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Background

The classic Wasserstein distance W!, defined by

W! 𝜇, 𝜈 ≔ inf
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is a popular discrepancy measure between probability 
measures with many applications in statistics and ML.
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Motivation

Despite its proven utility, W! suffers from a sensitivity to 
outliers, with its strict marginal constraints allowing a 
small amount of distant mass to contribute greatly to the 
measured distance1. E.g., for any 𝜀 > 0,
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W! 𝜇, 1 − 𝜀 𝜇 + 𝜀 𝛿+ = ∞.

Object of Study

Outlier-robust Wasserstein distance:
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i.e. we remove an 𝜀-fraction of mass from both 𝜇 and 𝜈
(and renormalize) to minimize their OT cost

robustness radius
↓

The gridded light blue and green regions have 𝜇 and 𝜈 mass 𝜀, 
respectively, and are removed to obtain optimal 𝜇′ and 𝜈′ for W$
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Duality

Kantorovich dual for classic 𝐖𝒑:

W! 𝜇, 𝜈 ! = sup
/∈0& ℝ#

)𝑓 d𝜇 + )𝑓2 d𝜈

Dual for our 𝐖𝒑
𝜺:

(1 − 𝜀)W! 𝜇, 𝜈 ! = sup
2∈3& ℝ#

3𝑓 d𝜇 + 3𝑓4 d𝜈 − 2𝜀 𝑓 5

This elegant dual form is useful for analysis and enables robustification 
of popular duality-based OT solvers via a simple modification.

c-transform of 𝑓, equal to −𝑓 when 𝑝 = 1

↑
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continuous, bounded real functions

1D densities plotted with their optimal 
potential for the W$

% dual problem
Contour plots for optimal dual potentials to 
W$and W$

% between 2D Gaussian mixtures

Population-Limit Robustness Guarantees

Contamination model:

8𝜇 − 𝜇 78, 8𝜈 − 𝜈 78 ≤ 𝜀,

Distributional assumptions:
𝜇, 𝜈 ∈ 𝒟 for 𝒟 ∈ {𝒟8, 𝒟9:;<} where

𝒟8 ≔ 𝜅 ∈ 𝒫 ℝ= ∶ 𝔼> 𝑋 − 𝑥 8 ≤ 𝑀 for some 𝑥 ∈ ℝ= ,
𝒟9:;< ≔ 𝜅 ∈ 𝒫 ℝ= ∶ Σ> ≼ 𝑀9𝐼=

Minimax risk:
Q𝑊:𝒫 ℝ= ×𝒫 ℝ= → ℝ, 

𝑅- 𝒟, 𝜀 ≔ inf
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Q𝑊 W𝜇, W𝜈 −𝑊! 𝜇, 𝜈

Optimality of 𝑾𝒑
𝜺 :

𝑝 < 𝑞,       𝑹5 𝓓𝒒, 𝜺 ≍ 𝑴𝜺𝟏/𝒑.𝟏/𝒒

𝑝 < 2,       𝑹5 𝓓𝟐
𝐜𝐨𝐯, 𝜺 ≍ 𝑴 𝒅 𝜺𝟏/𝒑.𝟏/𝟐
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clean distributions
↓ ↓

contaminated distributions
↑ ↑

Finite-Sample Robustness Guarantees

Contamination model:
ℳ𝐀𝐂 𝜇, 𝜈, 𝜀 — 𝑛 i.i.d. samples from 𝜇 and 𝜈, 𝜀-fraction arbitrarily 
corrupted to obtain 𝑋̂(, … , 𝑋̂H and 𝑌̂(, … , 𝑋̂H w/ distribution 𝑃H
Minimax risk:
Estimator b𝑾𝒏 determined by corrupted samples

𝑅H 𝒟, 𝜀 ≔ inf
?@+
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𝔼J+ Q𝑊H −𝑊! 𝜇, 𝜈

Optimality of 𝑾𝒑
𝜺 :

In general, 𝑹𝒏 𝓓, 𝜺 ≍ 𝑹- 𝓓, 𝜺 + h𝑶 𝑹𝒏 𝓓, 𝟎

𝑝 < 𝑞, 𝑹𝒏 𝓓𝒒, 𝜺 ≍ 𝑴𝜺𝟏/𝒑.𝟏/𝒒 + A𝑶 𝒏.𝟏/𝒅

𝑝 < 2, 𝑹𝒏 𝓓𝟐
𝐜𝐨𝐯, 𝜺 ≍ 𝑴 𝒅 𝜺𝟏/𝒑.𝟏/𝟐+ A𝑶 𝒏.𝟏/𝒅

achieved by 
!𝑾 = 𝑾𝒑

𝜺

achieved by 
!𝑾𝒏 = 𝑾𝒑

𝜺
𝑑 > 𝑑. 𝑝, 𝑞

Properties

1.  The infimum in (1) and the supremum in (2) are achieved
2.  If 𝑓 is an optimal potential for (2), then there are 𝜇L = 𝜇 −𝛼 and 𝜈L =
𝜈 −𝛽minimizing (1) s.t. supp(𝛼) ⊆ argmax 𝑓 and supp(𝛽) ⊆ argmin 𝑓

i.e. the max and min level sets of f encode outlier locations

Samples generated by a robustified 
GAN (left), inspired by the dual 
formulation (2), alongside samples 
generated by standard Wasserstein 
GAN, after training on corrupted 
MNIST dataset.


