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1. Introduction

Deep networks trained on real world data by using im-
itation learning have shown to produce very good results.
These end to end imitation learning approaches are very
powerful and perform quite well on the same domain where
the data was collected. However, the performance of an
imitation learning agent is highly dependent on the amount
and quality of data that it is trained on. Collecting a large
amount of high quality data from the real world is not a
trivial task and usually involves a complicated setup. With
the advent of simulators like TORCS and CARLA, we now
have a massive amount of data. The problem is that agents
trained on simulated data perform terrible in the real world
due to the enormous domain shift. Solving this problem of
domain adaptation for imitation learning agents is very cru-
cial in order to improve the performance of these agents in
real world settings. In this report, we will discuss about the
current problems of domain adaptation for imitation learn-
ing, existing works that are able to solve some of the prob-
lems and some experiments that we have run.

2. Imitation Learning

Traditionally, there has been a practice of using a modu-
lar pipeline involving perception, localization, path search
and controls modules for the motion planning of an au-
tonomous vehicle. This approach makes use of numerous
sensor data to drive a car. In contrast, people have also ex-
plored end to end driving approaches with minimal num-
ber of sensors using methods like imitation learning. One
of the earliest works ALVINN [13], involves using a neu-
ral network to predict driver controls by just taking the
RGB camera frames as input. Since then, several tech-
niques have been introduced involving imitation learning
that have shown competent results. Deep networks trained
on demonstrations of human driving have shown to learn to
follow roads and avoid obstacles. There has also been re-
cent work involving command-conditional formulation that
enables the application of imitation learning to more com-
plex urban driving. If the training data includes observa-
tions of recoveries from perturbations, even very small deep
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imitation learning agents perform very well on that partic-
ular domain. However even though if these agents perform
very well on domains similar to the domain on which they
are train, they fail miserably when generalizing to other do-
mains. Agents trained on simulator like CARLA fail mis-
erably when tested on different weathers or in a real world
setup.

3. Domain Adaptation

Domain adaptation is a section of machine learning, that
addresses the issue of domain shift between two data dis-
tributions and makes use of labeled data in source domain
to learn the task in hand, for the target domain even if tar-
get domain labeled data is unavailable. Methods using deep
learning for Domain adaptation have shown superior results
in the recent past. Early deep adaptive works focused on
feature space alignment through minimizing the distance
between first or second order feature space statistics of the
source and target ([19]; [L1]). Other related techniques in-
volve learning a mapping from one domain to the other at a
feature level. In such a setup, the feature extraction pipeline
is fixed during the domain adaptation optimization. This has
been applied in various non-CNN based approaches [6], [2]],
[S][2, 3, 4] as well as CNN-based Correlation Alignment
(CORAL) [16] algorithm. Tobin et al in [18] make use of
domain randomization in simulation to transfer the task of
robotic grasping to realistic objects.

3.1. Using Adversarial approaches

3.1.1 Utilizing the Pixel Space

PixelDA [1]] decouples the process of domain adaptation
from the task-specific architecture and performs unsuper-
vised domain adaptation.

CycleGAN (Zhu et al., 2017) [24] produced com-
pelling image translation results such as generating photo-
realistic images from impressionism paintings or transform-
ing horses into zebras at high resolution using the cycle-
consistency loss. However, its performance suffered for do-
main adaptation as it tends to hallucinate objects and loses
semantic information.

[11] uses style transfer and content loss along with cycle
consistency loss to improve domain adaptation for monocu-



lar depth estimation. The approach doesn’t work well when
adapting to sudden lighting changes and saturation during
style transfer.

3.1.2 Utilizing the Feature Space

The Domain Transfer Network (Taigman et al., 2017b) [17]]
trains a generator to transform a source image into a tar-
get image by enforcing consistency in the embedding space.
Shrivastava et al. (2017) [[15] instead use an L1 reconstruc-
tion loss to force the generated target images to be similar
to their original source images. This works well for limited
domain shifts where the domains are similar in pixel-space,
but can be too limiting for settings with larger domain shifts.

BiGAN (Donahue et al., 2017) [3] and ALI (Dumoulin
et al., 2016) [4] take an approach of simultaneously learning
the transformations between the pixel and the latent space.

CoGANs (Liu & Tuzel, 2016b) [10] jointly learn a
source and target representation through explicit weight
sharing of certain layers while each source and target has
a unique generative adversarial objective.

WDGRL [9] [10] utilizes a discriminator to estimate em-
pirical Wasserstein distance between the source and target
samples and optimizes the feature extractor network to min-
imize the estimated Wasserstein distance.

[10] [20] forces the learned feature extractor to be
domain-invariant, and training it through data augmentation
in the feature space, namely performing feature augmenta-
tion.

UNIT [9]makes a shared-latent space assumption and re-
lies on both GANs and Variational Auto-Encoders, which
assumes a pair of corresponding images in different do-
mains can be mapped to a same latent representation in a
shared-latent space. MUNIT [8]] assumes that a pair of cor-
responding images in different domains can be mapped to a
same content representation with different style representa-
tions.

CyCADA [7] adapts representations at both the pixel-
level and feature-level, enforces cycle-consistency while
leveraging a task loss, and does not require aligned pairs
similar to CycleGAN.

LSDSEG [14] proposes a joint adversarial approach that
transfers the information of the target distribution to the
learned embedding using a generator-discriminator pair and
significantly improves results for domain adaptation for se-
mantic segmentation.

4. Domain Adaptation for Imitation Learning
Agents

There have been driving datasets by Comma.ai [6] and
Udacity [7] for self driving cars, that mostly consist of driv-
ing data for highways and roads in USA. IL agents trained
on these datasets don’t perform (might not perform) well

Figure 1. Top view of the Sant Quirze circuit in CARLA Simulator

in unseen environments and conditions. This is due to the
lack of diverse training data for driving in terms of differ-
ent roads, weather conditions and traffic conditions. With
the advent of high quality simulators for autonomous driv-
ing, there is abundant synthetic data consisting of a wide
variety of conditions when driving. There have been re-
cent works that have shown impressive results when using
imitation learning agents to drive a vehicle in a simulator.
How do we make use of these agents to drive vehicles in
real world? We use domain adaptation to make the agents
adaptable to target domain i.e. the real world.

[23]] uses a CycleGAN based architecture with style loss
and utilize the target domain discriminator features to learn
the task of driving.

[22]] trains a generator discriminator pair with a Task net-
work to transform real world images to virtual and learn the
control task from the transformed images. The generator
network is updated using both adversarial and prediction
objective.

[[12]] transfer driving policy from virtual to real environ-
ment by training a encoder-decoder based segmentation ar-
chitecture with a driving policy network that outputs way-
points, and use a low-level controller to drive the car.

[21]] introduces a master-servant architecture, where the
master model (semantic labels available) trains the servant
model (semantic labels not available). The servant model



is then used for steering the vehicle without retraining the
control module. However, this would not work for virtual to
real domain adaptation as the segmentation network trained
on virtual data would doesn’t perform well on real world
data.

We address the issue of domain adaptation for IL agents
by making use of adversarial networks for learning a com-
mon feature space and use a task network to predict the con-
trols for our vehicle.

5. Our Experiments
5.1. Training Environment

We performed all the experiments in the Sant Quirze Cir-
cuit environment (Fig. 1) of CARLA. The circuit comprises
of a total of 6 turning points, most of them being complete
U-Turns.

5.2. Training Imitation Learning Agent on CARLA

We train an IL agent similar to CIL with only branch
instead, using the SantQuirze Circuit environment on
CARLA. We train the agent on Low Quality Weather 1
(Clear Noon). Our domain adaptation objective is to per-
form well on Epic Quality Weather 12 (Mid Rain Sun-
set) which is the hardest setting due to rain, low illumina-
tion, heavy sunlight reflection from road and grass surfaces,
etc. Also, Low Quality data is very simple and synthetic
whereas Epic Quality looks very realistic. Our IL agents
are trained for 200k iterations.

5.3. Finetuning agent on fake target domain images
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Figure 2. Finetuning agent on fake target domain images

We train the UNIT GAN to transfer images from source
domain to target images for 100 epochs. After training, we
take the target encoder and source decoder of the UNIT and
convert the entire source dataset to a artificial target dataset
by passing all source images through the UNIT.

After this, we take a pretrained IL agent from the source
domain and finetune it on this artificial target dataset with a
lower learning rate for 200k iterations.

5.4. Training with a joint adversarial approach 3

This methods aims to learn a common embedding and
weights for both domain images. The input to this setup
is a triplet sample consisting of a source domain image, the
corresponding source domain action label and a random tar-
get domain image. It comprises of one encoder which em-
beds image into a latent space. This latent vector is passed
through the common decoder to reconstruct the image. The
fake reconstructed image is passed through a 4 label dis-
criminator namely: Source Fake, Source Real, Target Fake
and Target Real and the discriminator must learn to discrim-
inate between the 4 possibilities. The latent space availed
from the encoder is directly passed into the task network
and the task is learnt on the source data. In theory, since
the target images are passed through the same encoder and
still need to be reconstructed from that latent space, domain
adaptation for the driving task should be performed. How-
ever, we found the entire setup to be very unstable as the
discriminator was getting confused between source fake and
target fake and ended up causing the image reconstructions
to mode collapse. Even using pretrained weights for the
encoder (IL Agent weights) and decoder (WGAN-GP re-
construction or L1 reconstruction) did not fix the issue. Our
training procedure for this experiment as well as the next
one is a 3 step process.

First, the discriminator is updated with adversarial loss
for distinguishing between fake and real samples.

Second, the generator (only decoder) is updated with ad-
versarial and L1 loss to make fake images realistic (Source
Fake to Source Real and Target Fake to Target Real).

Finally, the generator (only encoder) and task network
are updated with two components. One component is the
task loss. The second component is the adversarial loss
(Source Fake to Target Real and Target Fake to Source
Real).

mén max V(D,G) = Expyura(x) [log D(x)]
+ Egmp. (2 [log(1 — D(G(2)))]

1 n
Task Loss = — di — yi)*
ask Loss = — ;(pre L — Yt)
where pred; is of the form: [steer, throttle, brake]

5.5. Training with a joint adversarial approach with
extra WGAN-GP stabilization

To address the problem of mode collapse and unsta-
ble training, we add a separate discriminator trained using
WGAN-GP loss for the concept of fake and real. However,
having two discriminators: one with 4 labels and GAN loss
and another with WGAN-GP loss was causing the WGAN-



[ Source Domain Tested Domain Results | 4
Low W1 Low W1 Perfect
Low W1 Low W1 w/o lanes Perfect
Low W1 Epic W1 All turns except heavy shadow
Low W1 Epic W1 w/o lanes All turns except heavy shadow
Low W1 Epic W12 Does horribly but makes few turns
Low W1 Epic W12 w/o lanes Immediately strays off into grass
Epic W12 Epic W12 Works perfect but lane follower
Epic W12 Epic W12 w/o lanes  Unable to follow road and strays off
Table 1. Results for CIL agents on specified domains
H Method Source Domain ~ Target Domain H
UNIT Finetune Low W1 Epic W12 no lanes
LSDSEG based with WGAN Low W1 Epic W12 no lanes
WDGRL Low W1 Epic W12 no lanes
UNIT Latent Space DA Low W1 Epic W12 no lanes
Table 2. Experiments conducted
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Figure 3. Training with a joint adversarial approach
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Figure 4. Training with a joint adversarial approach with shared
weights

GP loss to override even though if the setup was stable and
image reconstructions were good.

The final setup consisted of one discriminator but per-
formed two tasks. One task was to classify if the image was
real or fake and the other task was to classify if the image
was from source domain or target domain. Both tasks have
shared weights until the last two layers. This gave us better
results.

This architecture is trained similar to our joint adversar-
ial approach in the previous subsection.

5.6. Adversarial feature adaptation based on WD-
GRL
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Figure 5. Adversarial feature adaptation based on WDGRL

We use the idea of WDGRL to use an external discrim-
inator to discriminate between features of a source image
and the features of a target images. Images from both do-
mains are passed through the feature extractor but only task
loss is applied on features from source images. The discrim-
inator learns to discriminate between both feature which al-
lows the feature extractor to learn to create a common fea-
ture space for both domain images.



5.7. Training from common latent space of UNIT-
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Figure 6. Training from common latent space of UNITGAN

This latent space of UNIT is domain invariant and con-
tains common content for both the source domain images
as well as the target domain image. We add a task network
to the latent space of UNIT and train all networks end to
end from scratch. Th goal is to learn the latent space that is
informative enough to be able to regenerate the actual scene
and at the same time contain information that is relevant
for robust decision-making agent by the TaskNet. We vary
the values of task weight and KL divergence and found KL
divergence of 0.1 and task weight of 0.01 works best for
our setting.

The UNIT GAN loss function is as follows:

min  max Lvag, (E1,G1) + Laan, (Ba, Gy, Dy
E1,E5,G2,G2D1,Ds V; 1( ’ ) G 1( ) , )

+ Lcc, (B, Gh, E2, Ga) + Lyag, (B2, G2)
+ Laan, (E1, G2, D2) + Loc, (B2, G2, E1, Gh)

Lyvag, (E1,G1) = MKL (g1 (21]71) [[py(2))
— X, g, (21]21) [logpa, (T1]21)]

Lyag, (B2, G2) = MKL (g2 (22]72) [|py(2))
— MK, g, (22|22) [log pa, (72]22))

Lcan, (B2, G1, D1) = AoEqg,~py, [log D1 (71)]
+ MEz, g, (22]22) [log (1 = D1 (G1 (22)))]

LaaN, (E1, G2, D2) = AoEyy~py, [log D2 (72)] >
+ )\OEzlwa (z1]x1) [IOg (1 —Ds (G2 (Zl))))

Lcc, (E1,Gr, Ea,G2) = AKL (g1 (z1]|z1) ||pn(2))
+ A3KL (g2]=172)) Iy (2))
- >‘4E22~q2 (ZQ‘x}_)?) [10ng1 (%1‘22)]

Lcc, (B2, G2, Ev,G1) = AsKL (ga2]z2) ||py (2))
+ A3KL (q1]z57"))llpy(2))
- >‘4E21NQ1 (Zl‘xgﬁl) [longQ (12‘21)]

5.8. Implementation Details

All of our work was done in PyTorch. We use Adam
optimizer for all of our experiments with 3; = 0.5 and
B2 = 0.99. We collect data for our experiments using a
setup of 5 cameras with angles -30°, -15°, 0°, 15°and 30°in
CARLA simulator. For our UNIT Latent Space DA exper-
iments we using input images of size 128 x 128 and for
remaining we use 88 x 200 similar to CIL Felipe. Suitable
steering augmentation values are added for cameras with
non zero angle.

For all sections, we tried out several experiments in-
volving the hyper-parameters of L1 weight, KL diver-
gence, model size, learning rates, whether to use pretrained
weights or not, etc.

5.9. Future Experiments

 Disentangling content from style in UNIT GAN like
architecture task loss on content embedding and style
loss on style embedding.

* Using good IL agents as encoders for UNIT Latent
Space Domain Adaptation similar to our other experi-
ments.

* Trying out all of our experiments on Town 01 and
Town 02 and for many more easier weathers.

* Look into suitable pretrained weights for networks if
required.

* Lifelong learning across several weathers to get best
universal model.
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