
Defense against Intrusion in a Live Streaming Multicast System∗

Maya Haridasan
Department of Computer Science

Cornell University, Ithaca, NY
maya@cs.cornell.edu

Robbert van Renesse
Department of Computer Science

Cornell University, Ithaca, NY
rvr@cs.cornell.edu

Abstract

Application-level multicast systems are vulnerable to at-
tacks that impede nodes from receiving desired data. Live
streaming protocols are especially susceptible to packet loss
induced by malicious behavior. We describe SecureStream,
an application-level live streaming system built using a
pull-based architecture that results in improved tolerance
of malicious behavior. SecureStream is implemented as a
layer running over Fireflies, an intrusion-tolerant member-
ship protocol. Our paper describes the SecureStream sys-
tem and offers simulation and experimental results confirm-
ing its resilience to attack.

1. Introduction
Scalable content distribution is a broadly useful tool

and has recently received considerable attention. Several
application-level multicast (ALM) protocols have been pro-
posed in support of content distribution, and previous work
has shown that ALM can achieve efficiencies comparable to
IP multicast [3, 5, 2, 6, 17, 9, 14].

One style of content distribution maps the problem to file
sharing, whereby peers download data and may assist one-
another in obtaining copies. Our work focuses on a second
approach, in which data must be delivered with minimal la-
tency, ideally through live streaming. We explore this prob-
lem in a peer-to-peer context, because such systems allow
data to be streamed without requiring the source to have
a high upload capacity. Such systems have become quite
popular, and in places like China, are now widely used for
broadcasting television channels to increasing numbers of
users [17].

The main difficulties with live streaming emerge from
its sensitivity to delay. Data must be received within a fixed
delay after the original source produced the data, whereas
the kinds of reliability and ordering properties afforded by
protocols such as TCP are not required. The simultaneous
emphasis on a non-traditional property and weakening of
more familiar ones adds up to a challenging new problem.

∗Our effort is supported by the NSF CyberTrust program, the NSF
TRUST STC, the AFRL, and the AFOSR MURI program.

Significant progress has been made on solving the mixture
of delivery requirements, but to date, there has been littleat-
tention to guaranteeing the desired behavior in the presence
of attack.

Malicious behavior has long been a serious concern in
systems deployed over the Internet. Centralized systems
are particularly because they have easily targeted points of
failure. In contrast, peer-to-peer systems offer potentially
improved tolerance to attacks due to their redundant nature:
multiple peers collaborate to carry out important tasks, of-
fering some options if individual peers come under attack.
Nonetheless, few systems take full advantage of these pos-
sibilities. Most existing peer-to-peer systems are partially
centralized or employ a non-uniform overlay structure, and
are therefore still vulnerable to attacks. Moreover, attackers
may gain control over internal nodes in the system enabling
omission attacks in which compromised peers malfunction,
for example by failing to forward packets to other peers.
This type of attack is hard to repel, since attackers cannot
easily be identified, and the impact on overall performance
can be severe. This is the problem tackled in our work.

To illustrate the issue, we looked into the effects of ma-
licious attacks when using a single dissemination tree with
varying branching factors and when using the popular Split-
Stream system [2] with varying numbers of slices. As a
measure of resilience, we compute thecontinuity indexof a
streaming session, which is the ratio of packets received by
a peer within acceptable time. Through simulation we com-
puted the minimum continuity index across participants for
sessions with a thousand homogeneous nodes and varying
ratios of malicious peers not forwarding packets. In Fig-
ure 1, each point presents the median with 95 percentile
intervals across one thousand runs. In the case of single
trees, malicious behavior can prevent healthy nodes from
receiving data even with as few as 5% malicious members.
SplitStream has better resilience, but attacks are still very
visible to participating nodes.

Our work introduces several techniques that reduce the
opportunity for an attacker to compromise the quality of a
streaming session, without incurring a high computational
or network overhead. To repel forgery attacks, we employ

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 In

de
x

Ratio of malicious peers

BF = 2
BF = 4
BF = 8

BF = 16

(a) Single Tree

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 In

de
x

Ratio of malicious peers

2 slices
4 slices
8 slices

16 slices

(b) SplitStream

Figure 1. Expected continuity index across all correct memb ers under omission attacks.

an efficient packet authentication technique based on com-
puting and distributing verification digests. To prevent at-
tacks on the overlay structure (the membership protocol on
top of which multicast systems operate), SecureStream is
built uponFireflies, a scalable one-hop Byzantine member-
ship protocol [13].

Fireflies is a probabilistic protocol, in which members
are presented with a reasonably current view of which mem-
bers are live or not. To achieve tolerance to denial-of-
service attacks, SecureStream uses a pull-based packet dis-
semination approach, similar to the one used by the Cool-
Streaming [17] and Chainsaw protocols [9]. This approach
is attractive because it offers participants a choice among
multiple candidate packet sources. Because participants are
not dependent on any particular peer and can immediately
react to failures or attacks, attacks are less damaging.

Our paper makes the following contributions. First, to
our knowledge, ours is the first exploration of end-system
attacks in the context of live streaming peer-to-peer proto-
cols. Second, we leverage previous work and present a com-
parison of different authentication protocols for signingand
verifying packets efficiently in the context of application-
level multicast. Finally, we thoroughly evaluate the effects
of internal malicious peers on pull-based protocols. The is-
sue is more serious than has previously been recognized.

2 System Model
The system consists of one source, assumed non-

compromised, disseminating data at a fixed rate to a set of
receivers with limited buffering capacity. The desired be-
havior is that the streamed data be received within a fixed
latency relative to the source’s original transmission.

Multicast systems exhibit a wide range of security prop-
erties: secrecy, authenticity, data integrity, anonymity, non-
repudiation, access control and service availability. Not
all applications require secrecy and anonymity of data,
hence we do not provide these properties. On the other
hand, we believe authenticity, non-repudiation and access-
control are essential. We assume that the original data is
non-compromised, and therefore implicitly achieve data in-

tegrity through authenticity. Our primary focus is on guar-
anteed availability, namely mechanisms that prevent nodes
from being isolated or severely harmed during a streaming
session. We expect the system to repel external attacks and
tolerate a limited fraction of internal Byzantine nodes, and
to degrade gracefully as the fraction of Byzantine nodes in-
creases.

SecureStream is an application-level streaming system,
and only attacks to the end system hosts are addressed in
this work. Attacks on the underlying network infrastructure
and low-leveldenial-of-serviceattacks are thus beyond the
scope of this work.

3 Malicious behavior model
Malicious attacks on a streaming multicast system come

in many flavors. Attacks may originate outside the system
or be internal, and attackers may compromise nodes and
then work in cooperation with these faulty internal peers.

The simplest form of internal attacks are those in which
a single node is compromised. The extent of harm that re-
sults depends on many factors, such as the multicast pro-
tocol being used and the location of the malicious node in
the overlay. These effects can be localized and minimized
if the protocol in use has no single points of failure. On the
other hand, vulnerable systems like those based on a single
dissemination tree can be crippled if a node high in the tree
is compromised.

Collusion attacks pose much more complex problems;
in these, an attacker compromises a set of nodes and ex-
ploits them to perform a coordinated attack to the system,
and may orchestrate the attack to confound whatever defen-
sive mechanisms are built into the dissemination infrastruc-
ture.

For the work presented here, we make several assump-
tions about compromised members. They do not have suf-
ficient computational power to break cryptographic build-
ing blocks, and cannot forge public key certificates or sig-
natures of correct or stopped members. We also assume a
bounded probability that a live member is Byzantine, which
probabilistically limits the fraction of total nodes that may

collude in an attack. A classification of the types of attacks
that we address in our system is presented below.

Membership attacks: The system may be attacked by
compromising the underlying overlay or membership
protocol on which it runs. For example, systems that
run on top of ring-based overlays are vulnerable to
eclipse attacks [11], in which an attacker controls a
large fraction of the neighbors of correct nodes, pre-
venting correct overlay operation. Malicious nodes
may also mimic flaky but correct members, or accuse
other correct members of being down.

Forgery: In this category we include all attacks that in-
volve fabrication and tampering of data being streamed
in the system. Given time, these attacks can be easily
avoided by use of a public key infrastructure. How-
ever, in the context of streaming the cost of signatures
can become prohibitively high, forcing us to consider
other kinds of data authentication protocols.

Denial-of-service (DoS) Attacks:Attacks in which mali-
cious nodes overload peers with requests for packets
or large amounts of duplicate packets, or other attacks
that might compromise their ability to contribute to the
streaming session.

Omission Attacks: Given our emphasis on low-latency
data delivery, send-omission is an especially serious
type of attack. By not forwarding all or part of the
packets, a malicious node may disrupt overall system’s
availability.

4 Overview of the System
Our system employs a set of techniques to achieve re-

silience to the attacks previously mentioned. We use an
intrusion-tolerant membership protocol to tolerate attacks
to the membership layer. We also employ an efficient tech-
nique for avoiding forgery of packets by malicious peers.
Finally, by using a pull-based streaming protocol and im-
posing a structure to define what peers are allowed to com-
municate with one-another, we can avoid high-level DoS
attacks and tolerate omission attacks. In this section we de-
scribe these main components in further detail.

4.1 Fireflies Membership Protocol

Peers in SecureStream use the membership knowledge
provided by Fireflies to track the status of other peers.
Fireflies is composed of three subprotocols: a pinging pro-
tocol is used to detect failures of nodes with an accuracy
independent of message loss; an intrusion-tolerant gossip
protocol is used for dissemination of information between
correct members with probabilistic time bound∆; and a
membership protocol uses accusations and rebuttals to im-
plement the membership information thatFirefliesprovides.
These components are briefly described below.

E

F

CA

A

A B

B

C

C
D

D

D

E

E

F

F

G

G

G

B

A

AA

B

D

F

F

E

G

Figure 2. In Fireflies multiple rings are used to de-
fine which peers monitor each other: A monitors
B, D and F, and is monitored by E, F and G.

Members are organized into rings, and their position
on each ring depends on their identifier. These rings de-
termine which nodes monitor, and are allowed to accuse,
which other nodes (Figure 2). On each ring, each mem-
bermi monitors the lowest ranked successormj that it be-
lieves to be live, and if it detects a failed node, it issues an
accusation for that node.

When an accusation for a membermi is received by a
membermj , mj waits a time period of length2∆, and then
removesmi from its view if the accusation is valid. This
time period is established so that an accused member may
issue a newnote (a rebuttal) to anaccusation against it-
self. In order to avoid malicious nodes from abusively ac-
cusing its correct neighbors in the rings, nodes may inval-
idate up tot rings, implying that accusations issued by its
neighbors on those rings will not be accepted as valid by
any correct member. All notes and accusations are signed,
and a certification authority is responsible for issuing pri-
vate/public key pairs and public key certificates.

The dissemination of information such as accusations
and rebuttals is performed using a robust gossip protocol.
Each member periodically picks a random member from its
view to exchange state information. The multiple ring struc-
ture induces a gossip mesh resilient to malicious attacks.

4.2 Efficient Packet Verification

The standard point-to-point approach of appending a
message authentication code (MAC) computed using a
shared key does not map to multicast sessions, while sign-
ing every packet using an asymmetric cryptographic proto-
col induces high overhead. SecureStream employs an effi-
cient authentication scheme to avoid forgery of data.

To avoid signing and verifying every packet, we group
the hashes ofn packets into a special message, and have it
signed by the source (we call this approachlinear digests).
The signed message needs to be sent to the receivers prior
to the dissemination of data that it corresponds to. This im-
plies a buffering of content on the source prior to the dis-
semination of data. The advantage is that this approach in-
curs the minimal network overhead of one hash per packet,
while amortizing the cost of a single signature/verification
operation overn packets. Subsection 4.3 describes how

 0

 500

 1000

 1500

 2000

10521

S
ig

na
tu

re
 o

ve
rh

ea
d

(m
s)

Packet Size (Kb)

Full signature/verification
Linear digests

Merkle tree digests
Graph based digests

(a) Signature overhead

 0

 50

 100

 150

 200

 250

 300

 350

10521

V
er

ifi
ca

tio
n

ov
er

he
ad

 (
m

s)

Packet Size (Kb)

Full signature/verification
Linear digests

Merkle tree digests
Graph based digests

(b) Verification overhead

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

10521

N
et

w
or

k
ov

er
he

ad
 (

K
B

/s
)

Packet Size (Kb)

Full signature/verification
Linear digests

Merkle tree digests
Graph based digests

(c) Network overhead

Figure 3. Overheads per second when transmitting 300 Kb/s us ing varying packet sizes.

we guarantee that the digest is received prior to the data
to which it corresponds.

Other approaches have been proposed to address the high
costs of authenticating packets in a flow [16, 4, 7, 12, 10].
Wong and Lam[16] propose that the source compute the
hashes of a limited numbern of consecutive packets in
the stream, and use them as leaves in a Merkle Tree where
each internal node consists of the hash of its children. Each
packet is verifiable upon receipt, since it is appended with
the signed root node and the hashes of all needed interior
nodes in the path from the root to itself in the Merkle Tree.

In graph-based authentication [7, 12], the source only
signs one packet, and the following packets in the stream
are linked to it through hash chains that allow them to be
verifiable. To tolerate packet loss, a graph is used instead
of a single chain. Packets are represented by vertices in
the graph, and a directed edge between nodes that repre-
sent packetsPi andPj indicates that packetPj contains the
hash of packetPi. A packet corresponding to a node can be
authenticated if there is a path of already verified packets
between the node and the source node of the graph.

The computational costs at the source and at the re-
ceiver and network overheads for different authentication
approaches when streaming 300 Kb/s are presented in Fig-
ure 3. We compared 4 techniques: signing and verifying
every packet, linear digests, Merkle tree digests and a sim-
ple scheme of graph-based authentication. The code used
for the evaluation was written in Python and executed on a
Linux-based Pentium III 850 Mhz with 256 Mb RAM. Lin-
ear digests yield the lowest computational costs. Although
the Merkle Tree approach is appealing due to its immedi-
ate verifiability, its network overhead is the highest, since
one signature and a few hashes need to be appended to each
packet in the flow.

When the packet sizes are large, which reduces the rate
of packets per second, the computational costs of the three
latter techniques are not significantly different. We there-
fore used linear digests since it minimizes network overhead
and is the simplest technique. Our experience indicated that
when using pull based streaming, keeping the rate of pack-
ets per second larger or equal to 30 yields good results, and
reducing it further affects the quality of the streaming.

4.3 Pull-Based Content Streaming

We employ a pull-based approach to disseminate pack-
ets, following ideas used in the Chainsaw protocol [9]. The
same rings used inFireflies are used to determine a fixed
set of neighbors with which each peer can exchange pack-
ets. This imposed mesh structure and the use of authen-
ticated channels between neighbors allows the system to
avoid high-level DoS attacks. Initially, the source sends no-
tifications to its neighbors as soon as it has available pack-
ets to disseminate. These notifications are small messages
used only to inform neighbors of availability of packets.
Each neighbor requests missing packets according to some
pre-specified policy, to avoid overloading the source. As
peers receive packets, they propagate notifications to their
neighbors, and so packets get disseminated along the mesh.
This pull-based approach to acquisition of packets yields
a highly resilient multicast, since failure or misbehaviorof
one neighbor does not impede a peer from fetching packets
from other neighbors. The predetermined set of neighbors
for each peer also makes it hard for malicious peers to attack
individual peers, since attackers lack a deterministic means
of acquiring control of all of its neighbors.

Each member stores packets and forwards them to other
peers while the packet is within itsavailability window. It
also maintains aninterest window, smaller than the avail-
ability window, which represents the set of packets in which
the peer is currently interested. Different policies can be
employed by peers about what packets to pick from each
of its neighbors, and the choice of the appropriate policy is
crucial to achieving best overall performance. Random se-
lection of neighbors is usually a good candidate, leading to
fair load balancing.

There is a predefined limitl on the number of outstand-
ing requests to any neighbor. This policy not only improves
the flow of packets in the abscence of malicious behavior,
but also makes it harder for malicious peers to overrequest
packets from their neighbors. Peers maintain a queue of
non-satisfied requests for packets, and if more thanl re-
quests by the same neighbor are present in the queue at any
time, only thel most recent ones are maintained.

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(a) Malicious peers completely fail

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(b) Malicious peers do not forward any packets

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0

C
on

tin
ui

ty
 in

de
x

Ratio of malicious peers

Average
Minimum

(c) Malicious peers overrequest packets

 0

 0.2

 0.4

 0.6

 0.8

 1

0.250.200.150.100.050.0
C

on
tin

ui
ty

 in
de

x

Ratio of malicious peers

Average
Minimum

(d) Malicious peers overrequest and do not forward packets

Figure 4. Resilience under different types of Byzantine beh avior and varying ratios of attackers

The protocol is simple and yet highly resilient to failures
and attacks. The overhead incurred by notifications is not
significant if large packets are used, and the protocol avoids
receipt of duplicate packets. Since it is completely decen-
tralized, the protocol does not present any single points of
failure, another important consideration when building an
intrusion-tolerant streaming protocol.

We make use of the request packets to request the au-
thentication digest packets presented in Section 4.2. The
receipt of digest data permits the verification of those pack-
ets to which the digest refers. Whenever a peer requests a
packet, it checks whether it has already received the corre-
sponding digest, and if not, it sets up a flag in the request
message. This flag indicates to the selected data source that
it should append the digest to the packet prior to sending
the data, guaranteeing that a node can always verify the in-
tegrity of a packet at the time of its receipt.

5 Evaluation
We evaluated the performance and resilience of pull-

based streaming both through simulation and experiments
on the Emulab testbed [15]. We built an event-driven sim-
ulator and simulated 200 node networks with 50ms inter-
node latency. It would be possible to simulate and present
results for networks with larger numbers of nodes, but a
set of experiments on increasing numbers of nodes revealed
that the behavior remains the same for networks as large as
5000 nodes. We opted for a smaller size but repeated each

experiment 100 times to obtain better confidence in our re-
sults.

The target streaming rate in the experiments was fixed to
300 Kb/s, and packets of 10 Kb were used. Higher stream-
ing rates yield similar results as long as the packet size
is accordinly increased to maintain a rate of 30 packets/s.
Each streaming session lasted for 200 seconds. In the ba-
sic setting, the seed’s upload capacity was fixed to twice the
streaming rate while other peers had a fixed maximum up-
load capacity of 1.2 times the streaming rate. These values
are used as our baseline since they are the lowest upload
rates at the seed and non-seed nodes respectively that lead
to good throughput when the system is not under attack.

For each streaming session we computed the average
and minimum download and upload rates across all correct
members. We repeated each experiment 100 times, and we
present the median and 95 percentile intervals across these
repetitions.

We considered four types of malicious behavior. In the
first type of attack malicious peers act as failed, neither
requesting nor satisfying requests. In attack 2 they re-
quest packets but do not forward any packets. In attack 3
they overrequest packets from their neighbors, requesting
as many distinct packets as possible from every neighbor.
Finally, in attack 4 they overrequest packets and do not for-
ward packets. The fourth type of attack is the most disrup-
tive type and therefore the most likely, while the other three
are considered mainly for comparison purposes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200

F
ra

ct
io

n
of

 p
ac

ke
ts

Number of nodes

No Byzantine
10% Byzantine
15% Byzantine
25% Byzantine

Figure 5. CDF: Fraction of packets received by
given number of nodes

Figure 4 presents results for the basic setting under each
of the attack types. We are interested in minimizing the
overall damage to the streaming session. Damage is quan-
tified by the impact on average download rates to healthy
nodes, and the minimum download rate for any single
healthy node.

As would be expected, the results show that peer failure
does not significantly affect the download rates since peers
can still request packets from other correct neighbors (Fig-
ure 4(a)). Since malicious peers do not request packets in
this mode, they do not disrupt the total overall upload ca-
pacity. Even though upload rates are limited, overrequest-
ing attacks are also not significantly disruptive, due to the
random policy used by peers when satisfying neighbors’
requests for packets and the upper limit on the number of
outstanding requests by any neighbor (Figure 4(c)).

Figures 4(b) and 4(d) show that attacks in which peers
consume packets from their neighbors, but do not forward
packets, inflict the most harm. There are two main reasons
for this vulnerability. First, since peers upload at a maxi-
mum rate of 1.2 times the streaming rate, the overall upload
capacity of the system gets compromised from peers con-
suming and not contributing to the system. Second, mali-
cious nodes neighboring the seed might impede some pack-
ets from ever being received by any other peer other than
itself.

The latter effect causes the 95 percentile interval bars
to be wide: there is a lot of variation depending on the
number of compromised peers near the seed. To make this
point clear, in Figure 5 we show the percentage of pack-
ets received by increasing numbers of peers during sample
streaming sessions with varying ratios of Byzantine peers.
The metric to focus on here is the fraction of packets only
received by one peer, which is an indicator of malicious
nodes neighboring the seed. Packets received only by ma-
licious peers at the first hop will never be disseminated in
the system. To confirm this hypothesis, we executed the
same set of experiments and restricted the malicious attack-
ers to being located at least 2 hops away from the seed. The

obtained medians were very close to the medians obtained
in the previous experiments. The main difference was that
the percentile intervals were significantly reduced when the
seed had no immediate malicious neighbor, which is an im-
portant result since the intervals are significant in the origi-
nal experiments with attacks 3 and 4.

To improve the resilience, we can vary parameters to
improve the overall upload capacity of the system, or to
avoid situations in which malicious peers can isolate cer-
tain packets. First, we considered the upload capacity of
the members. In Figure 6 we varied the value from 1.0 to
2.0 times the streaming rate and verified the improvements
to resilience under attack 4. This graph presents the aver-
age and minimum download rates when the system has 25%
of Byzantine members. The results show that the higher the
upload capacity at non-seed peers the more resilient the sys-
tem becomes. From Figure 7, which presents the minimum,
average and maximum upload rates of members, we can see
that as a consequence of increasing the upload capacity of
peers the system becomes more unfair, with an increased
difference between the maximum upload rate and minimum
upload rate across peers. For the next few experiments we
fixed the upload capacity of non-seed members to 1.4 times
the streaming rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

2.01.81.61.41.21.0

C
on

tin
ui

ty
 in

de
x

Upload capacity of members (times streaming rate)

Average
Minimum

Figure 6. Continuity index across nodes when
maximum upload capacity is varied

 0

 0.5

 1

 1.5

 2

2.01.81.61.41.21.0

U
pl

oa
d

R
at

e
C

on
su

m
ed

Upload capacity of members (times streaming rate)

Maximum
Average

Minimum

Figure 7. Upload rate across nodes when maxi-
mum upload capacity is varied

 0

 0.1

 0.2

 0.3

201816141210864

V
ar

ia
tio

n
of

 C
on

t.
In

de
x

Number of neighbors of the source

Average
Minimum

Figure 8. Sensitivity to source’s neighbors

To improve the packet loss ratio at the first hop from the
seed, we varied the upload capacity of the seed from 1.0 all
the way to 6.0 times the streaming rate. Our results indi-
cated that this naive approach to increasing the upload rate
at the seed does not significantly affect the resilience of the
system. We also observed that the number of neighbors of
the seed is a more significant parameter than the upload ca-
pacity of the seed. We fixed the ratio of malicious nodes
at 25%, the upload rate at non-seed nodes to 1.4 times the
streaming rate and at the seed to 4.0 times the streaming
rate, and varied the seed’s number of neighbors from 4 to
20. The median slightly improves as the number of neigh-
bors is increased, but more important, the percentile inter-
vals are significantly reduced. In Figure 8 we present the
absolute sizes of the 95 percentile intervals varying with the
number of neighbors of the seed. The results show that a
larger number of neighbors at the seed is desirable. This
happens because with a higher number of neighbors the per-
centage of malicious neighbors of the seed tends to be closer
to 25% across runs, and therefore there is less variation in
the ratio of packets that are contained at the first hop from
the seed.

Finally, to study the influence of the number of neigh-
bors for each non-seed peer in the system, we evaluated
the resilience with a varying number of rings used to define
neighbors. The upload capacities at the seed and non-seed
members were fixed to 4.0 and 1.4 times the streaming rate,
respectively, and the seed had 16 neighbors. In Figure 9
we present the performance of the system using between 4
and 12 neighbors per node, both under no attacks and un-
der attacks of type 4. The results surprisingly show that the
use of larger numbers of neighbors does not improve re-
silience of the system, and even reduces when the system
is under attack. Even though larger numbers of neighbors
would lead to better connectivity between correct members,
it also presents malicious members with more potential to
overrequest packets and unbalance the system.

We also ran experiments on a 200 node LAN on the Em-
ulab testbed to validate our simulation results. Given the
large amount of resources required for these experiments,
we restricted our experiments to a limited number of rep-

 0

 0.2

 0.4

 0.6

 0.8

 1

65432

C
on

tin
ui

ty
 In

de
x

Number of rings

Average - No attack
Minimum - No attack

Average - Attack 4
Minimum - Attack 4

Figure 9. Sensitivity to number of neighbors

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200
C

on
tin

ui
ty

 In
de

x
Time (s)

Average
Minimum

Figure 10. Sample session on Emulab testbed

etitions, with the sole purpose of validating the tendencies
observed in the simulations. Our experiments indicated the
same tradeoffs previously observed through simulation. We
therefore present only a sample streaming session in which
25% of the nodes are malicious. During the first 100 sec-
onds all nodes act correctly, after which the malicious nodes
start overrequesting and not forwarding packets. We fixed
the upload capacity of the seed and non-seed members to
4.0 and 1.4 times the streaming rate respectively, and the
number of neighbors of the seed and non-seed members to
12 and 8 respectively. Figure 10 presents the minimum and
average download rates throughout the session.

6 Related Work
Recent work on peer-to-peer streaming systems has fo-

cused on improving fairness among peers and resilience to
churn, and have not addressed behavior in the presence of
malicious peers. Splitstream [2] breaks the data into stripes
and disseminates each stripe through a different dissemi-
nation tree. Ideally, each peer is an internal node in only
one these trees, and therefore the system as a whole is fair.
Figure 1(b) presents SplitStream’s resilience to omissionat-
tacks. Bullet [6] is another protocol which attempts to im-
prove fairness by breaking the stream into packets and send-
ing them to peers through different dissemination paths.
Packets are pushed down a tree to certain peers and then ex-
changed between peers through random connections. The
pull-based style of streaming used in our system was previ-
ously used in CoolStreaming [17] and Chainsaw [9].

Drum[1] targets DoS attacks on gossip-based multicast
protocols, eliminating vulnerabilities to such attacks. The
main idea in Drum is to have half of the links of each peer
be picked by the peer itself, and half be picked by other
peers. That way, even if only malicious peers connect to a
peer, the peer can still get correct data from the peers that it
picks. The authors showed that the approach works well for
multicast protocols which do not have time delays, but have
not studied its performance for multicast systems where a
high throughput of packets is desired and the upload capac-
ities are limited.

There has been significant work regarding authentication
of packets for multicast [16, 4, 7, 12, 10]. Most of this work
was originally developed for the domain of IP multicast but
can be directly transferred into the domain of application-
level multicast. We presented the most relevant ones in Sec-
tion 4.2 and compared their performances in the context of
peer-to-peer streaming.

Omission attacks are often characterized as rational be-
havior and there has been a lot of work regarding incentives
for peer-to-peer systems. Most work on incentives has fo-
cused in file sharing systems, which present significantly
different properties, and cannot be directly transferred to
streaming protocols. Ngan et al. [8] consider fairness issues
in the context of tree-based peer-to-peer streaming proto-
cols. The authors present mechanisms that can distinguish
peers according to their level of cooperation to the system.
One of their techniques involves the reconstruction of trees
as a way of punishing freeloading nodes. Most of their
mechanisms require peers to keep track of their parents’ and
children’s behavior. Only rational behavior is considered,
and the exploration of freeloading as a malicious attack is
not addressed.

7. Conclusions
We have presented the design and evaluation of Secure-

Stream, an intrusion-tolerant peer-to-peer live streaming
system. We described and evaluated a set of techniques that
allows SecureStream to resist against forgery, DoS, mem-
bership and omission attacks. We showed through simula-
tion and emulation the effect of pull-based streaming on re-
silience to attack, and we explored how the variation of spe-
cific parameters affect the resilience of the system. Our re-
sults indicate that SecureStream tolerates a limited percent-
age of malicious nodes, gracefully degrading in the pres-
ence of increasing ratios of attackers.

References
[1] G. Badishi, I. Keidar, and A. Sasson. Exposing and Elim-

inating Vulnerabilities to Denial of Service Attacks in Se-
cure Gossip-Based Multicast. InInternational Conference on
Dependable Systems and Networks, Philadelphia, PA, 2004.
IEEE Computer Society.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Row-

stron, and A. Singh. SplitStream: High-Bandwidth Multicast
in Cooperative Environments. InProceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, 2003.

[3] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. InProceedings of ACM Sigmetrics, Santa Clara,
CA, 2000.

[4] R. Gennaro and P. Rohatgi. How to sign digital streams.
In Proceedings of the 17th Annual International Cryptology
Conference on Advances in Cryptology, London, UK, 1997.

[5] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. O. Jr. Overcast: Reliable Multicasting with an Overlay
Network. In ”Proc. of the Fourth Symposium on Operating
Systems Design and Implementation”, San Diego, CA, 2000.

[6] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bul-
let: High Bandwidth Data Dissemination Using an Overlay
Mesh. InProceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, Bolton Landing, NY, 2003.

[7] S. Miner and J. Staddon. Graph-Based Authentication of Dig-
ital Streams. InSP ’01: Proceedings of the 2001 IEEE Sym-
posium on Security and Privacy, page 232, Washington, DC,
2001.

[8] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-
Compatible Peer-to-Peer Multicast. InSecond Workshop on
the Economics of Peer-to-Peer Computing, 2004.

[9] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E.
Mohr. Chainsaw: Eliminating Trees from Overlay Multicast.
In Proceedings of the 4th International Workshop on Peer-to-
Peer Systems, Ithaca, NY, 2005.

[10] A. Perrig, R. Canetti, D. Tygar, and D. Song. The TESLA
Broadcast Authentication Protocol.Cryptobytes, 5(2):2–13,
2002.

[11] A. Singh, M. Castro, A. Rowstron, and P. Druschel. De-
fending against Eclipse Attacks on Overlay Networks. In
Proceedings of the 11th ACM SIGOPS European Workshop,
Leuven, Belgium, 2004.

[12] D. Song, J. D. Tygar, and D. Zuckerman. Expander Graphs
for Digital Stream Authentication and Robust Overlay Net-
works. InProceedings of the 2002 IEEE Symposium on Se-
curity and Privacy, Washington, DC, 2002.

[13] R. van Renesse, H. Johansen, and A. Allavena. Fireflies:
Scalable Support for Intrusion-Tolerant Network Overlays.
In Proceedings of the First ACM EuroSys, Leuven, Belgium,
2006.

[14] V. Venkataraman, P. Francis, and J. Calandrino.
Chunkyspread: Multitree Unstructured Peer to Peer Multi-
cast. InProceedings of the 5th International Workshop on
Peer-to-Peer Systems, Santa Barbara, CA, 2006.

[15] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An In-
tegrated Experimental Environment for Distributed Systems
and Networks. InProc. of the Fifth Symposium on Operating
Systems Design and Implementation, Boston, MA, 2002.

[16] Wong and Lam. Digital Signatures for Flows and Multi-
casts. IEEETNWKG: IEEE/ACM Transactions on Network-
ing IEEE Communications Society, 7, 1999.

[17] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum. CoolStream-
ing/DONet: A Data-Driven Overlay Network for Efficient
Live Media Streaming. InProceedings of the 2005 Confer-
ence on Computer Communications, Miami, FL, 2005.

