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Abstract

Many mysterious connections have been observed between
collections of mutually unbiased bases (MUBs) and
combinatorial designs called k-nets (particularly affine
planes). We introduce the notion of a k-net over an
algebra, providing a common framework for both ob-
jects, and derive a certain rigidity property which is new
for MUBs. We specialize this result to a class of alge-
braically constructed MUBs and find as a corollary that
certain large systems of this type cannot be completed.

What are MUBs?

Orthonormal bases E ,F of Cd are called unbiased if

|〈e, f〉|2 = 1/d ∀ e ∈ E , f ∈ F .
A collection of r mutually unbiased bases (MUBs) is
said to be complete if r = d+ 1 (as it is easy to prove
that r ≤ d + 1).

MUBs arise naturally in several quantum information pro-
tocols and are of independent mathematical interest.

The eigenbases of the Pauli matrices σ1, σ2, σ3 ∈ L(C2)
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form a complete collection of MUBs.

Conjecture: Complete sets of MUBs exist in Cd if and
only if d is a prime power.

What are k-nets?

A k-net is an incidence structure consisting of a set X
of points and a collection of subsets of X (called lines)
such that

(i) the relation ||— where `1|| `2 means that `1 = `2 or
`1∩`2 = ∅— is an equivalence relation dividing the
set of lines into k equivalence classes (called parallel
classes);

(ii) any two lines are either parallel or intersect at a
single point;

(iii) for any point p and line `, ∃ a line parallel to `
containing p.

A k-net of order d consists of d2 points and k parallel
classes such that each class has exactly d lines and each
line has exactly d points. A (d + 1)-net of order d is
called an affine plane of order d. Simple arguments show
k ≤ d + 1 for all k-nets of order d, so one might say that
affine planes are complete k-nets.

2-net of order 3 3-net of order 3 4-net of order 3
(complete 4-net)

(affine plane of order 3)

Conjecture: Affine planes of order d exist if and only
if d is a prime power.

C∗-algebra review

Recall that every C∗-algebra A is *-isomorphic to the di-
rect sum of full matrix algebras

A ∼=
k⊕
j=1

Mnj(C),

for some n1, . . . , nk satisfying
∑k

j=1 n
2
j = dim(A), and all

such *-isomorphisms are unitarily equivalent.

Generalized k-nets: a common

framework

We now extend the notion of classical k-nets and MUBs to
a more general setting.

Let A be a finite-dimensional C∗-algebra with canonical nor-
malized trace τ . We say that a collection of orthogonal projec-
tions N ⊂ {P ∈ A | P 2 = P ∗ = P} is a k-net over A if

(i) the relation“P = Q or PQ = 0” is an equivalence relation
on N dividing N into k equivalence classes;

(ii) if P,Q ∈ N are not equivalent, then τ (PQ) = 1/ dim(A);

(iii) the elements in each class sum to the identity I .

We refer to elements of N as lines and to the introduced
equivalence classes as parallel classes .

We can easily show (for k ≥ 3) that each parallel class must have
the same number d of lines (and τ (P ) = 1/d), so we say that
N is a k-net of order d. This definition of k-nets over finite
dimensional C∗-algebras generalizes the notions of both classical
k-nets (case A = CX) and MUBs (case A = Md(C)).
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Rigidity Theorem

Our main result implies that generalized k-nets have a certain
rigidity; they are determined by a proper subset of their parallel
classes and cannot be “slightly modified” while retaining their
defining properties.

Theorem 1. LetN be a k-net of order d over A, and suppose
that k ≤

√
d. If P =P 2 =P ∗∈ Span(N ) with τ (P ) = 1

d, then
P ∈ N .

Corollary 1. Concretely, this means that sufficiently large
combinatorial k-nets and sets of MUBs (of size ≥ d−

√
d+ 1)

can be completed in at most one way.
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Nice MUBs

In quantum information theory, orthonormal bases of
unitary matrices are fundamental to error correction
and super-dense coding and are often constructed alge-
braically [2]:

Let G a group of order d2 with identity e. A nice
error basis with index group G is a set E = {U(g) |
g ∈ G} of unitary operators in Md(C) such that

(i)U(e) = I ,

(ii) Tr(U(g)) = 0 for e 6= g ∈ G,

(iii)U(g)U(h) = λ(g, h)U(gh) for all g, h ∈ G,

where λ(g, h) is a complex phase factor.

Fix d ≥ 2, and let ω = e2πi/d. We define Xd to be the
cyclic shift matrix Xd ej = ej+1 (mod d) and Zd to
be the diagonal matrix Zd ej = ωj−1ej, where {ej}j is
the standard basis. Then, the discrete Weyl operators
{Xj

dZ
`
d | (j, `) ∈ Z2

d} form a nice error basis with index
group Z2

d.

For each subgroup H of the index group G, define

AH := Span{U(h) | h ∈ H}
to be the subspace of Md(C) spanned by the unitaries
corresponding to H .

Proposition. Let E be a nice error basis for Md(C)
with index group G, and take H1, . . . , Hm to be sub-
groups of G of order d with pairwise trivial intersec-
tions. If, for each Hj, the associated unitaries of E
are pairwise commuting, then AH1

, . . . ,AHm
are quasi-

orthogonal MASAs of Md(C), corresponding to a set of
MUBs.

We call bases constructed from a nice error basis E in
this way E-nice mutually unbiased bases , and can
adapt Theorem 1 to this setting.
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Theorem 2. Let E be a nice error basis for Md(C)
with abelian index group. If an E-nice set of at least
d+1−

√
d MUBs can be completed to a full set of d+1

MUBs, then this completion is unique and E-nice.

Finally, we can use these rigidity results to prove that
certain sets of MUBs cannot be completed.

Let E be a nice error basis for Md(C). A set of E-nice
MUBs in Cd is called weakly unextendible if there
does not exist another mutually unbiased E-nice basis.

Several examples of weakly unextendible MUBs are ex-
amined in [4, 3].

Corollary 2. A weakly unextendible set of at least
d + 1−

√
d nice MUBs in Cd cannot be completed.

Concluding remarks

In [1], Bruck proved a uniqueness result which implies our
rigidity theorem for classical k-nets. Moreover, he also
proved an existence result stating that even larger k-
nets automatically have a completion. Having examined
uniqueness, we wonder whether one could derive such an
existence result for MUBs using our framework.
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