Background

The classic Wasserstein distance W,,, defined by
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set of couplings between p and v
is a popular discrepancy measure between probability
measures with many applications in statistics and ML.

Despite its proven utility, W,, suffers from a sensitivity to

outliers, with its strict marginal constraints allowing a
small amount of distant mass to contribute greatly to the
measured distancel. E.g., forany € > 0,
lim W,(u, (1 —&)u + € 8,) = 0.
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Object of Study

Outlier-robust Wasserstein distance:

robustness radius
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i.e. we remove an &-fraction of mass from both y and v
(and renormalize) to minimize their OT cost

The gridded light blue and green regions have 1 and v mass &,
respectively, and are removed to obtain optimal ¢’ and v’ for Wf
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Population-Limit Robustness Guarantees

Contamination model: o
clean distributions
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Distributional assumptions:
1, v € D for D € {Dgy, D3°"} where

= {k e P(R?) : E[llX — x]|9] < M for some x € R?},

D = (€ P(R%) 3, < My
Minimax risk:
W:P(RY)xP(R?) - R,
R, (D,¢) '=infsup sup |W(lj’ ) — W, (1, V)l
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Optimality of W§: .
p<q Ruw(Dge)=Me/P1/a achieved :y
p<2, Rep(DS, &) = Myd l/P-1/2 W =Ww;

Finite-Sample Robustness Guarantees

Contamination model:
MAC(1, v, €) — ni.id. samples from 1 and v, e-fraction arbitrarily
corrupted to obtain X3, ..., X,, and 3, ..., X,, w/ distribution P,

Minimax risk:
Estimator Wn determined by corrupted samples
R, (D, ¢) == inf sup sup IEpn|Wn - Wy, (1, )|
Wn 11,veD P nEMAC(u,v,€)

Optimality of W3;:

In general, R,,(D,€) = R,(D, &) + 5(Rn(1), 0))
d>dy(p,q) achieved by
p <4 Ru(Dg ) = MEVP V4 + B(n1d) W, = W5

p <2, Ry(D§", &) = MVd £/P~1/2 4+ O(n~1/4)
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Kantorovich dual for classic W,,: ctransform of £, equal to —f when p = 1
sup

P fd,u+ffcdv
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« continuous, bounded real functions

Wp(/,l,, v)p =
Dual for our WIf:
(1= W) = sup

j}du+ff%W—zwﬂmwa
feCy Rd)

This elegant dual form is useful for analysis and enables robustification
of popular duality-based OT solvers via a simple modification.
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Contour plots for optimal dual potentials to
W;and W§ between 2D Gaussian mixtures

1D densities plotted with their optimal
potential for the W£ dual problem

Properties

1. The infimum in (1) and the supremum in (2) are achieved

2. If f is an optimal potential for (2), then therearey’ =y —aandv' =

v — [ minimizing (1) s.t. supp(a) € argmax(f) and supp(B) < argmin(f)
i.e. the max and min level sets of f encode outlier locations

Samples generated by a robustified
GAN (left), inspired by the dual
formulation (2), alongside samples
generated by standard Wasserstein
GAN, after training on corrupted
MNIST dataset.
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