Outlier-Robust Optimal Transport: Structure, Duality, and Statistical Analysis Sloan Nietert*, Rachel Cummings†, and Ziv Goldfeld* *Cornell University, †Columbia University ## Background The classic Wasserstein distance W_p , defined by $$W_p(\mu, \nu) \coloneqq \left(\inf_{\substack{\pi \in \Pi(\mu, \nu) \\ \text{set of couplings between } \mu \text{ and } \nu}} \right)^{\frac{1}{p}},$$ is a popular discrepancy measure between probability measures with many applications in statistics and ML. #### Motivation Despite its proven utility, W_p suffers from a sensitivity to outliers, with its strict marginal constraints allowing a small amount of distant mass to contribute greatly to the measured distance¹. E.g., for any $\varepsilon>0$, $$\lim_{|x|\to\infty} W_p(\mu, (1-\varepsilon)\mu + \varepsilon \,\delta_x) = \infty.$$ # **Object of Study** #### **Outlier-robust Wasserstein distance:** robustness radius $$W_{p}^{\stackrel{\downarrow}{\varepsilon}}(\mu,\nu) := \inf_{\substack{\mu',\nu' \in \mathcal{M}_{+}(\mathbb{R}^{d}) \\ \mu' \leq \mu,\nu' \leq \nu \\ \mu'(\mathbb{R}^{d}) = \nu'(\mathbb{R}^{d}) = 1 - \varepsilon}} W_{p}\left(\frac{\mu'}{1-\varepsilon}, \frac{\nu'}{1-\varepsilon}\right),$$ $$(1)$$ i.e. we remove an $\varepsilon\text{-fraction}$ of mass from both μ and ν (and renormalize) to minimize their OT cost The gridded light blue and green regions have μ and ν mass ε , respectively, and are removed to obtain optimal μ' and ν' for W_1^{ε} ### Population-Limit Robustness Guarantees ### **Contamination model:** clean distributions $$\|\tilde{\mu} - \tilde{\mu}\|_{\text{TV}}, \|\tilde{\nu} - \tilde{\nu}\|_{\text{TV}} \leq \varepsilon,$$ ### **Distributional assumptions:** $$\mu, \nu \in \mathcal{D} \text{ for } \mathcal{D} \in \{\mathcal{D}_q, \mathcal{D}_2^{\text{cov}}\} \text{ where}$$ $$\mathcal{D}_q \coloneqq \left\{ \kappa \in \mathcal{P}(\mathbb{R}^d) : \mathbb{E}_{\kappa}[\|X - x\|^q] \le M \text{ for some } x \in \mathbb{R}^d \right\},$$ $$\mathcal{D}_{q} \coloneqq \left\{ \kappa \in \mathcal{P}(\mathbb{R}^{u}) : \mathbb{E}_{\kappa}[\|X - x\|^{q}] \le M \text{ for some } x \in \mathbb{R} \right.$$ $$\mathcal{D}_{2}^{\text{cov}} \coloneqq \left\{ \kappa \in \mathcal{P}(\mathbb{R}^{d}) : \Sigma_{\kappa} \le M^{2}I_{d} \right\}$$ #### Minimax risk: $$\widehat{W}: \mathcal{P}(\mathbb{R}^d) \times \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$$, $$R_{\infty}(\mathcal{D}, \varepsilon) := \inf_{\widehat{W}} \sup_{\mu, \nu \in \mathcal{D} ||\widetilde{\mu} - \mu||_{\text{TV}} \le \varepsilon} |\widehat{W}(\widetilde{\mu}, \widetilde{\nu}) - W_p(\mu, \nu)|$$ # Optimality of W_p^{ε} : $$p < q$$, $R_{\infty}(\mathcal{D}_q, \varepsilon) \simeq M \varepsilon^{1/p-1/q}$ achieved by $$p < 2$$, $R_{\infty}(\mathcal{D}_2^{\text{cov}}, \varepsilon) \approx M\sqrt{d} \varepsilon^{1/p-1/2}$ $\widehat{W} = W_p^{\varepsilon}$ # Finite-Sample Robustness Guarantees #### **Contamination model:** $\mathcal{M}^{\mathrm{AC}}(\mu, \nu, \varepsilon) - n$ i.i.d. samples from μ and ν , ε -fraction arbitrarily corrupted to obtain $\widetilde{X}_1, \ldots, \widetilde{X}_n$ and $\widetilde{Y}_1, \ldots, \widetilde{X}_n$ w/ distribution P_n ### Minimax risk: Estimator \widehat{W}_n determined by corrupted samples $$R_n(\mathcal{D}, \varepsilon) := \inf_{\widehat{W}_n} \sup_{\mu, \nu \in \mathcal{D}} \sup_{P_n \in \mathcal{M}^{AC}(\mu, \nu, \varepsilon)} \mathbb{E}_{P_n} |\widehat{W}_n - W_p(\mu, \nu)|$$ # Optimality of W_p^{ε} : In general, $$R_n(\mathcal{D}, \varepsilon) = R_{\infty}(\mathcal{D}, \varepsilon) + \widetilde{O}(R_n(\mathcal{D}, 0))$$ $$d>d_0(p,q)$$ achieved by $p< q$, $R_nig(\mathcal{D}_q, arepsilonig) symp M arepsilon^{1/p-1/q} + \widetilde{O}ig(n^{-1/d}ig)$ $\widehat{W}_n = W_p^{arepsilon}$ $p< 2$, $R_n(\mathcal{D}_2^{ m cov}, arepsilon) symp M\sqrt{d} \ arepsilon^{1/p-1/2} + \widetilde{O}ig(n^{-1/d}ig)$ ### Duality ### Kantorovich dual for classic W_p : c-transform of f, equal to -f when p=1 $$W_p(\mu, \nu)^p = \sup_{f \in C_b(\mathbb{R}^d)} \int_{\text{continuous bounded real func-}} \int_{\mathbb{R}^d} f \, \mathrm{d}\mu + \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f \, \mathrm{d}\nu$$ Dual for our W_p^{ε} : $$(1 - \varepsilon) W_p(\mu, \nu)^p = \sup_{f \in C_b(\mathbb{R}^d)} \int f \, \mathrm{d}\mu + \int f^c \, \mathrm{d}\nu - 2\varepsilon \|f\|_{\infty}$$ (2) This elegant dual form is useful for analysis and enables robustification of popular duality-based OT solvers via a simple modification. 1D densities plotted with their optimal potential for the $W_{\epsilon}^{\mathcal{E}}$ dual problem Contour plots for optimal dual potentials to W_1 and W_1^{ε} between 2D Gaussian mixtures ### Properties - 1. The infimum in (1) and the supremum in (2) are achieved - 2. If f is an optimal potential for (2), then there are $\mu' = \mu \alpha$ and $\nu' = \nu \beta$ minimizing (1) s.t. $supp(\alpha) \subseteq argmax(f)$ and $supp(\beta) \subseteq argmin(f)$ - i.e. the max and min level sets of f encode outlier locations Samples generated by a robustified GAN (left), inspired by the dual formulation (2), alongside samples generated by standard Wasserstein GAN, after training on corrupted MNIST dataset. 1. L. Chizat, G. Peyré, B. Schmitzer, and F.-X. Vialard. Unbalanced optimal transport: dynamic and Kantorovich formulations. *Journal of Functional Analysis*, 274(11):3090–3123, 2018.