
Morty: Scaling Concurrency Control with
Re-Execution

Matthew Burke

Cornell University

United States

matthelb@cs.cornell.edu

Florian Suri-Payer

Cornell University

United States

fsp@cs.cornell.edu

Jeffrey Helt

Princeton University

United States

jhelt@cs.princeton.edu

Lorenzo Alvisi

Cornell University

United States

lorenzo@cs.cornell.edu

Natacha Crooks

UC Berkeley

United States

ncrooks@berkeley.edu

Abstract
Serializable systems often perform poorly under high con-

tention. In this work, we analyze this performance limitation

through a novel take on conflict windows. Through the lens

of these windows, we develop a new concurrency control

technique that leverages transaction re-execution to improve

throughput scalability under high contention. Our system,

Morty, achieves up to 1.7x-96x the throughput of state-of-

the-art systems, with similar or better latency.

CCSConcepts: •Computer systems organization→Re-
liability; • Information systems → Database transac-
tion processing; Key-value stores.

Keywords: replicated databases, concurrency control, multi-

core scalability, distributed systems

ACM Reference Format:
Matthew Burke, Florian Suri-Payer, Jeffrey Helt, Lorenzo Alvisi,

andNatacha Crooks. 2023.Morty: ScalingConcurrencyControl
with Re-Execution. In Eighteenth European Conference on Com-
puter Systems (EuroSys ’23), May 8–12, 2023, Rome, Italy. ACM, New

York, NY, USA, 22 pages. https://doi.org/10.1145/3552326.3567500

1 Introduction
This chapter presents Morty, a novel storage system that

leverages transaction re-execution to increase the throughput

of serializable and interactive transactions.

The combination of serializability and interactivity is com-

pelling. Serializability lets developers think of their transac-

tions as if they are executing sequentially on a centralized

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

EuroSys ’23, May 8–12, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9487-1/23/05.

https://doi.org/10.1145/3552326.3567500

machine, simplifying reasoning about application correct-

ness. Interactivity in turn lets developers write fully general

transaction code that is directly interleaved with application

code, rather than encapsulated in the database or written in

a separate domain-specific language [37].

For scalability, transactional data-stores are usually parti-

tioned such that data and load can be spread across arbitrarily

many machines; for availability, they are replicated, either

within a datacenter, or across continents, to protect against

major correlated failures [12, 47].

How much concurrency does enforcing serializability afford
in such systems? The answer depends on the concurrency

control mechanism that a system adopts. Yet none of the

available choices do well under high contention. Poor per-

formance is especially problematic in geo-replicated settings

where high latency between replicas increases the duration

of transactions and the likelihood that they will conflict.

In systems that leverage optimistic concurrency control,
such as TAPIR [54], a transaction executes without blocking,

but before it is allowed to commit, a validation phase verifies

that serializability is not violated. When a conflict is detected,

the transaction is aborted, leading to high abort rates under

contention. In contrast, pessimistic systems like Spanner [12]
preemptively prevent conflicting transactions from execut-

ing concurrently by guarding data accesses with locks. Under

contention, however, deadlocks and lock thrashing can occur,

and latency can significantly increase.

The traditional way to promote progress in the presence of

such aborts or deadlocks has been to use exponential backoff:

when a conflict is detected, rather than retrying straightaway,

the aborted transaction waits a small amount of time, which

increases exponentially with successive aborts. Essentially,

this amounts to blind guessing how to space transactions

temporally to ensure progress: too conservative a guess, and

the impediment to progress may persist; too liberal, and

opportunities for concurrency are needlessly sacrificed.

To move beyond the guesswork, this chapter proposes to

revisit, from first principles, what in serializability fundamen-

tally limits concurrent processing of conflicting transactions.

https://doi.org/10.1145/3552326.3567500
https://doi.org/10.1145/3552326.3567500

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

We capture these requirements with the novel notion of

serialization windows. Serialization windows are created by

transactions that read and modify objects: a transaction 𝑇 ’s

serialization window for an object 𝑥 starts at the write of 𝑥

whose value it observes, and ends when 𝑇 ’s own write to 𝑥

becomes visible. Intuitively, enforcing serializability requires

serialization windows to never overlap.

While this observation places a hard upper bound on the

concurrency that can be achieved, it also suggests a way

forward. First, it identifies an ideal execution pattern for a

set of conflicting transactions: rather than rashly attempting

to execute concurrently, they should align their execution so

that they complete one right after the other, without over-

laps. Second, it sheds new light on why existing concurrency

control mechanisms perform relatively poorly: to reduce

the chances that transactions will abort, exponential backoff

can introduce long idle periods in the ideal execution pat-

tern of consecutive serialization windows. In turn, these idle

periods significantly limit the system’s utilization: we find,

for instance, that the CPU utilization of TAPIR and Spanner

replicas is less than 17% on a high contention workload.

This chapter proposes Morty
1
, a new serializable and repli-

cated storage system that harnesses these spare CPU cycles

to virtually eliminate idle periods and significantly improve

transactional throughput.

Rather than letting chance determine how serialization

windows manifest, Morty takes fate in its own hands and ac-

tively rearranges them to avoid overlaps. Specifically, Morty

replicas monitor the occurrence of conflicting accesses and,

when they detect overlapping serialization windows, trigger

transaction re-execution: rather than aborting, a transaction𝑇 ,
upon learning of the existence of a conflicting write, partially

restarts its execution. This approach effectively nudges seri-

alization windows to be sequential, thus aligning them opti-

mally. Re-execution is made transparent to applications by

using a continuation passing style API, already battle-tested

in production environments in systems like FaRM [17]; to the

best of our knowledge, Morty is the first system to support

transparent re-execution for general interactive transactions.

We implement Morty as a geo-replicated system that sup-

ports interactive transactions. Morty uses as its starting point

for concurrency control multi-versioned timestamp ordering

(MVTSO) [9], and extends it to offer efficient and safe trans-

action re-execution. To minimize latency across wide-area

networks, Morty integrates the replication and concurrency

control layers [45, 46, 54], thus avoiding the redundant coor-

dination incurred by modular designs [12].

Our results are promising. We find that, on TPC-C, a stan-

dard transactional benchmark, Morty achieves 7.4x, 4.4x, and

1.7x higher throughput than Spanner, TAPIR, and a replicated

MVTSO baseline respectively. Morty’s performance gains

are compounded on heavily contended workloads, where it

1Multi-core Object-store using Re-execution Transactionally.

achieves 95x, 52x, and 28x greater throughput than TAPIR,

Spanner, and MVTSO respectively.

In summary, we make the following contributions:

• We define serialization windows to characterize the

maximum concurrency allowed in serializable systems.

• We propose transaction re-execution using a continua-

tion passing style API to align serialization windows.

• We design and evaluate Morty, a serializable, repli-

cated storage system that uses re-execution to attain

higher throughput on high contention workloads.

The chapter is organized as follows. We introduce the

concepts of serialization windows and validity windows in

Section 2, outline Morty’s API for re-execution in Section 3,

and detail Morty’s transaction processing design in Section 4.

We evaluate Morty’s performance in Section 5, discuss re-

lated work in Section 6, and conclude in Section 7.

2 Scraping the Barrel: Limits to Extracting
Concurrency

Serializability, the gold-standard correctness condition for

transactional storage systems, provides the abstraction of

a centralized storage system that executes transactions se-
quentially and ensures they only read valid data (data from
committed transactions). These properties free developers

from reasoning about complex interleavings of operations,

simplifying application development [3, 7, 12, 38].

Despite the flexibility that the serializability abstraction

affords to the underlying system in processing data accesses,

there nevertheless exists a fundamental limitation: transac-

tions cannot concurrently perform conflicting data accesses.

Concurrency control mechanisms (CCs) are tasked with pre-

venting such scenarios. How do the design choices of CCs

dictate their performance on high contention workloads? In

the rest of this section, we introduce a formal framework

for reasoning about the performance limitations imposed

by the sequential execution (§2.1) and read validity (§2.2)

properties of serializability. Our generic framework can be

applied to any serializable system to identify specific design

choices that limit its concurrency. We later use insights from

this analysis to design a new CC technique that optimizes

serializable performance on contended workloads (§3).

Model. Our framework uses Adya’s model [1] of a transac-

tional storage system, which is expressed in terms of histories
consisting of two parts: a partial order of events that reflect

the operations of a set of transactions, and a version order

that imposes a total order on committed object versions. A

transaction 𝑇𝑖 ’s read event 𝑟𝑖 (𝑥𝑘) denotes that 𝑇𝑖 observes
version 𝑘 of object 𝑥 written by transaction 𝑇𝑘 . Similarly, a

transaction 𝑇𝑖 ’s write event 𝑤𝑖 (𝑥𝑖) denotes that 𝑇𝑖 creates
version 𝑖 of 𝑥 . If a transaction𝑇𝑖 commits, it has a correspond-

ing commit event 𝑐𝑖 . Every history 𝐻 is associated with a

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

c1

c2

s1

s3

s2

T1
T2

(a) OCC in TAPIR.

T1
T2

c1

c2

s3

s2

s1

(b) 2PL in Spanner.

Figure 1. Partial executions of two Payment transactions,

𝑇1 and 𝑇2, in replicated serializable systems. 𝑐1 and 𝑐2 are

application clients issuing 𝑇1 and 𝑇2 respectively; 𝑠1, 𝑠2, and

𝑠3 are storage servers.

directed serialization graph DSG(𝐻), whose nodes are com-

mitted transactions and whose edges denote the conflicts

(read-write, write-write, or write-read) between them.

2.1 Sequential Execution
While non-conflicting transactions may freely access data,

the order of conflicting accesses from transactions must be

consistent with a sequential execution to maintain serializ-

ability. We explore this intuition with a simple example.

2.1.1 Motivating Example: TPC-C. TPC-C is a bench-

mark application that simulates the activity of a business

that sells a product [49]. Within this workload, the Payment

transaction represents a customer payment for a given order.

As one of several contention hotspots, it generates a high

rate of conflicting accesses to the warehouse table because it
updates a warehouse’s year-to-date payment total. We exam-

ine the concurrent execution of Payment transactions in two

canonical CCs: optimistic concurrency control (OCC) [24]

and two-phase locking (2PL) [9]. These CCs, which are used

in a large number of production systems [6, 8, 10, 12, 13, 16,

19, 21, 27, 31, 34, 35, 39, 42, 43, 53], take opposing approaches

to regulating concurrency, and thus provide a strong basis

for understanding the fundamental performance limitations.

OCC. Figure 1a shows an execution of two conflicting

Payment transactions, 𝑇1 and 𝑇2, that update the same ware-

house row 𝑥 in a replicated system with OCC. In OCC, trans-

actions freely read data under the assumption that two trans-

actions will not try to update the same data concurrently.

Before a transaction commits, the system validates this as-

sumption by checking that no other transaction committed

a more recent write. Since 𝑇1 reads a value for 𝑥 before 𝑇2
finishes writing its update (in OCC writes are buffered until

commit), 𝑇1 observes the same value as 𝑇2. This interleaving

of the reads and writes to 𝑥 is irreconcilable with a sequential

ordering of 𝑇1 and 𝑇2, and the system aborts 𝑇2.

2PL. Figure 1b shows a similar execution of𝑇1 and𝑇2 in a

replicated system that instead uses 2PL for CC. In replicated

2PL, a transaction acquires a read lock before reading an

object. Similarly, a transaction acquires a write lock before

writing to an object – a process which is typically deferred to

commit time. These per-object reader-writer locks prevent

two transactions from reading andmodifying the same object

concurrently. In the execution of Figure 1b,𝑇1 and𝑇2 both ac-

quire read locks on 𝑥 before either acquires a write lock. This

would lead to a deadlock when both transactions attempt

to upgrade their read locks to write locks. To avoid such

deadlocks, systems typically employ a deadlock avoidance

strategy. For example, the system in the execution aborts the

younger transaction 𝑇2 so that 𝑇1 is able to upgrade its lock.

2.1.2 Serialization Windows. Transactions in serializ-

able systems must appear to take effect sequentially. As

demonstrated in Figure 1, if the reads and writes of transac-

tions to the same object interleave, this abstraction may be

violated, and at least one of the transactions cannot commit.

Logically, when a transaction 𝑇 ′
reads an object 𝑥 last

written by 𝑇 , 𝑇 ′
is choosing to order itself directly after 𝑇 in

the serializable order (the read from𝑇 ′
must appear to imme-

diately follow𝑇 ’s write). No transaction that—through reads

and writes to 𝑥—would preclude this ordering can commit. In

effect, 𝑇 ′
’s read initiates a period of mutual exclusion: until

𝑇 ′
has overwritten 𝑥 , no other transaction can also read and

modify 𝑥 . We note that such a period of mutual exclusion

does not apply to transactions that only read an object.

Figures 1a and 1b explicitly depict this time period with

the bars labelled 𝑇1 and 𝑇2 above the timeline. For both ex-

ecutions, the overlap between two such periods intuitively

corresponds to a non-serializable interleaving. We refer to

this period as a serialization window and we formally prove

that no two serialization windows can overlap in a system

that provides the abstraction of sequential execution.

Formal Definitions. If a transaction𝑇𝑖 reads version 𝑘 of

object 𝑥 (𝑟𝑖 (𝑥𝑘)) and writes version 𝑖 of 𝑥 (𝑤𝑖 (𝑥𝑖)),𝑇𝑖 creates
a serialization window on 𝑥 that starts at𝑤𝑘 (𝑥𝑘) and ends at

𝑤𝑖 (𝑥𝑖). 𝑇𝑖 ’s serialization window on 𝑥 starts when its read

dependency (the version of 𝑥 it read) is written and ends

when it writes the next version of 𝑥 . 2

In Adya’s model, the sequential execution property is for-

malized as a statement about the DSG: if DSG(𝐻) is acyclic
then a topological sort of the graph is a sequence of trans-

actions that produces an execution equivalent to the one

represented by 𝐻 . A system thus provides the abstraction

of sequential execution if it only produces histories whose

DSGs are acyclic.

For these definitions, the following Theorem holds:

Theorem 2.1. If DSG(𝐻) is acyclic and 𝑇𝑖 and 𝑇𝑗 are two
committed transactions in 𝐻 that write object 𝑥 , then the seri-
alization windows of T𝑖 and 𝑇𝑗 on 𝑥 do not overlap.

2
We extend this definition in Appendix ?? to transactions that only write

to 𝑥 .

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

Proof Sketch. First, consider the case of 𝑥𝑖 immediately pre-

ceding 𝑥 𝑗 in the version order and 𝑇𝑗 reading 𝑥𝑘 (as in Fig-

ure 1). If 𝑥𝑘 ≠ 𝑥𝑖 , then either 𝑥𝑖 is before 𝑥𝑘 in the version

order or vice versa. In the former case, 𝑥 𝑗 must precede 𝑥𝑘
in the version order because 𝑥𝑖 and 𝑥 𝑗 are directly next to

each other. This implies there is a cycle 𝑇𝑗
ww−−→ 𝑇𝑘

wr−−→ 𝑇𝑗 . In

the latter case, there is a cycle𝑇ℓ
ww−−→ 𝑇𝑗

rw−−→ 𝑇ℓ involving the

transaction 𝑇ℓ that installs the version 𝑥ℓ that immediately

follows 𝑥𝑘 in the version order. Both cases contradict the

hypothesis that DSG(𝐻) is acyclic, so 𝑥𝑘 must equal 𝑥𝑖 . This

trivially implies that 𝑇𝑖 ’s serialization window ends before

𝑇𝑗 ’s serialization window begins, since they begin and end

respectively at the same point in time (𝑤𝑖 (𝑥𝑖)).
If 𝑥𝑖 does not immediately precede 𝑥 𝑗 , then the same rea-

soning can be applied inductively to the serialization win-

dows of the transactions that created the totally ordered

sequence of object versions between 𝑥𝑖 and 𝑥 𝑗 . □

We provide a complete proof in Appendix ??. Note that non-
overlapping serialization windows are necessary, but not

sufficient, for serializable execution.

Serialization windows offer a general, yet precise charac-

terization of the throughput limitation that sequential exe-

cution imposes. Since serialization windows of committed

transactions for the same object cannot overlap in time, the

length of serialization windows in a system determine an

upper bound on the number of serialization windows of com-

mitted transactions that can manifest for the same object

in a fixed period of time. Thus, a system’s throughput for

processing transactions that make conflicting accesses to

the same object is bounded by the inverse of the length of

its serialization windows. For example, replicated OCC and

2PL have relatively long serialization windows because they

buffer writes until commit, which occurs after a round of

communication to at least a majority of replicas.

2.2 Read Validity
Besides simulating sequential execution, serializable systems

must uphold the abstraction of a failure-free store: they need

to ensure that committed transactions only observe the ef-

fects of committed transactions, a property commonly re-

ferred to as read validity.
This property is trivially guaranteed by CCs that only ex-

pose committed writes to readers, such as OCC or 2PL. To

understand how read validity limits the throughput of se-

rializable systems, we examine the concurrent execution

of TPC-C Payments in multi-version timestamp ordering

(MVTSO) [9, 14, 26, 44, 45, 52], a CC that exposes both com-

mitted and uncommitted writes to readers.

Figure 2 shows an execution of 𝑇1 and 𝑇2 in a replicated

implementation
3
of MVTSO. 𝑇1 reads the value of 𝑥 written

3
A basic extension of MVTSO as described in the literature [9] that uses

validation to ensure that a set of replicas agree on the order of writes with

respect to reads.

T1
T2

c1

c2

s1

s3

s2

Figure 2. Payments in replicated MVTSO.

by a previous transaction 𝑇0, and, to guarantee read validity,

waits for 𝑇0 to commit before validating. Likewise, 𝑇2 reads

from (and forms a dependency on) 𝑇1’s write. Due to this

dependency, 𝑇2 waits for 𝑇1 to commit before validating and

committing. If 𝑇2 eagerly validates and commits, the system

may violate read validity if 𝑇1 subsequently fails to commit.

Read validity, when combined with the sequential exe-

cution requirement of serializability, restricts the order in

which transactions can commit. This limits how quickly a

chain of dependent transactions can commit. We introduce

the notion of validity windows to quantify this limitation.

Formal Definitions. A history 𝐻 satisfies read validity
if for every read 𝑟𝑖 (𝑥𝑘) from a committed transaction 𝑇𝑖 , 𝑇𝑘
is not aborted. In a real implementation, 𝐻 satisfies read

validity if and only if for every read 𝑟𝑖 (𝑥𝑘) from a committed

transaction 𝑇𝑖 , 𝑇𝑘 is committed and 𝑇𝑘 commits before 𝑇𝑖 [1].

This is typically referred to as recoverability [9].

If a transaction 𝑇𝑖 reads version 𝑘 of object 𝑥 (𝑟𝑖 (𝑥𝑘)) and
writes version 𝑖 of 𝑥 (𝑤𝑖 (𝑥𝑖)), 𝑇𝑖 creates a validity window
on 𝑥 that starts at 𝑐𝑘 and ends at 𝑐𝑖 . 𝑇𝑖 ’s validity window

on 𝑥 starts when its dependency commits and ends when it

commits.
4

Validity windows on the same object cannot overlap in

a system that provides both read validity and sequential

execution. We prove the following in Appendix ??:

Theorem 2.2. If DSG(𝐻) is acyclic, 𝐻 satisfies read validity,
and 𝑇𝑖 and 𝑇𝑗 are two committed transactions in 𝐻 that write
object 𝑥 , then the validity windows of𝑇𝑖 and𝑇𝑗 do not overlap.

Like serialization windows, validity windows offer a pre-

cise characterization of the throughput limitation that read

validity imposes in conjunction with sequential execution. A

system’s throughput for processing transactions that make

conflicting accesses to the same object is bounded by the

inverse of the length of its validity windows. Thus, a system

that processes such transactions at the rate of this bound

can achieve higher throughput by reducing the length of its

serialization windows and validity windows.

Unlike serialization windows—which can overlap in an ex-

ecution as long as one of the involved transactions does not

commit—validity windows are only defined for committed

4
We extend this definition in Appendix ?? to transactions that only write

to 𝑥 .

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

transactions, as their end points correspond to their asso-

ciated transactions’ commit events. A system can seek to

avoid overlapping serialization windows of uncommitted

transactions to reduce wasted work and idle periods, but

there is no analogous goal for validity windows. Instead, the

sole performance concern of a serializable CC with respect

to read validity is the length of its validity windows.

3 Transaction Re-Execution
To maximize system performance, a serializable CC should

ensure that (i) serialization windows are small and not over-

lapping; and (ii) validity windows are small. These con-

straints are hard to satisfy efficiently for interactive trans-
actions, where the application server executes transactions

incrementally using a conversational API (e.g., ODBC) inter-

spersed with application processing. This type of transac-

tion is favored by developers [37], but it prevents a system

from knowing a transaction’s full access set a priori. Fur-

ther, asynchrony prevents systems from reliably predicting

when outstanding accesses will complete. In this section, we

highlight the limitations of existing approaches to provid-

ing transactions under asynchrony (§3.1) before introducing

transaction re-execution to address those shortcomings (§3.2).

3.1 Existing Approaches
3.1.1 Abort & Retry. Existing systems that support inter-

active transactions immediately process accesses as they are

received from the application; the CC then aborts transac-

tions whose reads cause their serialization windows to over-

lap with that of another transaction. Under high contention,

this approach can cause livelock, with transactions repeat-

edly aborting. Instead, most applications enforce randomized

exponential backoff [30]: clients wait a randomized, exponen-

tially growing amount of time before restarting an aborted

transaction. Doing so eventually minimizes the likelihood

that a transaction’s read generates a serialization window

that overlaps with the window of another transaction.

Randomized exponential backoff, however, is a rather

large hammer applied to a problem that instead benefits

from precision. Exponentially increasing the expected times

between attempts can introduce artificially long serialization

windowswheremuch of the span of a serialization window is

from the application server waiting to issue an uncontended

read. This limits the maximum throughput of a system even

when physical resources are not bottlenecked. For example,

in our evaluation of TAPIR (§5), the average CPU utiliza-

tion of storage servers on a high contention workload at

maximum saturation is only about 17%.

3.1.2 Deterministic Databases. Deterministic systems

avoid all non-determinism when scheduling operations by

pre-ordering transactions [20, 22, 48]. Once the transaction’s

position in the total order is durably logged, it is forwarded

T1

T2

T3

r1(x0) w1(x1)

r2(x0)

r3(x0)

w0(x0)

w3(x3)

r2(x1)

r3(x1) r3(x2)

w2(x2)

Figure 3. Transaction re-execution.

for execution to the scheduling layer, which then determin-

istically executes transactions in an order equivalent to the

one in which they are logged. As the ordering is known a

priori, transactions never read values that cause serialization

windows to overlap. Consequently, retries from aborts do

not occur and serialization windows are kept relatively short

since they do not contain idle periods between retries. Simi-

larly, as transactions commit in a pipelined fashion before

being executed, validity windows are also small.

These performance benefits come at the cost of limiting

the expressivity of the transactional API: transactions must

be written as stored procedures, with the transaction’s entire

program logic submitted on invocation and and stored in

the database itself. This tradeoff is unacceptable for most

applications [37], as it adds to the developer’s burden and

complicates deploying updates to the application logic.

3.2 Re-Execution
In this chapter, we ask: can we develop a mechanism that (i)

prevents serialization windows from overlapping while mini-

mizing idle time gaps within them; and (ii) minimizes validity

windows, all while preserving the expressivity of interac-

tive transactions? To answer these questions, we propose a

transaction re-execution mechanism that initially schedules

transactions best effort, but can dynamically and partially

restart execution when overlaps do occur.

In a nutshell, transaction re-execution works as follows.

Whenever the serialization windows of two transactions 𝑇

and𝑇 ′
overlap, transaction re-execution resolves the overlap

by changing the read value of𝑇 to𝑇 ′
’s write, thereby shifting

𝑇 ’s window forward. There are two benefits to this approach:

(1) it prevents windows from overlapping while ensuring

that transactions are processed continuously, without gaps;

and (2) it shifts windows locally: re-execution occurs at the

granularity of an object (not the full transaction) and thus

only requires re-executing operations that access or depend

on that particular object. Consider, for instance, Figure 3.

Initially, there are three transactions, 𝑇1, 𝑇2 and 𝑇3, whose

serialization windows pairwise overlap. Re-execution first

shifts the reads of 𝑇2 and 𝑇3 to observe𝑤1 (𝑥1); and then the

read of 𝑇3 once more, after 𝑇2 completes its write.

Two core ideas drive the feasibility of re-execution: read
unrolling and a priori ordering. Below, we briefly discuss

these two pillars of re-execution.

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

Read Unrolling. Transaction re-execution shifts reads

forward in time by invalidating the current values read in a

given execution and replacing them with others, produced

by newer writes. In doing so, however, the read no longer

logically corresponds to the ongoing application’s thread of

execution. The application logic, based on the old value, may

have subsequently issued several dependent operations. To

avoid inconsistencies, transaction re-execution must provide

a means for unrolling the effect of prior reads (and all possi-

ble dependencies), as well as the ability to partially restart

execution in a way that is transparent to the application.

A Priori Ordering. Deterministic databases leverage pre-

defined schedules to streamline execution; while interactive

transactions cannot be fully scheduled in advance, determin-

ism can simplify scheduling. By assigning to all transactions

a speculative serialization order a priori, overlapping serial-

ization windows are easily identified at runtime: pairwise

reads and writes to an object 𝑥 that appear out of the specu-

lative order induce overlapping serialization windows.

4 Morty Design
Morty is a replicated transactional key-value store explicitly

designed to minimize the overlap of serialization windows

(§2). Morty’s properties and performance rest on two basic

mechanisms. First, transaction re-execution (§3), which al-

lows it to realign serialization windows that would otherwise

overlap; second, concurrency control and replication tech-

niques that minimize the length of serialization windows and

validity windows, especially in geo-replicated settings. The

combination of these techniques allows Morty to achieve

higher throughput on high contention workloads than exist-

ing systems (§5) without sacrificing either strong consistency

(serializability) or generality (interactive transactions).

System Model. Morty assumes an asynchronous system,

where message delivery and local processing may be delayed

for arbitrarily long. Up to 𝑓 out of 𝑛 = 2𝑓 + 1 Morty replicas

and any number of its clients may fail by crashing, i.e. per-

manently cease to send and receive messages. For simplicity,

we assume reliable and FIFO message delivery; these prop-

erties may be implemented in an unreliable network using

retransmissions and message sequence numbers.

Structure. In the rest of this section we describe how

Morty implements the two pillars of transaction re-execution

(§4.1). Next we walk through a full execution of a transac-

tion in Morty (§4.2). Finally, we discuss how Morty handles

failures (§4.3) and garbage collection (§4.4).

4.1 Implementing Re-Execution
4.1.1 UnrollingReadswith aContinuation-basedAPI.
The first pillar of transaction re-execution is the ability to

undo the effects of previously completed reads, whether by

recomputing intermediate transaction state or by retracting

or reissuing operations dependent on those reads.

A simple and general way to rewind the effects of com-

pleted reads is to provide the application’s logic as input to

the system; the effects of undoing a read can then be pre-

cisely determined by re-executing that logic with the new

read value. To achieve this capability, prior work has required

applications to limit themselves to expressing transactions

either as stored procedures [50], renouncing interactivity,

or via a separate domain-specific language [15], imposing

an additional burden on developers [37]. Morty manages to

avoid these drawbacks by adopting a different approach: a

continuation passing style (CPS) API.

Continuation-based API. In CPS, the control flow of a

program is specified entirely as function calls. Each func-

tion takes a context and continuation argument. The context

stores the program’s current state, and the continuation spec-

ifies where the program continues executing after finishing

the current function. Morty’s API mirrors a traditional, im-

perative API, but adds a context parameter to each database

operation; in addition, calls to Get and Commit also include

a continuation parameter, which defines where to return

control (i.e., which logical block to execute next) after com-

pleting the database statement.

CPS is widely used for writing asynchronous programs

across many languages (JavaScript, Go, C++, Java, Python)

and frameworks (NodeJS, LibEvent [29], Tokio Async [41]).

It is a good match for networked databases, such as Morty,

where the results of Get and Commit operations are only

available after calls to the network.

We emphasize that networked applications are often al-

ready written with the CPS API, and in such cases, Morty

imposes no burden on the application developers to rewrite

their applications. For example, Microsoft’s FaRM transac-

tional system [17] uses the CPS API, and thus, applications

written for FaRM could run on Morty with few changes.

Nevertheless, moving traditional imperative code to CPS

can be fully automated with the help of a compiler [5, 23].

While Morty does not currently support this capability, our

experience suggests that the effort involved in hand-coding

such transformations is relatively minor. For example, Fig-

ure 4 shows a simplified TPC-C Payment transaction written

in an imperative C++ transactional API (Figure 4a) and in

Morty’s CPS (Figure 4b).

It’s all in the context! CPS mostly hides from the appli-

cation developer the complexity of supporting re-executions.

By simply storing old contexts in the client library, Morty can

automatically rewind the current execution and re-execute

a continuation with a new return value, leaving the applica-

tion or user none the wiser. No additional effort is asked of

the developer beyond what is required in a system that may

abort and retry transactions.

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

bool ProcessPayment(uint w_id, uint amt) {
client.Begin();
auto wh = client.Get("warehouses", w_id);
wh.SetCol("ytd", wh.GetCol("ytd") + amt);
client.Put("warehouses", w_id, wh);
return cli.Commit();
}

(a) Traditional: operations implicitly ordered by program order.

void ProcessPayment(uint w_id, uint amt,
continuation_t cont) {

auto ctx = make_ptr<PaymentCtx>();
client.Begin(ctx);
client.Get(move(ctx), "warehouses", w_id,

[&client, &cont](ptr<PaymentCtx> ctx,
string val){
auto wh = ParseWarehouse(val);
wh.SetCol("ytd", wh.GetCol("ytd") + amt);
client.Put(ctx, "warehouses", w_id, wh);
client.Commit(move(ctx), cont);

});
}

(b) CPS: explicit continuations define control flow dependencies.

Figure 4. Payment in traditional (4a) & CPS (4b) APIs.

4.1.2 Pre-Determining anOrderwithMVTSO. The sec-
ond pillar of Morty’s transaction re-execution is to execute

transactions in a pre-determined order. To this end, Morty

adopts MVTSO as its concurrency control protocol. Each

transaction is assigned a timestamp when it enters the sys-

tem; the timestamp determines the transaction’s position in

a total order. The read, write, and commit protocols attempt

to execute transactions in this predefined order by ensuring

that the timestamp of the write observed by a read precedes

that of the read and follows that of all other writes visible to

the read. However, MVTSO can only approximates the per-

fect deterministic ordering of deterministic databases. Nodes’

clocks are only loosely synchronized, and the system still ex-

periences non-deterministic ordering from the network and

processors. Thus, a transaction’s read may miss the correct

write from another transaction whose assigned timestamp

was too small (because of clock skew) or whose write arrived

too late (because of asynchrony). If in some edge cases these

circumstances may force one of the transactions to abort,

Morty demonstrates that, in most cases, re-execution reduces

throughput loss by allowing both transactions to commit.

4.2 Transaction Execution
In the following, we detail Morty’s transaction execution

protocol. Morty encapsulates the state and metadata of an ex-

ecuting transaction in a transaction execution (or execution).
Since Morty supports transaction re-execution, multiple ex-

ecutions of the same transaction may exist over the lifespan

vstore - map from key to a vrecord struct:

reads - set of uncommitted (ver, last_reply)
writes - set of uncommitted (ver, val)
prepared_reads - set of prepared (ver, exec_id, r_ver)
prepared_writes - set of prepared (ver, exec_id)
committed_reads - set of committed (ver, r_ver)
committed_writes - set of committed (ver, val)

decision_log - map from ver to Commit/Abort decision
erecord - map from (ver, exec_id) to a struct:

vote - validation vote cast by replica

view - view in which replica is prepared to accept

finalize decisions

finalize_decision - accepted commit decision

finalize_view - view in which replica accepted

finalize_decision
decision - learned Commit/Abandon decision

Figure 5. State at each replica.

of a transaction. Thus, the coordinator of a transaction as-

signs a unique eid to each execution that it creates. Figure 5

summarizes the state maintained at each replica.

Begin(ctx). The coordinator starts a transaction 𝑇 by as-

signing it a unique version ver = (ts, id) based on its loosely

synchronized local clock ts and unique coordinator identi-

fier id. This version defines 𝑇 ’s expected position in a total

order for all transactions. The initial execution’s eid is 0. The

coordinator also initializes data structures that will store

metadata for the transaction execution. For convenience,

these are stored directly in the application ctx so that subse-

quent transaction operations can easily access the metadata

associated with the application’s current context.

Get(ctx, key, cont). The coordinator creates a mapping

between this Get request and the application continuation

cont in order to call the continuation when the Get request

completes. It then sends a Get(ver, key) message to a single

replica: in geo-replicated deployments, this minimizes Get

latency, as the coordinator (in the common case) can contact

the closest replica.

Upon receiving aGet, a replica determines the return value

by selecting from key’s vrecord the write with the largest

version ver ′ smaller than ver . It then sends to the coordinator
a GetReply(ver ′, val) message containing the write value val,
adds the read to the vrecord, and records ver ′ and val as the
most recent write replied for the read.

When the coordinator receives a GetReply it adds (key,
ver ′, val) to the read_set of the execution. Then, the coordi-
nator calls cont (val) to return the value and control to the

application.

Put(ctx, key, val). The coordinator adds (key, val) to the

write_set of the execution. It then asynchronously broadcasts

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

a Put(ver, key, val) message to all replicas and returns control

to the application.

When a replica receives a Put, it adds the write to the

vrecord for key. Next, the replica determines whether any

read in the vrecord missed this new write. A read misses a

write if the replica, had it processed the read after the write,

would have replied to the read with the value of that write.

A read miss happens when the read’s version is smaller than

ver and one of two conditions is met: (i) the version of the

most recent write replied for the read is smaller than ver ; or
(ii) the read already observed a write with ver , but with a

different value. The latter case is possible when re-executing

an earlier read in the transaction changes the write value.

The replica sends a new GetReply(ver, val) to the coordi-

nator of any read in a key’s vrecord that missed the write.

Re-Execution. Upon receiving a GetReply, the coordina-
tor considers re-executing 𝑇 only if 𝑇 ’s current execution
includes a read request that would have prompted that reply.

This condition may not be met if the coordinator already had

already initiated re-execution and is now operating on an

execution branch that either no longer includes the request

to read, or is yet to invoke it. To make this determination,

the coordinator defines and stores a reads execution history
within the application-provided context ctx. It also main-

tains a current context for the execution that most recently

invoked an operation. Only those replies whose reads execu-

tion history is a prefix of the execution history of the current

context trigger re-execution.

To re-execute 𝑇 ’s read and return the new write value to

the application, the coordinator uses the copies of𝑇 ’s ctx and
cont that it is storing to implement the CPS asynchronous

Get calls; supporting re-execution simply requires retaining

these copies, for each Get of the current execution, until 𝑇
completes. The coordinator retrieves the stored ctx and cont
that correspond to the read that is to be repeated, and calls

the continuation with the new read value.

Commit(ctx, cont). Morty, as in prior work [45, 46, 54],

integrates concurrency control with replication to reduce

commit latency. The commit protocol requires up to three

phases. In the Prepare phase, the coordinator requests that
all replicas vote on whether or not the transaction execution

is serializable. If all replicas agree, the decision is durable;

the coordinator immediately performs the Decide phase and
returns to the application. Otherwise, an intermediate Final-
ize phase is necessary to explicitly make a decision durable

before proceeding to the Decide phase.

Abort vs. Abandon. A commit protocol determines one

of two possible decisions for a transaction: Commit or Abort.
In Morty, however, the same transaction can trigger multi-

ple re-executions, some of which may start after the trans-

action’s commit protocol has already begun. Thus, Morty

refines the commit protocol to operate at the granularity

of individual executions of a transaction. Each transaction

execution reaches one of two decisions: Commit or Abandon;
these elemental decisions in turn determine the transaction’s

decision value. For a transaction to commit, at least one of its

executions must commit; for it to abort, all of its executions

must be abandoned.

Prepare. The coordinator begins the Prepare phase for

an execution of transaction 𝑇 with (ver, eid) by broadcasting

Prepare(ver, eid, read_set,write_set) to replicas.

When a replica receives a Prepare, it creates an entry in

its erecord. Before voting on whether the execution is serial-

izable, the replica checks that all of 𝑇 ’s read dependencies

are committed. If any version in read_set was written by an

aborted transaction, the replica votes Abandon-Final. Other-
wise, if any version in read_set is not committed, the replica

waits to learn a decision for the corresponding transactions

before continuing to process this Prepare.
Serializability validation involves four checks:

1. Check that the execution’s reads did not miss any

writes (§4.2). If a read missed an uncommitted write,

the replica votes Abandon-Tentative; if a read missed a

committed write, the replica votes Abandon-Final.
2. Check that other transactions’ reads did not miss 𝑇 ’s

writes. If a committed transaction missed a write from

𝑇 , the replica votes Abandon-Final. Otherwise, if a
tentatively prepared transaction missed a write, the

replica votes Abandon-Tentative.
3. Check for dirty reads: a replica confirms that every

ver and val in read_set exactly matches a committed

write. If not, the offending read must have read from

an abandoned execution of a transaction. Therefore,

the replica votes Abandon-Final.
4. Check that the execution did not read from any trun-

cated transactions, and that the transaction execution

itself is not truncated (§4.4). Otherwise, the replica

votes Abandon-Final.
The first two checks are standard in MVTSO; the third en-

sures that committed executions only read valid data; finally,

the fourth ensures that the execution is validated against

committed transactions that have been garbage collected.

If the execution passes all validation checks, the replica

prepares its reads and writes and votes to Commit. In all cases,
the replica sends a PrepareReply(vote) message to the coordi-

nator. If the replica determines that the execution missed a

write, it additionally sends a GetReply containing the write.

Since at most 𝑓 replicas are faulty, the coordinator waits

to receive at least 𝑓 + 1 PrepareReplies. It then determines (i)

the decision for the current execution (and, if appropriate,

for the corresponding transaction), and (ii) whether or not

the decision is durable. Table 1 summarizes how the coordi-

nator aggregates replica votes. An execution of 𝑇 (and, as a

result, 𝑇 itself) commits only if at least 𝑓 + 1 replica vote to

commit: this guarantees that no two conflicting executions

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

Decision Skip Finalize? Need Finalize?

Commit 2𝑓 + 1 Commit 𝑓 + 1 Commit
Abandon 1 Abandon-Final ≥ 1 Abandon-Tentative

Table 1. The coordinator aggregates votes and determines

a final decision based on the number and types (Commit,
Abandon-Tentative, Abandon-Final) of votes.

can both commit, and thus the set of committed transactions

is serializable. A decision is considered durable if it can be

reconstructed from the information stored at any set of 𝑓 + 1
replicas. If this is not the case, an untimely failure of 𝑇 ’s

coordinator may lead a recovery coordinator (§4.3) to a dif-

ferent decision from that of 𝑇 . To avoid this scenario, the

coordinator performs an additional Finalize phase.

Finalize. The Finalize phase uses consensus to ensure

that replicas agree on the decision for the execution despite

coordinator failures. It resembles single-decree Paxos [25]

in that the decision for the transaction execution is treated

as a write-once register whose value, once determined, will

remain unchanged [28]. This is implemented via replicas

accepting a finalize_decision proposed by coordinators for a

view. Specifically, the coordinator broadcasts a Finalize(ver ,
eid, view, decision) message to all replicas. Upon receiving it,

a replica checks in the erecord for (ver, eid) whether its view
view ′

is the same as view. If so, the replica records decision
as its finalize_decision and sends back a FinalizeReply(view ′

)

message. The coordinator waits to receive 𝑓 + 1 such replies.

If they are for the view sent by the coordinator, the decision

is durable. Otherwise, a recovery coordinator is concurrently

attempting to Finalize a decision for the execution and the

coordinator itself must perform recovery (§4.3).

Decide. The Decide phase confirms for replicas that the

decision for execution eid of𝑇 (and, if warranted, for𝑇 itself)

is durable. It also indicates that state associated with 𝑇 can

be safely garbage collected. We discuss garbage collection

later (§4.4); for now, we focus on the other actions that a

replica takes upon learning a durable decision for (𝑇, eid).
To start this phase, the coordinator broadcasts aDecide(ver ,

eid, decision, abort?) message to all replicas. Although decision
applies to eid, if it is Commit, then the decision’s scope ex-

tends to𝑇 as well. Instead, a decision that is Abandon applies

only to the current execution. However, if the coordinator

determines that this is𝑇 ’s only outstanding execution, it sets

the abort? to True to indicate its decision that 𝑇 must Abort.
When a replica receives a Decide with a Commit deci-

sion, it logs the Commit decision in the erecord for (ver, eid)
and adds (ver,Commit) to the decision_log. It also adds the

read_set and write_set of the execution to committed_reads
and committed_writes of the appropriate vstore entries. This

metadata is used for validating future conflicting transac-

tions and is retained until it can be safely garbage collected.

If the Decide includes a decision to Abandon the execution,
but not one to Abort, the replica logs the Abandon decision

in the erecord for (ver , eid) and erases all prepared_reads and
prepared_writes associatedwith (ver , eid) in the vstore, while
retaining all reads andwrites associated with ver . This allows
subsequent executions of𝑇 to continue executing or commit-

ting. If Decide additionally indicates that 𝑇 must abort, the

replica adds (ver,Abort) to the decision_log and generates

new GetReplies for all reads that observed 𝑇 ’s writes.
Lastly, if the Decide implies a Commit or Abort decision

for 𝑇 (i.e., not just an Abandon decision for the current exe-

cution), the replica checks whether suspended Prepares that
depend on 𝑇 may now move forward.

Commit & Re-Execution. A re-execution for 𝑇 may be

triggered after the commit protocol for𝑇 ’s current execution

has already begun. In fact, for geo-replicated deployments,

it is during the commit protocol that re-executions are most

likely triggered, since it is the first phase that requires a

message exchange with at least 𝑓 + 1 replicas.

To avoid committing multiple executions from the same

transaction, a coordinator abandons all previous executions

before attempting to commit its current re-execution. To

abandon an execution (ver , eid) that has reached the commit

protocol, a coordinator broadcasts Finalize(ver , eid, 0, Aban-
don) messages to all replicas. In the absence of contending

recovery coordinators (§4.3) , 𝑓 + 1 replicas accept the Aban-
don decision in view 0, making the decision durable. This

message exchange also unprepares any prepared reads and

writes from (ver , eid) – clearing the way for the coordinator’s
re-execution to proceed through the commit protocol. If the

coordinator’s Abandon proposal fails to be accepted by 𝑓 + 1

replicas—because of a concurrent recovery coordinator—the

coordinator recovers that decision and proceeds accordingly.

4.3 Handling Failures
Morty tolerates up to 𝑓 failures among its 2𝑓 + 1 replicas.

However, the failure of a coordinator poses a potential live-

ness issue: a transaction that stalls in the middle of its com-

mit protocol may prevent conflicting transactions from com-

mitting. Furthermore, transactions that read from a stalled

transaction must wait until a decision is reached. Inspired by

recent work [45, 46, 54], Morty’s coordinator recovery pro-

tocol empowers any node in the system to recover a durable

decision for a failed coordinator’s transaction.

Recovery Protocol. The recovery protocol, like the Final-

ize phase (§4.2), uses consensus to ensure that a single deci-

sion is reached for a transaction execution. Unlike coordina-

tors performing the Finalize phase, a recovery coordinator

for an execution eid of a transaction with version ver must

enact a view change to a unique view ′
larger than any pre-

vious view by broadcasting a PaxosPrepare(ver , eid, view ′
)

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

message to all replicas. When a replica receives a PaxosPre-
pare, it checks in the execution’s erecord entry whether view ′

is larger than its current view view, in which it previously

promised to not accept decisions in smaller views. If so, the

replica updates view to view ′
. It then sends a PaxosPrepar-

eReply(view, decision, finalize_view, finalize_decision, vote)
to the recovery coordinator.

To propose a durable decision, the recovery coordinator

must receive 𝑓 + 1 replies from replicas agreeing to change

to view ′
. The actual decision depends on the contents of

the replies. If any reply already contains a learned deci-

sion, the recovery coordinator simply performs the Decide

phase and terminates. Otherwise, it performs the Finalize

phase using view ′
and either (i) the finalize_decision from

among all replies with the highest finalize_view, or (ii) if no
finalize_decision exists, a new decision based on the Prepare

phase rules (Table 1). The Finalize and subsequent Decide

phase proceed as in normal transaction execution.

4.4 Garbage Collection & Truncation
To be practical, Morty replica state must not grow asymptot-

ically faster than the number of objects stored in the system.

This is ensured by a series of garbage collection procedures

and a related truncation procedure.

Decide Garbage Collection. Part of the vstore is garbage
collected when a Commit or Abort decision for an execu-

tion (𝑇, exec_id) is learned. The uncommitted reads with
version ver (𝑇) are no longer needed for re-executing 𝑇 ,

since 𝑇 has a durable decision. Similarly, the uncommitted

writes with version ver (𝑇) are either visible to other transac-
tions as part of committed_writes (in the case of Commit) or
should no longer be visible to any transaction (in the case of

Abort). Furthermore, regardless of the Decide decision, the

prepared_reads and prepared_writes with ver (𝑇) and match-

ing exec_id may be garbage collected.

Truncation. Garbage collection of the erecord is more

complicated as this state is used to ensure that at most one

durable decision is reached for each transaction execution.

Morty safely truncates the erecord with a truncation proto-

col, initiated by a truncation coordinator, which attempts to

establish a durable truncation_ver that summarizes all com-

mitted state from transactions with smaller versions. Once a

safe truncation_ver is determined, replicas stop responding

to requests for transactions with smaller versions.

The truncation protocol is comprised of the following

steps:

1. When the system starts, it establishes truncation ver-

sions based on the loosely synchronized clocks of the

replicas. These versions are spaced by a configurable

amount of time to control how frequently truncation

occurs.

2. A replica times out when a configurable amount of

time has passed since the most recent truncation ver-

sion truncation_ver . At this time, it stops processing

transactions with versions smaller than truncation_ver
(e.g., by responding Truncated to all related messages).

In addition, it sends to a pre-established truncation co-

ordinator a Truncate(truncation_ver, erecord) message

containing a snapshot of its current erecord for trans-

actions with versions smaller than truncation_ver .
3. When the truncation coordinator receives 𝑓 + 1 Trun-

cates for truncation_ver , it merges the erecords using
the existing voting and coordinator decision proce-

dures. The merging process must maintain the invari-

ant: if a decision could have been reached for a transac-

tion𝑇 in one of the constituent erecords, then that deci-
sion is preserved in themerged_erecord. Then the trun-
cation coordinator proposes a consistentmerged_erecord
for this truncation version by broadcasting a Propose-
Merge(truncation_ver, truncation_view,merged_erecord)
message to all replicas.

4. Upon receiving a ProposeMerge, a replica checkswhether
its truncation_view is the same as truncation_view. If
so, the replica records truncation_view as truncation_accept_view
and merged_erecord as truncation_accept_erecord. In
either case, it sends a ProposeMergeReply(truncation_view)
to the truncation coordinator.

5. When the truncation coordinator receives 𝑓 +1 Propose-
MergeReplies with the same truncation_view, the trun-
cation decision is durable and the coordinator informs

all replicas of the consistent durable erecord by broad-

casting a TruncationFinished (truncation_ver,merged_erecord)
message.

6. Upon receiving a TruncationFinished, a replica applies
themerged_erecord to its own erecord, overwriting any
existingmetadata for transactions frommerged_erecord.
At this point, it also raises its watermark truncation_ver
to allow truncated metadata to be garbage collected.

Additionally, as part of serializability validation, it

thenceforth rejects any transaction executions with

versions smaller than truncation_ver .
7. If the truncation coordinator receives a ProposeMerg-

eReply with a different truncation_view, it attempts a

view change to a higher view by broadcasting Trunca-
tionPaxosPrepare. Once 𝑓 + 1 replicas agree to change

to the higher view, the coordinator repeats steps 3–5.

TruncatedGarbage Collection. Periodically, state in the

erecord and vstore associated with a transaction𝑇 whose ver-

sion ver (𝑇) is smaller than truncated_ver may be deleted.

Specifically, the entire struct associated with any execu-

tion of 𝑇 may be deleted from erecord. In addition, any

committed_reads and committed_writes from𝑇 in vstoremay

be deleted, as the truncation check during validation ensures

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

that transactions that would need to be checked against these

deleted reads and writes are not allowed to commit.

4.5 Correctness
Using Adya’s model of a transactional storage system, the

following Theorem holds:

Theorem 4.1. Morty only produces serializable histories.

Proof Sketch. Consider a history 𝐻 produced by Morty. The

proof that 𝐻 is serializable consists of two parts: (i) show-

ing that DSG(𝐻) is acyclic and (ii) showing that committed

transactions in 𝐻 only read valid data.

The proof of (i) reduces to showing that the directions of

the edges of DSG(𝐻) are consistent with the version order

of transactions, which is a total order. Consider a write-write

edge whose direction is determined by the object version

order≪. We define≪ to be consistent with the version order

of transactions, so the edge direction is trivially consistent

with the version order. Similarly, consider a write-read edge:

Morty only returns values for reads such that the version

of the write value is smaller than the version of the reading

transaction, so the edge direction is always consistent with

the version order of transactions.

Proving the consistency of a read-write edge 𝑇𝑖
rw−−→ 𝑇𝑗

—where 𝑇𝑖 reads some object version 𝑥𝑘 and 𝑇𝑗 installs the

next version after 𝑥𝑘— requires reasoning about the order

in which the replicas of the group that stores 𝑥 perform the

validation checks for𝑇𝑖 and𝑇𝑗 . Regardless of whether or not

𝑇𝑖 and 𝑇𝑗 commit on the fast path, slow path, recovery path,

or truncation path, they each must pass the validation check

at more than 𝑓 + 1 replicas. This implies that at least one

replica validates both𝑇𝑖 and𝑇𝑗 . If the replica validates𝑇𝑖 first,

then 𝑇𝑗 can only validate successfully if ver (𝑇𝑖) < ver (𝑇𝑗).
Otherwise, if the replica validates 𝑇𝑗 first, then 𝑇𝑖 can only

validate successfully if ver (𝑇𝑖) < ver (𝑇𝑗). The truncation

check during validation ensures that this invariant holds

even after committed data is truncated.

The proof of (ii) relies on the dirty read check of the vali-

dation check and the fact that transaction coordinators only

attempt to commit a single execution of a transaction that is

produced by the application logic. The former ensures that

committed transaction only read from transactions which

have been committed and the latter ensures that the only

transactions which are committed are those that correspond

to a single transaction invocation by the application. □

The full proof of Theorem 4.1 is in Appendix ??.

5 Evaluation
Our evaluation answers the following questions:

• How do Morty’s throughput and latency compare

to state-of-the-art systems on high-contention OLTP

workloads? (§5.1)

• Towhat extent do additional CPU resources helpMorty

(and the baselines) scale throughput? (§5.2)

• How do varying levels of contention affect Morty’s

throughput (relative to the baselines)? (§5.3)

Our code and experiment scripts are open source [32].

Baselines. WequantifyMorty’s performance against three

baselines: (𝑖) TAPIR [54], a state-of-the-art serializable stor-

age system with interactive transactions that uses OCC;

(𝑖𝑖) Spanner [12], Google’s distributed, strictly serializable

database that uses 2PL [9] for CC and wound-wait [40]

for deadlock prevention; and (𝑖𝑖𝑖) a replicated implemen-

tation of MVTSO inspired by recent work [45, 46] that re-

uses Morty’s replication and execution logic, but does not

employ re-execution. We implement Morty, Spanner, and

MVTSO in TAPIR’s codebase to minimize implementation

differences and provide a fair basis for the performance im-

plications of each system’s design choices. All systems use

TCP for communication, libevent for asynchronous I/O,

and libprotobuf for serialization. Replicas in Morty and

MVTSO are multi-threaded; not so in TAPIR and Spanner, as

we do not modify their single-threaded replication libraries.

To compensate, when measuring system capacity, we con-

figure TAPIR and Spanner with additional replica groups to

match the number of cores used by Morty and MVTSO.

Our Spanner implementation is faithful to its documented

design, except that we reuse the implementation of view-

stamped replication [36] in TAPIR’s codebase instead of im-

plementing Multi-Paxos [25]. Notably, we implement several

features of Spanner that provide a performance advantage

over Morty, as these features are integral to attaining prac-

tical performance with Spanner. To support Spanner’s non-

blocking read-only transactions, we emulate TrueTime with

an error of 10ms, the p99.9 value observed in practice [12].

Finally, to better support transactions that read and mod-

ify the same key, we implement Spanner’s GetForUpdate.
Although this feature is not in the original description of

Spanner’s protocol [12], it has since been added [11].

Setup. We run experiments onCloudLab [18] using c220g5
machines in the Wisconsin cluster. Each machine has two

10-core Intel Xeon CPUs at 2.20 GHz, 192GB of memory, and

one Dual-port Intel X520-DA2 10Gb. All experiments use

𝑛 = 3 replicas per replica group, tolerating 𝑓 = 1 replica

failures, and use up to six machines for clients, which run as

single-threaded applications and send requests to storage in

closed loops. Morty andMVTSO use one replica group, while

TAPIR and Spanner use 20. Each client is logically co-located

with some replica (simulating a local datacenter) and each

replica is loaded with the same number of co-located clients.

Clients use local replicas for reads, except in Spanner, where

clients read from group leaders.

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

RTT us-east-1 us-west-1 us-west-2 eu-west-1

us-east-1 0 62ms 68ms 68ms

us-west-1 62ms 0 22ms 138ms

Table 2. Cross-region RTTs in emulated networks.

Transaction Characteristics Mix

New-Order Medium Read-Write 44%

Payment Short Read-Write 44%

Delivery Short Read-Write 4%

Order-Status Short Read-Only 4%

Stock-Level Long Read-Only 4%

(a) Transaction mix in TPC-C

workload.

Transaction Reads Writes Mix

Add-User 1 2 5%

Follow/Unfollow 2 2 15%

Post-Tweet 3 5 30%

Load-Timeline [1,10] 0 50%

(b) Transaction mix in Retwis

workload.

Measurement. We run all experiments for 90 seconds

and exclude measurements from the first and last 15 sec-

onds. We report latency as the time between when the client

first begins a transaction and when it is notified that the

transaction is committed, including retries after aborts. To

avoid livelock, clients perform a random exponential back-

off (up to 2.5 s) before retrying. We report goodput as the
number of committed transactions across all clients over the

measurement period.

Network Setup. We use the Linux traffic control (tc) util-
ity to emulate wide-area latencies and evaluate the systems

across three different network setups. In each case, we repli-

cate the RTTs observed in AWS (Table 2):

1. The regional setup (REG) simulates replicas located

in different availability zones of the same region with

10ms inter-replica latency.

2. The continental setup (CON) uses measurements from

US-basedAmazonWeb Services [4] regions (us-east-1,

us-west-1, us-west-2) to emulate latencies between

replicas in different regions.

3. The global setup (GLO) emulates distributing repli-

cas across the US and Europe and using measure-

ments from AWS regions us-east-1, us-west-1, and

eu-west-1.

5.1 OLTP Applications
We evaluate our system against two popular OLTP work-

loads: (i) TPC-C [49] and (ii) the Retwis-based benchmark [54].

5.1.1 TPC-C. TPC-C is an OLTP workload that simulates

an e-commerce service [49]. We run experiments with 100

warehouses, resulting in an initial database size of 8GB; we

use the transaction mix of Table 3a, When running with mul-

tiple replica groups, we partition all tables, except for items,
by warehouse_id. We replicate the read-only items table

on each group. We materialize secondary indices with two

additional tables that support lookups of orders by customer

and of orders with outstanding deliveries [14, 44].

Figure 6 shows goodput and latency for Morty and the

baselines as load increases with more clients. In the REG

setup (Figure 6a), Morty reaches a maximum goodput of

11.8k txn/s while MVTSO, TAPIR, and Spanner reach only

6.8k, 2.7k, and 1.6k txn/s, respectively.

Morty’s higher goodput stems from it re-executing trans-

actions to avoid overlapping serialization windows instead

of aborting and retrying. At maximum goodput, Morty’s

commit rate is over 99%, so very few transaction’s serializa-

tion windows are artificially elongated by backoff. We mea-

sure that Morty performs about 2.9 partial re-executions per

transaction on average. Conversely, aborts and retries from

overlapping serialization windows in the baselines increase

the amount of time between successive writes to contended

keys, reducing the number of transactions that can com-

mit in a fixed time period. MVTSO’s serialization windows

are shorter than TAPIR’s because it exposes uncommitted

writes; TAPIR’s serialization windows are shorter than Span-

ner’s because reads do not need to be processed by a leader

replica. Spanner’s serialization windows are so long, relative

to the other systems, that its latency is an order of magni-

tude higher. We consequently only show the first three data

points in Figure 6a. Its latency at low load is about 151ms,

and its maximum throughput is about 1.7k txn/s.

Similar performance trends occur in the CON and GLO se-

tups. Under all three network configurations, Morty achieves

approximately 1.7x and 4.4x the goodput of MVTSO and

TAPIR, respectively, with similar latency at low to moder-

ate load. Spanner’s serialization windows lengthen with the

round-trip latencies between datacenters, so Morty’s rela-

tive advantage increases from 8x to 18x in CON and GLO,

respectively. (We omit Spanner’s curves in Figures 6b and 6c

to allow easier comparison of the other three systems.)

5.1.2 Retwis. Retwis emulates a social network workload

with short read-write and read-only transactions and config-

urable contention. Table 3b shows the transaction types and

mix. We configure the database to contain 10M key-value

pairs (8B keys and 8B values). Experiments with multiple

replica groups use a static hash function to evenly partition

keys. Transactions access keys according to a Zipfian distri-

bution with parameter \ = 0.9, modeling a high contention

access pattern.

Figure 7 shows goodput and latency measurements for

Morty and the baselines. As with TPC-C, the performance

trends for the systems remain similar across all three net-

work setups: Morty achieves approximately 28x, 52x, and

96x the maximum goodput of MVTSO, Spanner, and TAPIR,

respectively (note that x-axes are in log scale).

Spanner’s fairs better thanwith TPC-C because of Retwis’s

shorter read-write transactions and more frequent read-only

transactions, which do not acquire locks. The former reduce

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

 0

 30

 60

 90

 120

 150

 180

0 2k 4k 5k 7k 9k 11k 13k

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(a) REG.

 0

 85

 170

 255

 340

 425

 510

 0 700 1400 2100 2800 3500 4200

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

Morty MVTSO TAPIR Spanner

(b) CON.

 0

 150

 300

 450

 600

 750

 900

 0 475 950 1425 1900 2375 2850

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(c) GLO.

Figure 6. Morty achieves higher goodput at saturation on TPC-C with 100 warehouses.

 0

 20

 40

 60

 80

 100

 120

10 100 1k 10k

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(a) REG.

 0

 100

 200

 300

 400

 500

 600

10 100 1k 10k

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

Morty MVTSO TAPIR Spanner

(b) CON.

 0

 180

 360

 540

 720

 900

 1080

 10 100 1000

M
e
a
n
 L

a
te

n
cy

 (
m

s)

Goodput (committed txn/s)

(c) GLO.

Figure 7. Morty achieves higher throughput at saturation on Retwis with 10M keys and Zipf parameter 0.9.

the number of round trips between clients and group leaders

(and thus keeps serialization windows short), and the latter

significantly reduce contention.

For REG, (Figure 7a), Morty achieves a maximum goodput

of 35.3k txn/s compared to 1.5k, 0.7k, and 0.4k txn/s for

MVTSO, Spanner, and TAPIR. Once again, Morty’s ability to

re-execute and shift serialization windows allows it to avoid

aborting most transactions, unlike the baselines.

The much larger difference between their peak goodputs

and Morty’s in Retwis over TPC-C is due to Retwis’ higher

contention rate. With the Zipfian parameter \ set at 0.9, the

probability that two Post-Tweet transactions in Retwis both

modify the hottest key is at least 2.5%, while two Payment

transactions modifying the same row in TPC-C conflict with

a probability of 1% with 100 warehouses.

5.2 Scalability
To quantify how effectively Morty and the baselines use

additional resources to scale goodput, we evaluate their per-

formance on Retwis in the REG setup with an increasing

number of server CPUs.

Figure 8 shows the maximum goodput of each system as

a function of the number of CPU cores on both a uniform

(\ = 0) and Zipfian (\ = 0.9) distribution. Recall that for

TAPIR additional cores translate to additional replica groups.

For the uniform Retwis workload (Figure 8a), most trans-

actions do not conflict and additional cores help all systems

scale goodput. The codepaths in Morty and MVTSO for exe-

cution are nearly identical for non-conflicting transactions,

since there are no re-executions. TAPIR and Spanner can

0

20k

40k

60k

80k

100k

 0 2 4 6 8 10 12 14 16 18 20

G
o
o
d

p
u
t

(c
o
m

m
it

te
d

 t
x
n
/s

)

Number of Cores (per replica)

Morty
MVTSO

TAPIR
TAPIR (no distributed txns)

Spanner

(a) All systems scale with addi-

tional cores at low contention.

8k

16k

24k

32k

40k

 0 2 4 6 8 10 12 14 16 18 20G
o
o
d

p
u
t

(c
o
m

m
it

te
d

 t
x
n
/s

)

Number of Cores (per replica)

(b)Morty effectively utilizes ad-

ditional cores, whereas MVTSO,

TAPIR, and Spanner are con-

tention bottlenecked.

Figure 8. Multi-core scalability on Retwis.

also scale goodput despite their single-threaded replication

by adding more replica groups; when doing so, there is addi-

tional overhead that depends on how frequently transactions

span replica groups. For reference, we run TAPIR on a modi-

fied uniform workload with no distributed transactions (the

best case scenario) and observe similar results: TAPIR can

scale with additional cores on a uniform workload.

In contrast, on the heavily-contended Zipfian Retwis work-

load, only Morty is able to leverage the additional cores to

scale its maximum goodput (Figure 8b), from 7.8k txn/s with

a single core up to 35.3k txn/s with 20 cores. While Morty

leverages additional CPUs to send new GetReplies and re-

execute, MVTSO, Spanner, and TAPIR remain contention

bottlenecked, at 1.5k, 0.7 and 0.4k txn/s, respectively. We

emphasize that TAPIR and Spanner’s shortcomings here are

not due to poorer relative CPU utilization per transaction: on

the Zipfian workload, nearly every transaction accesses only

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

10

100

1k

10k

100k

 0 0.2 0.4 0.6 0.8 1 1.2G
o
o
d

p
u
t

(c
o
m

m
it

te
d

 t
x
n
/s

)

Zipf Coefficient

Morty MVTSO TAPIR Spanner

(a) Morty’s edge over the base-

lines grows with more con-

tention.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2

C
o
m

m
it

 R
a
te

Zipf Coefficient

(b) Morty’s commit rate remains

near 100%.

Figure 9. Varying contention on Retwis.

the hot replica group. We measure that TAPIR and Spanner

replicas saturate at most 17% of a single CPU during these ex-

periments because their overlapping serialization windows

cause frequent aborts and long exponential backoff periods.

5.3 Microbenchmarks
To better understand the influence that contention has on

the performance of these four systems, we measure their

maximum goodput and commit rate (an indirect indicator

of how often serialization windows overlap) on the Retwis

workload for increasing Zipfian parameter \ on the REG

network. Figure 9 shows the results. As contention grows,

so does the gap in peak goodput between Morty and the

baselines (Figure 9a). Though goodput falls when contention

on hot keys increases, Morty’s near perfect commit rate

even under extremely high contention suggests that Morty

introduces no unnecessary idle time. As \ grows, instead,

transactions in MVTSO, TAPIR, and Spanner abort more

often, causing backoffs, longer serialization windows, and

falling peak goodput.

6 Related Work
Transaction Re-Execution. Re-execution has been ex-

plored by a handful of previous systems, albeit in a more lim-

ited fashion. Both TheDB [50] and MV3C [15] make visible

only committed values, and thus only trigger re-execution

during commit. This increases the length of serialization

windows in these systems, both increasing the likelihood

of overlap and reducing maximally achievable throughput.

In contrast, Morty optimistically makes write values visible

as early as possible, shortening serialization windows, and

allowing replicas to trigger eager re-execution. Morty’s com-

mit and recovery protocols additionally guarantee safe re-

execution in a replicated setting; neither TheDB nor MV3C

tolerate failures.

Integrated Distributed Commit. To minimize commit

latency and avoid redundant coordination, Morty follows

recent work [45, 46, 54] in integrating replication, concur-

rency control, and atomic commit. However, none of these

integrated systems supports transaction re-execution. Both

TAPIR [54] and Meerkat [46] (unlike Morty) expose only

committed writes, resulting in long serialization windows;

TAPIR incurs additionally commit latency by using a mod-

ular inconsistent replication protocol. Basil [45] instead is

Byzantine-fault tolerant and consequently requires signa-

tures and a higher replication degree for safety, resulting

in lower relative throughput. Like Morty, Basil is based on

MVTSO, but must delay write visibility until prepare time

to tolerate Byzantine clients.

Expressivity versus Performance. A wide array of ex-

isting systems trade off a restricted transaction model for im-

proved performance. Sinfonia [2] introducesmini-transactions
that require read and write values to be pre-defined, but min-

imize latency by piggybacking transaction execution along-

side distributed commit. Janus [33] re-orders transactions

at commit time to avoid aborts, but does so by requiring

transactions to be stored procedures, which poses deploy-

ment challenges. Calvin [48] also orders transactions before

executing them, which requires knowing the read/write sets

ahead of time. Carousel [51] instead introduces the 2-round
fixed-set interactive (2FI) model that requires key-sets to be

known, but allows write values to depend on reads across

shards; this allows the distributed commit and consensus

phases to overlap, reducing latency.

7 Conclusion
Traditional approaches for implementing serializable and

interactive transactions fair poorly under high contention.

This chapter introduces the notion of serialization and valid-
ity windows to characterize the limitation that serializable

systems face, especially in geo-distributed deployments, in

concurrently processing conflicting read-write transactions.

Using these windows as a guide, we design a serializable,

replicated storage system, Morty, that employs transaction
re-execution to efficiently sequence contending windows and

significantly improve throughput.

References
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Opti-

mistic Implementations for Distributed Transactions. Ph.D. Dissertation.
Massachusetts Institute of Technology.

[2] Marcos K Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and

Christos Karamanolis. 2007. Sinfonia: A New Paradigm for Building

Scalable Distributed Systems. In ACM Symposium on Operating System
Principles (SOSP).

[3] Phillipe Ajoux, Nathan Bronson, Sanjeev Kumar, Wyatt Lloyd, and

Kaushik Veeraraghavan. 2015. Challenges to Adopting Stronger Con-

sistency at Scale. In ACM SIGOPS Workshop on Hot Topics in Operating
Systems (HotOS).

[4] Amazon Web Services 2021. https://aws.amazon.com/.

[5] Andrew W. Appel. 1998. SSA is Functional Programming. ACM
SIGPLAN NOTICES (1998).

[6] Azure SQL Database 2022. https://www.windowsazure.com/en-us/
services/sql-database/.

[7] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin,

James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim

https://aws.amazon.com/
https://www.windowsazure.com/en-us/services/sql-database/
https://www.windowsazure.com/en-us/services/sql-database/

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

Yushprakh. 2011. Megastore: Providing Scalable, Highly Available

Storage for Interactive Services. In Conference on Innovative Data
Systems Research (CIDR).

[8] BerkeleyDB 2022. http://www.oracle.com/technetwork/database/
database-technologies/berkeleydb/overview/index.html.

[9] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987.

Concurrency Control and Recovery in Database Systems. Vol. 370.
Addison-Wesley Reading.

[10] Cloud Spanner 2022. https://cloud.google.com/spanner/.

[11] Cloud Spanner’s Lock Scanned Ranges 2022. https://cloud.google.com/
spanner/docs/reference/standard-sql/query-syntax.

[12] James C. Corbett, JeffreyDean,Michael Epstein, Andrew Fikes, Christo-

pher Frost, JJ Furman, Sanjay Ghemawat, AndreyGubarev, Christopher

Heiser, Peter Hochschild,WilsonHsieh, Sebastian Kanthak, Eugene Ko-

gan, Hongyi Li, Alexander Lloyd, SergeyMelnik, DavidMwaura, David

Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal

Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2012.

Spanner: Google’s Globally-Distributed Database. In USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI).

[13] CosmosDB 2022. https://azure.microsoft.com/en-us/services/cosmos-
db/.

[14] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar Harel, Rachit

Agarwal, and Lorenzo Alvisi. 2018. Obladi: Oblivious Serializable

Transactions in the Cloud. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI).

[15] Mohammad Dashti, Sachin Basil John, Amir Shaikhha, and Christoph

Koch. 2017. Transaction Repair forMulti-Version Concurrency Control.

In ACM SIGMOD International Conference on Management of Data
(SIGMOD).

[16] Db2 2022. https://www.ibm.com/software/data/db2/.

[17] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and

Miguel Castro. 2014. FaRM: Fast Remote Memory. In USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI).

[18] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,

Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson,

Kirk Webb, et al. 2019. The Design and Operation of CloudLab. In

USENIX Annual Technical Conference (ATC).

[19] DynamoDB 2022. https://aws.amazon.com/dynamodb/.

[20] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High

Performance Transactions via Early Write Visibility. In Proceedings of
the VLDB Endowment (PVLDB).

[21] FoundationDB 2022. http://foundationdb.com/.

[22] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo,

Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel Madden,

Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi.

2008. H-Store: A High-Performance, Distributed Main Memory Trans-

action Processing System. In Proceedings of the VLDB Endowment
(PVLDB).

[23] Richard A Kelsey. 1995. A correspondence between continuation

passing style and static single assignment form. ACM SIGPLAN Notices
(1995).

[24] Hsiang-Tsung Kung and John T Robinson. 1981. On Optimistic Meth-

ods for Concurrency Control. ACM Transactions on Database Systems
6, 2 (1981), 213–226.

[25] Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions
on Computer Systems (TOCS) 16, 2 (1998), 133–169.

[26] Justin Levandoski, David Lomet, Sedipta Sengupta, Ryan Stutsman,

and Rui Wang. 2015. Multi-version range concurrency control in

Deuteronomy. In VLDB.

[27] LevelDB 2022. http://leveldb.org/.

[28] Harry Li, Allen Clement, Amitanand S. Aiyer, and Lorenzo Alvisi.

2007. The Paxos Register. In IEEE Symposium on Reliable Distributed
Systems.

[29] libevent 2021. https://libevent.org/.

[30] Robert M. Metcalfe and David R. Boggs. 1976. Ethernet: Distributed

Packet Switching for Local Computer Networks. Commun. ACM 19, 7

(1976), 395–404.

[31] MongoDB 2022. https://www.mongodb.com/.

[32] Morty Implementation 2022. https://www.github.com/matthelb/
morty/.

[33] Shuai Mu, Lamont Nelson, Wyatt Lloyd, and Jinyang Li. 2016. Con-

solidating Concurrency Control and Consensus for Commits under

Conflicts. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI).

[34] MySQL 2022. https://www.mysql.com/.

[35] neo4j 2022. https://neo4j.com/.

[36] Brian M. Oki and Barbara H. Liskov. 1988. Viewstamped Replication:

A New Primary Copy Method to Support Highly-Available Distributed

Systems. In ACM Symposium on Principles of Distributed Computing
(PODC).

[37] Andy Pavlo. 2017. What Are We Doing With Our Lives? Nobody

Cares About Our Research on Concurrency Control. In ACM SIGMOD
International Conference on Management of Data (SIGMOD).

[38] Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Pro-

cessing Using Distributed Transactions and Notifications. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[39] RocksDB 2022. http://rocksdb.org/.

[40] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis, II. 1978.

System Level Concurrency Control for Distributed Database Systems.

ACM Transactions on Database Systems 3, 2 (1978), 178–198.

[41] Rust-Tokyo 2021. https://github.com/tokio-rs/tokio.

[42] SQL Server 2022. https://www.microsoft.com/sqlserver/.

[43] SQLite 2022. https://sqlite.org/.

[44] Chunzhi Su, Natacha Crooks, Cong Ding, Lorenzo Alvisi, and Chao

Xie. 2017. Bringing Modular Concurrency Control to the Next Level.

In ACM SIGMOD International Conference on Management of Data
(SIGMOD).

[45] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang,

Lorenzo Alvisi, and Natacha Crooks. 2021. Basil: Breaking up BFT

with ACID (transactions). In ACM Symposium on Operating System
Principles (SOSP).

[46] Adriana Szekeres, Michael Whittaker, Jialin Li, Naveen Kr Sharma,

Arvind Krishnamurthy, Dan RK Ports, and Irene Zhang. 2020.

Meerkat: Multicore-Scalable Replicated Transactions Following the

Zero-Coordination Principle. In ACM SIGOPS European Conference on
Computer Systems (EuroSys).

[47] Rebecca Taft, Irfan Sharif, Andrei Matei, Nathan VanBenschoten, Jor-

dan Lewis, Tobias Grieger, Kai Niemi, Andy Woods, Anne Birzin,

Raphael Poss, et al. 2020. CockroachDB: The Resilient Geo-Distributed

SQL Database. In ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD).

[48] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren,

Philip Shao, and Daniel J Abadi. 2012. Calvin: Fast Distributed Transac-

tions for Partitioned Database Systems. In ACM SIGMOD International
Conference on Management of Data (SIGMOD).

[49] TPC-C 2021. http://www.tpc.org/tpcc/.

[50] Yingjun Wu, Chee-Yong Chan, and Kian-Lee Tan. 2016. Transaction

Healing: Scaling Optimistic Concurrency Control on Multicores. In

ACM SIGMOD International Conference on Management of Data (SIG-
MOD).

http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html
https://cloud.google.com/spanner/
https://cloud.google.com/spanner/docs/reference/standard-sql/query-syntax
https://cloud.google.com/spanner/docs/reference/standard-sql/query-syntax
https://azure.microsoft.com/en-us/services/cosmos-db/
https://azure.microsoft.com/en-us/services/cosmos-db/
https://www.ibm.com/software/data/db2/
https://aws.amazon.com/dynamodb/
http://foundationdb.com/
http://leveldb.org/
https://libevent.org/
https://www.mongodb.com/
https://www.github.com/matthelb/morty/
https://www.github.com/matthelb/morty/
https://www.mysql.com/
https://neo4j.com/
http://rocksdb.org/
https://github.com/tokio-rs/tokio
https://www.microsoft.com/sqlserver/
https://sqlite.org/
http://www.tpc.org/tpcc/

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

[51] Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard

Wong, Kenneth Salem, and Tim Brecht. 2018. Carousel: Low-Latency

Transaction Processing for Globally-Distributed Data. In ACM SIG-
MOD International Conference on Management of Data (SIGMOD).

[52] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas.

2016. TicToc: Time Traveling Optimistic Concurrency Control. In

SIGMD.

[53] YugabyteDB 2022. https://www.yugabyte.com/.

[54] Irene Zhang, Naveen Kr Sharma, Adriana Szekeres, Arvind Krishna-

murthy, and Dan RK Ports. 2015. Building Consistent Transactions

with Inconsistent Replication. In ACM Symposium on Operating System
Principles (SOSP).

A System Model
We use Adya’s system model and terminology to write our proofs.

We reproduce much of the text from Adya’s thesis [1] for conve-

nience.

A transaction is a particular execution of a program that interacts

with the objects in the database through read and write operations.

When a transaction writes an object 𝑥 , it creates a new version of

𝑥 . A transaction 𝑇𝑖 can modify an object multiple times; its first

update of object 𝑥 is denoted by 𝑥𝑖,1, the second by 𝑥𝑖,2 and so

on. Version 𝑥𝑖 denotes the final modification of 𝑥 performed by

𝑇𝑖 . That is, 𝑥𝑖 ≡ 𝑥𝑖,𝑛 where 𝑛 = max{ 𝑗 |𝑥𝑖, 𝑗 exists }. Transactions
interact with the database only in terms of objects; the system maps

each operation on an object to a specific version of that object. We

use 𝑟𝑖 (𝑥 𝑗,𝑚) (𝑤𝑖 (𝑥𝑖,𝑚)) to denote the execution of a read (write)

operation on a specific version of an object 𝑥 .

Formally, a transaction𝑇𝑖 is both a set of operations𝑇𝑖 ⊆ {𝑟𝑖 (𝑥 𝑗),𝑤𝑖 (𝑥𝑖,𝑚) |𝑥
is an object } ∪ {𝑐𝑖 , 𝑎𝑖 } and a total order on this set which corre-

sponds to the order in which its operations were registered by the

database. A transaction 𝑇𝑖 may not be a complete execution of a

program. However, if 𝑐𝑖 ∈ 𝑇𝑖 , then 𝑎𝑖 ∉ 𝑇𝑖 and vice versa. More-

over, if𝑇𝑖 commits (aborts), 𝑐𝑖 (𝑎𝑖) must be the last operation of the

transaction.

The database state refers to the versions of objects that have

been created by committed and uncommitted transactions. The

committed state of the database reflects only the modifications of

committed transactions. When transactions 𝑇𝑖 commits, each ver-

sion 𝑥𝑖 created by 𝑇𝑖 becomes a part of the committed state and we

say that 𝑇𝑖 installs 𝑥𝑖 . If 𝑇𝑖 aborts, 𝑥𝑖 does not become part of the

committed state. Thus, the system needs to prevent modifications

made by uncommitted and aborted transactions from affecting the

committed database state.

Conceptually, the committed state comes into existence as a re-

sult of running a special initialization transaction,𝑇init . Transaction

𝑇init creates all objects that will ever exist in the database; at this

point, each object 𝑥 has an initial version, 𝑥init , called the unborn
version. When an application transaction inserts an object 𝑥 (e.g.,

inserts a tuple in a relation), we model it as the creation of a visible
version for 𝑥 . When a transaction 𝑇𝑖 deletes an object 𝑥 (e.g., by

deleting a tuple from some relation), we model it as the creation

of a special dead version, i.e., in this case, 𝑥𝑖 (also called 𝑥dead) is a

dead version. Thus, object versions can be of three kinds: unborn,

visible, and dead.

A history 𝐻 over a set of transactions consists of two parts: a

partial order of events 𝐸 that reflects the operations of those trans-

actions, and a version order, ≪, that is a total order on committed

object versions.

The partial order of events 𝐸 in a history obeys the following

constraints:

• It preserves the order of all events within a transaction in-

cluding the commit and abort events.

• If an event 𝑟 𝑗 (𝑥𝑖,𝑚) exists in 𝐸, it is preceded by 𝑤𝑖 (𝑥𝑖,𝑚)
in 𝐸, i.e., a transaction 𝑇𝑗 cannot read version 𝑥𝑖 of object 𝑥

before it has been produced by 𝑇𝑖 .

• If an event𝑤𝑖 (𝑥𝑖,𝑚) is followed by 𝑟𝑖 (𝑥 𝑗) without an inter-

vening event𝑤𝑖 (𝑥𝑖,𝑛) in 𝐸, 𝑥 𝑗 must be 𝑥𝑖,𝑚 . This condition

ensures that if a transaction modifies object 𝑥 and later reads

𝑥 , it will observe its last update to 𝑥 .

The second part of a history 𝐻 is the version order,≪, that spec-

ifies a total order on object versions created by committed transac-

tion in 𝐻 ; there is no constraint on versions due to uncommitted

or aborted transactions. We refer to versions due to committed

transactions in𝐻 as committed versions and impose two constraints

on 𝐻 ’s version order for different kinds of committed versions:

• the version order of each object𝑋 contains exactly one initial

version, 𝑥init , and at most one dead version, 𝑥dead .

• 𝑥init is 𝑥 ’s first version in its version order and 𝑥dead is its last

version (if it exists); all visible versions are placed between

𝑥init and 𝑥dead .

• if 𝑟 𝑗 (𝑥𝑖) occurs in a history, then 𝑥𝑖 is a visible version.

We define three kinds of direct conflicts that capture conflicts
of two different committed transactions on the same object: read-

dependency, anti-dependency, andwrite-dependency. The first type,

read dependency, specifies write-read conflicts; a transaction 𝑇𝑗
depends on 𝑇𝑖 if it reads 𝑇𝑖 ’s updates. Anti-dependencies capture
read-write conflicts;𝑇𝑗 anti-depends on𝑇𝑖 if it overwrites an object

that 𝑇𝑖 has read.Write-dependencies capture write-write conflicts;
𝑇𝑗 write-depends on 𝑇𝑖 if it overwrites an object that 𝑇𝑖 has also

modified.

Definition A.1. A transaction 𝑇𝑗 directly read-depends on trans-
action 𝑇𝑖 if 𝑇𝑖 installs some object version 𝑥𝑖 and 𝑇𝑗 reads 𝑥𝑖 (denoted

by 𝑇𝑖
wr−−→ 𝑇𝑗).

Definition A.2. A transaction 𝑇𝑗 directly anti-depends on trans-
action 𝑇𝑖 if 𝑇𝑖 reads some object version 𝑥𝑘 and 𝑇𝑗 installs 𝑥 ’s next

version (after 𝑥𝑘) in the version order (denoted by 𝑇𝑖
rw−−→ 𝑇𝑗). Note

that the transaction that wrote the later version directly anti-depends
on the transaction that read the earlier version.

Definition A.3. A transaction 𝑇𝑗 directly write-depends on trans-
action 𝑇𝑖 if 𝑇𝑖 installs a version 𝑥𝑖 and 𝑇𝑗 installs 𝑥 ’s next version

(after 𝑥𝑖) in the version order (denoted by 𝑇𝑖
ww−−−→ 𝑇𝑗).

Definition A.4. We define the direct serialization graph arising
from a history 𝐻 , denoted DSG(𝐻) as follows. Each node in DSG(𝐻)
corresponds to a committed transaction in𝐻 and directed edges corre-
spond to different types of direct conflicts. There is a read/write/anti-
dependency edge from transaction 𝑇𝑖 if 𝑇𝑗 directly read/write/anti-

depends on 𝑇𝑖 .

https://www.yugabyte.com/

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

There can be at most one edge of a particular kind from node 𝑇𝑖
to 𝑇𝑗 since the edges do not record the objects that gave rise to the

conflict.

Definition A.5. A history 𝐻 exhibits phenomenon G1a (aborted
reads) if it contains an aborted transaction 𝑇𝑖 and a committed trans-
action 𝑇𝑗 such that 𝑇𝑗 has read some object modified by 𝑇𝑖 .

DefinitionA.6. Ahistory𝐻 exhibits phenomenonG1b (intermediate

reads) if it contains a committed transaction𝑇𝑗 that has read a version
of object 𝑥 written by transaction 𝑇𝑖 that was not 𝑇𝑖 ’s final modifica-
tion of 𝑥 .

Definition A.7. A history 𝐻 exhibits phenomenon G1c (circular
information flow) if DSG(𝐻) contains a directed cycle consisting
entirely of dependency edges.

DefinitionA.8. Ahistory𝐻 exhibits phenomenonG2 (anti-dependency
cycles) if DSG(𝐻) contains a directed cycle having one or more anti-
dependency edges.

Definition A.9. A history𝐻 is serializable if it does not exhibit G1a,
G1b, G1c, and G2.

Definition A.10. A history 𝐻 is serializable it it does not exhibit
aborted reads and intermediate reads and if DSG(𝐻) is acyclic.

B Proof of Correctness
We prove the correctness of Morty using Adya’s system model and

terminology [1].

DefinitionB.1. A transaction𝑇𝑖 commits if some coordinator reaches
a Commit decision for 𝑇𝑖 .

Definition B.2. An Original Slow Path or Recovery coordinator 𝑐
of transaction 𝑇𝑖 decides in view 𝑣 with decision 𝑑 if at least 𝑓 + 1

servers accept 𝑐’s proposal of 𝑑 in 𝑣 .

Lemma B.1. If a coordinator 𝑐1 of transaction 𝑇𝑖 decides in view 𝑣1
with decision 𝑑1, then for every coordinator 𝑐2 of transaction 𝑇𝑖 that
decides in view 𝑣2 with decision 𝑑2 such that 𝑣2 ≥ 𝑣1, 𝑑2 = 𝑑1.
Proof.

⟨1⟩1. Let 𝑐1 be a coordinator of transaction 𝑇𝑖 that decides in view

𝑣1 with decision 𝑑1.

⟨1⟩2. Let 𝑐2 be a coordinator of 𝑇𝑖 that decides in view 𝑣2 with

decision 𝑑2 such that 𝑣2 > 𝑣1.

⟨1⟩3. Q.E.D.

Let 𝑣 ′
1
= 𝑣1, ..., 𝑣

′
𝑛 = 𝑣2 be the sequence of 𝑛 ≥ 2 views between

𝑣1 and 𝑣2 in which at least one coordinator decides. For each

view 𝑣 ′
𝑖
in the sequence, we define 𝑐 ′

𝑖
as the coordinator thhst

decided decision 𝑑 ′
𝑖
in 𝑣 ′

𝑖
. Since 𝑣 ′𝑛 > 𝑣 ′

1
, 𝑐 ′𝑛 must be a recovery

coordinator.

The inductive hypothesis is that 𝑑1 = 𝑑 ′𝑛 .
The base case is when 𝑛 = 2. By the definition of “decide in

view”, 𝑓 + 1 servers accepted 𝑐 ′
1
’s proposal of 𝑑 ′

1
in 𝑣 ′

1
. This

means at least one server that 𝑐 ′
2
receives a PaxosPrepareReply

from must return 𝑐 ′
1
’s proposal. Moreover, this must correspond

to the highest view 𝑣 ′
1
of any views received in the replies. This

and the recovery procedure imply that 𝑐 ′
2
proposes 𝑑 ′

1
as 𝑑 ′

2
.

Now we prove the inductive hypothesis using only the fact that

𝑑1 = 𝑑 ′
𝑛−1. By the definition of “decide in view”, 𝑓 + 1 servers

accepted 𝑐 ′
𝑛−1’s proposal of 𝑑

′
𝑛−1 in 𝑣

′
𝑛−1. This means at least one

server that 𝑐 ′𝑛 receives a PaxosPrepareReply from must return

𝑐 ′
𝑛−1’s proposal. Moreover, this must correspond to the highest

view 𝑣 ′
𝑛−1 of any views received in the replies. This and the

recovery procedure imply that 𝑐 ′𝑛 proposes 𝑑 ′
𝑛−1 as 𝑑

′
𝑛 . □

LemmaB.2. If a coordinator 𝑐1 reaches a decision𝑑1 ∈ {Commit,Abandon}
for transaction 𝑇𝑖 , for every other coordinator 𝑐2 ≠ 𝑐1 that reaches
decision 𝑑2 for 𝑇𝑖 , 𝑑2 = 𝑑1.
Proof.

⟨1⟩1. Let 𝑐1 be a coordinator that reaches a decision 𝑑1 for 𝑇𝑖 .
⟨1⟩2. Let 𝑐2 ≠ 𝑐1 be a coordinator that reaches a decision 𝑑2 for 𝑇𝑖 .

⟨1⟩3. Case: 𝑐1 decides on the Original Fast Path and 𝑐2 decides on

the Recovery Path; 𝑑1 = Commit.

⟨2⟩1. 𝑐1 receives 2𝑓 + 1 PrepareReply messages from servers

voting Commit for 𝑇𝑖 .

By the assumption of ⟨1⟩3 that 𝑐1 decides on the Original Fast

Path.

⟨2⟩2. Let 𝑣2 be the view in which 𝑐2 decides.

⟨2⟩3. Every recovery coordinator that reaches a decision decides

Commit.

⟨3⟩1. Let 𝑐 be a recovery coordinator that decides 𝑑 in view 𝑣 .

⟨3⟩2. 𝑐 receives 𝑓 +1 PaxosPrepareReplymessages from servers

agreeing to not accept proposals in views smaller than

𝑣 .

⟨3⟩3. Let 𝑣0 be the smallest view in which a recovery coordi-

nator decides.

⟨3⟩4. Case: 𝑣 = 𝑣0.

⟨4⟩1. No PaxosPrepareReply contains a finalize_decision.

⟨5⟩1. Suffices Assume: At least one PaxosPrepareRe-
ply contains afinalize_decision.

Prove: False.

⟨5⟩2. Let 𝑣 ′ be the view in which the recovery coordi-

nator 𝑐 ′ proposed finalize_decision.
⟨5⟩3. The server that sent the PaxosPrepareReply with

finalize_decision accepted finalize_decision in 𝑣 ′

before promising to not accept proposals in views

smaller than 𝑣 .

⟨5⟩4. 𝑣 ′ < 𝑣 .

⟨5⟩5. Q.E.D.
By ⟨5⟩4, ⟨3⟩3, and ⟨3⟩4.

⟨4⟩2. Case: At least one PaxosPrepareReply contains a decision.
⟨5⟩1. Let 𝑠 be the server that sent the reply containing

decision to 𝑐 .

⟨5⟩2. 𝑠 learned the decision from 𝑐1.

⟨6⟩1. Suffices Assume: 𝑠 learned of the decision from
a coordinator 𝑐 ′ ≠ 𝑐1.

Prove: False

⟨6⟩2. 𝑐 ′ is a recovery coordinator.

𝑐 ′ is not the original coordinator by assumption. If

𝑐 ′ is truncation coordinator, then 𝑇𝑖 is part of the

truncated epoch, which implies that 𝑠 would not

respond to PaxosPrepare for 𝑇𝑖 .

⟨6⟩3. 𝑐 ′ decided in view 𝑣 ′.
⟨6⟩4. 𝑣 ′ < 𝑣 .

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

𝑐 ′ sends learned decision implies 𝑓 +1 accepted de-
cision in 𝑣 ′. By ⟨3⟩2, at least one server 𝑠 ′ accepted
decision in 𝑣 ′ and agreed to not accept proposals

in views smaller than 𝑣 . This implies that 𝑣 ′ < 𝑣 .

⟨6⟩5. Q.E.D.
By ⟨3⟩3, ⟨3⟩4, and ⟨6⟩4.

⟨5⟩3. decision = Commit.

By ⟨5⟩2 and the assumption of ⟨1⟩3 that𝑑1 = Commit.

⟨5⟩4. Q.E.D.
By ⟨5⟩3 and the Recovery Decision procedure, 𝑑 =

Commit.

⟨4⟩3. Case: All PaxosPrepareReply messages only contain

votes.

⟨5⟩1. Every server that sent a PaxosPrepareReply pre-

viously sent a PrepareReply with Commit vote to
𝑐1.

By ⟨2⟩1.
⟨5⟩2. All 𝑓 + 1 votes are Commit.

By the fact that a server never changes its vote until

the vote is truncated. However, a server would not

respond to a PaxosPrepare for 𝑇𝑖 if it has truncated 𝑇𝑖 .

⟨5⟩3. Q.E.D.
By the Recovery Decision procedure and ⟨5⟩2.

⟨4⟩4. Q.E.D.
By ⟨4⟩1, steps ⟨4⟩2 and ⟨4⟩3 are exhaustive.

⟨3⟩5. Case: 1. 𝑣 > 𝑣0.

2. The decision 𝑑 ′ for all 𝑣 ′ < 𝑣 is Commit.

By ⟨3⟩1, the assumption of the case, and Lemma B.1.

⟨3⟩6. Q.E.D.
By ⟨3⟩4, ⟨3⟩5, and mathematical induction.

⟨2⟩4. 𝑑2 = Commit.

By ⟨2⟩3 and the assumption of ⟨1⟩3 that 𝑐2 is a recovery coor-

dinator.

⟨2⟩5. Q.E.D.
By ⟨2⟩4 and the assumption of ⟨1⟩3 that𝑑1 = Commit,𝑑2 = 𝑑1.

⟨1⟩4. Case: 𝑐1 decides on the Original Fast Path and 𝑐2 decides on

the Recovery Path; 𝑑1 = Abandon.

⟨2⟩1. 𝑐1 receives a PrepareReply message with an Abandon-Final
vote for 𝑇𝑖 .

By the assumption of ⟨1⟩4 that 𝑐1 decides on the Original Fast

Path.

⟨2⟩2. Let 𝑣2 be the view in which 𝑐2 decides.

⟨2⟩3. Every recovery coordinator that reaches a decision decides

Abandon.

⟨3⟩1. Let 𝑐 be a recovery coordinator that decides 𝑑 in view 𝑣 .

⟨3⟩2. 𝑐 receives 𝑓 +1 PaxosPrepareReplymessages from servers

agreeing to not accept proposals in views smaller than

𝑣 .

⟨3⟩3. Let 𝑣0 be the smallest view in which a recovery coordi-

nator decides.

⟨3⟩4. Case: 𝑣 = 𝑣0.

⟨4⟩1. No PaxosPrepareReply contains a finalize_decision.

⟨5⟩1. Suffices Assume: At least one PaxosPrepareRe-
ply contains afinalize_decision.

Prove: False.

⟨5⟩2. Let 𝑣 ′ be the view in which the recovery coordi-

nator 𝑐 ′ proposed finalize_decision.
⟨5⟩3. The server that sent the PaxosPrepareReply with

finalize_decision accepted finalize_decision in 𝑣 ′

before promising to not accept proposals in views

smaller than 𝑣 .

⟨5⟩4. 𝑣 ′ < 𝑣 .

⟨5⟩5. Q.E.D.
By ⟨5⟩4, ⟨3⟩3, and ⟨3⟩4.

⟨4⟩2. Case: At least one PaxosPrepareReply contains a decision.
⟨5⟩1. Let 𝑠 be the server that sent the reply containing

decision to 𝑐 .

⟨5⟩2. 𝑠 learned the decision from 𝑐1.

⟨6⟩1. Suffices Assume: 𝑠 learned of the decision from
a coordinator 𝑐 ′ ≠ 𝑐1.

Prove: False

⟨6⟩2. 𝑐 ′ is a recovery coordinator.

𝑐 ′ is not the original coordinator by assumption. If

𝑐 ′ is truncation coordinator, then 𝑇𝑖 is part of the

truncated epoch, which implies that 𝑠 would not

respond to PaxosPrepare for 𝑇𝑖 .

⟨6⟩3. 𝑐 ′ decided in view 𝑣 ′.
⟨6⟩4. 𝑣 ′ < 𝑣 .

𝑐 ′ sends learned decision implies 𝑓 +1 accepted de-
cision in 𝑣 ′. By ⟨3⟩2, at least one server 𝑠 ′ accepted
decision in 𝑣 ′ and agreed to not accept proposals

in views smaller than 𝑣 . This implies that 𝑣 ′ < 𝑣 .

⟨6⟩5. Q.E.D.
By ⟨3⟩3, ⟨3⟩4, and ⟨6⟩4.

⟨5⟩3. decision = Abandon.

By ⟨5⟩2 and the assumption of ⟨1⟩4 that𝑑1 = Abandon.

⟨5⟩4. Q.E.D.
By ⟨5⟩3 and the Recovery Decision procedure, 𝑑 =

Abandon.

⟨4⟩3. Case: All PaxosPrepareReply messages only contain

votes.

⟨5⟩1. There are ≤ 𝑓 votes for Commit.

By ⟨2⟩1 and the fact that a server only votes Abandon-
Final for a transaction 𝑇𝑖 if the Abandon decision is

already durable in that no set of 𝑓 +1 servers can vote

to commit 𝑇𝑖 .

⟨5⟩2. Q.E.D.
By the Recovery Decision procedure and ⟨5⟩1.

⟨4⟩4. Q.E.D.

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

By ⟨4⟩1, steps ⟨4⟩2 and ⟨4⟩3 are exhaustive.
⟨3⟩5. Case: 1. 𝑣 > 𝑣0.

2. The decision 𝑑 ′ for all 𝑣 ′ < 𝑣 is Commit.

By ⟨3⟩1, the assumption of the case, and Lemma B.1.

⟨3⟩6. Q.E.D.
By ⟨3⟩4, ⟨3⟩5, and mathematical induction.

⟨2⟩4. 𝑑2 = Abandon.

By ⟨2⟩3 and the assumption of ⟨1⟩4 that 𝑐2 is a recovery coor-

dinator.

⟨2⟩5. Q.E.D.
By ⟨2⟩4 and the assumption of ⟨1⟩4 that 𝑑1 = Abandon, 𝑑2 =
𝑑1.

⟨1⟩5. Case: 𝑐1 decides on the Original Slow Path and 𝑐2 decides

on the Recovery Path.

⟨2⟩1. Let 𝑣1 be the view in which 𝑐1 decides 𝑑1.

By the hypothesis that 𝑐1 decides on the Original Slow Path.

⟨2⟩2. Let 𝑣2 be the view in which 𝑐2 decides 𝑑2.

By the hypothesis that 𝑐2 decides on the Recovery Path.

⟨2⟩3. Case: 𝑣2 > 𝑣1.

By ⟨2⟩2, ⟨2⟩3, and Lemma B.1, 𝑑2 = 𝑑1.

⟨2⟩4. Case: 𝑣1 > 𝑣2.

By ⟨2⟩2, ⟨2⟩3, and Lemma B.1, 𝑑1 = 𝑑2.

⟨2⟩5. Q.E.D.
Steps ⟨2⟩3 and ⟨2⟩4 are exhaustive.

⟨1⟩6. Case: 𝑐1 decides on the Recovery Path and 𝑐2 decides on the

Recovery Path.

⟨2⟩1. Let 𝑣1 be the view in which 𝑐1 decides 𝑑1.

By the hypothesis that 𝑐1 decides on the Recovery Path.

⟨2⟩2. Let 𝑣2 be the view in which 𝑐2 decides 𝑑2.

By the hypothesis that 𝑐2 decides on the Recovery Path.

⟨2⟩3. Case: 𝑣2 > 𝑣1.

By ⟨2⟩2, ⟨2⟩3, and Lemma B.1, 𝑑2 = 𝑑1.

⟨2⟩4. Case: 𝑣1 > 𝑣2.

By ⟨2⟩2, ⟨2⟩3, and Lemma B.1, 𝑑1 = 𝑑2.

⟨2⟩5. Q.E.D.
Steps ⟨2⟩3 and ⟨2⟩4 are exhaustive.

⟨1⟩7. Case: 𝑐1 decides on the Original Fast Path, the Original Slow

Path, the Recovery Path, or the Truncation Path and

𝑐2 decides on the Truncation Path

The truncation procedure maintains the invariant that: if a de-

cision could have been reached for a transaction 𝑇 in one of

the constituent erecords, then that decision is preserved in the

merged_erecord.

⟨1⟩8. Q.E.D.

Steps ⟨1⟩3, ⟨1⟩4, ⟨1⟩5, ⟨1⟩6, and ⟨1⟩7 are exhaustive. □

Definition B.3. A transaction 𝑇𝑖 permanently conflict rejects at
server 𝑠 𝑗 if after 𝑇𝑖 validates successfully at 𝑠 𝑗 any transaction 𝑇𝑗 is
rejected if:

• 𝑇𝑖 reads 𝑥𝑘 and 𝑇𝑗 writes 𝑥 and ver (𝑇𝑘) < ver (𝑇𝑗) < ver (𝑇𝑖),
or

• 𝑇𝑖 writes 𝑥 and 𝑇𝑗 reads 𝑥𝑘 and ver (𝑇𝑘) < ver (𝑇𝑖) < ver (𝑇𝑗).

Lemma B.3. If a transaction 𝑇𝑖 commits, 𝑇𝑖 permanently conflict
rejects at𝑚 ≥ 𝑓 + 1 servers.
Proof.

⟨1⟩1. Let 𝑇𝑖 be a transaction that commits.

⟨1⟩2. Let 𝑇𝑗 be a transaction that validates at server 𝑠 such that:

• 𝑇𝑖 reads 𝑥𝑘 and 𝑇𝑗 writes 𝑥 and ver (𝑇𝑘) < ver (𝑇𝑗) <

ver (𝑇𝑖), or
• 𝑇𝑖 writes 𝑥 and 𝑇𝑗 reads 𝑥𝑘 and ver (𝑇𝑘) < ver (𝑇𝑖) <

ver (𝑇𝑗).
⟨1⟩3. If 𝑇𝑖 is prepared at a server 𝑠 when 𝑇𝑗 validates at 𝑠 , 𝑠 rejects

𝑇𝑗 .

By the Validation algorithm’s prepared reads and writes check.

⟨1⟩4. If𝑇𝑖 is committed at a server 𝑠 when𝑇𝑗 validates at 𝑠 , 𝑠 rejects

𝑇𝑗 .

By the Validation algorithm’s committed reads and writes check.

⟨1⟩5. If 𝑇𝑖 has been truncated at a server 𝑠 when 𝑇𝑗 validates at 𝑠 , 𝑠

rejects 𝑇𝑗 .

By the Validation algorithm’s truncation check.

⟨1⟩6. 𝑚 ≥ 𝑓 + 1 servers validate 𝑇𝑖 successfully and prepare 𝑇𝑖 .

Every Commit path requires that 𝑇𝑖 be successfully validated at

𝑓 + 1 servers. When a server successfully validates a transaction,

it always immediately adds it to its prepared set.

⟨1⟩7. Let 𝑠 be one of the𝑚 servers that validate𝑇𝑖 successfully and

prepare 𝑇𝑖 .

⟨1⟩8. 𝑠 only unprepares 𝑇𝑖 when it receives a durable decision (ei-

ther through the original coordinator, recovery coordinator,

or truncation coordinator).

Since 𝑇𝑖 commits, Lemma B.2 implies that no coordinator could

have reached a durable Abandon decision for 𝑇𝑖 . This implies

that 𝑠 can only receive a durable commit decision. If 𝑠 receives

such a decision, it removes𝑇𝑖 from its prepared set and add𝑇𝑖 to

its committed set.

⟨1⟩9. 𝑠 only uncommits 𝑇𝑖 when it truncates 𝑇𝑖 .

The only place in the Algorithm where a server removes a trans-

action from its committed set is when truncating.

⟨1⟩10. Q.E.D.

Proof: By ⟨1⟩3, ⟨1⟩4, ⟨1⟩5, ⟨1⟩6, and ⟨1⟩7. □

LemmaB.4. If𝐻 is a history produced byMorty,DSG(𝐻) is acyclic.
Proof.

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

⟨1⟩1. Let ≺ be a total order on the transactions in 𝐻 : 𝑇𝑖 ≺ 𝑇𝑗 ⇐⇒
ver (𝑇𝑖) < ver (𝑇𝑗).

⟨1⟩2. Let the version order ≪ for 𝐻 be: 𝑥𝑖 ≪ 𝑥 𝑗 ⇐⇒ 𝑇𝑖 ≺ 𝑇𝑗 .

⟨1⟩3. If the edge 𝑇𝑖 → 𝑇𝑗 is in DSG(𝐻), then 𝑇𝑖 ≺ 𝑇𝑗 .

⟨2⟩1. Case: 𝑇𝑖
ww−−−→ 𝑇𝑗 .

⟨3⟩1. 𝑇𝑖 installs a version 𝑥𝑖 and 𝑇𝑗 installs 𝑥 ’s next version

𝑥 𝑗 in the version order.

Proof: By the hypothesis that the edge𝑇𝑖
ww−−−→ 𝑇𝑗 exists in

DSG(𝐻) and Definition A.3.

⟨3⟩2. 𝑥𝑖 ≪ 𝑥 𝑗 .

Proof: By ⟨3⟩1.
⟨3⟩3. Q.E.D.

Proof: By ⟨3⟩2 and ⟨1⟩2.

⟨2⟩2. Case: 𝑇𝑖
wr−−→ 𝑇𝑗 .

⟨3⟩1. 𝑇𝑖 installs a version 𝑥𝑖 and 𝑇𝑗 reads 𝑥𝑖 .

Proof: By the hypothesis that the edge 𝑇𝑖
wr−−→ 𝑇𝑗 exists in

DSG(𝐻) and Definition A.1.

⟨3⟩2. ver (𝑇𝑖) < ver (𝑇𝑗).
Proof: By ⟨3⟩1 and that Morty servers, for a read 𝑟ℓ (𝑥)
from transaction 𝑇ℓ , only return object versions 𝑥𝑘 written

by transaction 𝑇𝑘 such that ver (𝑇𝑘) < ver (𝑇ℓ).
⟨3⟩3. Q.E.D.

Proof: By ⟨3⟩2 and ⟨1⟩1.

⟨2⟩3. Case: 𝑇𝑖
rw−−→ 𝑇𝑗 .

⟨3⟩1. 𝑇𝑖 reads some object version 𝑥𝑘 and 𝑇𝑗 installs the ver-

sion 𝑥 𝑗 after 𝑥𝑘 in the version order.

Proof: By the hypothesis that the edge 𝑇𝑖
rw−−→ 𝑇𝑗 exists in

DSG(𝐻) and Definition A.2.

⟨3⟩2. 𝑚𝑖 ≥ 𝑓 + 1 servers permanently prepare 𝑇𝑖 .

Proof: By the hypothesis that𝑇𝑖 is committed and LemmaB.3.

⟨3⟩3. 𝑚 𝑗 ≥ 𝑓 + 1 servers permanently prepare 𝑇𝑗 .

Proof: By the hypothesis that𝑇𝑗 is committed and LemmaB.3.

⟨3⟩4. There exists a server 𝑠 that permanently conflict rejects

both 𝑇𝑖 and 𝑇𝑗 .

Proof: By ⟨3⟩2, ⟨3⟩3, and that there are only 𝑛 = 2𝑓 + 1

that store object 𝑥 .

⟨3⟩5. 𝑠 permanently conflict rejects 𝑇𝑖 and 𝑇𝑗 sequentially,

either preparing 𝑇𝑖 first or 𝑇𝑗 first.

Proof: By ⟨3⟩4 and the multi-threaded locking that ensures

accesses to an object’s metadata are sequential at a server,

⟨3⟩6. Case: 𝑇𝑖 permanently conflict rejects at 𝑠 first.

⟨4⟩1. After𝑇𝑖 validates successfully at 𝑠 , 𝑠 rejects any trans-
action𝑇ℓ that writes 𝑥 such that ver (𝑇𝑘) < ver (𝑇ℓ) <
ver (𝑇𝑖).

Proof: By Definition B.3 and ⟨3⟩1.
⟨4⟩2. 𝑠 does not reject 𝑇𝑗 .

Proof: By ⟨3⟩4.
⟨4⟩3. ver (𝑇𝑗) < ver (𝑇𝑘) or ver (𝑇𝑖) < ver (𝑇𝑗).

Proof: By ⟨4⟩1 and ⟨4⟩2.
⟨4⟩4. ver (𝑇𝑘) < ver (𝑇𝑗).

Proof: By ⟨3⟩1, ⟨1⟩1, and ⟨1⟩2.
⟨4⟩5. ver (𝑇𝑖) < ver (𝑇𝑗).

Proof: By ⟨4⟩3, and ⟨4⟩4.
⟨4⟩6. Q.E.D.

Proof: By ⟨4⟩5 and ⟨1⟩1.
⟨3⟩7. Case: 𝑇𝑗 permanently conflict rejects at 𝑠 first.

⟨4⟩1. After𝑇𝑗 validates successfully at 𝑠 , 𝑠 rejects any trans-
action𝑇ℓ that reads 𝑥𝑘 such that ver (𝑇𝑘) < ver (𝑇𝑗) <
ver (𝑇ℓ).

Proof: By Definition B.3 and ⟨3⟩1.
⟨4⟩2. 𝑠 does not reject 𝑇𝑖 .

Proof: By ⟨3⟩4.
⟨4⟩3. ver (𝑇𝑗) < ver (𝑇𝑘) or ver (𝑇𝑖) < ver (𝑇𝑗).

Proof: By ⟨4⟩1 and ⟨4⟩2.
⟨4⟩4. ver (𝑇𝑘) < ver (𝑇𝑗).

Proof: By ⟨3⟩1, ⟨1⟩1, and ⟨1⟩2.
⟨4⟩5. ver (𝑇𝑖) < ver (𝑇𝑗).

Proof: By ⟨4⟩3, and ⟨4⟩4.
⟨4⟩6. Q.E.D.

Proof: By ⟨4⟩5 and ⟨1⟩1.
⟨3⟩8. Q.E.D.

Proof: By ⟨3⟩5, ⟨3⟩6, and ⟨3⟩7.
⟨2⟩4. Q.E.D.

Proof: By ⟨2⟩1, ⟨2⟩2, and ⟨2⟩3.

⟨1⟩4. Suffices Assume: There exists a cycle in DSG(𝐻).
Prove: False.

Proof: By the assumption of ⟨1⟩4, ⟨1⟩3, and ⟨1⟩1.

⟨1⟩5. Q.E.D.

Proof: By ⟨1⟩4. □

Lemma B.5. If 𝐻 is a history produced by Morty, 𝐻 does not exhibit
aborted reads.
Proof.

Let 𝑇𝑗 be a committed transaction in 𝐻 such that 𝑇𝑗 has read some

object modified by 𝑇𝑖 . Since 𝑇𝑗 is committed, it must have passed

the validation check on at least one server. The dirty read check of

the validation check implies that each read of 𝑇𝑗 is of a write from

a committed transaction. This implies that 𝑇𝑖 is also committed in

𝐻 . □

Lemma B.6. If 𝐻 is a history produced by Morty, 𝐻 does not exhibit
intermediate reads.

Morty: Scaling Concurrency Control with Re-Execution EuroSys ’23, May 8–12, 2023, Rome, Italy

Proof.

Let 𝑇𝑗 be a committed transaction in 𝐻 such that 𝑇𝑗 has read a

version of object 𝑥 written by transaction𝑇𝑖 . Since𝑇𝑗 is committed,

it must have passed the validation check on at least one server. The

dirty read check of the validation check implies that each read of

𝑇𝑗 is of a final write from a committed transaction. □

Theorem B.1. Morty only produces serializable histories.
Proof.

⟨1⟩1. Let 𝐻 be a history produced by Morty.

⟨1⟩2. Q.E.D.

Proof: By ⟨1⟩1, Definition A.10, Lemma B.5, Lemma B.6, and

Lemma B.4. □

C Proof of Serialization Windows and
Validity Windows

We prove that serialization windows and validity windows must be

non-overlapping using Adya’s system model and terminology [1].

C.1 Serialization Windows
Definition C.1. A transaction 𝑇𝑖 that writes to object 𝑥 creates a
serialization window on 𝑥 represented by the interval [𝑎𝑖 , 𝑏𝑖]. If 𝑇𝑖
reads 𝑥𝑘 before it writes 𝑥 , 𝑎𝑖 = min (𝑤𝑘 (𝑥𝑘), 𝑏 𝑗) where 𝑏 𝑗 is right
endpoint of the serialization window on 𝑥 for the transaction 𝑇𝑗 that
writes the version 𝑥 𝑗 that immediately follows 𝑥𝑖 in the version order
≪; otherwise 𝑎𝑖 = 𝑏𝑖 . 𝑏𝑖 = min (𝑤𝑖 (𝑥𝑖), 𝑏 𝑗)

Note that the definition of a serialization window is a well-

formed interval (i.e., 𝑎𝑖 ≤ 𝑏𝑖) since 𝑎𝑖 is defined to be at most

as large as 𝑏𝑖 .

A transaction which only reads 𝑥 does not create a serialization

window on 𝑥 as reading is not a conflicting operation in isolation.

First we prove that the definition of a serialization window is a

valid interval.

Lemma C.1. If [𝑎𝑖 , 𝑏𝑖] is the serialization window of a transaction
𝑇𝑖 in 𝐻 , then 𝑎𝑖 ≤ 𝑏𝑖 .

Proof. There are two cases:

• 𝑟𝑖 (𝑥𝑘) <𝐻 𝑤𝑖 (𝑥𝑖). By the definition of𝑎𝑖 ,𝑎𝑖 = min (𝑤𝑘 (𝑥𝑘), 𝑏 𝑗)
and by the definition of 𝑏𝑖 , 𝑏𝑖 = min (𝑤𝑖 (𝑥𝑖), 𝑏 𝑗). By the def-

inition of 𝐻 ,𝑤𝑘 (𝑥𝑘) <𝐻 𝑟𝑖 (𝑥𝑘), so by the assumption of the

case,𝑤𝑘 (𝑥𝑘) <𝐻 𝑤𝑖 (𝑥𝑖). Combined with the definitions of

𝑎𝑖 and 𝑏𝑖 , this implies that 𝑎𝑖 ≤ 𝑏𝑖 .

• 𝑤𝑖 (𝑥𝑖) <𝐻 𝑟𝑖 (𝑥𝑘) or 𝑟𝑖 (𝑥𝑘) ∉ 𝑇𝑖 . By the definition of 𝑎𝑖 ,

𝑎𝑖 ≤ 𝑏𝑖 .

□

Next, we prove that in a history with an acyclic DSG, a trans-
action that reads and writes an object must read from the version

that immediately precedes its version in the version order.

Lemma C.2. If DSG(𝐻) is acyclic, 𝑇𝑖 is a transaction that writes
version 𝑥𝑖 of object 𝑥 , and 𝑇𝑗 is a transaction that reads version 𝑥𝑘
and writes version 𝑥 𝑗 of object 𝑥 , and 𝑥 𝑗 immediately follows 𝑥𝑖 in
the version order ≪ of 𝐻 , then 𝑥𝑘 = 𝑥𝑖 .

Proof. Assume for a contradiction that this is not the case, i.e., that

𝑥𝑘 ≠ 𝑥𝑖 . There are two sub-cases depending on the version order

of 𝑥𝑘 and 𝑥𝑖 .

Case 𝑥𝑖 ≪ 𝑥𝑘 : Since 𝑥 𝑗 immediately follows 𝑥𝑖 in the version

order, 𝑥𝑘 must come after 𝑥 𝑗 in ≪. This implies that there is a

sequence of

ww−−−→ edges from𝑇𝑗 to𝑇𝑘 in DSG(𝐻). In addition, there

exists a 𝑇𝑘
wr−−→ 𝑇𝑗 edge in DSG(𝐻) because 𝑇𝑗 reads 𝑥𝑘 from 𝑇𝑘 .

These imply that there is a cycle in DSG(𝐻). However, there are no
cycles in DSG(𝐻) by assumption. Thus, there is a contradiction.

Case 𝑥𝑘 ≪ 𝑥𝑖 : Let 𝑇ℓ be the transaction that installs the ver-

sion 𝑥ℓ that immediately follows 𝑥𝑘 in the version order. By the

assumption of the case and the assumption that 𝑥 𝑗 immediately

follows 𝑥𝑖 in ≪, there is a sequence 𝑇𝑘
ww−−−→ 𝑇ℓ

ww−−−→ ...
ww−−−→ 𝑇𝑗 of

ww−−−→ edges in DSG(𝐻). In addition, there exists a 𝑇𝑗
rw−−→ 𝑇ℓ edge in

DSG(𝐻) because 𝑇𝑗 reads 𝑥𝑘 from 𝑇𝑘 and 𝑇ℓ installs the version 𝑥ℓ
immediately after 𝑥𝑘 . These imply that there is a cycle in DSG(𝐻).
However, there are no cycles inDSG(𝐻) by assumption. Thus, there

is a contradiction.

In either case, the assumption that 𝑥𝑘 ≠ 𝑥𝑖 implies a contradic-

tion, so 𝑥𝑘 = 𝑥𝑖 . □

This allows us to prove more generally that the order of serial-

ization windows must match the version order in a history with an

acyclic DSG.

Lemma C.3. If DSG(𝐻) is acyclic, 𝑇𝑖 and 𝑇𝑗 are transactions that
write object 𝑥 with serialization windows [𝑎𝑖 , 𝑏𝑖] and [𝑎 𝑗 , 𝑏 𝑗], and
𝑥𝑖 ≪ 𝑥 𝑗 , then 𝑏𝑖 ≤ 𝑎 𝑗 .

Proof. Let 𝑥1 = 𝑥𝑖 , ..., 𝑥𝑛 = 𝑥 𝑗 be the sequence of 𝑛 ≥ 2 versions

between 𝑥𝑖 and 𝑥 𝑗 in ≪. For each transaction 𝑇ℓ that creates a

version in this sequence, if 𝑇ℓ reads 𝑥 , then we define 𝑥𝑘ℓ as the

version of 𝑥 that 𝑇ℓ reads.

The inductive hypothesis is that 𝑏1 ≤ 𝑎𝑛 .

The base case is when 𝑛 = 2. There are no versions between 𝑥𝑖
and 𝑥 𝑗 in the sequence (𝑇1 = 𝑇𝑖 , 𝑇2 = 𝑇𝑗). There are two sub-cases:

1. 𝑇2 reads𝑥 beforewriting𝑥 . Since𝑇2 reads𝑥 ,𝑎2 = min (𝑤𝑘2 (𝑥𝑘2), 𝑏2).
LemmaC.2 implies that𝑥𝑘2 = 𝑥1. Therefore,𝑎2 = min (𝑤1 (𝑥1), 𝑏2).
Since the definition of 𝑏1 is also min (𝑤1 (𝑥1), 𝑏2), 𝑏1 ≤ 𝑎2.

2. 𝑇2 does not read 𝑥 before writing 𝑥 . Since 𝑇2 does not read

𝑥 , 𝑎2 = 𝑏2. The definition of 𝑏1 = min (𝑤1 (𝑥1), 𝑏2) and the

definition of 𝑎2, imply that 𝑏1 ≤ 𝑎2.

Now we prove the inductive hypothesis using only the fact that

𝑏1 ≤ 𝑎𝑛−1. There are two-sub-cases:

1. 𝑇𝑛 reads𝑥 beforewriting𝑥 . Since𝑇𝑛 reads𝑥 ,𝑎𝑛 = min (𝑤𝑘𝑛 (𝑥𝑘𝑛), 𝑏𝑛).
LemmaC.2 implies that𝑥𝑘𝑛 = 𝑥𝑛−1. Therefore,𝑎𝑛 = min (𝑤𝑛−1 (𝑥𝑛−1), 𝑏𝑛).
Since the definition of 𝑏𝑛−1 is also min (𝑤𝑛−1 (𝑥𝑛−1), 𝑏𝑛),
𝑏𝑛−1 ≤ 𝑎𝑛 . This, the fact that 𝑎𝑛−1 ≤ 𝑏𝑛−1, and the fact that

𝑏1 ≤ 𝑎𝑛−1 imply that 𝑏1 ≤ 𝑎𝑛 .

2. 𝑇𝑛 does not read 𝑥 before writing 𝑥 . Since 𝑇𝑛 does not read

𝑥 , 𝑎𝑛 = 𝑏𝑛 . The definition of 𝑏𝑛−1 = min (𝑤𝑛−1 (𝑥𝑛−1), 𝑏𝑛)
and the definition of 𝑎𝑛 imply that 𝑏𝑛−1 ≤ 𝑎𝑛 . This, the fact

that 𝑎𝑛−1 ≤ 𝑏𝑛−1, and the fact that 𝑏1 ≤ 𝑎𝑛−1 imply that

𝑏1 ≤ 𝑎𝑛 .

□

Finally, these lemmas give the result that serialization windows

cannot overlap in a history with an acyclic DSG.

EuroSys ’23, May 8–12, 2023, Rome, Italy Burke et al.

Theorem C.1. If DSG(𝐻) is acyclic and 𝑇𝑖 and 𝑇𝑗 are two transac-
tions in 𝐻 that write object 𝑥 , then the serialization windows of 𝑇𝑖
and 𝑇𝑗 do not overlap.

Proof. Lemma C.1 implies that for𝑇𝑖 ’s serialization window [𝑎𝑖 , 𝑏𝑖]
to not overlap with𝑇𝑗 ’s serialization window [𝑎 𝑗 , 𝑏 𝑗], it must be the

case that either 𝑏𝑖 ≤ 𝑎 𝑗 or 𝑏 𝑗 ≤ 𝑎𝑖 . The version order ≪ is a total

order, so either 𝑥𝑖 ≪ 𝑥 𝑗 or 𝑥 𝑗 ≪ 𝑥𝑖 . In the former case, Lemma C.3

implies that 𝑏𝑖 ≤ 𝑎 𝑗 . In the latter case, Lemma C.3 implies that

𝑏 𝑗 ≤ 𝑎𝑖 . □

C.2 Validity Windows
Definition C.2. A transaction 𝑇𝑖 that writes to object 𝑥 creates a
validity window on 𝑥 represented by the interval [𝑎𝑖 , 𝑏𝑖]. If 𝑇𝑖 reads
version 𝑥𝑘 before it writes 𝑥 , 𝑎𝑖 = min (𝑐𝑘 , 𝑏 𝑗) where 𝑏 𝑗 is the right
endpoint of the validity window on 𝑥 for the transaction𝑇𝑗 that writes
the version 𝑥 𝑗 that immediately follows 𝑥𝑖 in the version order ≪;
otherwise 𝑎𝑖 = 𝑏𝑖 . 𝑏𝑖 = min (𝑐𝑖 , 𝑏 𝑗).

First we prove that the definition of a validity window is a valid

interval. This requires that the history is recoverable.

Lemma C.4. If 𝐻 is a recoverable history and [𝑎𝑖 , 𝑏𝑖] is the validity
window of a transaction 𝑇𝑖 in 𝐻 , then 𝑎𝑖 ≤ 𝑏𝑖 .

Proof. By the assumption that 𝐻 is recoverable, 𝑐𝑘 <𝐻 𝑐𝑖 . There

are three sub-cases:

• 𝑐𝑘 ≤ 𝑐𝑖 ≤ 𝑏 𝑗 . By the definitions of 𝑎𝑖 and 𝑏𝑖 , 𝑎𝑖 = 𝑐𝑘 and

𝑏𝑖 = 𝑐𝑖 . By the assumption of the case, 𝑎𝑖 ≤ 𝑏𝑖 .

• 𝑐𝑘 ≤ 𝑏 𝑗 ≤ 𝑐𝑖 . By the definitions of 𝑎𝑖 and 𝑏𝑖 , 𝑎𝑖 = 𝑐𝑘 and

𝑏𝑖 = 𝑏 𝑗 . By the assumption of the case, 𝑎𝑖 ≤ 𝑏𝑖 .

• 𝑏 𝑗 ≤ 𝑐𝑘 ≤ 𝑐𝑖 . By the definitions of 𝑎𝑖 and 𝑏𝑖 , 𝑎𝑖 = 𝑏 𝑗 and

𝑏𝑖 = 𝑏 𝑗 . This implies 𝑎𝑖 ≤ 𝑏𝑖 .

□

This allow us to prove that the order of validity windows must

match the version order in a recoverable history with an acyclic

DSG.

Lemma C.5. If DSG(𝐻) is acyclic,𝐻 is a recoverable history,𝑇𝑖 and
𝑇𝑗 are transactions that write object 𝑥 with validity windows [𝑎𝑖 , 𝑏𝑖]
and [𝑎 𝑗 , 𝑏 𝑗], and 𝑥𝑖 ≪ 𝑥 𝑗 , then 𝑏𝑖 ≤ 𝑎 𝑗 .

Proof. Let 𝑥1 = 𝑥𝑖 , ..., 𝑥𝑛 = 𝑥 𝑗 be the sequence of 𝑛 ≥ 2 versions

between 𝑥𝑖 and 𝑥 𝑗 in ≪. For each transaction 𝑇ℓ that creates a

version in this sequence, if 𝑇ℓ reads 𝑥 , then we define 𝑥𝑘ℓ as the

version of 𝑥 that 𝑇ℓ reads. Let 𝑇𝑛+1 be the transaction that writes

𝑥𝑛+1, the next version after 𝑥𝑛 according to ≪.

The inductive hypothesis is that 𝑏1 ≤ 𝑎𝑛 .

The base case is when 𝑛 = 2. There are no versions between 𝑥𝑖
and 𝑥 𝑗 in the sequence (𝑇1 = 𝑇𝑖 , 𝑇2 = 𝑇𝑗).

1. 𝑇2 reads𝑥 beforewriting𝑥 . Since𝑇2 reads𝑥 ,𝑎2 = min (𝑐𝑘2 , 𝑏3).
Lemma C.2 implies that 𝑥𝑘2 = 𝑥1, so 𝑐𝑘2 = 𝑐1. The definition

of 𝑏1 = min (𝑐1, 𝑏2) and the definition of 𝑏2 = min (𝑐2, 𝑏3),
so 𝑏1 = min (𝑐1, 𝑐2, 𝑏3). Since this is a minimum over a su-

perset of the elements in the definition of 𝑎2, this implies

that 𝑏1 ≤ 𝑎2.

2. 𝑇2 does not read 𝑥 before writing 𝑥 . Since𝑇2 does not read 𝑥 ,

𝑎2 = 𝑏2. This equality and the definition of 𝑏1 = min (𝑐1, 𝑏2)
imply that 𝑏1 ≤ 𝑎2.

Now we prove the inductive hypothesis using only the fact that

𝑏1 ≤ 𝑎𝑛−1. First, we show that 𝑏𝑛−1 ≤ 𝑎𝑛 . There are two sub-cases:

1. 𝑇𝑛 reads𝑥 beforewriting𝑥 . Since𝑇𝑛 reads𝑥 ,𝑎𝑛 = min (𝑐𝑘𝑛 , 𝑏𝑛+1).
Lemma C.2 implies that 𝑥𝑘𝑛 = 𝑥𝑛−1, so 𝑐𝑘𝑛 = 𝑐𝑛−1. The
definition of 𝑏𝑛−1 = min (𝑐𝑛−1, 𝑏𝑛) and the definition of

𝑏𝑛 = min (𝑐𝑛, 𝑏𝑛+1), so 𝑏𝑛−1 = min (𝑐𝑛−1, 𝑐𝑛, 𝑏𝑛+1). Since
this is a minimum over a superset of the elements in the

definition of 𝑎𝑛 , this implies that 𝑏𝑛−1 ≤ 𝑎𝑛 .

2. 𝑇𝑛 does not read 𝑥 before writing 𝑥 . Since 𝑇𝑛 does not read

𝑥 , 𝑎𝑛 = 𝑏𝑛 . This equality and the definition of 𝑏𝑛−1 =

min (𝑐𝑛−1, 𝑏𝑛) imply that 𝑏𝑛−1 ≤ 𝑎𝑛 .

Finally, Lemma C.4 implies that 𝑎𝑛−1 ≤ 𝑏𝑛−1. The facts that 𝑏1 ≤
𝑎𝑛−1, 𝑎𝑛−1 ≤ 𝑏𝑛−1, and 𝑏𝑛−1 ≤ 𝑎𝑛 imply that 𝑏1 ≤ 𝑎𝑛 . □

Finally, these lemmas give the result that validity windows can-

not overlap in a recoverable history with an acyclic DSG.

Theorem C.2. If DSG(𝐻) is acyclic, 𝐻 is a recoverable history, and
𝑇𝑖 and 𝑇𝑗 are two transactions in 𝐻 that write to 𝑥 , then the validity
windows of 𝑇𝑖 and 𝑇𝑗 do not overlap.

Proof. Lemma C.4 implies that for 𝑇𝑖 ’s validity window [𝑎𝑖 , 𝑏𝑖] to
not overlap with 𝑇𝑗 ’s validity window [𝑎 𝑗 , 𝑏 𝑗], it must be the case

that either 𝑏𝑖 ≤ 𝑎 𝑗 or 𝑏 𝑗 ≤ 𝑎𝑖 . The version order ≪ is a total order,

so either 𝑥𝑖 ≪ 𝑥 𝑗 or 𝑥 𝑗 ≪ 𝑥𝑖 . In the former case, Lemma C.5 implies

that 𝑏𝑖 ≤ 𝑎 𝑗 . In the latter case, Lemma C.5 implies that 𝑏 𝑗 ≤ 𝑎𝑖 . □

	Abstract
	1 Introduction
	2 Scraping the Barrel: Limits to Extracting Concurrency
	2.1 Sequential Execution
	2.2 Read Validity

	3 Transaction Re-Execution
	3.1 Existing Approaches
	3.2 Re-Execution

	4 Morty Design
	4.1 Implementing Re-Execution
	4.2 Transaction Execution
	4.3 Handling Failures
	4.4 Garbage Collection & Truncation
	4.5 Correctness

	5 Evaluation
	5.1 OLTP Applications
	5.2 Scalability
	5.3 Microbenchmarks

	6 Related Work
	7 Conclusion
	References
	A System Model
	B Proof of Correctness
	C Proof of serialization windows and validity windows
	C.1 serialization windows
	C.2 validity windows

