
Monadic Realizability for Intuitionistic Higher-Order Logic

Liron Cohen1∗, Ariel Grunfeld1∗, and Ross Tate

Ben-Gurion University, Israel

Abstract

The standard construction for realizability semantics of intuitionistic higher-order logic
is based on partial combinatory algebras as an abstract computation model with a single
computational effect, namely, non-termination. Many computational effects can be mod-
elled using monads, where programs are interpreted as morphisms in the corresponding
Kleisli category. To account for a more general notion of computational effects, we here
construct effectful realizability models via evidenced frames, where the underlying com-
putational model is defined in terms of an arbitrary monad. Concretely, we generalize
partial combinatory algebras to combinatory algebras over a monad and use monotonic
post-modules to relate predicates to computations.

Evidenced Frames (EF) provide a general framework for constructing realizability triposes,
including various computational effects that go beyond partial computation [4]. An evidenced
frame is a tagged variant of complete Heyting prealgebras, where instead of the binary preorder
relation φ ≤ ψ we have a ternary evidence relation φ

e→ ψ where e is considered as evidence
for the judgment φ ≤ ψ. Similarly, each of the components of a complete Heyting prealgebra
(reflexivity, transitivity, top, conjunction, implication, and universal quantification) are defined
in terms of their evidence.

The standard construction of realizability models for intuitionistic higher-order logic (iHOL)
interprets formulas as functions to subsets of the set of codes in a partial combinatory algebra
(PCA), constructing a tripos (called “the realizability tripos”) by using the codes as evidence
for the validity of entailments, and using the functional completeness of the PCA to construct
specific codes to realize the logical constants of iHOL. Evidenced frames can similarly be
used to construct a tripos, in a manner that separates the realizability construction into two
phases: first, constructing an EF from a PCA, and then constructing a tripos from the EF. This
separation gives us a single structure that explicitly relates the logical content to the computa-
tional content, and allows us to replace the PCA with other viable models, such as relational
combinatory algebras (RCAs) and stateful combinatory algebras (SCAs), as described in [3].

The main goal of this work is to generalize these results further by abstracting the details of
the specific computational effects, and instead relying on the ideas first introduced in [9] where
the effects are encapsulated behind some arbitrary monad. For this, RCA and SCA can be
considered as special cases of a more general notion: Monadic Combinatory Algebra (MCA).

Definition 1 (Monadic Combinatory Algebra). Given a strong monad T : C→ C, a Monadic
Applicative Structure (MAS) is an object of “codes” A together with an application Kleisli
morphism: α ∈ C (A× A, TA). We say that A is a Monadic Combinatory Algebra (MCA)
when A is a Turing object [2] in the Kleisli category of T , considered as a restriction category.

When C = Set, the definition coincides with a PCA for T the sub-singleton monad, with
an RCA for the power-set monad, and an SCA for the (increasing) state power-set monad.

In Set, an MCA can be more explicitly defined using an abstraction operator over terms.
Given a MAS A, the set En (A) of terms over A is defined by the grammar:

e ::= 0 | . . . | n− 1 | c ∈ A | e • e
∗This research is supported by Grant No. 2020145 from the United States-Israel Binational Science Founda-

tion (BSF)

Monadic Realizability for Intuitionistic Higher-Order Logic Cohen, Grunfeld and Tate

E0 (A) is the set of closed terms over A, and e [c] denotes the straightforward substitution.
Evaluation ν : E0 (A)→ T (A) is defined by induction on E0 (A) (using do-notation):

ν (c) := η (c) ν (ef • ea) := do cf ← ν (ef) ; ca ← ν (ea) ; α (cf , ca)

Proposition 1 (Monadic Combinatory Algebra). Given a MAS A, A is an MCA if for each
n ∈ N there’s an abstraction operator ⟨λn. (−)⟩ : En+1 (A)→ A s.t:

〈
λn+1.e

〉
· c = η (⟨λn.e [c]⟩)

and
〈
λ0.e

〉
· c = ν (e [c]).

MCAs allow us to construct evidence for entailments in a similar manner to PCAs. For
PCAs, we consider predicates over codes and say φ

e→ ψ whenever the predicate ψ is satisfied
by the output of the application of e on an input which satisfies φ. In MCAs, while the input
of the application is a code, the output is wrapped inside T , so to relate a predicate over codes
to a predicate over wrapped codes, we need to use a post-module to “lift” predicates on C to
predicates on the Kleisli category of T .

Definition 2 (post-module). Given a monad T , a post-module is a tuple (P, P, ρ) where P is
a category, P : C → P is a functor, and ρ : PT ⇒ P is a natural transformation for which
ρ ◦ Pη = idP and ρ ◦ Pµ = ρ ◦ ρT .

When P = Prostop (the dual of the category of preordered sets), for any morphism f in C,
the function Pf has to be a monotonic, and similarly each component ρX : PX → PTX of ρ
has to be monotonic. So when P = Prostop we use the term monotonic post-module.

Proposition 2. Given a post-module (P, P, ρ), we get a functor Pρ : CT → P where CT is
the Kleisli category of T on C. Pρ is defined on objects by PρX = PX and on a morphism
f ∈ CT (A,B) by Pρf = ρB ◦ Pf .

Pρ can be considered as a categorical counterpart of Dijkstra’s weakest precondition trans-
former [5] Given an MCA A and a monotonic post-module (Prostop, P, ρ) we can define an

evidence relation on predicates on A. If φ,ψ ∈ P (A) and e ∈ C (1,A) we say that φ
e→ ψ

whenever φ ≤ Pρ (α ◦ ⟨e◦!, idA⟩) (ψ) (where ! is the unique morphism to the terminal object).
An interesting special case is when C = Set. In Set, whenever Ω is a preordered set, we have

the Proset functor PA = A→ Ω, with Pf (φ) = φ ◦ f . This functor can become a monotonic
post-module by using a monotonic T -algebra [1] ω : TΩ → Ω, yielding ρA (φ) = ω ◦ Tφ (for
φ : A → Ω). Equivalently, we can use a monad morphism into the monotone continuation
monad, as described in [8]. We already have a construction (formalized in Coq) of an EF based
on it. While capturing PCAs, RCAs, and SCAs, it seems not general enough to encompass other
interesting EFs, such as EFs of probabilistic computation, which would probably require T to
be the Giry monad [6]. Furthermore, it does not seem to encompass interesting post-modules
for the continuation monad.

To get a more bird’s-eye view of the necessary components needed to construct an EF, we
define a deductive system called EffHOL which extends iHOL with effectful terms along with
the operations: return to turn pure terms into effectful terms, bind to compose effectful terms,
and after to relate effectful terms with formulas. The after operation acts as a quantifier that
takes an effectful term e and a formula φ and returns the formula after x := e . φ, denoting
that after the computation of e, the formula φ holds. To relate EffHOL to iHOL, we require
EffHOL to have a special type of “codes” A, denoting programs in an untyped programming
language. A is required to have an effectful “application” operator ap which takes two pure
codes e and c and returns an effectful term ap (e, c), corresponding to the application of the
program denoted by e to the input denoted by c, yielding a computation (hence the result is
an effectful term). By combining ap with after we can use EffHOL to describe Hoare triples
{φ} e {ψ} [7]: ca | φ [ca] ⊢ after cr := ap (e, ca) . ψ [cr]

Monadic Realizability for Intuitionistic Higher-Order Logic Cohen, Grunfeld and Tate

References

[1] Alejandro Aguirre and Shin-ya Katsumata. Weakest preconditions in fibrations. Electronic Notes
in Theoretical Computer Science, 352:5–27, 2020.

[2] J Robin B Cockett and Pieter JW Hofstra. Introduction to turing categories. Annals of pure and
applied logic, 156(2-3):183–209, 2008.

[3] Liron Cohen, Sofia Abreu Faro, and Ross Tate. The effects of effects on constructivism. Electronic
Notes in Theoretical Computer Science, 347:87–120, 2019.

[4] Liron Cohen, Étienne Miquey, and Ross Tate. Evidenced frames: a unifying framework broadening
realizability models. In 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–13. IEEE, 2021.

[5] Edsger W Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Com-
munications of the ACM, 18(8):453–457, 1975.

[6] Michele Giry. A categorical approach to probability theory. In Categorical Aspects of Topology and
Analysis: Proceedings of an International Conference Held at Carleton University, Ottawa, August
11–15, 1981, pages 68–85. Springer, 2006.

[7] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580, 1969.

[8] Kenji Maillard, Danel Ahman, Robert Atkey, Guido Mart́ınez, Catalin Hritcu, Exequiel Rivas, and
Éric Tanter. Dijkstra monads for all. arXiv preprint arXiv:1903.01237, 2019.

[9] Eugenio Moggi. Notions of computation and monads. Information and computation, 93(1):55–92,
1991.

