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Abstract11

One of the differences between Brouwerian intuitionistic logic and classical logic is their treatment of12

time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. Thus, in13

intuitionistic logic it is possible to acquire new knowledge as time progresses, whereas the classical14

Law of Excluded Middle (LEM) is essentially flattening the notion of time stating that it is possible15

to decide whether or not some knowledge will ever be acquired. This paper demonstrates that,16

nonetheless, the two approaches are not necessarily incompatible by introducing an intuitionistic17

type theory along with a Beth-like model for it that provide some middle ground. On one hand18

they incorporate a notion of progressing time and include evolving mathematical entities in the19

form of choice sequences, and on the other hand they are consistent with a variant of the classical20

LEM. Accordingly, this new type theory provides the basis for a more classically inclined Brouwerian21

intuitionistic type theory.22
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1 Introduction27

Classical logic and intuitioinistic logic are commonly viewed as distinct philosophies. Much28

of the difference between the two philosophies can be attributed to the way they handle the29

notion of time. In intuitionistic logic time plays a major role as the intuitionistic notions of30

knowledge and truth evolve over time. In particular, the seminal concept of intuitionistic31

mathematics as developed by Brouwer is that of infinitely proceeding sequences of choices32

(called choice sequences) from which the continuum is defined [7, Ch.3]. Choice sequences33

are a primitive concept of finite sequences of entities (e.g., natural numbers) that are never34

complete, and can always be further extended with new choices [27; 8; 44; 45; 31; 46;35

36]. These sequences can be “free” in the sense that they are not necessarily procedurally36

generated. This manifestation of the evolving concept of time in intuitionistic logic entails a37

notion of computability that goes far beyond that of Church-Turing. In fact, the concept38

of evolving knowledge in intuitionistic logic is grounded in Krikpe’s Schema, which in turn39

relies on the notion of choice sequences, and is inconsistent with Church’s Thesis [19, Sec.5].40

Classical logic, on the other hand, is time-invariant. That is, its notions of knowledge and41

truth are constant and so the aspect of time is, intuitively speaking, flattened. As mentioned42

by van Atten, “Many people believe, unlike Brouwer, that mathematical truths are not43
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tensed but eternal—either because such truths are outside time altogether (atemporal) or44

because they hold in all time (omnitemporal)” [7, p.19].45

This critical difference between the two philosophies has been used extensively to refute46

classical results in intuitionistic logic. Brouwer himself used his concept of choice sequences to47

provide weak counterexamples to classical results such as “any real number different from 0 is48

also apart from 0” [25, Ch.8]. Those counterexamples are called weak in the sense that they49

depend on the existence of formulas that have not been either proven or disproven yet (e.g.,50

the Goldbach conjecture). By defining a choice sequence in which the value 1 can only be51

picked once such an undecided conjecture has been resolved (proved or disproved), one could52

resolve this undecided conjecture using the Law of Excluded Middle (LEM), leading to a weak53

counterexample of LEM [13, Ch.1, Sec.1]. Kripke [32, Sec.1.1] also used the unconstrained54

nature of choice sequences to refute other classical results, namely Kuroda’s conjecture and55

Markov’s principle in Kreisel’s FC system [29].1 A constructive version of LEM in which56

the operators are interpreted constructively is also false in realizability theories such as the57

CTT constructive type theory [15; 5] because it allows deciding the undecidable halting58

problem [40, Sec.6.3] (therefore not relying on undecided conjectures). However, a weaker59

version of LEM that does not require providing a realizer of either its left or right disjuncts,60

was proved to be consistent with CTT [18; 28; 40, Sec.6.3]. But using a similar technique61

to Brouwer’s, even this weak version of LEM was shown to be inconsistent with BITT, an62

intuitionistic extension of CTT with a computable notion of choice sequences [10, Appx.A].63

The use of the growing-over-time nature of choice sequences to refute classical axioms,64

and in particular LEM which is a key component of classical reasoning, seems to indicate an65

incompatibility between classical logic and intuitionistic logic. However, in this paper we66

show that this does not have to be the case. To this end, we present a relaxed model of time67

that mitigates the two approaches. Namely, on one hand it supports the evolving nature of68

choice sequences, and on the other hand it enables variants of the classical LEM.69

Concretely, we present OpenTT, a novel intuitionistic extensional type theory that70

incorporates the Brouwerian notion of choice sequences, and is inspired by BITT [10].71

OpenTT goes beyond and departs from BITT in several ways. First, it is validated w.r.t.72

a novel Beth-like model, which we call the open bar model, that is significantly simpler73

than the one presented in [10]. Beth models were originally developed to provide meaning74

to intuitionistic formulas [47; 9; 23, Sec.145; 21, Sec.5.4], and they have proven especially75

well-suited to interpret choice sequences [19]. In such models, formulas are interpreted w.r.t.76

infinite trees of elements (such as numbers). The models are typically formulated using a77

forcing interpretation where the forcing conditions are finite elements of those trees that78

provide meaning to choice sequences at a given point in time. Allowing access within the79

logic to the infinitely proceeding elements of the forcing layer, i.e., the branches of the Beth80

trees formulas are interpreted against, enables the use of the undecided nature of those81

elements to derive the negation of otherwise classically valid formulas such as LEM. The82

open bar model sufficiently weakens the “undecided” nature of those elements to enable83

validating a variant of LEM.84

Another benefit of OpenTT over BITT is that the notion of time induced by the new85

model is flexible enough to capture an intuitionistic theory of computable choice sequences,86

1 This method to refute classical axioms was reused via forcing methods (see, e.g., [20, Sec.7.2.4] for
the relation between forcing and choice sequences). E.g., the independence of Markov’s Principle with
Martin-Löf’s type theory was proven using a forcing method where the “free” nature of forcing conditions
replaces the “free” nature of free choice sequences in Kripke’s proof [16].
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and in particular the Axiom of Open Data (a continuity axiom) that was missing from87

BITT [10] and is a key axiom of choice sequence theories. Therefore, OpenTT provides a88

computational setting for exploring the implications of such entities, for example, it can89

enable the development of constructive Brouwerian real number theories. At the same time, it90

also enables validating variants of the classical LEM. In other words, OpenTT together with91

the open bar model presented in the paper enable a more relaxed notion of time, providing a92

basis for a more classically-inclined Brouwerian intuitionistic theory.93

Contributions and roadmap. Sec. 2 describes the core components of the type theory94

OpenTT. Sec. 3 presents the novel open bar model, which is used to validate OpenTT. Then,95

OpenTT is shown to capture both a theory of choice sequences (Sec. 4), as well as a variant96

of LEM (Sec. 5). Sec. 6 concludes by discussing related and future work. All the results97

in the paper are formalized in Coq, see https://github.com/vrahli/NuprlInCoq/blob/ls3/, and98

we provide clickable hyperlinks to the formalization throughout the paper.99

2 OpenTT and Choice Sequences100

OpenTT is an intuitionistic extensional dependent type theory. It is composed of an unyped101

programming language, and a dependent type system that associates types with programs.102

A type T , viewed as a proposition, is said to be true if it is inhabited, i.e., if some program t103

has type T—in which case t is said to realize T . This connection is made formal through a104

realizability model described in Sec. 3, where types are interpreted as partial equivalence105

relations on programs. In addition to standard program constructs, OpenTT contains106

computable choice sequences.107

Choice sequences are the seminal component in Brouwer’s intuitionistic theory, and108

the one manifesting notions of time and growth over time. Choice sequences are infinitely109

proceeding sequences of elements, which are chosen over time from a previously well-defined110

collection. There are two main classes of choice sequences, which are often referred to as111

lawlike and lawless [43]. The lawlike ones are “completed constructions” [43, Sec.1.2], where112

the choices must be chosen w.r.t. a pre-determined “law” (e.g., a general recursive program).113

The lawless ones, by contrast, are never fully completed and can always be extended over114

time with further choices that are not constrained by any law, that is, they can be chosen115

“freely” (hence the name free choice sequences). In this paper we focus on a theory with free116

choice sequences, which is a key distinguishing feature in Brouwer’s intuitionistic logic, and117

a manifestation of the fact that time is an essential component of Brouwer’s logic because118

unlike lawlike sequences that are time-invariant, lawless ones keep on evolving over time.119

The notion of time in OpenTT is captured through the use of worlds. The worlds120

discussed in Sec. 2.2 constitute, as is standard practice, a poset, and are concretely defined121

as states that store definitions as well as choice sequences’ choices. Thus, a world captures a122

state at a given point in time. The evolving nature of time is then captured via a notion of123

world extension, allowing to add new definitions, choice sequences, and choices.124

OpenTT is inspired by BITT [10]. To make the paper self-contained we shall also125

review the components that are identical to those in BITT, noting the differences, which we126

summarize here. In addition to the standard inference rules for the standard types that are127

listed in Fig. 1 (which are discussed in Appx. B), OpenTT also contains inference rules that128

capture a theory of choice sequences, as described in Sec. 4. Among those, the Axiom of129

Open Data is new compared to BITT. Another key difference between OpenTT and BITT is130

that the former also contains a variant of the Law of Excluded Middle (the salient principle131

of classical logic), described in Sec. 5, which is not valid in the latter.132
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Figure 1 Syntax of OpenTT
η ∈ CSName (C.S. name) δ ∈ Abstraction (abstraction)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⟨t1, t2⟩ (pair)

∣ ⋆ (axiom) ∣ inl(t) (left injection) ∣ inr(t) (right injection)
∣ i (integer) ∣ η (choice sequence)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ Σx∶t1.t2 (sum)
∣ Ui (universe) ∣ t1 = t2 ∈ t (equality)
∣ t1+t2 (disjoint union) ∣ {x ∶ t1 ∣ t2} (set)
∣ N (numbers) ∣ t1 < t2 (less than)
∣ N� (T.S. numbers) ∣ t1 <� t2 (T.S. less than)
∣ t1#t2 (free from definitions) ∣ Free (choice sequences)
∣ �t (time squashing)

t ∈ Term ∶∶= x (variable) ∣ t1 t2 (application)
∣ v (value) ∣ let x, y = t1 in t2 (spread)
∣ fix(t) (fixpoint) ∣ case t1 of inl(x)⇒ t2 | inr(y)⇒ t3 (decide)
∣ wDepth (world depth) ∣ if t1=t2 then t3 else t4 (equality test)
∣ δ (abstraction)

2.1 Syntax133

OpenTT’s programming language is an untyped, call-by-name λ-calculus, whose syntax134

is presented in Fig. 1, and operational semantics in Sec. 2.3. For simplicity, numbers are135

considered here to be primitive, and we write n for an OpenTT number, where n is a136

metatheoretical number. A term is either (1) a variable; (2) a canonical term, i.e., a value;137

or (3) a non-canonical term. Non-canonical terms are evaluated according to the operational138

semantics presented in Sec. 2.3. As discussed below, abstractions of the form δ can be139

unfolded through definitions, and are otherwise left abstract for the purpose of this paper.140

Choice sequences A choice sequence is simply a choice sequence name of the form η, which141

for the purpose of this paper is an abstract type equipped with a decidable equality. For142

simplicity we only discuss choice sequences of numbers, while our Coq formalization supports143

more kinds of choice sequences. OpenTT includes a comparison operator on choice sequences,144

if t1=t2 then t3 else t4, which as defined in Sec. 2.3 reduces to the then branch if t1 and t2145

are two choice sequences with the same name, and otherwise reduces to the else branch.146

Types Types are syntactic forms that are given semantics in Sec. 3 via a realizability147

interpretation. The type system contains standard types such as dependent products of the148

form Πx∶t1.t2 and dependent sums of the form Σx∶t1.t2. For convenience we often write149

a =T b for the type a = b ∈ T ; t ∈ T for t =T t; Πx1, . . . , xn∶t1.t2 for Πx1∶t1. . . .Πxn∶t1.t150

(and similarly for the other operators with binders); t1 → t2 for the non-dependent Π type;151

True for (0 = 0 ∈ N); False for (0 = 1 ∈ N); and ¬T for (T → False).152

OpenTT also includes types that allow capturing specific aspects of choice sequences. In153

particular, OpenTT includes a type Free of free choice sequences. It also includes the type154

t#T that indicates that t is a sealed member of T in the sense that it is equivalent to a term155

u in T , which is syntactically free from abstractions and choice sequences, which we denote156

by synSealed(u) here (see Sec. 3 for more details). Those types are used to state axioms of157

the theory of choice sequences in Sec. 4.1.158
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Figure 2 Operational semantics of OpenTT
(λx.F) a ↦w F[x\a]
fix(v) ↦w v fix(v)

η(i) ↦w w[η][i], if η has a i’s choice in w
wDepth ↦w ∣w∣

let x, y = ⟨t1, t2⟩ in F ↦w F[x\t1; y\t2]
case inl(t) of inl(x)⇒ F | inr(y)⇒ G ↦w F[x\t]
case inr(t) of inl(x)⇒ F | inr(y)⇒ G ↦w G[y\t]
if η1=η2 then t1 else t2 ↦w ti, where i = 1 if η1 = η2, and i = 2 otherwise

2.2 Worlds159

OpenTT’s computation system is equipped with a library of definitions in which we also160

store choice sequences. We here call the library a world. A definition entry is a pair of an161

abstraction δ and a term t, written δ == t, which stipulates that δ unfolds to t.2 A choice162

sequence entry is a pair of a choice sequence name, and a list of choices (i.e. terms).3 For163

example, the pair ⟨η, [4, 8, 15]⟩ is an entry for the choice sequence named η, where [4, 8, 15]164

is its list of choices so far. A world is therefore a state that records, at a given point in time,165

all the current definitions together with all the choice sequences that have been started so166

far, along with the choices that have been made so far for those choice sequences.167

▶ Definition 1 (Worlds). A world w is a list of entries, where an entry is either a definition168

entry or a choice sequence entry. We denote by World the type of worlds.169

Next we introduce some necessary operations and properties on worlds.170

▶ Definition 2 (World operations and properties). Let w ∈ World. (1) ∣w∣ denotes w’s depth,171

that is the number of choices of its longest choice sequence. (2) w is called singular, denoted172

sing(w), if it does not have two entries with the same name.173

The depth of worlds is used in Sec. 4.1 to approximate the modulus of continuity of a174

predicate at a choice sequence; while sing is used in Lem. 14.175

A world (or a particular snapshot of the library) can be seen as a the state of knowledge at176

a given point in time. It may grow over time by adding new definitions, new choice sequence177

entries, or more terms to an already existing choice sequence entry. Accordingly, a world w2178

is said to extend a world w1 if it contains more entries and choices, without overriding the179

ones in w1. Note that the extension relation on worlds defines a partial order on World.180

▶ Definition 3 (World extension). A world w2 is said to extend w1, denoted w2 ⪰ w1, if w1181

is a list of the form [e1, . . . , en] and w2 is a concatanation of some world w and [e′1, . . . , e′n],182

where for all 1 ≤ i ≤ n, either ei = e
′
i or ei and e

′
i are choice sequence entries with the same183

name such that the list in ei is an initial segment of that in e′i.184

2.3 Operational Semantics185

Fig. 2 presents OpenTT’s small-step operational semantics. It defines the t1 ↦w t2 ternary186

relation between two terms and a world, which expresses that t1 reduces to t2 in one step of187

computation w.r.t. the world w. We omit the congruence rules that allow computing within188

terms such as: if t1 ↦w t2 then t1(u)↦w t2(u).189

2 As the precise form of definitions is irrelevant here, we refer the interested reader to [41].
3 Our formalization also includes mechanisms to impose further restrictions on choice sequences which

are not discussed here. See computation/library.v for further details.
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The application η(i) of a choice sequence η to a number i reduces to w[η][i], i.e., η’s i’s190

choice recorded in w, if such a choice exists, and otherwise the computation gets stuck. Note191

that even though this is a call-by-name calculus, it includes the following congruence rule to192

access choices of choice sequences: if t1 ↦w t2 then η(t1)↦w η(t2).193

In OpenTT we also allow computing the depth of a world w, that is, the number of194

choices recorded in its longest choice sequence entry (this is an addition to BITT). The195

nullary expression wDepth reduces to ∣w∣ in one computation step. It is used to realize an196

axiom of the theory of choice sequences in Sec. 4.1.2. It is important to note that before197

introducing this new computation, all computations were time-invariant computations in the198

sense that if a term t computes to a value v in a world w1, then it will compute to a value199

computationally equivalent [26] to v in any world w2 ⪰ w1. For example, for numbers, if a200

term t computes to a number n in some world w, then it also computes to n in all extensions201

of w. Such terms are called time-invariant terms. It is straightforward to see that wDepth is202

not time-invariant, as it can compute to different numbers in different extensions of a world.203

For example, if w1 contains only one choice sequence η for which 4 choices have been made,204

then the expression wDepth reduces to 4 in w1. Now, adding another choice to η gives us a205

world w2 ⪰ w1 in which wDepth reduces to 5. This operator is said to be weakly monotonic206

in the sense that if it returns k in w1, and w2 ⪰ w1, then it can only return a value k′ ≥ k in207

w2. We next introduce types capturing the concept of time-invariance.208

2.4 Space Squashing and Time Squashing209

OpenTT includes a squashing mechanism, which we use among other things to validate some210

of the axioms in Sec. 4 and 5. It erases the evidence that a type is inhabited by squashing it211

down to a single constant inhabitant using set types [15, pp.60]: ↓T = {x ∶ True ∣ T}. The212

only member of this type is the constant ⋆, which is True’s single inhabitant. The constant ⋆213

inhabits ↓T if T is true/inhabited, but we do not keep the proof that it is true. See Appx. C214

or [39] for more details on squashing.215

In addition to the space squashing operator OpenTT also features another form of216

squashing called time squashing. As discussed in Sec. 2.3, some computations are time-217

invariant, while others, such as wDepth, are not. These two kinds of computations have218

different properties,4 and this distinction should be captured at the level of types. To this219

end, OpenTT includes type constructors such as the time-squashing operator �. Given a220

type T , one can build the type �T , that in addition to T ’s members also contains terms that221

behave like members of T at a particular instant of time (in a particular world).222

For the purpose of this paper, we only focus on a particular form of time-squashing for223

numbers, omitting the general construction.5 Accordingly, OpenTT features a N� type of224

non-time-invariant (or time-squashed) numbers. While N is required to only be inhabited225

by time-invariant terms, N� is not, and allows for terms (such as wDepth) to compute to226

different numbers in different world extensions. For example, N� is allowed to be inhabited227

by a term t that computes to 3 in some world w, and to 4 in some world w ′
⪰ w. This228

distinction between N and N� will be critical in the validation of one of the choice sequence229

axioms in Sec. 4.1.2, where we make use of the depth of worlds which is not time-invariant.230

4 E.g., if t is a time-invariant term that computes to a number m less than n in a world w, then t will
also be less than n in all w ′

⪰ w. However, if t is a non-time-invariant number, t might be less than n in
some extensions of w, and larger in others.

5 See per_qtime in per/per.v for further details on �’s sematics.

https://github.com/vrahli/NuprlInCoq/blob/ls3/per/per.v
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In addition to the time-squashed N� type, OpenTT features a less than relation t1 <� t2231

on time-squashed numbers, whose semantics is described in Sec. 3. Although similar to the232

t1 < t2 type, as for N�, t1 <� t2 differs by not requiring t1 and t2 to be time-invariant.233

3 Open Bar Realizability Model234

This section presents a novel Beth-style model, called the open bar model, used below to235

validate OpenTT, which as mentioned above contains both a theory of choice sequences and236

a weak version of the classical LEM. As is standard in Beth models (or Kripke models [33;237

32]), formulas are interpreted w.r.t. worlds. Using Beth models such as the one used in [10],238

a syntactic expression T is given meaning at a world w if there exists a collection B of worlds239

that covers all possible extensions of w, such that T corresponds to a legal type in all worlds240

in B. Such a collection is called a bar of w. In these models one has to construct such bars241

to prove that expressions are types or that types are inhabited. For example, to prove that242

choice sequences have type N → N, given a choice sequence η and a number n, one must243

exhibit a bar where η(n) indeed computes to a number.244

In this paper we take a different approach, one that avoids having to build bars altogether,245

and only requires building individual extensions of worlds. Intuitively, instead of requiring246

that a property P be true at a bar of a given world w, we require that for each extension w ′
247

of w, P holds for some extension of w ′. Therefore, a major distinction between standard Beth248

models and our model is that in the former the semantics of a logical formula is computed249

based on the interpretation of that formula at a bar for the current world, while the latter only250

requires that in any possible extension of the current world there is always a further extension251

where the formula is given some meaning. Thus, our model only requires exhibiting open252

bars in the sense that not all infinite extensions of the current world necessarily have a finite253

prefix in the bar. Therefore, open bars are derivable from “standard” bars, but the converse254

does not hold. For the proof that choice sequences have type N→ N, this means that given255

an extension w ′ of the current world w, one must exhibit a further extension w ′′ where η(n)256

computes to a number, which can be done by constructing w ′′ in which η contains at least257

n + 1 choices.6 As mentioned, in standard Beth models, in addition to this construction one258

has to also construct the bar. Thus, the notion of open bars seems to provide a more relaxed259

connection between truth and constructions than in the traditional Beth-like interpretation260

of intuitionistic logic, where one must construct bars to establish validity. By not having261

to make the full construction, the open bar model provides some middle ground between262

classical and intuitionistic logic. Furthermore, note that in a standard Beth model, depending263

on how the bar is defined, it is not always possible to constructively exhibit a point in the264

bar, whereas in the open bar model, the existence of the open bar directly gives a point at265

the open bar. This makes the construction of building bars from other bars generally simpler.266

We start by introducing the concept of open bars, which is used below to interpret types.267

268

▶ Definition 4 (Open Bars). Let w be a world and f be a (metatheoretical) predicate on
worlds. We say that f is true at an open bar of w if:

O(w, f) = ∀EXT(w, λw ′
.∃EXT(w ′

, λw ′′
.∀EXT(w ′′

, f)))
where ∀EXT(w, f) = ∀w ′

. w ′
⪰ w ⇒ f(w ′)

∃EXT(w, f) = ∃w ′
. w ′

⪰ w ∧ f(w ′)

6 See rules/rules_choice1.v for a proof of this statement.
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Informally, an open bar can be thought of as an object such as the269

one depicted on the right. There, the large nodes highlighted in green270

indicate worlds which we already know to be at the bar, while the small271

gray nodes indicate worlds not yet at the bar from which the open bar272

provides a way to obtain worlds at the bar. For example, given the root273

of the tree, the open bar might give us the lowest green world w. Given274

a world w ′, such as the one left to w, where different choices have been275

made from w, we can ask the bar to produce another world at the bar compatible with w ′
276

(i.e., that extends w ′), and we might get the middle green world.277

The open bar semantics bears resemblance to the well known double negation transla-278

tion [24] in standard Kripke models [33; 32]. Informally, in Kripke interpretations, A→ B is279

interpreted as follows: JA → BKw = ∀EXT(w, λw ′
.JAKw′ ⇒ JBKw′). In such a semantics, the280

formula ¬¬A is then interpreted as ∀EXT(w, λw ′
.¬∀EXT(w ′

, λw ′′
.¬JAKw′′)), which is classically281

equivalent to ∀EXT(w, λw ′
.∃EXT(w ′

, λw ′′
.JAKw′′)). Nonetheless, our interpretation has two282

benefits over such a double negation translation: it is fully constructive, and it internalizes283

this double-negation/open-bar operator within the semantics, thereby avoiding having to use284

it explicitly in the theory. Note that this correspondence is unique to the open bar models,285

and does not hold in BITT’s closed-bar model.286

We now use open bars to provide meaning to OpenTT’s types. As was done for similar287

theories [3; 4; 18; 6; 10], types are interpreted here by Partial Equivalence Relations (PERs)288

on closed terms. This PER semantics can be seen as an inductive-recursive definition289

of (see [22; 17] for similar construction methods):7 (1) an inductive relation T1≡wT2 that290

expresses type equality; (2) a recursive function t1≡wt2∈T that expresses equality in a type.291

The inductive definition T1≡wT2 has one constructor per OpenTT type plus one additional292

constructor giving meaning to a type at a world w, based on its interpretation at an open293

bar of w (see Def. 6). Therefore, the recursive function t1≡wt2∈T has as many cases as there294

are constructors for T ≡wT
′. The rest of this section presents some of these constructors and295

cases that illustrate key aspects of the new semantics. For simplicity we present them as296

equivalences, which are derivable from the formal definition. The others are defined similarly297

in Appx. A or in per/per.v. We first define some useful abstractions.298

▶ Definition 5. A term t is said to inhabit or realize a type T at w if t≡wt∈T . We further299

use the following notations: inh(w, T ) for ∃t. t≡wt∈T ; a ⇓w b for ‘a computes to b w.r.t.300

w’, i.e., the reflexive and transitive closure of ↦; and a ⤋w b for ∀EXT(w, λw ′
.a ⇓w′ b) which301

captures that a is time-invariant.8302

As mentioned above, a key aspect of our open bar model it that it is closed under open303

bars, allowing interpreting types and their PERs in terms of open bars.304

▶ Definition 6 (Open Bar Closure). OpenTT’s semantics is closed under open bars as follows:

T1≡wT2 ⟺ O(w, λw ′
.∃T ′1, T

′
2. T1 ⤋w′ T

′
1 ∧ T2 ⤋w′ T

′
2 ∧ T

′
1≡w′T

′
2)

t1≡wt2∈T ⟺ O(w, λw ′
.∃T ′. T ⤋w′ T

′ ∧ t1≡w′t2∈T
′)

7 Due to the limited support for induction-recursion in Coq, our formalization instead combines these two
definitions into a single inductive definition following the method described in [4; 14], which results in
the same theory, however defined in a slightly more convoluted way that the one defined here.

8 We omit some technical details for readability. See ccomputes_to_valc_ext in per/per.v for the full
definition.

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/per.v
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Let us now turn to the semantics of key types of OpenTT under the open bar semantics.305

We start with demonstrating the N type which is in the core types of CTT.306

▶ Definition 7 (Time-Invariant Numbers). The N type is interpreted as follows:

N≡wN ⟺ True t≡wt
′
∈N ⟺ O(w, λw ′

.∃n. t ⤋w′ n ∧ t′ ⤋w′ n)

Note the use of ⤋ above. As mentioned in Sec. 2.4, the reason is that we require here that307

such numbers are time-invariant.308

In the next definition the time-invariant constraint is relaxed, allowing inhabitants of N�309

to compute to different numbers in different world extensions. For example, a term that310

computes to 3 in the current world w and to 4 in all (strict) extensions of w, inhabits N�311

but not N. While N is a subtype of N�, in the sense that all equal members of N are equal312

members of N�, the converse does not hold. For example, wDepth is in N� but not in N.313

▶ Definition 8 (Time-Squashed Numbers). The N� type is interpreted as follows:

N�≡wN� ⟺ True t≡wt
′
∈N� ⟺ O(w, λw ′

.sameNats(w ′
, t, t

′))
where sameNats(w, t, t′) = ∃k. t ⇓w k ∧ t′ ⇓w k

As mentioned in Sec. 2.4, in addition to the N� type, OpenTT also provides a ‘less-than’314

operator on such numbers, which we interpret as follows.315

▶ Definition 9 (Time-Squashed Less-Than). The t1 <� t2 type is interpreted as follows:

t1 <� t2≡wt
′
1 <� t

′
2 ⟺ O(w, λw ′

.sameNats(w ′
, t1, t

′
1) ∧ sameNats(w ′

, t2, t
′
2))

t≡wt
′
∈t1 <� t2 ⟺ O(w, λw ′

.∃k1, k2. t1 ⇓w′ k1 ∧ t2 ⇓w′ k2 ∧ k1 < k2)

Note that Given t1 and t2 in N� that compute to 3 and 4 respectively in some world, one316

cannot derive t1 <� t2 as t1 and t2 could keep alternating between 3 and 4 such that t2317

computes to 4 when t1 computes to 3, and vice versa. Though general rules for inferring such318

inequalities can be formalized9, in what follows we only need a concrete instance of t1 <� t2319

in which t1 ∈ N and t2 = wDepth ∈ N� (see Sec. 4.1.2, which makes use of wDepth ∈ N� to320

capture the modulus of continuity of a predicate at a choice sequence). In this case such321

alternations are avoided since wDepth is weakly monotonically increasing.322

OpenTT also includes a type of free choice sequences, interpreted as follows.323

▶ Definition 10 (Choice Sequences). The Free type is interpreted as follows:

Free≡wFree ⟺ True t≡wt
′
∈Free ⟺ O(w, λw ′

.∃η. t ⤋w′ η ∧ t′ ⤋w′ η)

As mentioned in Sec. 2.1, OpenTT includes a t#T type, which states that the term t is a324

sealed member of T . For example True#Ui, False#Ui, and N#Ui are all inhabited types,325

whereas (η ∈ Free)#Ui is not inhabited because this type mentions the choice sequence η.326

Note that t#T and synSealed(t) did not appear in BITT.327

▶ Definition 11 (Free From Definitions). The a#A type is interpreted as follows:

a#A≡wb#B ⟺ A≡w′B ∧ a≡w′b∈A

t≡wt
′
∈a#A ⟺ O(w, λw ′

.∃x. a≡w′x∈A ∧ synSealed(x))

9 Technically, our formalization includes both weakly monotonically increasing and decreasing numbers
(denoted here N∧� and N∨� , respectively) allowing one to derive t1 <� t2 in w when t1 ∈ N∨� , t2 ∈ N∧� , and
t2 computes to a number larger than t1 in w.

CVIT 2016
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As mentioned above, the other type operators of OpenTT are interpreted in a similar328

fashion. This semantics of OpenTT satisfies the following properties, which are the standard329

properties expected for such a semantics [3; 18], including the monotonocity and locality prop-330

erties expected for such a possible-world semantics [47; 23; 21, Sec.5.4]—here monotonicity331

refers to types, and not to computations.10332

▶ Proposition 12 (Type System Properties). The T1≡wT2 and a≡wb∈T relations satisfy the
following properties (where free variables are universally quantified):

transitivity: T1≡wT2 ⇒ T2≡wT3 ⇒ T1≡wT3 t1≡wt2∈T ⇒ t2≡wt3∈T ⇒ t1≡wt3∈T

symmetry: T1≡wT2 ⇒ T2≡wT1 t1≡wt2∈T ⇒ t2≡wt1∈T

computation: T ≡wT ⇒ T ⤋w T
′
⇒ T ≡wT

′
t≡wt∈T ⇒ t ⤋w t

′
⇒ t≡wt

′
∈T

monotonicity: T1≡wT2 ⇒ w ′
⪰ w ⇒ T1≡w′T2 t1≡wt2∈T ⇒ w ′

⪰ w ⇒ t1≡w′t2∈T

locality: O(w, λw ′
.T1≡w′T2)⇒ T1≡wT2 O(w, λw ′

.t1≡w′t2∈T )⇒ t1≡wt2∈T

Using these properties, it follows that OpenTT is consistent w.r.t. the open bar model.333

▶ Theorem 13 (Soundness & Consistency). OpenTT’s inference rules are all sound w.r.t.334

the open bar model, which entails that OpenTT is consistent.11335

4 A Theory of Choice Sequences336

This section focuses on OpenTT’s inference rules that provide an axiomatization of a theory337

of choice sequences. This theory includes two variants of the Axiom of Open Data (Sec. 4.1.1338

and 4.1.2), a density axiom (Sec. 4.2), and a discreteness axiom (Sec. 4.3). We focus our339

attention on the variants of the Axiom of Open Data that captures a form of continuity340

which is the core essence of choice sequences, as those where not handled in BITT.341

4.1 The Axiom of Open Data (AOD)342

The Axiom of Open Data (AOD) is perhaps the seminal axiom in the theory of choice343

sequences. It is a continuity axiom that states that the validity of properties of free344

choice sequences (with certain side conditions) can only depend on finite initial segments345

of these sequences. Let P be a sealed predicate on free choice sequences of numbers (i.e.,346

P#(Free→ Ui) for some universe i), Nn the type {x ∶ N ∣ x < n} of natural number strictly347

less than n, and Bn = Nn → N. The Axiom of Open Data can be formalized as follows:348

Πα∶Free.P(α)→ Σn∶N.Πβ∶Free.(α =Bn
β → P(β)) (AOD)349

Since AOD is a form of continuity principle, and the non-squashed Continuity Principle350

is incompatible with CTT [39; 40], we will only attempt to validate a squashed version of351

AOD. That is, because we do not have a way to compute the modulus of continuity of P352

at α, which is preserved over world extensions, as required by the semantics of N, we instead353

validate versions of AOD where the sum type is squashed. But there are two ways in which354

it can be squashed, as described in Sections 4.1.1 and 4.1.2.355

There are two additional restrictions we impose in order to validate the squashed variants356

of AOD. First, to validate the axiom we swap α and β in P(α). This has an impact on357

10 See per/nuprl_props.v for proofs of these properties.
11 See rules.v and per/weak_consistency.v for more details.

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/nuprl_props.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/weak_consistency.v
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both the PER of this type and the world w.r.t. which it is validated. Given an inhabitant t358

of P(α), we can easily build a proof of P(β) by swapping α and β in t. This is however359

a metatheoretical operation. Therefore, in our variants of AOD the P(β) is squashed.360

Second, note that when swapping one needs to swap α and β in all definitions and choice361

sequences’ choices in the world w.r.t. which it is validated, leading to a different world.362

Therefore, we require that choice sequences cannot occur in definitions and choice sequences’363

choices to ensure that swapping α and β in a world w leads to an equivalent world if α364

and β have the same choices. To see why this is necessary take P to be the predicate365

P = λy.{x ∶ Free ∣ x =Free y}, and the world w to contain the definition δ == α. Then,366

P(α) is equivalent to {x ∶ Free ∣ x =Free α} and δ is a member of P(α) in w, while P(β) is367

equivalent to {x ∶ Free ∣ x =Free β} in this world, and therefore δ is not a member of P(β) if368

α and β are two different choice sequences.369

Before presenting and validating the variants of AOD, we present a few intermediate370

results. First, we prove that from α =Bn
β, we can always construct a world in which α371

and β contain exactly the same choices.12372

▶ Lemma 14 (Intermediate World). Let w1 and w2 be two worlds such that w2 ⪰ w1 and373

sing(w1) (see Def. 2). If η1 and η2 are two free choice sequences that have the same choices374

up to ∣w1∣ in w2, then there must exist a world w, such that w ⪰ w1, w2 ⪰ w, both η1 and η2375

occur in w, they have the exact same choice in w, and all these choices are numbers.376

Furthermore, the following swapping operator swaps α and β in P(α) to obtain P(β).13377

▶ Definition 15 (Swapping). Let X⋅(η1∣η2) be a swapping operation that swaps η1 and η2378

everywhere in X, where X ranges over all the syntactic forms presented above.379

We can then prove that the various relations introduced in Sec. 3 are preserved by the380

above swapping operator. For example, crucially, we can prove that the t1≡wt2∈T relation,381

which expresses that t1 and t2 are equal members in T , is preserved by swapping.14382

▶ Lemma 16 (Swapping PERs). If t1≡wt2∈T then t1⋅(η1∣η2)≡w⋅(η1∣η2)t2⋅(η1∣η2)∈T ⋅(η1∣η2).383

4.1.1 The Space-Squashed Axiom of Open Data (AOD↓)384

The first variant of AOD we validate is the a space-squashed one, called AOD↓.385

▶ Proposition 17. The following rule of OpenTT is valid w.r.t. the open bar model (where
H is an arbitrary list of hypotheses):

H ⊢ Πα∶Free.P(α)→ ↓Σn∶N.Πβ∶Free.(α =Bn
β → ↓P(β))

Proof. We here outline the proof, see rules/rules_ls3_v0.v for full details. Since the sum type386

is ↓-squashed, a realizer for this formula can simply be λα, x.⋆ (see Sec. 2.4). Let P be a387

sealed predicate on free choice sequences, α be a free choice sequence, and instantiate n with388

∣w∣, the depth of the current world w. From α =Bn
β, we obtain that α and β have the389

same choices up to ∣w∣ in the extension w ′ of w, and we have to derive that P(β) is true390

in w ′. Using Lem. 14 we prove that α and β have exactly the same choices in some world w ′′
391

12 See Lemma to_library_with_equal_cs in rules/rules_choice_util4.v.
13 See for example swap_cs_term in terms/swap_cs.v, which swaps two choice sequence names in a term.
14 See implies_equality_swap_cs in rules/rules_choice_util4.v for the formal statement and proof.
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between w and w ′. Using Lem. 16 we swap α and β in P(α) and w ′′. Thus, due to the392

constraint that choice sequences cannot occur in definitions and choices, P(β) is valid in a393

world equivalent to w ′′ and therefore in w ′′ too.15 Finally, using monotonicity (see Lem. 12),394

we obtain that P(β) is true also in w ′. ◀395

4.1.2 The Time-Squashed Axiom of Open Data (AOD�)396

Next, we present a time-squashed version of AOD, where instead of ↓-squashing the sum type397

the N� time-squashed type is used, and B�n = {x ∶ N ∣ x <� n}→ N Is used instead of Bn.
16

398

Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β)) (AOD�)399

Note that because n is not a member of N anymore but of N�, we use B�n instead of400

Bn here to state that α and β are equal sequences up to n. If n ∈ N� then x < n, where401

x ∈ N, and Bn are not types anymore: the semantics of x < n requires both x and n to be402

time-invariant numbers (see Sec. 2.4). Therefore, we use x <� n here instead, which does not403

require numbers to be time-invariant as per its semantics presented in Def. 9.404

Before diving into the proof of AOD�’s validity, we first present a few intermediate results.405

▶ Lemma 18. The N type is a subtype of N�, in the sense that all equal members in N
are also equal members in N� (which implies that t1 <� t2 is a type even when t1 ∈ N and
t2 ∈ N�), and the wDepth expression is a member of N� (i.e., it is equal to itself in N�).

17

I.e. the following rules are valid in OpenTT.

H ⊢ t1 =N t2
H ⊢ t1 =N� t2 H ⊢ wDepth =N� wDepth

For AOD↓, because its Σ type is ↓-squashed, we did not have to provide a witness for the406

modulus of continuity of P at α. Therefore, we could simply find a suitable metatheoretical407

number in the proof of its validity, without having to provide an expression from the object408

theory that computes that number. In the metatheoretical proof, we computed the depth409

of the current world, which is a metatheoretical number k, and simply used k, which is a410

number in the object theory, as an approximation of the modulus of continuity of P at α.411

The situation is now different in AOD� because the Σ type is not ↓-squashed anymore. We412

now have to provide an expression from the object theory that computes that modulus of413

continuity. As mentioned above, we use wDepth, which is an expression of OpenTT , the414

object theory. This means that we now have to prove that this expression has the right type,415

namely, N�, which we proved in Lem. 18.416

Using these results we prove that AOD� is valid w.r.t. the semantics presented in Sec. 3.417

▶ Proposition 19. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β))

15 See Lemma member_swapped_css_libs in rules/rules_choice_util4.v.
16Note that as in AOD↓, P(β) is also ↓-squashed here. We leave for future work to derive a version where

P(β) is not squashed. Note also that the modulus of continuity n is here in N�. We have validated
another version of this axiom in rules/rules_ls3_v1.v where n ∈ N∧� , i.e., where n is required to be
weakly monotonically increasing, which is true about wDepth (see Sec. 2.3 and 2.4).

17 See rule_qnat_subtype_nat_true in rules/rules_ref.v and rule_depth_true in rules/rules_qnat.v.

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v1.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ref.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_qnat.v
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Proof. We here outline the proof (which is similar to that of Prop.17), while full details418

are in rules/rules_ls3_v2.v. Since now the sum type is not ↓-squashed, we have to provide a419

witness for it. The realizer we provide for this formula is: λα, x.⟨wDepth, λβ, y.⋆⟩. Let P420

be a sealed predicate on free choice sequences, and let α be a free choice sequence. We now421

have to prove that wDepth ∈ N�, which follows from Lem. 18. Since wDepth computes to ∣w∣,422

where w is the current world, we can then use ∣w∣ as an approximation of the modulus of423

continuity of P at α, as in Prop. 17’s proof. One difference with Prop. 17’s proof is that we424

have here that α =B�n β (which we prove to be a type using Lem. 18) instead of α =Bn
β.425

This however still suffices to show that α and β have the same choices up to ∣w∣ in the426

extension w ′ of w. From here, the proof proceeds just as that of Prop. 17. ◀427

4.2 The Density Axiom (DeA)428

Another common free choice sequence axiom, sometimes called the density axiom [42], states429

that for any finite sequence of numbers f , there is a free choice sequence that contains f as430

initial segment (this is Axiom 2.1 in [30, Sec.2], also referred to as LS1 in [19]).431

In BITT the following Density Axiom (DeA) was validated: Πn∶N.Πf ∶Bn.Σα∶Free.(f =Bn
432

α) [10]. The proof of its validity was by generating an appropriate choice sequence space that433

contains the values of the finite sequence f as part of its name. More precisely, given a finite434

sequence f of n terms in N from the object theory, BITT includes computations to extract435

those n numbers, say k1, . . . , kn, and build a choice sequence with the metatheoretical list of436

numbers [k1, . . . , kn] as part of its name, and which is used to witness DeA’s Σ type. In437

OpenTT we opted against including such names for two reasons. First, in the open bar model438

it is possible to validate a squashed version of DeA (where the Σ type is squashed) without439

including lists of numbers in choice sequence names. This is because the open bar model440

allows for internal choices to be made (see Prop. 20 below). Moreover, deterministically441

generating choice sequence names is not preserved by swapping (which would be required for442

example for Lem. 16 to hold). Given a term t that deterministically generates η1, it might be443

that swapping η1 for η2 turns η1 into η2 and leaves t unchanged, while t does not generate η2.444

Therefore, we do not include metatheoretical lists of numbers as part of choice sequence445

names in OpenTT and only validate the following ↓-squashed version of DeA, called DeA↓.446

▶ Proposition 20. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πn∶N.Πf ∶Bn.↓Σα∶Free.(f =Bn
α)

Proof. As this axiom is ↓-squashed, we realize it using λn, f.⋆. To prove its validity in some447

world w, assume n ∈ N and f ∈ Bn in some w ′
⪰ w. We have to exhibit some w ′′

⪰ w ′ that448

contains a free choice sequence that has f as its initial segment. This world w ′′ can simply be449

w ′ augmented with a fresh (w.r.t. w ′) choice sequence that has f as its initial segment.18 ◀450

Note that the Beth model in [10] requires exhibiting a choice sequence such that DeA451

holds at a bar b of w. Without a mechanism to enforce initial segments, it could be that452

the choice sequence picked to witness α does not include the correct choices in some of b’s453

branches. This is why BITT features choice sequence names that enforce initial segments.454

Thanks to open bars, OpenTT is able to do without enforcing initial segments within choice455

sequence names while still featuring a version of DeA, at the detriment of requiring its Σ456

18 See rules/rules_choice1.v for more details.
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type be ↓-squashed. (Troelstra calls the free choice sequences that enforce initial segments457

lawless, and the ones where no initial segment is enforced proto-lawless [42, Sec.2.4].)458

4.3 The Discreteness Axiom (DiA)459

One final common free choice sequence axiom, sometimes called the discreteness axiom [37],460

states that equality between free choice sequences is decidable (it is Axiom 2.2 in [30, Sec.2],461

also referred to as LS2 in [19]). As for BITT, OpenTT features intensional and extensional462

versions of the Discreteness Axiom (DiA), which we have proven to be valid w.r.t. the open463

bar model (we only present the extensional version here due to space constraints).19464

▶ Proposition 21. The following rule of OpenTT is valid w.r.t. the open bar model (the
conclusion is inhabited by λα, β.if α=β then tt else ff):

H ⊢ Πα, β∶Free.α =B β+¬α =B β

5 The Law of Excluded Middle465

This section demonstrates that OpenTT provides a key axiom from classical logic, namely466

the Law of Excluded Middle (LEM). Even though various other classical principles could be467

considered here (and will be considered in future work), we focus on LEM as it is considered468

the central axiom differentiating classical logic from intuitionistic logic. Thus, we show that469

in addition to capturing the intuitionistic concept of choice sequences, OpenTT also includes470

the following ↓-squashed version of LEM, called LEM↓, that is validated w.r.t. the open bar471

model: ΠP ∶Ui.↓(P+¬P ).472

For BITT, even this weak LEM↓ axiom, that does not have any computational content473

(as it is realized by λP.⋆), is inconsistent [10]. More precisely, ¬LEM↓ is valid w.r.t. the474

Beth metatheory presented in [10]. Intuitively, this is because LEM↓ states that there exists475

a bar of the current world such that either: (1) P is true at the bar, or (2) it is false in476

all extensions of the bar. This is false (i.e., the negation is true) because, for example, for477

P = (Σn∶N.η(n) =N 1), where η is a free choice sequence, (1) is false because η could be478

the sequence that never chooses 1, and (2) is false because there is an extension of the bar479

where η chooses 1. Stronger versions of this axiom, such as the non-↓-squashed version, are480

therefore also false. This counterexample for BITT does not serve as a counterexample for481

OpenTT because given a world w it is always possible to find an extension where η eventually482

holds 1. Hence, OpenTT is more amenable to classical logic than theories based on standard483

Beth models, such as BITT. As illustrated in Prop. 22’s proof below, intuitively, this is484

due to the fact that the open bar model implements a notion of time which allows to select485

futures (i.e., extensions), thereby allowing for some internal choices to be made.486

▶ Proposition 22. The following rule of OpenTT is valid w.r.t. the open bar model (using
LEM in the metatheory).

H ⊢ ΠP ∶Ui.↓(P+¬P )

Proof. We have to show that for every world w ′ that extends the current world w, there487

exists a world w ′′ that extends w ′ such that P+¬P is inhabited in all extensions of w ′′. Let w ′
488

be an extension of w. We need to find a w ′′
⪰ w ′ that makes the above true. Using classical489

19 See rules/rules_choice2.v and rules/rules_choice5.v for further details.

https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice2.v
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logic we assume that ∃EXT(w ′
, λw ′′

.inh(w ′′
, P )) is either true of false. If it is true, we obtain490

a w ′′
⪰ w ′ at which P is inhabited, and we therefore conclude. Otherwise, we use w ′, which is491

a trivial extension of w ′. We must now show that P+¬P is inhabited in all extensions of w ′.492

We prove that it is inhabited by inr(⋆) by showing that in all w ′′
⪰ w ′, P is not inhabited493

at w ′′. Assuming that P is inhabited at w ′′, we can indeed derive a contradiction to our494

assumption that ∃EXT(w ′
, λw ′′

.inh(w ′′
, P )) is false: ∃EXT(w ′

, λw ′′
.inh(w ′′

, P )) is true because495

P is inhabited at w ′′.20 ◀496

6 Conclusion and Related Work497

The paper presents OpenTT, a novel intuitionistic type theory that features both a theory498

of choice sequences and a variant of the classical Law of Excluded Middle. This was made499

possible thanks to the open bar model, which internalizes a more relaxed notion of time than500

traditional Beth models. Thus, OpenTT provides a theoretical framework for studying the501

interplay between intuitionistic and classical logic.502

Much work has been done on combining classical and constructive logics. One standard503

method is to use double negation translations [24] to embed classical logic in constructive logic.504

Another approach is to mix the two logics within the same framework. For example, PIL [35]505

mixes both logics through a polarization mechanism. Of particular relevance is Moschovakis’s506

theory that includes choice sequences end of time choice sequences are complete) and is507

consistent with all classically true arithmetic sentences via a Kripke model [38].508

As mentioned in the Introduction, there is a long line of work on providing intuitionistic509

counterexamples to classically valid axioms using variants of choice sequences. For example,510

in [16] Markov’s Principle is proved to be false in a Martin-Löf type theory extended with a511

“generic” element, which behaves as a free choice sequence of Booleans. Since we have shown512

that OpenTT is compatible with a variant of LEM, we plan to investigate the status of other513

classically valid principles, such as Markov’s Principle and the Axiom of Choice.514

As for the open bar model, Kripke (and Beth) models are often used to model stateful515

theories. For example, in [34] the Kripke semantics of function types allows the returned516

values of functions to extend the state at hand. In contrast, the open bar model allows517

all computations to extend worlds. Other examples include [1; 2; 12; 11], where Kripke518

semantics are used to interpret theories with reference cells. We leave the study of other519

forms of stateful computations for future work.520

Unlike Kripke models, Beth models can interpret formulas that only eventually hold. The521

notion of “eventuality” in the open bar model slightly differs from the one in Beth models,522

and as hinted at in Sec. 3, is related to the “possibility” operator of modal logic [33]. A523

formal study of these connections is left for future work.524

Several forms of choice sequence axioms have been studied in the literature. Some of them525

are currently time or space squashed in OpenTT. We plan on exploring versions of these526

axioms that are “less squashed” in the sense that they have more computational content.527

Finally, the comprehensive account of choice sequences in OpenTT also opens the door528

for the exploration of the computational implications of the existence of such entities. For529

one, Brouwer used choice sequences to define the constructive real numbers as sequences530

of nested rational intervals. The computational account of choice sequences in OpenTT531

provides a framework for the formalization of Brouwerian constructive real analysis, and532

then comparing it to the more standard formalizations.533

20 See rules/rules_classical.v for more details.
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A OpenTT’s Semantics637

Sec. 3 provided part of OpenTT’s semantics. We presented there the semantics of distinguish-638

ing features of OpenTT. Let us now present the rest of its semantics. As mentioned in Sec. 3,639

this semantics has been formalized in Coq, and can be found in per/per.v and per/nuprl.v.640

Moreover, as the Coq formalization follows a slightly different presentation (as mentioned in641

Sec. 3 it combines the inductive relation T1≡wT2 and the recursive function t1≡wt2∈T into642

a single inductive definition following the method described in [4; 14]), Sec. D provides an643

inductive-recursive formalization of this semantics in Agda.644

▶ Definition 23 (Products). Product types are interpreted as follows:

Πx1∶A1.B1≡wΠx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

f1≡wf2∈Πx∶A.B ⟺ O(w, λw ′
.∀a1, a2. a1≡w′a2∈A⇒ f1(a1)≡w′f2(a2)∈B[x1\a1])

▶ Definition 24 (Sums). Sum types are interpreted as follows:

Σx1∶A1.B1≡wΣx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

t1≡wt2∈Σx∶A.B ⟺ O(w, λw ′
.∃a1, a2, b1, b2. t1 ⤋w′ ⟨a1, b1⟩

∧ t2 ⤋w′ ⟨a2, b2⟩
∧ a1≡w′a2∈A

∧ b1≡w′b2∈B[x1\a1]

)

▶ Definition 25 (Universes). To interpret universes, we need to use parameterized (by a
universe level) T1≡i,wT2 and t1≡i,wt2∈T relations instead of the ones used so far. We can then
define T1≡wT2 as ∃i. T1≡i,wT2 and t1≡wt2∈T as ∃i. t1≡i,wt2∈T . We do not present the full
construction here as it is standard. However, let us point out that using the above definitions
we can then interpret universes inductively over i, resulting in the following interpretations:

Ui≡j,wUi ⟺ i < j

T1≡j,wT2∈Ui ⟺ T1≡j,wT2

▶ Definition 26 (Equality). Equality types are interpreted as follows:

(a1 = a2 ∈ A)≡w(b1 = b2 ∈ B) ⟺ A≡wB ∧ a1≡wb1∈A ∧ a2≡wb2∈A

t1≡wt2∈(a = b ∈ A) ⟺ O(w, λw ′
.t1 ⤋w′ ⋆ ∧ t2 ⤋w′ ⋆ ∧ a≡w′b∈A)

▶ Definition 27 (Disjoint Union). Disjoint union types are interpreted as follows:

A1+A2≡wB1+B2 ⟺ A1≡wB1 ∧A2≡wB2

t1≡wt2∈A+B ⟺ O(w, λw ′
. (∃x, y. t1 ⤋w′ inl(x) ∧ t2 ⤋w′ inl(y) ∧ x≡w′y∈A)
∨ (∃x, y. t1 ⤋w′ inr(x) ∧ t2 ⤋w′ inr(y) ∧ x≡w′y∈B)

)

▶ Definition 28 (Sets). Set types are interpreted as follows:

{x1 ∶ A1 ∣ B1}≡w{x2 ∶ A2 ∣ B2}
⟺ ∀EXT(w, λw ′

.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

t1≡wt2∈{x ∶ A ∣ B} ⟺ O(w, λw ′
.t1≡w′t2∈A ∧ inh(w ′

, B[x\t1]))

https://github.com/vrahli/NuprlInCoq/blob/ls3/per/per.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/per/nuprl.v
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▶ Definition 29 (Less Than). Less than types are interpreted as follows:

t1 < t2≡wu1 < u2 ⟺ t1≡wu1∈N ∧ t2≡wu2∈N

t1≡wt2∈(u1 < u2) ⟺ O(w, λw ′
.∃k1, k2. t1 ⇓w k1 ∧ t2 ⇓w k2 ∧ k1 < k2)

B OpenTT’s Inference Rules645

In OpenTT, sequents are of the form h1, . . . , hn ⊢ T ⌊ext t⌋. Such a sequent denotes that,646

assuming h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The647

term t in this context is called the extract or evidence of T . Extracts are sometimes omitted648

when irrelevant to the discussion. In particular, we typically do so when the conclusion T of a649

sequent is an equality type of the form a = b ∈ A, since equality types can only be inhabited650

by the constant ⋆, we then typically omit the extract in such sequents. An hypothesis h is651

of the form x ∶ A, where the variable x stands for the name of the hypothesis and A its type.652

A rule is a pair of a conclusion sequent S and a list of premise sequents, S1,⋯, Sn (written653

as usual using a fraction notation, with the premises on top). Let us now provide a sample654

of OpenTT’s key inference rules for some of its types not discussed above. The reader is655

invited to check https://github.com/vrahli/NuprlInCoq/blob/ls3/ for a complete list of rules,656

as well as [15], from which OpenTT borrowed most of its rules for its standard types.657

B.1 Products658

The following rule is the standard Π-elimination rule:

H , f ∶ Πx∶A.B, J ⊢ a ∈ A H , f ∶ Πx∶A.B, J , z ∶ f(a) ∈ B[x\a] ⊢ C ⌊ext e⌋
H , f ∶ Πx∶A.B, J ⊢ C ⌊ext e[z\⋆]⌋

The following rule is the standard Π-introduction rule:

H , z ∶ A ⊢ B[x\z] ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ Πx∶A.B ⌊ext λz.b⌋

The following rule allows proving that Π are equal as types:

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Πx1∶A1.B1 = Πx2∶A2.B2 ∈ Ui

The following rule is the standard λ-introduction rule:

H , z ∶ A ⊢ t1[x1\z] = t2[x2\z] ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ λx1.t1 = λx2.t2 ∈ Πx∶A.B

Note that the above rule requires to prove that A is a type because the conclusion requires659

to prove that Πx∶A.B is a type, and the first hypothesis only states that B is a type family660

over A, but does not ensures that A is a type.661

The following rule is the standard function extensionality rule:

H , z ∶ A ⊢ f1(z) = f2(z) ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ f1 = f2 ∈ Πx∶A.B

The following captures that PERs are closed under β-reductions:

H ⊢ t[x\s] = u ∈ T
H ⊢ (λx.t) s = u ∈ T

CVIT 2016
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B.2 Sums662

The following rule is the standard Σ-elimination rule:
H , p ∶ Σx∶A.B, a ∶ A, b ∶ B[x\a], J[p\⟨a, b⟩] ⊢ C[p\⟨a, b⟩] ⌊ext e⌋

H , p ∶ Σx∶A.B, J ⊢ C ⌊ext let a, b = p in e⌋
The following rule is the standard Σ-introduction rule:

H ⊢ a ∈ A H ⊢ b ∈ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ Σx∶A.B ⌊ext ⟨a, b⟩⌋

The following rule allows proving that two sum types are equal as types:
H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui

H ⊢ Σx1∶A1.B1 = Σx2∶A2.B2 ∈ Ui

The following rule is the standard pair-introduction rule:
H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a1 = a2 ∈ A H ⊢ b1 = b2 ∈ B[x\a1]

H ⊢ ⟨a1, b1⟩ = ⟨a2, b2⟩ ∈ Σx∶A.B

The following rule states that PERs are closed under spread-reductions:
H ⊢ u[x\s; y\t] = t2 ∈ T

H ⊢ let x, y = ⟨s, t⟩ in u = t2 ∈ T

B.3 Equality663

The following rule is the standard equality-introduction rule:21

H ⊢ A = B ∈ Ui H ⊢ a1 = b1 ∈ A H ⊢ a2 = b2 ∈ B

H ⊢ a1 = a2 ∈ A = b1 = b2 ∈ B ∈ Ui

The following rule is the equality-elimination rule, which states that equality types are
inhabited by the ⋆ constant:

H , z ∶ a = b ∈ A, J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ a = b ∈ A, J ⊢ C ⌊ext e⌋

The following rule is the standard hypothesis rule:

H , x ∶ A, J ⊢ x ∈ A

The following rule allows fixing the extract of a sequent:
H ⊢ T ⌊ext t⌋

H ⊢ t ∈ T

The following rules state that equality is symmetric and transitive:
H ⊢ b = a ∈ T
H ⊢ a = b ∈ T

H ⊢ a = c ∈ T H ⊢ c = b ∈ T
H ⊢ a = b ∈ T

The following rule allows rewriting with an equality in an hypothesis:
H , x ∶ B, J ⊢ C ⌊ext t⌋ H ⊢ A = B ∈ Ui

H , x ∶ A, J ⊢ C ⌊ext t⌋

21The actual rule is slightly more general as it allows a1 and b1 to be “computationally equivalent” (and
similarly for a2 and b2). However, since we have not introduced this concept here, we present a simpler
version of this rule only.
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B.4 Universes664

The following rule is the standard universe-introduction rule, where i is a lower universe
than j:

H ⊢ Ui = Ui ∈ Uj
The following rule is the standard universe cumulativity rule, where i is a lower universe

than j:
H ⊢ T ∈ Uj
H ⊢ T ∈ Ui

B.5 Sets665

The following rule is the standard set-elimination rule:

H , z ∶ {x ∶ A ∣ B}, a ∶ A, b ∶ B[x\a] , J[z\a] ⊢ C[z\a] ⌊ext e⌋
H , z ∶ {x ∶ A ∣ B}, J ⊢ C ⌊ext e[a\z]⌋

Note that we have used a new construct in the above rule, namely the hypothesis b ∶ B[x\a] ,
which is called a hidden hypothesis. The main feature of hidden hypotheses is that their
names cannot occur in extracts (which is why we “box” those hypotheses). Intuitively, this
is because the proof that B is true is discarded in the proof that the set type {x ∶ A ∣ B} is
true and therefore cannot occur in computations. Hidden hypotheses can be unhidden using
the following rule:

H , x ∶ T, J ⊢ a = b ∈ A ⌊ext ⋆⌋
H , x ∶ T , J ⊢ a = b ∈ A ⌊ext ⋆⌋

which is valid since the extract is ⋆ and therefore does not make use of x.666

The following rule is the standard set-introduction rule:

H ⊢ a ∈ A H ⊢ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ {x ∶ A ∣ B} ⌊ext a⌋

The following rule allows proving that two set types are equal as types:

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ {x1 ∶ A1 ∣ B1} = {x2 ∶ A2 ∣ B2} ∈ Ui

The following rule is the standard introduction rule for members of set types:

H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a = b ∈ A H ⊢ B[x\a]
H ⊢ a = b ∈ {x ∶ A ∣ B}

B.6 Disjoint Unions667

The following rule is the standard disjoint union-elimination rule:

H , d ∶ A+B, x ∶ A, J[d\inl(x)] ⊢ C[d\inl(x)] ⌊ext t⌋
H , d ∶ A+B, y ∶ B, J[d\inr(y)] ⊢ C[d\inr(y)] ⌊ext u⌋

H , d ∶ A+B, J ⊢ C ⌊ext case d of inl(x)⇒ t | inr(y)⇒ u⌋

The following rules are the standard disjoint union-introduction rules:

H ⊢ A ⌊ext a⌋ H ⊢ B ∈ Ui
H ⊢ A+B ⌊ext inl(a)⌋

H ⊢ B ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ A+B ⌊ext inr(b)⌋

CVIT 2016
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The following rule allows proving that two disjoint union types are equal as types:

H ⊢ A1 = A2 ∈ Ui H ⊢ B1 = B2 ∈ Ui
H ⊢ A1+B1 = A2+B2 ∈ Ui

The following rules are the standard injection-introduction rules:

H ⊢ a1 = a2 ∈ A H ⊢ B ∈ Ui
H ⊢ inl(a1) = inl(a2) ∈ A+B

H ⊢ b1 = b2 ∈ B H ⊢ A ∈ Ui
H ⊢ inr(b1) = inr(b2) ∈ A+B

The following rule states that PERs are closed under decide-reductions:

H ⊢ t[x\s] = t2 ∈ T
H ⊢ (case inl(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

H ⊢ u[y\s] = t2 ∈ T
H ⊢ (case inr(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

C Squashing668

As mentioned in Sec. 2.4, OpenTT includes a squashing mechanism, which is used to erase669

the computational content of a type by turning its PER into a trivial one.22 More precisely,670

given a type T , the type ↓T , defined as {x ∶ True ∣ T}, is true iff T is true. However, while671

the type T might have a trivial PER, i.e., it might be inhabited by arbitrarily complex672

programs, ↓T can only be inhabited by ⋆, which is True’s only inhabitant. Indeed, as shown673

in Def. 28 and Appx. B.5, a member of {x ∶ True ∣ T} is a member of True, such that T is674

true. However, T ’s realizer is thrown away and is not part of {x ∶ True ∣ T}’s realizer.675

More precisely, one can derive ↓T from T because given a member t of T , one can trivially
show that that ⋆ is a member of ↓T . We can capture this by the following derived rule:

H ⊢ T ⌊ext t⌋
H ⊢ ↓T ⌊ext ⋆⌋

However, the opposite is not true in general. One cannot in general derive T from ↓T because
given the realizer ⋆ of ↓T , it is not always possible to recover a realizer of T . We can capture
this by the following derived rule:

H , z ∶ ↓T, x ∶ T , J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ ↓T, J ⊢ C ⌊ext e⌋

To illustrate the point that we cannot in general derive T from ↓T , let us see how far we
can go when trying to prove:

x ∶ ↓T ⊢ T

Using the above squash-elimination derived rule, we have to prove:

x ∶ ↓T, z ∶ T ⊢ T

However, we are now stuck, as we have in general no way of deriving an extract of T given676

these hypotheses. The unhiding rule mentioned Appx. B.5 can only be used when the677

conclusion is an equality type, and the hypothesis rule mentioned in Appx. B.3, requires the678

z hypothesis to be “visible” (not hidden) in order to use z as a realizer of the conclusion.679

22 See for example [39] for more details on squashing.
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D Semantics of OpenTT in Agda680

Let us now provides a formalization of the open bar semantics of OpenTT in Agda. The681

code provided in this section can also be found here: agda/worldi.lagda682

We first postulate and define enough about worlds to interpret OpenTT w.r.t. open bars.683

postulate684

– Worlds685

world : Set686

– w2 extends w1687

_⪰_ : (w2 : world) → (w1 : world) → Set688

– extension is reflexive689

extRefl : ∀ w → w ⪰ w690

– extension is transitive691

extTrans : ∀ {w3 w2 w1} (e2 : w3 ⪰ w2) (e1 : w2 ⪰ w1) → w3 ⪰ w1692

693

– f holds in all extensions694

allW : ∀ (w : world) (f : ∀ (w’ : world) (e : w’ ⪰ w) → Set) → Set695

allW w f = ∀ (w’ : world) (e : w’ ⪰ w) → f w’ e696

697

– f holds in one extensions698

exW : ∀ (w : world) (f : ∀ (w’ : world) (e : w’ ⪰ w) → Set) → Set699

exW w f = ∃ world (λ w’ → ∃ (w’ ⪰ w) (λ e → f w’ e))700

701

– f holds in an open bar702

inOpenBar : ∀ (w : world) (f : ∀ (w’ : world) (e : w’ ⪰ w) → Set) → Set703

inOpenBar w f =704

allW w (λ w1 e1 → exW w1 (λ w2 e2 → allW w2 (λ w3 e3 →705

f w3 (extTrans e3 (extTrans e2 e1)))))706

707

– f holds in an open bar that depends on another open bar h708

inOpenBar’ : ∀ w {g} (h : inOpenBar w g) (f : ∀ w’ (e : w’ ⪰ w) (x : g w’ e) → Set) → Set709

inOpenBar’ w h f =710

allW w (λ w0 e0 →711

let p = h w0 e0 in712

let w1 = proj1 p in713

let e1 = proj1 (proj2 p) in714

let q = proj2 (proj2 p) in715

exW w1 (λ w2 e2 → allW w2 (λ w3 e3 →716

let e’ = extTrans e3 e2 in717

f w3 (extTrans e’ (extTrans e1 e0)) (q w3 e’))))718

We now define part of OpenTT’s syntax and postulate its operational semantics.719

postulate720

choice_sequence_name : Set721

722

data Var : Set where723

var : N → Var724

725

data Term : Set where726

– Numbers727

NAT : Term728

QNAT : Term729

LT : Term → Term → Term730

QLT : Term → Term → Term731

NUM : N → Term732

– Products733

PI : Term → Var → Term → Term734

LAMBDA : Var → Term → Term735

APPLY : Term → Term → Term736

– Sums737

SUM : Term → Var → Term → Term738

PAIR : Term → Term → Term739

SPREAD : Term → Var → Var → Term740

– Sets - they don’t have constructors/destructors741

SET : Term → Var → Term → Term742
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– Disjoint unions743

UNION : Term → Term → Term744

INL : Term → Term745

INR : Term → Term746

DECIDE : Term → Var → Term → Var → Term747

– Equality Types748

EQ : Term → Term → Term → Term749

AX : Term750

– Choice sequences751

FREE : Term752

CS : choice_sequence_name → Term753

– Universes754

UNIV : N → Term755

756

postulate757

– standard substitution function on terms758

subst : Var → Term → Term -> Term759

– operational semantics of the language760

_⇓_at_ : ∀ (T T’ : Term) (w : world) → Set761

– ’computes to’ is reflexive762

compRefl : ∀ (T : Term) (w : world) → T ⇓ T at w763

infix 30 _⇓_at_764

765

– T computes to T’ in all extensions of w766

_⤋_at_ : ∀ (T T’ : Term) (w : world) → Set767

T ⤋ T’ at w = allW w (λ w’ _ → T ⇓ T’ at w’)768

infix 30 _⤋_at_769

770

compAllRefl : ∀ (T : Term) (w : world) → T ⤋ T at w771

compAllRefl T w = λ w’ e → compRefl T w’772

773

– t1 and t2 compute to the same number and stay the same number in all extensions774

strongMonEq : ∀ (w : world) (t1 t2 : Term) → Set775

strongMonEq w t1 t2 = ∃ N (λ n → t1 ⤋ (NUM n) at w × t2 ⤋ (NUM n) at w)776

777

– t1 and t2 compute to the same number but that number can change over time778

weakMonEq : ∀ (w : world) (t1 t2 : Term) → Set779

weakMonEq w t1 t2 = allW w (λ w’ _ → ∃ N (λ n → t1 ⇓ (NUM n) at w’ × t2 ⇓ (NUM n) at w’))780

We now provide an inductive-recursive realizability semantics of OpenTT.781

– PERs and world dependent PERs782

per : Set1783

per = Term → Term → Set784

785

wper : Set1786

wper = world → per787

788

– eqTypes and eqInType provide meaning to types w.r.t. already interpreted universes,789

– given by univs (1st conjunct defines the equality between such universes, while the790

– second conjunct defines the equality in such universes)791

univs : Set1792

univs = ∃ N (λ n → wper × wper)793

794

– equality between types (an inductive definition)795

– and equality in types (a recursive function)796

data eqTypes (u : univs) (w : world) (T1 T2 : Term) : Set797

eqInType : (u : univs) (w : world) {T1 T2 : Term} → (eqTypes u w T1 T2) → per798

Equality between type is defined as the following inductive definition799

data eqTypes u w T1 T2 where800

EQTNAT : T1 ⤋ NAT at w → T2 ⤋ NAT at w → eqTypes u w T1 T2801

EQTQNAT : T1 ⤋ QNAT at w → T2 ⤋ QNAT at w → eqTypes u w T1 T2802

EQTLT : (a1 a2 b1 b2 : Term)803

→ T1 ⤋ (LT a1 b1) at w804

→ T2 ⤋ (LT a2 b2) at w805

→ strongMonEq w a1 a2806
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→ strongMonEq w b1 b2807

→ eqTypes u w T1 T2808

EQTQLT : (a1 a2 b1 b2 : Term)809

→ T1 ⤋ (QLT a1 b1) at w810

→ T2 ⤋ (QLT a2 b2) at w811

→ weakMonEq w a1 a2812

→ weakMonEq w b1 b2813

→ eqTypes u w T1 T2814

EQTFREE : T1 ⤋ FREE at w → T2 ⤋ FREE at w → eqTypes u w T1 T2815

EQTPI : (A1 B1 A2 B2 : Term) (v1 v2 : Var)816

→ T1 ⤋ (PI A1 v1 B1) at w817

→ T2 ⤋ (PI A2 v2 B2) at w818

→ (eqta : allW w (λ w’ _ → eqTypes u w’ A1 A2))819

→ (eqtb : allW w (λ w’ e → ∀ a1 a2 → eqInType u w’ (eqta w’ e) a1 a2820

→ eqTypes u w’ (subst v1 a1 B1) (subst v2 a2 B2)))821

→ eqTypes u w T1 T2822

EQTSUM : (A1 B1 A2 B2 : Term) (v1 v2 : Var)823

→ T1 ⤋ (SUM A1 v1 B1) at w824

→ T2 ⤋ (SUM A2 v2 B2) at w825

→ (eqta : allW w (λ w’ _ → eqTypes u w’ A1 A2))826

→ (eqtb : allW w (λ w’ e → ∀ a1 a2 → eqInType u w’ (eqta w’ e) a1 a2827

→ eqTypes u w’ (subst v1 a1 B1) (subst v2 a2 B2)))828

→ eqTypes u w T1 T2829

EQTSET : (A1 B1 A2 B2 : Term) (v1 v2 : Var)830

→ T1 ⤋ (SET A1 v1 B1) at w831

→ T2 ⤋ (SET A2 v2 B2) at w832

→ (eqta : allW w (λ w’ _ → eqTypes u w’ A1 A2))833

→ (eqtb : allW w (λ w’ e → ∀ a1 a2 → eqInType u w’ (eqta w’ e) a1 a2834

→ eqTypes u w’ (subst v1 a1 B1) (subst v2 a2 B2)))835

→ eqTypes u w T1 T2836

EQTEQ : (a1 b1 a2 b2 A B : Term)837

→ T1 ⤋ (EQ a1 a2 A) at w838

→ T2 ⤋ (EQ b1 b2 B) at w839

→ (eqtA : allW w (λ w’ _ → eqTypes u w’ A B))840

→ (eqt1 : allW w (λ w’ e → eqInType u w’ (eqtA w’ e) a1 b1))841

→ (eqt2 : allW w (λ w’ e → eqInType u w’ (eqtA w’ e) a2 b2))842

→ eqTypes u w T1 T2843

EQTUNION : (A1 B1 A2 B2 : Term)844

→ T1 ⤋ (UNION A1 B1) at w845

→ T2 ⤋ (UNION A2 B2) at w846

→ (eqtA : allW w (λ w’ _ → eqTypes u w’ A1 A2))847

→ (eqtB : allW w (λ w’ _ → eqTypes u w’ B1 B2))848

→ eqTypes u w T1 T2849

EQTUNIV : proj1 (proj2 u) w T1 T2 → eqTypes u w T1 T2850

EQTBAR : inOpenBar w (λ w’ _ → eqTypes u w’ T1 T2) → eqTypes u w T1 T2851

Equality in types is defined as the following recursive function.852

eqInType _ w (EQTNAT _ _) t1 t2 = inOpenBar w (λ w’ _ → strongMonEq w’ t1 t2)853

eqInType _ w (EQTQNAT _ _) t1 t2 = inOpenBar w (λ w’ _ → weakMonEq w’ t1 t2)854

eqInType _ w (EQTLT a1 _ b1 _ _ _ _ _) t1 t2 =855

inOpenBar w (λ w’ _ → ∃ N (λ n → ∃ N (λ m → t1 ⇓ (NUM n) at w’ × t2 ⇓ (NUM m) at w’ × n < m)))856

eqInType _ w (EQTQLT a1 _ b1 _ _ _ _ _) t1 t2 =857

inOpenBar w (λ w’ _ → ∃ N (λ n → ∃ N (λ m → t1 ⇓ (NUM n) at w’ × t2 ⇓ (NUM m) at w’ × n < m)))858

eqInType _ w (EQTFREE _ _) t1 t2 =859

inOpenBar w (λ w’ _ → ∃ choice_sequence_name (λ n → t1 ⤋ (CS n) at w’ × t2 ⤋ (CS n) at w’))860

eqInType u w (EQTPI _ _ _ _ _ _ _ _ eqta eqtb) f1 f2 =861

inOpenBar w (λ w’ e → ∀ (a1 a2 : Term) (eqa : eqInType u w’ (eqta w’ e) a1 a2)862

→ eqInType u w’ (eqtb w’ e a1 a2 eqa) (APPLY f1 a1) (APPLY f2 a2))863

eqInType u w (EQTSUM _ _ _ _ _ _ _ _ eqta eqtb) t1 t2 =864

inOpenBar w (λ w’ e → ∃ Term (λ a1 → ∃ Term (λ a2 → ∃ Term (λ b1 → ∃ Term (λ b2 →865

∃ (eqInType u w’ (eqta w’ e) a1 a2) (λ ea →866

t1 ⤋ (PAIR a1 b1) at w’867

× t2 ⤋ (PAIR a2 b2) at w’868

× eqInType u w’ (eqtb w’ e a1 a2 ea) b1 b2))))))869

eqInType u w (EQTSET _ _ _ _ _ _ _ _ eqta eqtb) t1 t2 =870

inOpenBar w (λ w’ e → ∃ Term (λ b → ∃ (eqInType u w’ (eqta w’ e) t1 t2) (λ ea →871
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eqInType u w’ (eqtb w’ e t1 t2 ea) b b)))872

eqInType u w (EQTEQ a1 b1 _ _ _ _ _ _ eqtA eqt1 eqt2) t1 t2 =873

inOpenBar w (λ w’ e → t1 ⤋ AX at w’ × t2 ⤋ AX at w’ × eqInType u w’ (eqtA w’ e) a1 b1)874

eqInType u w (EQTUNION _ _ _ _ _ _ eqtA eqtB) t1 t2 =875

inOpenBar w (λ w’ e → (∃ Term (λ a → ∃ Term (λ b →876

(t1 ⤋ (INL a) at w’ × t2 ⤋ (INR b) at w’ × eqInType u w’ (eqtA w’ e) a b)877

⊎878

(t1 ⤋ (INR a) at w’ × t2 ⤋ (INR b) at w’ × eqInType u w’ (eqtB w’ e) a b)))))879

eqInType u w (EQTUNIV _) T1 T2 = proj2 (proj2 u) w T1 T2880

eqInType u w (EQTBAR f) t1 t2 =881

{– inOpenBar’ w f (λ w’ _ (x : eqTypes u w’ _ _) → eqInType u w’ x t1 t2)–}882

{– This is an unfolding of the above, as agda doesn’t like the above –}883

allW w (λ w0 e0 →884

let p = f w0 e0 in885

let w1 = proj1 p in886

let e1 = proj1 (proj2 p) in887

let q = proj2 (proj2 p) in888

exW w1 (λ w2 e2 → allW w2 (λ w3 e3 → eqInType u w3 (q w3 (extTrans e3 e2)) t1 t2)))889

We finally close the construction as follows:890

– Two level-m universes are equal if they compute to (UNIV m)891

eqUnivi : (m : N) → wper892

eqUnivi m w T1 T2 = inOpenBar w (λ w’ _ → T1 ⤋ (UNIV m) at w’ × T2 ⤋ (UNIV m) at w’)893

894

– Two terms are equal in universe m if they are equal according to eqTypes895

eqInUnivi : (m : N) → wper896

eqInUnivi 0 = λ _ _ _ → ⊥897

eqInUnivi (suc m) w T1 T2 = eqTypes (m , (eqUnivi m , eqInUnivi m)) w T1 T2 ⊎ eqInUnivi m w T1 T2898

899

uni : N → univs900

uni n = (n , (eqUnivi n , eqInUnivi n))901

902

– Finally, the ’equal types’ and ’equal in types’ relations903

eqtypes : (w : world) (T1 T2 : Term) → Set904

eqtypes w T1 T2 = ∃ N (λ n → eqTypes (uni n) w T1 T2)905

906

eqintype : (w : world) (T a b : Term) → Set907

eqintype w T a b = ∃ N (λ n → ∃ (eqTypes (uni n) w T T) (λ p → eqInType (uni n) w p a b))908
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