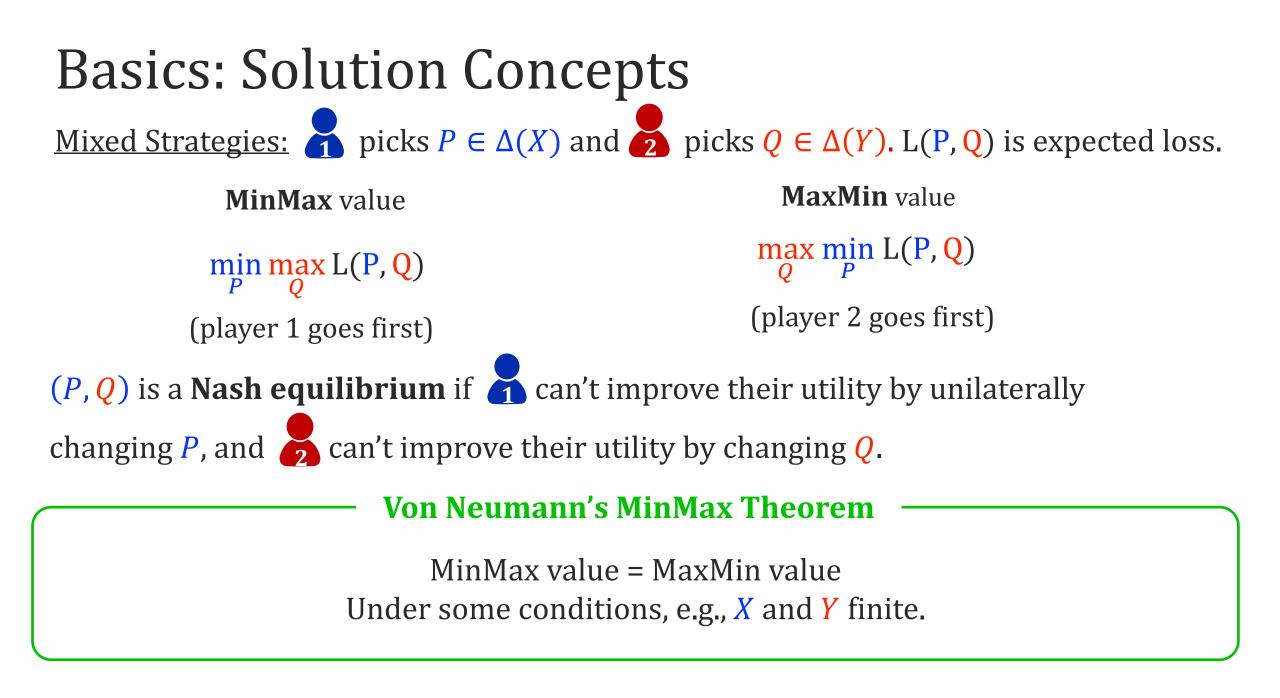
<u>Payoffs</u>: When **1** plays *x* and **2** plays *y*.

**1**'s payoff :  $u_1(x, y)$  **2**'s payoff :  $u_2(x, y)$ 

<u>Zero-sum games</u>: focus of this section  $-u_1(x, y) = u_2(x, y)$ 

We'll call one of the loss and one gain/utility  $\ell(x, y) = -u_1(x, y)$  (in this section)





### Basics: Why does MinMax Theorem hold?

1. Easy to see: Whoever goes second does a better job (minimizing or maximizing)

 $\min_{P} \max_{Q} L(P, Q) \ge \max_{Q} \min_{P} L(P, Q)$ MinMax through online learning

[Freund-Schapire'96]

 $Q_t = \max_{Q} L(P_t, Q)$ 

**Online learnability** and **MinMax** are about interactions with an adversary.

 $\frac{1}{T}\sum_{P_t} L(P_t, Q_t) - \min_{P} \frac{1}{T}\sum_{P} L(P, Q_t) \le Avg \ Regret$ 

2. Interesting: One player plays **no-regre**t, the other **best responds** (or also no-regret)

 $\bar{P} = \frac{1}{T} \sum_{t} P_t \qquad \bar{Q} = \frac{1}{T} \sum_{t} Q_t$ 

 $\min_{P} \max_{Q} L(P, Q) \le \max_{Q} \min_{P} L(P, Q) + Avg.Regret$ 

#### MinMax Games Equilibria and Regret



# Multi-Distribution Learning as Game Solving

Re-imagining the multi-distribution learning objective as a zero–sum game.

$$\max_{i \in [k]} \text{Loss}_{\mathcal{D}_i}(f) \leq \min_{\substack{h^* \in H \ i \in [k]}} \text{Loss}_{\mathcal{D}_i}(h^*) + \epsilon$$
Approximate MinMax equilibrium

**Imagine two players:** 

- **Min Player:** Minimizing the loss over function class *H*.
- Max Player: Maximizing the loss over the class of distributions  $\mathcal{D}_1, \dots, \mathcal{D}_k$ .
- No-regret algorithms to learn an approximate minmax equilibrium

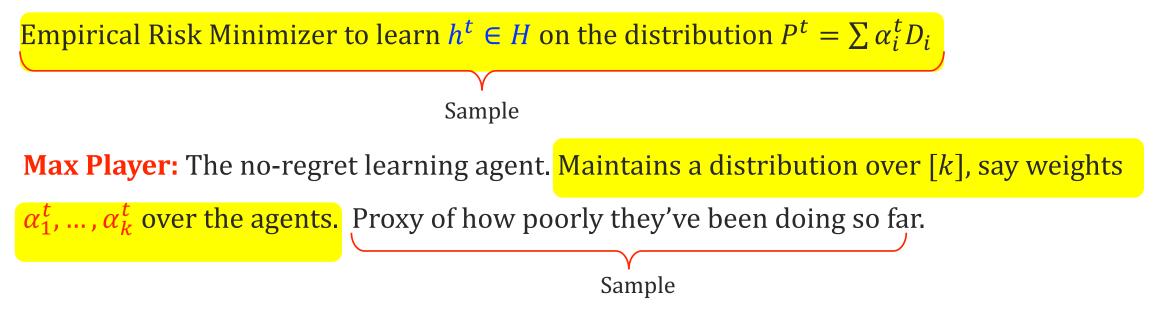
**Game loss:** Unknown Loss<sub> $D_i$ </sub>(f), we must estimate the game to solve it.

• **Sample complexity:**  $Loss_{D_i}(f)$  is estimated through sampling from  $D_i$ .

# A Good (but not optimal) approach

An approach: Solve with a no-regret algorithm against a best-responding agent.

**Min Player**: The best-responding agent. For any distribution over [k],  $\alpha_1^t$ , ...,  $\alpha_k^t$ , it uses an



The No-regret algorithm tells how to split our resources across distributions. Every round,  $\alpha_i^t$  fraction of the samples come from distribution  $D_i$ .

# Analysis

Simplifying assumption:

 $\min_{h^* \in H} \max_{i \in [k]} \text{Loss}_{\mathcal{D}_i}(h^*) = 0 \text{ i.e., there is realizability with respect to } h^*$ 

See the whiteboard!

# Pointers to the Optimal Approach

Stochastic Mirror-Prox Algorithm: Use tools for **solving stochastic games optimally.** 

- Two intertwined no-regret algorithm.
- Assumes stochastic gradients: noisy estimated of any  $\text{Loss}_{P^t}(h^t)$ .
- (deterministic/stochastic) Faster convergence than a No-regret+Best-response algorithm.

What is missing from Stochastic Mirror-Prox?

• We can **control how** accurate the noisy estimates of  $Loss_{P^t}(h^t)$  should be.

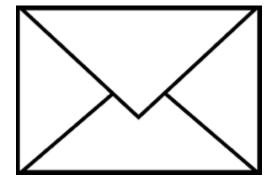
 $\rightarrow$ We choose where, when, how much, to sample. Like adaptive sampling methods.

There is an Alg Overall # samples =  $\log(k)$  (sample complexity of learning 1 distribution)

[H, Jordan, Zhao '22] [Blum, H., Procaccia, Qiao 17]

#### **Important Message**

#### Online Learning as a Powerful Medium for Interactions in Learning (beyond adversarial)



#### **Beyond Accuracy Guarantees**

Agents also incur cost for collecting information:

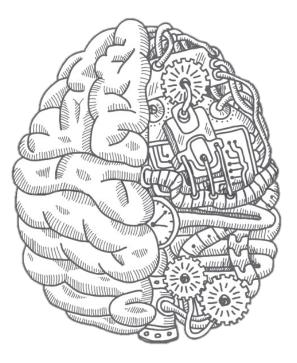
- E.g., cost for data set curation, privacy cost, etc.
- The protocol shouldn't ask for "unreasonable" amount of data.
- $\rightarrow$  Collaboration should be beneficial to all of its users.



#### **Question 3**

# How should we procure resources needed for learning?

Theory for Multi-agent Sample Complexity!

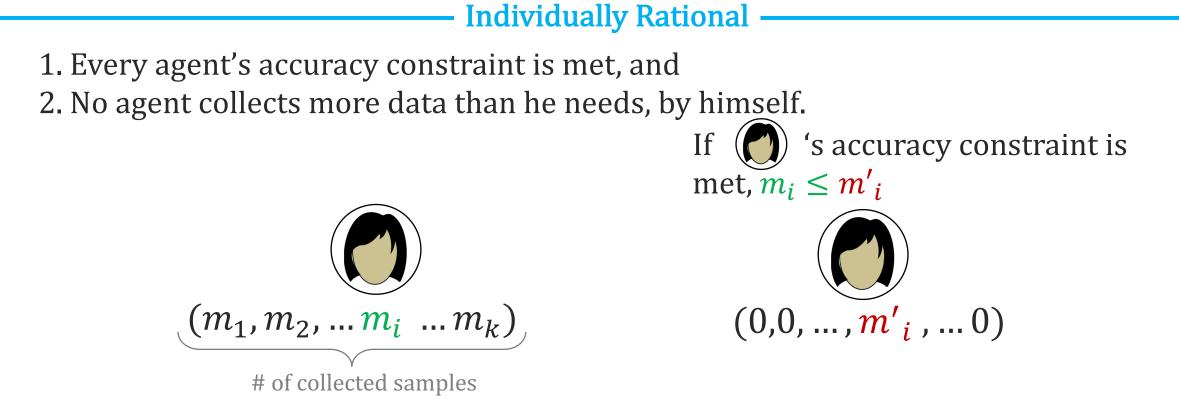


#### Reasonable Share of Data

What we ask of agent *i* is <u>unreasonable</u> if:

- Ask *i* for more data than necessary, if he were to learn by himself.
- Part of *i*'s contribution is exclusively used to meet the accuracy constraint of other agents and did not affect agent *i*.

[Blum, H, Phillips, Shao '21]

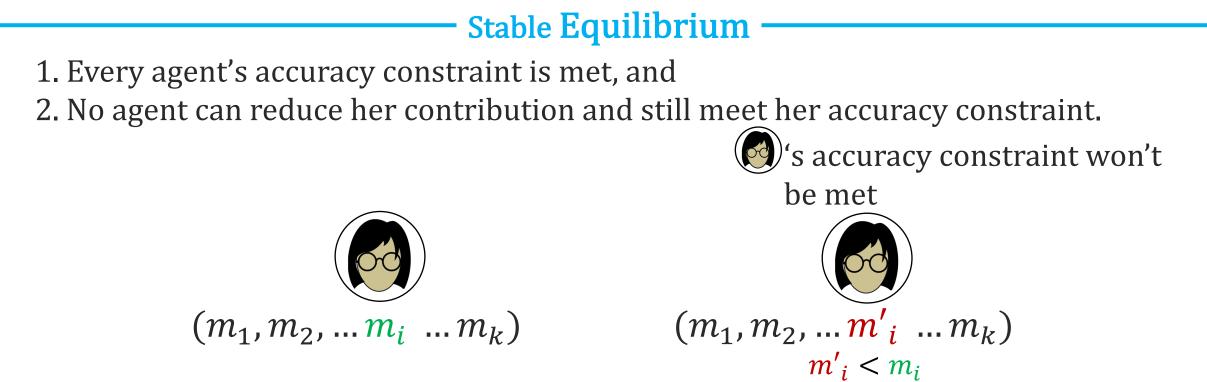


#### Reasonable Share of Data

What we ask of agent *i* is <u>unreasonable</u> if:

- Ask *i* for more data than necessary, if he were to learn by himself.
- Part of *i*'s contribution is exclusively used to meet the accuracy constraint of other agents and did not affect agent *i*.

[Blum, H, Phillips, Shao '21]



#### Rationality and Equilibria Matter

Welfare of the agents:

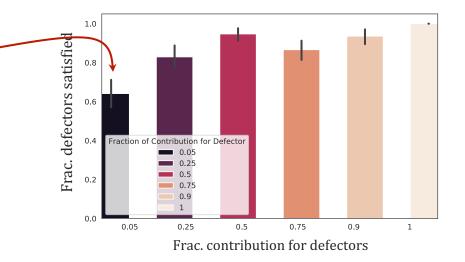
• Receiving a reasonable return in what resources you put in.

Usability and stability of systems over time:

• Even a small reduction in contribution across the agents impacts algorithmic performance.

State of the art learning algorithms are VERY far from equilibrium

60% of agents can unilaterally - reduce their contributions to 5% of current levels.



#### Do these solution concepts exist?

Individually Rational allocations always exists, e.g., in a non-collaborative way.

Unfortunately, some learning problems have no stable equilibrium!

But stable equilibria generally exist under mild assumptions.



#### Bad case for Equilibria

Each agent is much better at completing the next agent's task, then their own.

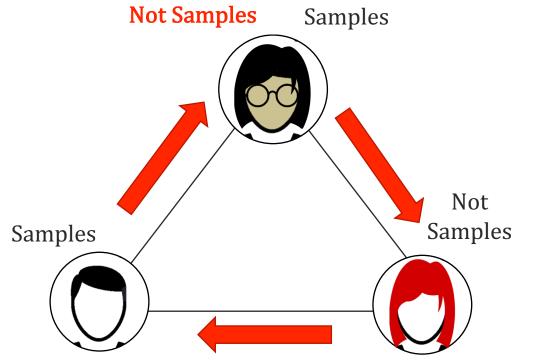
Let the feature of an instance in

) 's distribution encode the target function for

the next agent, and its label reveal the target on their own data.

Cycling behavior:

- Non-continuous functions and actions
- More of a pure strategy equilibrium.



#### Good Case for Equilibria

Equilibria are guaranteed to exist, when the loss is <u>monotone</u> <u>decreasing</u> and <u>Lipchitz</u> in the **sampling effort**.

These are similar in nature to "pure" Nash equilibria, since we need to identify a deterministic number of samples.

Lipschitzness assumption allows us to talk about a random number of samples, without losing the integrity of learning problems.

Types of randomness:

**Fine:** Take 500 samples or 501 samples with with probability  $\frac{1}{2}$   $\frac{1}{2}$ . **Not Ok:** Take 1000 or 1 samples with probability  $\frac{1}{2}$ ,  $\frac{1}{2}$ .



#### Are Equilibria Efficient?

They may require more collective resources than the optimal collaboration!

In some cases,

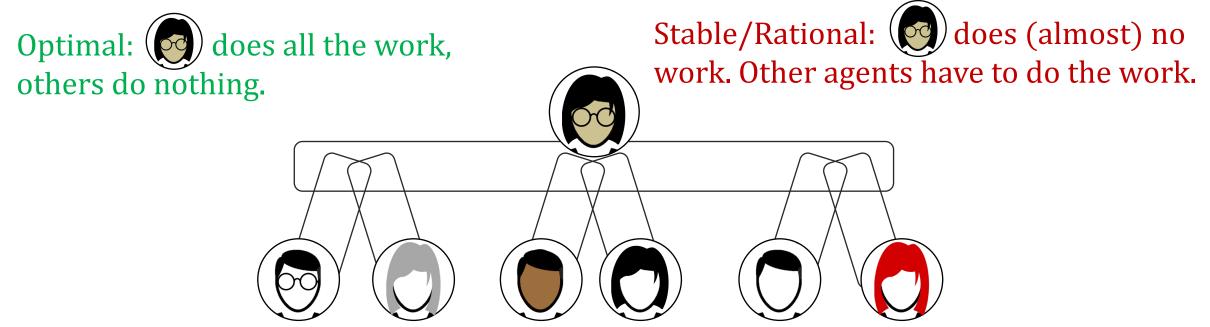
Best equilibrium → Some agents don't contribute.

Judiciously introduce small inefficiencies, so everyone can continue benefitting from the system.



#### Price of Rationality and Stability

Individually rational or stable equilibria, require more collective resources than the optimal collaboration.



Equilibrium/Individual Rationality: Total work required to be done by other agents is large.

Overall # samples in the best IR/Stable allocation

$$= \Omega \bigl( \sqrt{k} \bigr) \times$$

Overall # samples in the optimal collaboration

# Optimality, Equilibria, and Free Riding

In some cases, equilibria are highly structured.

If the utility/loss of agents are linear functions of the contribution:

Difference between optimal:

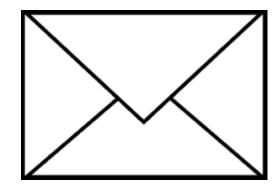
- Any **equilibrium** is an optimal collaboration among **a subset of agents**.
- Free riding is part of equilibria.
- Free-riders don't fundamentally change the optimal collaboration structure between participating agents.

#### **Important Message**

New mathematical foundation needed to

design learning algorithms that **act globally**,

and consider per-agent incentives and objectives.





### Fundamental Questions We Discussed

Q1. How to measure learning performance across different tasks and distributions.
→What objective functions capture this performance?
→This tutorial: One unifying model (without too much detail).

Q2. How much resources are needed for learning and meeting these objectives?

- $\rightarrow$  Sample complexity and computational complexity.
- $\rightarrow$  Relying on decades of efforts for learning a single distribution.

→This Tutorial: Focus on a unifying view of multi-distribution learning problems and a powerful toolset.

Q3. How should we procure these resources?

 $\rightarrow$  Agents' incentives in providing resources in return for high quality solutions.

→This tutorial: Quantifying tradeoffs, highlighting technical challenges, and a call to action!