
Non-well-founded Proof Theory of Transitive Closure Logic

LIRON COHEN, Ben-Gurion University, Israel

REUBEN N. S. ROWE, Royal Holloway, University of London, UK

Supporting inductive reasoning is an essential component is any framework of use in computer science. To do

so, the logical framework must extend that of first-order logic. Transitive closure logic is a known extension

of first-order logic which is particularly straightforward to automate. While other extensions of first-order

logic with inductive definitions are a priori parametrized by a set of inductive definitions, the addition of a

single transitive closure operator has the advantage of uniformly capturing all finitary inductive definitions.

To further improve the reasoning techniques for transitive closure logic we here present an infinitary proof

system for it which is an infinite descent-style counterpart to the existing (explicit induction) proof system
for the logic. We show that the infinitary system is complete for the standard semantics and subsumes the

explicit system. Moreover, the uniformity of the transitive closure operator allows semantically meaningful

complete restrictions to be defined using simple syntactic criteria. Consequently, the restriction to regular

infinitary (i.e. cyclic) proofs provides the basis for an effective system for automating inductive reasoning.

CCS Concepts: • Theory of computation→ Logic and verification; Proof theory;Automated
reasoning.

Additional Key Words and Phrases: Induction, Transitive Closure, Infinitary Proof Systems, Cyclic

Proof Systems, Soundness, Completeness, Standard Semantics, Henkin Semantics

ACM Reference Format:
Liron Cohen and Reuben N. S. Rowe. 2020. Non-well-founded Proof Theory of Transitive Closure Logic. 1, 1

(October 2020), 30 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Induction is a core reasoning technique, especially in computer science, where it plays a central

role in reasoning about recursive data and computations. There is therefore a constant attempt

to increase and improve the armoury of techniques available for automated inductive reasoning.

This battle is waged along two intertwined fronts: firstly finding the right logical framework, and

secondly developing effective associated proof methods. In other words, we are concerned with

both being able to formalize as much mathematical reasoning as possible, and also with doing so in

an effective way.

In terms of the logical framework, one should aim for a logic powerful enough to capture finitary
1

inductive principles, yet as simple as possible in order to facilitate automation. Transitive closure
(TC) logic has been identified as a minimal, general purpose logic for inductive reasoning that is also

very suitable for automation [2, 15, 16]. TC adds to first-order logic a single operator for forming

1
We here mean finitary as opposed to transfinitary.

Authors’ addresses: Liron Cohen, Dept. of Computer Science, Ben-Gurion University, Be’er Sheva, Israel, cliron@cs.bgu.ac.il;

Reuben N. S. Rowe, Dept of Computer Science, Royal Holloway, University of London, Egham, Surrey, UK, reuben.rowe@

rhul.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

XXXX-XXXX/2020/10-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Liron Cohen and Reuben N. S. Rowe

binary relations: specifically, the transitive closures of arbitrary formulas (or, more precisely, the

transitive closure of the binary relation induced by a formula with respect to two distinct variables).

It is thus able to express, e.g., unbounded reachability; on the other hand, it cannot express, e.g.,

well-foundedness of relations. Thus TC logic is intermediate between first- and second-order logic.

Despite its minimality TC logic retains enough expressivity to capture inductive reasoning, as

well as to subsume arithmetics (see Section 6.2.1). Moreover, it provides a uniform way of capturing

inductive principles. If an induction scheme is expressed by a formula 𝜑 , then the elements of the

inductive collection it defines are those ‘reachable’ from the base elements 𝑥 via the iteration of the

induction scheme. That is, those 𝑦’s for which (𝑥,𝑦) is in the transitive closure of 𝜑 . Accordingly,

while other extensions of first-order logic with inductive definitions are a priori parametrized by

a set of inductive definitions (see, e.g., [11, 27, 29, 38]), bespoke induction principles do not need

to be added to, or embedded within, transitive closure logic; instead, all induction schemes are

available within a single, unified language. In this respect, the transitive closure operator resembles

the W-type [28], which also provides a single type constructor from which one can uniformly

define a variety of inductive types. This conciseness of the logic makes it of particular interest from

an automation point of view. The use of only one constructor of course comes with a price: namely,

formalizations (mostly of non-linear induction schemes) may be somewhat complex. However, they

generally do not require as complex an encoding as in arithmetics, since the TC operator can be

applied on any formula and thus (depending on the underlying signature) more naturally encode

induction on sets more complex than the natural numbers.

Since its expressiveness entails that TC logic subsumes arithmetics, by Gödel’s result, any

effective proof system for it must necessarily be incomplete for the standard semantics. This poses a

major challenge for the second of our stated objectives in the programme of developing automated

inductive reasoning, i.e. finding effective proof machinery for our chosen logic. Notwithstanding, a

natural, effective proof system which is sound for TC logic was shown to be complete with respect

to a generalized form of Henkin semantics [14]. That system, in keeping with standard practice,

captures the notion of inductive reasoning via an explicit inference rule that expresses the general

induction principle of the operator.

Aiming to enhance the opportunities for automating formal reasoning in TC logic, this paper

presents an infinitary proof theory for TC logic in the same vein as similar recent developments for

other logics with fixed point constructions [1, 3, 9–11, 21, 22, 33, 35]). This, as far as we know, is

the first system for TC logic that is (cut-free) complete with respect to its standard semantics. More

specifically we employ recent techniques from non-well-founded proof theory, which embodies

the philosophy of infinite descent, as an alternative to explicit induction. Such systems incorporate

infinite-height, rather than infinite-width proofs (see Section 4). The soundness of such infinitary

proof theories is underpinned by the principle of infinite descent: proofs are permitted to be infinite,

non-well-founded trees, but subject to the restriction that every infinite path in the proof admits

some infinite descent. The descent is witnessed by tracing terms or formulas for which we can

give a correspondence with elements of a well-founded set. In particular, we can trace terms that

denote elements of an inductively defined (well-founded) set. For this reason, such theories are

considered systems of implicit induction, as opposed to those which employ explicit rules for

applying induction principles. While a full infinitary proof theory is clearly not effective, in the

aforementioned sense, such a system can be obtained by restricting consideration to only the

regular infinite proofs. These are precisely those proofs that can be finitely represented as (possibly

cyclic) graphs.

These infinitary proof theories generally subsume systems of explicit induction in expressive

power, but also offer a number of advantages. Most notably, they can ameliorate the primary

challenge for inductive reasoning: finding an induction invariant. In explicit induction systems,

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 3

this must be provided a priori, and is often much stronger than the goal one is ultimately interested

in proving. However, in implicit systems the inductive arguments and hypotheses may be encoded

in the cycles of a proof, so cyclic proof systems seem better for automation. The cyclic approach

has also been used to provide an optimal cut-free complete proof system for Kleene algebra [20],

providing further evidence of its utility for automation.

In the setting of TC logic, we observe some further benefits over more traditional formal systems

of inductive definitions and their infinitary proof theories (cf. LKID [11, 27]). TC (with a pairing

function) has all first-order definable finitary inductive definitions immediately ‘available’ within

the language of the logic: as with inductive hypotheses, one does not need to ‘know’ in advance

which induction schemes will be required. Moreover, the use of a single transitive closure operator

provides a uniform treatment of all induction schemes. That is, instead of having a proof system

parameterized by a set of inductive predicates and rules for them (as is the case in LKID), TC offers

a single proof system with a single rule scheme for induction. This has immediate advantages

for developing the metatheory: the proofs of completeness for standard semantics and adequacy

(i.e. subsumption of explicit induction) for the infinitary system presented in this paper are simpler

and more straightforward. Moreover, it permits a further refinement of the cyclic system, which also

subsumes explicit induction, to be defined via a simple structural criterion that we call normality.
This restriction in the search space of possible proofs further enhances the potential for automation.

TC logic seems more expressive in other ways, too. For instance, the transitive closure operator

may be applied to arbitrarily complex formulas, and thus inductive definitions are not restricted to

consist only of conjunctions of atomic formulas (i.e. Horn clauses) as in e.g. [9, 11]. Conversely,

since the TC operator is a particular instance of a least fixed point operator, it is itself subsumed by

fixed-point logics such as the `-calculus [25].

We show that the explicit and cyclic TC systems are equivalent under arithmetic, as is the case

for LKID [7, 34]. However, there are cases in which the cyclic system for LKID is strictly more

expressive than the explicit induction system [6]. To obtain a similar result for TC, the fact that all
induction schemes are available poses a serious challenge. For one, the counter-example used in [6]

does not serve to show that this result holds for TC. If this strong inequivalence indeed holds also

for TC, it must be witnessed by a more subtle and complex counter-example. Conversely, it may be

that the explicit and cyclic systems do coincide for TC. In either case, this points towards some

interesting subtleties of these LKID results in the TC setting, stemming from lifting the restriction

of having the system parameterized by a fixed set of inductive definitions.

The rest of the paper is organised as follows. In Section 2 we reprise the definition of transitive

closure logic and both its standard andHenkin-style semantics. Sections 3 and 4 present, respectively,

the existing explicit induction proof system and our new infinitary and cyclic proof systems for

TC logic, along with their soundness, completeness and cut-admissibility results. In Section 5 we

consider how our treatment extends to two important variants of transitive closure logic: one

with a pairing function and one without explicit equality. To complete the picture, Section 6 then

compares the expressive power of the infinitary system (and its cyclic subsystem) with the explicit

system. Finally, Section 7 concludes and examines the remaining open questions for our system as

well as future work. This paper is an extended version of [17].

2 TRANSITIVE CLOSURE LOGIC AND ITS EXPRESSIVNESS
This section reviews the language of transitive closure logic, and defines both its standard and

Henkin-style semantics. We also illustrate the usefulness of the logic in various applications in

computer science.

For simplicity of presentation we assume (as is standard practice) a designated equality symbol

in the language. We denote by 𝑣 [𝑥1 := 𝑎𝑛, . . . , 𝑥𝑛 := 𝑎𝑛] the variant of the assignment 𝑣 which

, Vol. 1, No. 1, Article . Publication date: October 2020.

4 Liron Cohen and Reuben N. S. Rowe

assigns 𝑎𝑖 to 𝑥𝑖 for each 𝑖 , and by 𝜑
{
𝑡1

𝑥1

, . . . ,
𝑡𝑛
𝑥𝑛

}
the result of simultaneously substituting each 𝑡𝑖 for

the free occurrences of 𝑥𝑖 in 𝜑 . Note also that we use an operator denoting the reflexive transitive

closure; however the reflexive and non-reflexive forms are equivalent in the presence of equality.

2.1 The Syntax and Semantics
Definition 2.1 (The language LRTC). Let 𝜎 be a first-order signature with equality, whose terms

are ranged over by 𝑠 and 𝑡 and predicates by 𝑃 , and let 𝑥 , 𝑦, 𝑧, etc. range over a countable set V of

variables. The language LRTC consists of the formulas defined by the grammar:

𝜑,𝜓 F 𝑠 = 𝑡 | 𝑃 (𝑡1, . . . , 𝑡𝑛) | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑 | 𝜑 → 𝜑 | ∀𝑥 .𝜑 | ∃𝑥 .𝜑 | (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡)
As usual, ∀𝑥 and ∃𝑥 bind free occurrences of the variable 𝑥 and we identify formulas up to renaming

of bound variables, so that capturing of free variables during substitution does not occur. Note that

in the formula (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) free occurrences of 𝑥 and 𝑦 in 𝜑 are also bound (but not those in 𝑠

and 𝑡).

Definition 2.2 (Standard Semantics). Let𝑀 = ⟨𝐷, 𝐼 ⟩ be a first-order structure (i.e.𝐷 is a non-empty

domain and 𝐼 an interpretation function), and 𝑣 an assignment in𝑀 which we extend to terms in

the obvious way. The satisfaction relation |= between model-valuation pairs ⟨𝑀, 𝑣⟩ and formulas is

defined inductively on the structure of formulas by:

• 𝑀, 𝑣 |= 𝑠 = 𝑡 if 𝑣 (𝑠) = 𝑣 (𝑡);
• 𝑀, 𝑣 |= 𝑃 (𝑡1, . . . , 𝑡𝑛) if (𝑣 (𝑡1), . . . , 𝑣 (𝑡𝑛)) ∈ 𝐼 (𝑃);
• 𝑀, 𝑣 |= ¬𝜑 if𝑀, 𝑣 ̸ |= 𝜑 ;

• 𝑀, 𝑣 |= 𝜑1 ∧ 𝜑2 if both𝑀, 𝑣 |= 𝜑1 and𝑀, 𝑣 |= 𝜑2;

• 𝑀, 𝑣 |= 𝜑1 ∨ 𝜑2 if either𝑀, 𝑣 |= 𝜑1 or𝑀, 𝑣 |= 𝜑2;

• 𝑀, 𝑣 |= 𝜑1 → 𝜑2 if𝑀, 𝑣 |= 𝜑1 implies𝑀, 𝑣 |= 𝜑2;

• 𝑀, 𝑣 |= ∃𝑥 .𝜑 if𝑀, 𝑣 [𝑥 := 𝑎] |= 𝜑 for some 𝑎 ∈ 𝐷 ;

• 𝑀, 𝑣 |= ∀𝑥 .𝜑 if𝑀, 𝑣 [𝑥 := 𝑎] |= 𝜑 for all 𝑎 ∈ 𝐷 ;

• 𝑀, 𝑣 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) if 𝑣 (𝑠) = 𝑣 (𝑡), or there exist 𝑎0, . . . , 𝑎𝑛 ∈ 𝐷 (𝑛 > 0) s.t. 𝑣 (𝑠) = 𝑎0,

𝑣 (𝑡) = 𝑎𝑛 , and𝑀, 𝑣 [𝑥 := 𝑎𝑖 , 𝑦 := 𝑎𝑖+1] |= 𝜑 for 0 ≤ 𝑖 < 𝑛.

We say that a formula 𝜑 is valid with respect to the standard semantics when𝑀, 𝑣 |= 𝜑 holds for all

models𝑀 and valuations 𝑣 .

We next recall the concepts of frames andHenkin structures (see, e.g., [24]). A frame is a first-order

structure together with some subset of the powerset of its domain (called its set of admissible

subsets).

Definition 2.3 (Frames). A frame 𝑀 is a triple ⟨𝐷, 𝐼,D⟩, where ⟨𝐷, 𝐼 ⟩ is a first-order structure,
and D ⊆ ℘(𝐷).

Definition 2.4 (Frame Semantics). LRTC formulas are interpreted in frames as in Definition 2.2

above, except for:

• 𝑀, 𝑣 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) if for every 𝐴 ∈ D, if 𝑣 (𝑠) ∈ 𝐴 and for every 𝑎, 𝑏 ∈ 𝐷 : 𝑎 ∈ 𝐴 and

𝑀, 𝑣 [𝑥 := 𝑎,𝑦 := 𝑏] |= 𝜑 implies 𝑏 ∈ 𝐴, then 𝑣 (𝑡) ∈ 𝐴.

Note that if D = ℘(𝐷), the frame is identified with a standard first-order structure.

We now consider Henkin structures, which are frames whose set of admissible subsets is closed

under parametric definability.

Definition 2.5 (Henkin structures). A Henkin structure 𝑀 = ⟨𝐷, 𝐼,D⟩ is a frame such that for

every formula 𝜑 and valuation 𝑣 in𝑀 we have {𝑎 ∈ 𝐷 | 𝑀, 𝑣 [𝑥 := 𝑎] |= 𝜑} ∈ D.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 5

We refer to the semantics induced by quantifying over the (larger) class of Henkin structures as

the Henkin semantics.

2.2 Applications of Transitive Closure Logic
Transitive Closure Logic offers a variety of applications in different areas in computer science, such

as program verification, database query languages, descriptive complexity, etc. We briefly describe

some of these here.

Inductive Numerical Predicates. Transitive Closure logic enables complex numerical induction

schemes to be expressed concisely and naturally. This supports the application of TC in a multitude

of other areas, since numerical theories often form the foundation of more complex formalisms.

Assuming a signature containing a constant 0 for zero, and a successor function s, a predicate
N characterising natural numbers can easily be defined by N(𝑡) ≡ (RTC𝑢,𝑣 𝑣 = s(𝑢)) (0, 𝑡). Now
consider a binary predicate H defined by the following induction scheme over natural numbers 𝑥

and 𝑦 considered in [6]:

i) H(0, 0), H(s(0), 0), and H(𝑥, s(0)) hold;
ii) if H(𝑥,𝑦) holds then so does H(s(𝑥), s(s(𝑦)));
iii) if H(s(𝑥), 𝑥) holds then so do H(0, s(s(𝑥))) and H(s(s(𝑥)), 0).

This predicate is a binary version of the Kirby-Paris Hydra game [26] that considers a Hydra with

two heads. It can be expressed, using a pairing function ⟨·,·⟩, by the TC formula H(𝑡1, 𝑡2) defined
by:

H(𝑡1, 𝑡2) ≡ ∃𝑛1, 𝑛2 . (RTC𝑥,𝑦 𝜑1 ∨ 𝜑2 ∨ 𝜑3) (⟨𝑛1, 𝑛2⟩, ⟨𝑡1, 𝑡2⟩)
∧ ((𝑛1 = 0 ∧ 𝑛2 = 0) ∨ (𝑛1 = s(0) ∧ 𝑛2 = 0) ∨ (N(𝑛1) ∧ 𝑛2 = s(0)))

where the formulas 𝜑1–𝜑3 are defined as follows:

𝜑1 ≡ ∃𝑧1 . ∃𝑧2 . 𝑥 = ⟨𝑧1, 𝑧2⟩ ∧ 𝑦 = ⟨s(𝑧1), s(s(𝑧2))⟩
𝜑2 ≡ ∃𝑧 . 𝑥 = ⟨𝑧, s(𝑧)⟩ ∧ 𝑦 = ⟨0, s(s(𝑧))⟩
𝜑3 ≡ ∃𝑧 . 𝑥 = ⟨𝑧, s(𝑧)⟩ ∧ 𝑦 = ⟨s(s(𝑧)), 0⟩

and express the inductive steps of the scheme, cf. items (ii) and (iii). H(𝑡1, 𝑡2) asserts that the pair of
terms (𝑡1, 𝑡2) may be reached via (some arbitrary number of) applications of these steps from one

of the base cases, cf. item (i). It is easy to show that any such pair of terms must consist of natural

numbers (i.e. N(𝑡1) and N(𝑡2) hold). Moreover, the H predicate is total over the natural numbers, a

fact that is derivable in each of the proof systems we present for TC.

Temporal Logic. It is possible to encode temporal logics in TC, since temporal operators such as

‘eventually’, ‘globally’ (in the past, or future) and ‘until’ essentially denote reachability properties

between temporal states. For example, consider LTL (linear temporal logic) [31] over some signature.

To encode it in TC we essentially make the state-based semantics explicit by:

• extending the arity of each predicate symbol to capture how its interpretation changes over

time (e.g. p(𝑡) becomes p(𝑡, 𝑠), true if and only if p(𝑡) is true in the state denoted by 𝑠);

• introducing a fresh unary function next(𝑠) to denote the state immediately following 𝑠 ; and

• assuming a term constant sinit to indicate the initial state.

The formula (RTC𝑥,𝑦 𝑦 = next(𝑥)) (𝑠, 𝑠 ′) then expresses that state 𝑠 ′ occurs after state 𝑠 , which we

will abbreviate as 𝑠 ≤ 𝑠 ′. We can then define a translation 𝑇 [𝑠] of LTL formulas, with respect

to a ‘state’ variable 𝑠 . For atomic formulas, we define 𝑇 [𝑠] (q(𝑡1, . . . , 𝑡𝑛)) = q(𝑡1, . . . , 𝑡𝑛, 𝑠). For
standard first-order logical connectives, the translation is defined straightforwardly by induction.

, Vol. 1, No. 1, Article . Publication date: October 2020.

6 Liron Cohen and Reuben N. S. Rowe

The translation of the temporal operators X (next), F (finally, or eventually), G (globally, or always),

and U (until), are as follows:

𝑇 [𝑠] (X𝜙) = ∃𝑠 ′ . 𝑠 ′ = next(𝑠) ∧𝑇 [𝑠 ′] (𝜙)
𝑇 [𝑠] (F𝜙) = ∃𝑠 ′ . 𝑠 ≤ 𝑠 ′ ∧𝑇 [𝑠 ′] (𝜙)
𝑇 [𝑠] (G𝜙) = ∀𝑠 ′ . 𝑠 ≤ 𝑠 ′ → 𝑇 [𝑠 ′] (𝜙)

𝑇 [𝑠] (𝜙 U 𝜓) = ∃𝑠 ′ . 𝑠 ≤ 𝑠 ′ ∧𝑇 [𝑠 ′] (𝜓) ∧ ∀𝑠 ′′ . (𝑠 ≤ 𝑠 ′′ ∧ 𝑠 ′′ ≤ 𝑠 ′) → 𝑇 [𝑠 ′′] (𝜙)

Finally, an LTL formula𝜓 is interpreted as𝑇 [sinit] (𝜓). This is essentially equivalent to the standard
translation of modal logic into first-order logic given in, e.g., [4, 8] which takes the temporal

ordering relation as a primitive. Here, the ordering relation arises from taking the transitive closure

of the next function. The TC approach is more flexible, since we may also take the transitive closure

of temporal relations, and so represent branching-time temporal logics in the same framework.

Program Verification. TC can be used for the specification and verification of properties of linked

data structures and the operation of programs that manipulate them, because it offers a unified

constructor for reasoning over both the pointer structures in memory and the sequences of

transitions between program states. More concretely, given some definable state transition relation

𝑅(𝑥,𝑦) and an initial state 𝑠0, the formula (RTC𝑥,𝑦 𝑅) (𝑠0, 𝑠) defines all the states the program

execution can reach. Additionally, if 𝑛𝑠 is a function associating to each memory location its

successor in state 𝑠 , then the formula (RTC𝑥,𝑦 𝑦 = 𝑛𝑠 (𝑥)) (𝑥,𝑦) defines reachability in memory at

state 𝑠 .

The use of the same constructor for both aspects of the program offers a major improvement on

the current formal frameworks which usually use qualitatively different formalisms for describing

the operational semantics of programs and the data operated on by the program. For instance, many

formalisms employ separation logic to describe the data structures manipulated by programs, but

encode the relationship between the program’s memory and its operational behaviour via bespoke

symbolic-execution inference rules. Another improvement of TC over, e.g., separation logic is its

ability to reason over non-tree-like structures such as directed acyclic, or even general, graphs.

3 A FINITARY PROOF SYSTEM FOR LRTC

We briefly summarise a variation of the finitary proof system for LRTC presented in [15, 16]. The

key component of the system is an explicit induction rule for RTC formulas. All of the systems for

LRTC presented in the sequel are extensions of LK=, the sequent calculus for classical first-order

logic with equality [23, 36], whose proof rules we show in Fig. 1.
2
Sequents are expressions of

the form Γ ⇒ Δ, for finite sets of formulas Γ and Δ. We write Γ,Δ and Γ, 𝜑 as a shorthand for

Γ ∪ Δ and Γ ∪ {𝜑} respectively, and fv(Γ) for the set of free variables of the formulas in the set

Γ. Note that since sequents consist of sets of formulas, there is no need for explicit exchange and

contraction rules. A sequent Γ ⇒ Δ is valid if and only if the formula

∧
𝜑 ∈Γ 𝜑 → ∨

𝜓 ∈Δ𝜓 is. We

write 𝜑 (𝑥1, . . . , 𝑥𝑛) to emphasise that the formula 𝜑 may contain 𝑥1, . . . , 𝑥𝑛 as free variables.

3.1 The Proof System RTC𝐺

Definition 3.1. The proof system RTC𝐺 for LRTC is defined by adding to LK= the following

inference rules where, for Rule (3), 𝑥 ∉ fv(Γ,Δ) and 𝑦 ∉ fv(Γ,Δ,𝜓):

Γ ⇒ Δ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑠) (1)

2
Here we take LK= to include the substitution rule, which was not a part of the original systems.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 7

(Axiom):

𝜑 ⇒ 𝜑
(WL):

Γ ⇒ Δ

Γ, 𝜑 ⇒ Δ
(WR):

Γ ⇒ Δ

Γ ⇒ Δ, 𝜑

(=L1):

Γ ⇒ 𝜑
{
𝑠
𝑥

}
,Δ

Γ, 𝑠 = 𝑡 ⇒ 𝜑
{
𝑡
𝑥

}
,Δ

(=L2):

Γ ⇒ 𝜑
{
𝑡
𝑥

}
,Δ

Γ, 𝑠 = 𝑡 ⇒ 𝜑
{
𝑠
𝑥

}
,Δ

(=R):
⇒ 𝑡 = 𝑡

(Cut):

Γ ⇒ 𝜑,Δ Σ, 𝜑 ⇒ Π

Γ, Σ ⇒ Δ,Π
(Subst):

Γ ⇒ Δ

Γ
{
𝑡1

𝑥1

, . . . ,
𝑡𝑛
𝑥𝑛

}
⇒ Δ

{
𝑡1

𝑥1

, . . . ,
𝑡𝑛
𝑥𝑛

}
(∨L):

Γ, 𝜑 ⇒ Δ Γ,𝜓 ⇒ Δ

Γ, 𝜑 ∨𝜓 ⇒ Δ
(∧L):

Γ, 𝜑,𝜓 ⇒ Δ

Γ, 𝜑 ∧𝜓 ⇒ Δ
(→L):

Γ ⇒ 𝜑,Δ Γ,𝜓 ⇒ Δ

Γ, 𝜑 → 𝜓 ⇒ Δ

(∨R):
Γ ⇒ 𝜑,𝜓,Δ

Γ ⇒ 𝜑 ∨𝜓,Δ
(∧R):

Γ ⇒ 𝜑,Δ Γ ⇒ 𝜓,Δ

Γ ⇒ 𝜑 ∧𝜓,Δ
(→R):

Γ, 𝜑 ⇒ 𝜓,Δ

Γ ⇒ 𝜑 → 𝜓,Δ

(∃L):
Γ, 𝜑 ⇒ Δ

𝑥 ∉ fv(Γ,Δ)
Γ, ∃𝑥 .𝜑 ⇒ Δ

(∀L):
Γ, 𝜑

{
𝑡
𝑥

}
⇒ Δ

Γ,∀𝑥 .𝜑 ⇒ Δ
(¬L):

Γ ⇒ 𝜑,Δ

Γ,¬𝜑 ⇒ Δ

(∃R):
Γ ⇒ 𝜑

{
𝑡
𝑥

}
,Δ

Γ ⇒ ∃𝑥 .𝜑,Δ (∀R):
Γ ⇒ 𝜑,Δ

𝑥 ∉ fv(Γ,Δ)
Γ ⇒ ∀𝑥 .𝜑,Δ

(¬R):
Γ, 𝜑 ⇒ Δ

Γ ⇒ ¬𝜑,Δ

Fig. 1. Proof rules for the sequent calculus LK= with substitution.

Γ ⇒ Δ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑟) Γ ⇒ Δ, 𝜑
{
𝑟
𝑥
, 𝑡
𝑦

}
Γ ⇒ Δ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡)

(2)

Γ,𝜓 (𝑥), 𝜑 (𝑥,𝑦) ⇒ Δ,𝜓
{ 𝑦

𝑥

}
Γ,𝜓

{
𝑠
𝑥

}
, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ 𝜓

{
𝑡
𝑥

}
,Δ

(3)

Rule (3) is a generalized induction principle. It states that if an extension of formula𝜓 is closed

under the relation induced by 𝜑 , then it is also closed under the reflexive transitive closure of that

relation. In the case of arithmetic it captures the induction rule of Peano’s Arithmetics PA [16].

3.2 Soundness and Completeness
The rich expressiveness of TC logic entails that the effective system RTC𝐺 which is sound w.r.t. the

standard semantics, cannot be complete (much like the case for LKID). It is however both sound

and complete w.r.t. Henkin semantics.

Theorem 3.2 (Soundness and Completeness of RTC𝐺 [14]). RTC𝐺 is sound for standard
semantics, and also sound and complete for Henkin semantics.

We remark that the soundness proof of LKID is rather complex since it must handle different

types of mutual dependencies between the inductive predicates. For RTC𝐺 the proof is much

simpler due to the uniformity of the rules for the RTC operator. Nonetheless, the completeness

proof given in [14] does not establish cut admissibility while the proof for LKID does. We believe

that by adapting the technique used in the proof of the completeness of LKID one can obtain cut

admissibility for an equivalent system to RTC𝐺 , in which the formalization of Rule (3) is slightly

modified, like the induction rule for LKID in [11], to incorporate a cut with the induction formula

, Vol. 1, No. 1, Article . Publication date: October 2020.

8 Liron Cohen and Reuben N. S. Rowe

𝜓 as follows:

Γ ⇒ Δ,𝜓
{
𝑠
𝑥

}
Γ,𝜓 (𝑥), 𝜑 (𝑥,𝑦) ⇒ Δ,𝜓

{ 𝑦

𝑥

}
Γ,𝜓

{
𝑡
𝑥

}
⇒ Δ

Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ

where 𝑥 ∉ fv(Γ,Δ) and 𝑦 ∉ fv(Γ,Δ,𝜓). However, the trade-off is that the cut-free system presented

here no longer enjoys the sub-formula property (for a generalized notion of a subformula that

incorporates substitution instances), as in LK=. Nonetheless, since the explicit system is not the

main focus of the current work, we leave obtaining cut admissibility for future work.

4 INFINITARY PROOF SYSTEMS FOR LRTC

This section introduces an infinitary proof system, in which RTC formulas are simply unfolded,

and inductive arguments are represented via infinite descent-style constructions. We establish

soundness and completeness of the proof system with respect to the standard semantics, and further

identify a subsystem restricted to regular proofs.

4.1 The Proof System RTC𝜔
𝐺

Definition 4.1. The infinitary proof system RTC𝜔
𝐺
for LRTC is defined like RTC𝐺 , but replacing

Rule (3) by the following case-split rule:

Γ, 𝑠 = 𝑡 ⇒ Δ Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧), 𝜑
{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ

Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ
(4)

where 𝑧 is fresh, i.e. does not occur free in Γ, Δ, or (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡). The formula (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧)
in the right-hand premise is called the immediate ancestor (cf. [12, §1.2.3]) of the principal formula,

(RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), in the conclusion.

There is an asymmetry between Rule (2), in which the intermediary is an arbitrary term 𝑟 , and

Rule (4), where we use a variable 𝑧. This is necessary to obtain the soundness of the cyclic proof

system. It is used to show that when there is a counter-model for the conclusion of a rule, then

there is also a counter-model for one of its premises that is, in a sense that we make precise below,

‘smaller’. In the case that 𝑠 ≠ 𝑡 , using a fresh 𝑧 allows us to pick from all possible counter-models of

the conclusion, from which we may then construct the required counter-model for the right-hand

premise. If we allowed an arbitrary term 𝑟 instead, this might restrict the counter-models we can

choose from, only leaving ones ‘larger’ than the one we had for the conclusion. See Lemma 4.7

below for more details.

Proofs in this system are possibly infinite derivation trees. However, not all infinite derivations

are proofs: only those that admit an infinite descent argument. Thus we use the terminology

‘pre-proof’ for derivations.

Definition 4.2 (Pre-proofs). An RTC𝜔
𝐺
pre-proof is a possibly infinite (i.e. non-well-founded)

derivation tree formed using the inference rules. A path in a pre-proof is a possibly infinite sequence
of sequents 𝑠0, 𝑠1, . . . (, 𝑠𝑛) such that 𝑠0 is the root sequent of the proof, and 𝑠𝑖+1 is a premise of 𝑠𝑖 for

each 𝑖 < 𝑛.

The following definitions tell us how to track RTC formulas through a pre-proof, and allow us to

formalize inductive arguments via infinite descent.

Definition 4.3 (Trace Pairs). Let 𝜏 and 𝜏 ′ be RTC formulas occurring in the left-hand side of the

conclusion 𝑠 and a premise 𝑠 ′, respectively, of (an instance of) an inference rule. (𝜏, 𝜏 ′) is said to be

a trace pair for (𝑠, 𝑠 ′) if the rule is:
• the (Subst) rule, and 𝜏 = 𝜏 ′\ where \ is the substitution associated with the rule instance;

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 9

• Rule (4), and either:

a) 𝜏 is the principal formula of the rule instance and 𝜏 ′ is the immediate ancestor of 𝜏 , in

which case we say that the trace pair is progressing;
b) otherwise, 𝜏 = 𝜏 ′.

• any other rule, and 𝜏 = 𝜏 ′.

Definition 4.4 (Traces). A trace is a (possibly infinite) sequence of RTC formulas. We say that

a trace 𝜏1, 𝜏2, . . . (, 𝜏𝑛) follows a path 𝑠1, 𝑠2, . . . (, 𝑠𝑚) in a pre-proof P if, for some 𝑘 ≥ 0, each

consecutive pair of formulas (𝜏𝑖 , 𝜏𝑖+1) is a trace pair for (𝑠𝑖+𝑘 , 𝑠𝑖+𝑘+1). If (𝜏𝑖 , 𝜏𝑖+1) is a progressing
pair then we say that the trace progresses at 𝑖 , and we say that the trace is infinitely progressing if it

progresses at infinitely many points.

Proofs, then, are pre-proofs which satisfy a global trace condition.

Definition 4.5 (Infinite Proofs). A RTC𝜔
𝐺
proof is a pre-proof in which every infinite path is

followed by some infinitely progressing trace.

4.2 Soundness and Completeness
The infinitary system RTC𝜔

𝐺
, in contrast to the finitary system RTC𝐺 , is both sound and complete

w.r.t. the standard semantics. To prove soundness, we make use of the following notion of measure
for RTC formulas.

Definition 4.6 (Degree of RTC Formulas). For 𝜙 ≡ (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), we define 𝛿𝜙 (𝑀, 𝑣) = 0 if

𝑣 (𝑠) = 𝑣 (𝑡), and 𝛿𝜙 (𝑀, 𝑣) = 𝑛 if 𝑣 (𝑠) ≠ 𝑣 (𝑡) and 𝑎0, . . . , 𝑎𝑛 is a minimal-length sequence of elements

in the semantic domain 𝐷 such that 𝑣 (𝑠) = 𝑎0, 𝑣 (𝑡) = 𝑎𝑛 , and 𝑀, 𝑣 [𝑥 := 𝑎𝑖 , 𝑦 := 𝑎𝑖+1] |= 𝜑 for

0 ≤ 𝑖 < 𝑛. We call 𝛿𝜙 (𝑀, 𝑣) the degree of 𝜙 with respect to the model𝑀 and valuation 𝑣 .

Soundness then follows from the following fundamental lemma.

Lemma 4.7 (Descending Counter-models). If there exists a standard model𝑀 and valuation 𝑣
that invalidates the conclusion 𝑠 of (an instance of) an inference rule, then 1) there exists a standard
model 𝑀 ′ and valuation 𝑣 ′ that invalidates some premise 𝑠 ′ of the rule; and 2) if (𝜏, 𝜏 ′) is a trace
pair for (𝑠, 𝑠 ′) then 𝛿𝜏′ (𝑀 ′, 𝑣 ′) ≤ 𝛿𝜏 (𝑀, 𝑣). Moreover, if (𝜏, 𝜏 ′) is a progressing trace pair then
𝛿𝜏′ (𝑀 ′, 𝑣 ′) < 𝛿𝜏 (𝑀, 𝑣).

Proof. The cases for the standard LK= and substitution rules are straightforward adaptations

of those found in e.g. [11].

• The case for Rule (1) follows trivially since it follows immediately from Definition 2.2 that

𝑀, 𝑣 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑠) for all𝑀 and 𝑣 .

• For Rule (2), since 𝑀, 𝑣 ̸ |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) it follows that either 𝑀, 𝑣 ̸ |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑟) or
𝑀, 𝑣 ̸ |= 𝜑

{
𝑟
𝑥
, 𝑡
𝑦

}
. To see this, suppose for contradiction that both 𝑀, 𝑣 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑟) or 𝑀, 𝑣 |=

𝜑
{
𝑟
𝑥
, 𝑡
𝑦

}
; but then it would follow by Definition 2.2 that𝑀, 𝑣 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡). We thus take𝑀 ′ = 𝑀

and 𝑣 ′ = 𝑣 , and either the left- or right-hand premise according to whether𝑀, 𝑣 ̸ |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑟)
or𝑀, 𝑣 ̸ |= 𝜑

{
𝑟
𝑥
, 𝑡
𝑦

}
.

• For Rule (4), since𝑀, 𝑣 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) there are two cases to consider:

(i) If 𝑣 (𝑠) = 𝑣 (𝑡) then we take the left-hand premise with model 𝑀 ′ = 𝑀 and valuation 𝑣 ′ = 𝑣 ,

and so the degree of any RTC formula in Γ with respect to𝑀 ′
and 𝑣 ′ remains the same.

(ii) Otherwise, if there are 𝑎0, . . . , 𝑎𝑛 ∈ 𝐷 (𝑛 > 0) such that 𝑣 (𝑠) = 𝑎0 and 𝑣 (𝑡) = 𝑎𝑛 with

𝑀, 𝑣 [𝑥 := 𝑎𝑖 , 𝑦 := 𝑎𝑖+1] |= 𝜑 for 0 ≤ 𝑖 < 𝑛, we then take the right-hand premise, the model

𝑀 ′ = 𝑀 and valuation 𝑣 ′ = 𝑣 [𝑧 := 𝑎𝑛−1]. Note that, without loss of generality, we may assume

, Vol. 1, No. 1, Article . Publication date: October 2020.

10 Liron Cohen and Reuben N. S. Rowe

a sequence 𝑎0, . . . , 𝑎𝑛 of minimal length, and thus surmise 𝛿 (RTC𝑥,𝑦 𝜑) (𝑠,𝑡) (𝑀, 𝑣) = 𝑛. Since 𝑧

is fresh, it follows that𝑀 ′, 𝑣 ′ |= 𝜑
{
𝑧
𝑥
, 𝑡
𝑦

}
and𝑀 ′, 𝑣 ′[𝑥 := 𝑎𝑖 , 𝑦 := 𝑎𝑖+1] |= 𝜑 for 0 ≤ 𝑖 < 𝑛 − 1. If

𝑛 = 1 then 𝑣 ′(𝑠) = 𝑣 ′(𝑧) = 𝑎0 and so𝑀, 𝑣 ′ |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧); otherwise this is witnessed by

the sequence 𝑎0, . . . , 𝑎𝑛−1. Thus we also have that 𝛿 (RTC𝑥,𝑦 𝜑) (𝑠,𝑧) (𝑀 ′, 𝑣 ′) = 𝑛 − 1. To conclude,

it also follows from 𝑧 fresh that𝑀 ′, 𝑣 ′ |= 𝜓 for all𝜓 ∈ Γ and𝑀 ′, 𝑣 ′ ̸ |= 𝜙 for all 𝜙 ∈ Δ; moreover,

the degree of any RTC formula in Γ remains unchanged with respect to𝑀 ′
and 𝑣 ′. □

As is standard for infinite descent inference systems [9–11, 20, 32, 37], the above result entails the

local soundness of the inference rules (in our case, for standard first-order models). The presence

of infinitely progressing traces for each infinite path in a RTC𝜔
𝐺
proof ensures soundness via a

standard infinite descent-style construction.

Theorem 4.8 (Soundness of RTC𝜔
𝐺
). If there is a RTC𝜔

𝐺
proof of Γ ⇒ Δ, then Γ ⇒ Δ is valid

(w.r.t. the standard semantics).

Proof. Suppose, for contradiction, that Γ ⇒ Δ is not valid. Then by Lemma 4.7 there exists an

infinite path {𝑠𝑖 }𝑖>0 in the proof and an infinite sequence of model-valuation pairs {⟨𝑀𝑖 , 𝑣𝑖⟩}𝑖>0

such that ⟨𝑀𝑖 , 𝑣𝑖⟩ invalidates 𝑠𝑖 for each 𝑖 > 0. Since the proof is a valid RTC𝜔
𝐺
proof, this infinite

path is followed by an infinitely progressing trace {𝜏𝑖 }𝑖>0 for which we can take the degree of

each formula with respect to its corresponding counter-model to obtain an infinite sequence of

natural numbers {𝛿𝜏𝑖 (𝑀𝑘+𝑖 , 𝑣𝑘+𝑖)}𝑖>0 (for some 𝑘 ≥ 0). By Lemma 4.7 this sequence is decreasing

and, moreover, since the trace is infinitely progressing the sequence strictly decreases infinitely

often. From the fact that the natural numbers are a well-founded set we derive a contradiction, and

thus conclude that Γ ⇒ Δ is indeed valid. □

Following a standard technique (as used in e.g. [11]), we can show cut-free completeness of

RTC𝜔
𝐺
with respect to the standard semantics.

Definition 4.9 (Schedule). A schedule element 𝐸 is defined as any of the following:

• a formula of the form ¬𝜑, 𝜑 ∧𝜓,𝜑 ∨𝜓,𝜑 → 𝜓 ;

• a pair of the form ⟨∀𝑥 𝜑, 𝑡⟩ or ⟨∃𝑥 𝜑, 𝑡⟩ where ∀𝑥 𝜑 and ∃𝑥 𝜑 are formulas and 𝑡 is a term;

• a tuple of the form ⟨(RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), 𝑟 , 𝑧, Γ,Δ⟩ where (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) is a formula, 𝑟 is a term,

Γ and Δ are finite sequences of formulas, and 𝑧 is a variable not occurring free in Γ, Δ, or
(RTC𝑥,𝑦 𝜑) (𝑠, 𝑡); or

• a tuple of the form ⟨𝑠 = 𝑡, 𝑥, 𝜑, 𝑛⟩ where 𝑠 , 𝑡 are terms, 𝑥 a variable, 𝜑 a formula, and 𝑛 ∈ {1, 2}.
A schedule is a recursive enumeration of schedule elements in which every schedule element

appears infinitely often (these exist since our language is countable).

Each schedule corresponds to an exhaustive search strategy for a cut-free proof for each sequent

Γ ⇒ Δ, via the following notion of a ‘search tree’.

Definition 4.10 (Search Tree). Given a schedule {𝐸𝑖 }𝑖>0, for each sequent Γ ⇒ Δ we inductively

define an infinite sequence of (possibly open) derivation trees, {𝑇𝑖 }𝑖>0, such that 𝑇1 consists of the

single open node Γ ⇒ Δ, and each 𝑇𝑖+1 is obtained by replacing all suitable open nodes in 𝑇𝑖 with

applications of first axioms and then the left and right inference rules for the formula in the 𝑖th

schedule element.
3
We show the cases for building𝑇𝑖+1 for when 𝐸𝑖 corresponds to an RTC formula

and an equality formula. The cases for when 𝐸𝑖 corresponds to a standard compound first-order

formula are similar.

• When 𝐸𝑖 is of the form ⟨(RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), 𝑟 , 𝑧, Γ,Δ⟩, then 𝑇𝑖+1 is obtained by:

3
Note that since sequents consist of sets (as opposed to multisets), inference rules are applied with an implicit contraction,

i.e., the principal formula is also part of the context and is therefore kept in the premises.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 11

(1) first closing as such any open node that is an instance of an axiom (after left and right

weakening, if necessary);

(2) next, replacing every open node Γ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ′
of the resulting tree for which

Γ′ ⊆ Γ and Δ′ ⊆ Δ with the derivation:

Γ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), 𝑠 = 𝑡 ⇒ Δ′ Γ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧), 𝜑
{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ′

Γ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ′ (4)

(3) finally, replacing every open node Γ′ ⇒ Δ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) of the resulting tree with the

derivation:

Γ′ ⇒ Δ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), (RTC𝑥,𝑦 𝜑) (𝑠, 𝑟) Γ′ ⇒ Δ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), 𝜑
{
𝑟
𝑥
, 𝑡
𝑦

}
Γ′ ⇒ Δ′, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡)

(2)

• When 𝐸𝑖 is of the form ⟨𝑠 = 𝑡, 𝑥, 𝜑, 𝑛⟩, then 𝑇𝑖+1 is then obtained by first closing as such any

open node that is an instance of an axiom (after left and right weakening, if necessary); and next, if

𝑛 = 1 (resp. 𝑛 = 2), replacing every open node Γ, 𝑠 = 𝑡 ⇒ Δ in the resulting tree for which 𝜑
{
𝑠
𝑥

}
∈ Δ

(resp. 𝜑
{
𝑡
𝑥

}
∈ Δ) with the appropriate one of the following derivations:

Γ, 𝑠 = 𝑡 ⇒ Δ, 𝜑
{
𝑡
𝑥

}
, 𝜑

{
𝑠
𝑥

}
Γ, 𝑠 = 𝑡 ⇒ Δ, 𝜑

{
𝑡
𝑥

} (=L1)
Γ, 𝑠 = 𝑡 ⇒ Δ, 𝜑

{
𝑠
𝑥

}
, 𝜑

{
𝑡
𝑥

}
Γ, 𝑠 = 𝑡 ⇒ Δ, 𝜑

{
𝑠
𝑥

} (=L2)

The limit of the sequence {𝑇𝑖 }𝑖>0 is a possibly infinite (and possibly open) derivation tree called the

search tree for Γ ⇒ Δ with respect to the schedule {𝐸𝑖 }𝑖>0, and denoted by 𝑇𝜔 .

Search trees are, by construction, recursive and cut-free. We construct special ‘sequents’ out of

search trees, called limit sequents, as follows.

Definition 4.11 (Limit Sequents). When a search tree 𝑇𝜔 is not an RTC𝜔
𝐺
proof, either: (1) it is

not even a pre-proof, i.e. it contains an open node; or (2) it is a pre-proof but contains an infinite

branch that fails to satisfy the global trace condition. In case (1) it contains an open node to which,

necessarily, no schedule element applies (e.g. a sequent containing only atomic formulas), for

which we write Γ𝜔 ⇒ Δ𝜔 . In case (2) the global trace condition fails, so there exists an infinite

path {Γ𝑖 ⇒ Δ𝑖 }𝑖>0 in 𝑇𝜔 which is followed by no infinitely progressing traces; we call this path

an untraceable branch of 𝑇𝜔 . We then take the left-most open node a or untraceable branch 𝛽 and

define Γ𝜔 =
⋃

𝑖>0
Γ𝑖 and Δ𝜔 =

⋃
𝑖>0

Δ𝑖 . We call Γ𝜔 ⇒ Δ𝜔 the limit sequent.

Note that use of the word ‘sequent’ here is an abuse of nomenclature, since limit sequents may

be infinite and thus technically not sequents. However when we say that such a limit sequent is

provable, we mean that it has a finite sub-sequent that is provable.

Lemma 4.12. Limit sequents Γ𝜔 ⇒ Δ𝜔 are not cut-free provable.

Proof. Straightforward adaptation of the proof of [11, Lemma 6.3]. □

As standard, we use a limit sequent to induce a counter-interpretation, consisting of a Herbrand

model of open terms quotiented by the equalities found in the limit sequent.

Definition 4.13 (Quotient Relation). For a limit sequent Γ𝜔 ⇒ Δ𝜔 , the relation ∼ is defined as the

smallest congruence relation on terms such that 𝑠 ∼ 𝑡 whenever 𝑠 = 𝑡 ∈ Γ𝜔 . We write [𝑡] for the
∼-equivalence class of 𝑡 , i.e. [𝑡] = {𝑢 | 𝑡 ∼ 𝑢}.

The following property holds of the quotient relation.

, Vol. 1, No. 1, Article . Publication date: October 2020.

12 Liron Cohen and Reuben N. S. Rowe

Lemma 4.14. If 𝑡 ∼ 𝑢, then Γ𝜔 ⇒ 𝐹
{
𝑡
𝑥

}
is cut-free provable in RTC𝜔

𝐺
if and only if Γ𝜔 ⇒ 𝐹

{
𝑢
𝑥

}
is

cut-free provable in RTC𝜔
𝐺
.

Proof. By induction on the conditions defining ∼. We use ≡ to denote syntactic equality on

terms, in order to distinguish from formulas 𝑠 = 𝑡 asserting equality between (interpretations of)

terms.

(𝑡 ∼ 𝑡): Immediate, since then 𝑡 ≡ 𝑢.

(𝑡 = 𝑢 ∈ Γ𝜔): Assume Γ𝜔 ⇒ 𝐹
{
𝑡
𝑥

}
is cut-free provable, then we can apply the (=L1) rule to derive

(without cut) Γ𝜔 , 𝑡 = 𝑢 ⇒ 𝐹
{
𝑢
𝑥

}
; however notice that Γ𝜔 , 𝑡 = 𝑢 is simply Γ𝜔 since 𝑡 = 𝑢 ∈ Γ𝜔

already. The converse direction is symmetric, using rule (=L2).

(𝑡 ∼ 𝑢 ⇒ 𝑢 ∼ 𝑡): Immediate, by induction.

(𝑡 ∼ 𝑢 ∧ 𝑢 ∼ 𝑣 ⇒ 𝑡 ∼ 𝑣): Straightforward, by induction.

(𝑡1 ∼ 𝑢1 ∧ . . . ∧ 𝑡𝑛 ∼ 𝑢𝑛 ⇒ 𝑓 (𝑡1, . . . , 𝑡𝑛) ∼ 𝑓 (𝑢1, . . . , 𝑢𝑛)): Consider the formula 𝐹 ; clearly there exist

formulas 𝐺1, . . . ,𝐺𝑛 and some variable 𝑦 such that 𝐺𝑖

{
𝑡
𝑦

}
≡ 𝐹

{
𝑓 (𝑢1,...,𝑢𝑖−1,𝑡𝑖 ,...,𝑡𝑛)

𝑥

}
for each 𝑖 ≤ 𝑛. By

induction, each sequent Γ𝜔 ⇒ 𝐺𝑖

{
𝑡𝑖
𝑦

}
is cut-free provable if and only if so too is Γ𝜔 ⇒ 𝐺𝑖

{
𝑢𝑖
𝑦

}
.

The result then follows since 𝐹
{
𝑓 (𝑡1,...,𝑡𝑛)

𝑥

}
≡ 𝐺1

{
𝑡1

𝑦

}
and 𝐹

{
𝑓 (𝑢1,...,𝑢𝑛)

𝑥

}
≡ 𝐺𝑛

{
𝑢𝑛
𝑦

}
, and also 𝐺𝑖

{
𝑢𝑖
𝑦

}
≡

𝐺𝑖+1

{
𝑡𝑖+1

𝑦

}
for each 𝑖 < 𝑛. □

We define the counter-interpretation as follows.

Definition 4.15 (Counter-interpretations). Assume a search tree 𝑇𝜔 which is not a RTC𝜔
𝐺
proof

with limit sequent Γ𝜔 ⇒ Δ𝜔 . Define a structure𝑀𝜔 = ⟨𝐷, 𝐼 ⟩ as follows:
• 𝐷 = {[𝑡] | t is a term} (i.e. the set of terms quotiented by the relation ∼).
• For every 𝑘-ary function symbol 𝑓 : 𝐼 (𝑓) ([𝑡1], . . . , [𝑡𝑘]) = [𝑓 (𝑡1, . . . , 𝑡𝑘)]
• For every 𝑘-ary relation symbol 𝑞: 𝐼 (𝑞) = {([𝑡1], . . . , [𝑡𝑘]) | 𝑞(𝑡1, . . . , 𝑡𝑘) ∈ Γ𝜔 }

We also define a valuation 𝜌𝜔 for𝑀𝜔 by 𝜌𝜔 (𝑥) = [𝑥] for all variables 𝑥 .

The counter-interpretation ⟨𝑀𝜔 , 𝜌𝜔 ⟩ has the following property, which entails that 𝑀𝜔 is a

counter-model for the corresponding sequent Γ ⇒ Δ if its search tree 𝑇𝜔 is not a proof.

Lemma 4.16. If𝜓 ∈ Γ𝜔 then𝑀𝜔 , 𝜌𝜔 |= 𝜓 ; and if𝜓 ∈ Δ𝜔 then𝑀𝜔 , 𝜌𝜔 ̸ |= 𝜓 .

Proof. By well-founded induction using the lexicographic ordering of the number of binders

(i.e. ∃, ∀, and RTC) in𝜓 and the structure of𝜓 . Notice that, by definition, 𝜌𝜔 (𝑡) = [𝑡] for all terms 𝑡 .

For𝜓 atomic (i.e. of the form𝑞(𝑡1, . . . , 𝑡𝑘)), if𝜓 ∈ Γ𝜔 then it follows immediately by Definition 4.15

that𝑀𝜔 , 𝜌𝜔 |= 𝑞(𝑡1, . . . , 𝑡𝑘). If, on the other hand,𝜓 ∈ Δ𝜔 then assume for contradiction that indeed

𝑀𝜔 , 𝜌𝜔 |= 𝑞(𝑡1, . . . , 𝑡𝑘). It then follows from Definition 4.15 that there are terms 𝑢1, . . . , 𝑢𝑘 such that

𝑞(𝑢1, . . . , 𝑢𝑘) ∈ Γ𝜔 and 𝑢𝑖 ∼ 𝑡𝑖 for each 𝑖 ≤ 𝑘 . Notice that then we can prove Γ𝜔 ⇒ 𝑞(𝑢1, . . . , 𝑢𝑘)
axiomatically, and so it follows by (𝑘 applications of) Lemma 4.14 that Γ𝜔 ⇒ 𝑞(𝑡1, . . . , 𝑡𝑘) is
cut-free provable. However, since 𝑞(𝑡1, . . . , 𝑡𝑘) ∈ Δ𝜔 , this would mean that the limit sequent

Γ𝜔 ⇒ Δ𝜔 is cut-free provable, which contradicts Lemma 4.12. Thus we conclude that in fact

𝑀𝜔 , 𝜌𝜔 ̸ |= 𝑞(𝑡1, . . . , 𝑡𝑘).
For 𝜓 an equality formula 𝑠 = 𝑡 , if 𝜓 ∈ Γ𝜔 then we have immediately by Definition 4.15 that

𝜌𝜔 (𝑠) = 𝜌𝜔 (𝑡) and thus that 𝑀𝜔 , 𝜌𝜔 |= 𝑠 = 𝑡 by Definition 2.2. If, on the other hand, 𝑠 = 𝑡 ∈ Δ𝜔 ,

suppose for contradiction that indeed 𝑀𝜔 , 𝜌𝜔 |= 𝑠 = 𝑡 . It then follows from Definition 4.15 that

𝑠 ∼ 𝑡 . Since we may derive Γ𝜔 ⇒ 𝑠 = 𝑠 axiomatically, it thus follows from Lemma 4.14 that there

is a cut-free proof of Γ𝜔 ⇒ 𝑠 = 𝑡 . However, since 𝑠 = 𝑡 ∈ Δ𝜔 this would mean that the limit

sequent Γ𝜔 ⇒ Δ𝜔 is cut-free provable, which contradicts Lemma 4.12. We thus conclude that in

fact𝑀𝜔 , 𝜌𝜔 ̸ |= 𝑠 = 𝑡 .

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 13

The cases where 𝜓 is a standard compound first-order formula follow straightforwardly by

induction.

In case𝜓 = (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡), we reason as follows.

• For the first part of the lemma assume (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ∈ Γ𝜔 . Then, by the construction of 𝑇𝜔 ,

there is at least one occurrence of rule (4) with active formula𝜓 in the untraceable branch; thus

there are two cases:

i) The branch follows the left-hand premise, so there is 𝑠 = 𝑡 ∈ Γ𝜔 . Therefore, by Definition 4.15,

𝜌𝜔 (𝑠) = 𝜌𝜔 (𝑡) and so it follows immediately from Definition 2.2 that𝑀𝜔 , 𝜌𝜔 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡).

ii) The branch follows the right-hand premise and so there is some variable 𝑧1 such that both

(RTC𝑥,𝑦 𝜑) (𝑠, 𝑧1) ∈ Γ𝜔 and 𝜑
{
𝑧1

𝑥
, 𝑡
𝑦

}
∈ Γ𝜔 . Again, by the construction of 𝑇𝜔 , the branch must

subsequently traverse an instance of rule (4) now with (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧1) as the principal formula.

In fact, since there is no infinitely progressing trace along the untraceable branch, it must traverse

only a finite number of instances of rule (4) for which the principal formula is connected via a

trace to the formula (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡). Thus there are a finite number of distinct variables 𝑧1, . . . , 𝑧𝑛
(𝑛 > 0) with 𝜑

{
𝑧1

𝑥
, 𝑡
𝑦

}
∈ Γ𝜔 , 𝜑

{
𝑧𝑖+1

𝑥
,
𝑧𝑖
𝑦

}
∈ Γ𝜔 , for each 𝑖 < 𝑛, and (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧1) ∈ Γ𝜔 , where the

untraceable branch traverses the left-hand branch of an instance of rule (4) with the latter

formula as principal from which it follows that also 𝑠 = 𝑧𝑛 ∈ Γ𝜔 . By the inductive hypothesis

𝑀𝜔 , 𝜌𝜔 |= 𝜑
{
𝑧1

𝑥
, 𝑡
𝑦

}
, and 𝑀𝜔 , 𝜌𝜔 |= 𝜑

{
𝑧𝑖+1

𝑥
,
𝑧𝑖
𝑦

}
for each 𝑖 < 𝑛. So 𝑀𝜔 , 𝜌𝜔 [𝑥 := [𝑧1], 𝑦 := [𝑡]] |= 𝜑 , and

𝑀𝜔 , 𝜌𝜔 [𝑥 := [𝑧𝑖+1], 𝑦 := [𝑧𝑖]] |= 𝜑 for each 𝑖 < 𝑛. Moreover, since 𝑠 = 𝑧𝑛 ∈ Γ𝜔 , we have that
𝜌𝜔 (𝑠) = 𝜌𝜔 (𝑧1) = [𝑧1]. We then have from Definition 2.2 that𝑀𝜔 , 𝜌𝜔 |= 𝜓 .

• For the second part of the lemma we first prove, by an inner induction on 𝑛, the following

auxiliary result for all terms 𝑠 and 𝑡 and elements 𝑎0, . . . , 𝑎𝑛 ∈ 𝐷 (𝑛 > 0):

if (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ∈ Δ𝜔 , with 𝜌𝜔 (𝑠) = 𝑎0 and 𝜌𝜔 (𝑡) = 𝑎𝑛 , then there exists some 𝑖 < 𝑛 such

that𝑀𝜔 , 𝜌𝜔 [𝑥 := 𝑎𝑖 , 𝑦 := 𝑎𝑖+1] ̸|= 𝜑 .

(𝑛 = 1): Since (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ∈ Δ𝜔 , we have 𝜑
{
𝑠
𝑥
, 𝑡
𝑦

}
∈ Δ𝜔 by construction as the untraceable

branch must traverse an instance of rule (2) with 𝑟 ≡ 𝑠 and moreover must traverse the right-hand

premise (otherwise, we would have (RTC𝑥,𝑦 𝜑) (𝑠, 𝑠) ∈ Δ𝜔 resulting in the branch being closed by

an instance of rule (1)). Thus by the outer induction it follows that𝑀𝜔 , 𝜌𝜔 ̸ |= 𝜑
{
𝑠
𝑥
, 𝑡
𝑦

}
and thence

that𝑀𝜔 , 𝜌𝜔 [𝑥 := 𝜌𝜔 (𝑠), 𝑦 := 𝜌𝜔 (𝑡)] ̸|= 𝜑 as required.

(𝑛 = 𝑘 + 1, 𝑘 > 0): Then there exists some term 𝑟 such that 𝑎𝑘 = [𝑟] = 𝜌𝜔 (𝑟). If (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ∈
Δ𝜔 , then by construction of the search tree 𝑇𝜔 we also have that either (RTC𝑥,𝑦 𝜑) (𝑠, 𝑟) ∈ Δ𝜔 or

𝜑
{
𝑟
𝑥
, 𝑡
𝑦

}
∈ Δ𝜔 , as the untraceable branch must traverse an instance of rule (2) for the term 𝑟 . In the

case of the former, the required result holds by the inner induction. In the case of the latter, we

have𝑀𝜔 , 𝜌𝜔 ̸ |= 𝜑
{
𝑟
𝑥
, 𝑡
𝑦

}
by the outer induction and thence that𝑀𝜔 , 𝜌𝜔 [𝑥 := 𝜌𝜔 (𝑟), 𝑦 := 𝜌𝜔 (𝑡)] ̸|= 𝜑 ;

i.e.𝑀𝜔 , 𝜌𝜔 [𝑥 := 𝑎𝑘 , 𝑦 := 𝑎𝑘+1] ̸|= 𝜑 as required.

We now show that the primary result holds. Assume (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ∈ Δ𝜔 and suppose for

contradiction that𝑀𝜔 , 𝜌𝜔 |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) holds. Thus, by Definition 2.2, there are two cases to

consider.

– If 𝜌𝜔 (𝑠) = 𝜌𝜔 (𝑡) then 𝑠 ∼ 𝑡 . Thus since we may derive Γ𝜔 ⇒ (RTC𝑥,𝑦 𝜑) (𝑠, 𝑠) by applying rule

(1), by Lemma 4.14 there must also be a cut-free proof of Γ𝜔 ⇒ (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡). However, since
(RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ∈ Δ𝜔 this would imply that Γ𝜔 ⇒ Δ𝜔 is cut-free provable, which contradicts

Lemma 4.12.

, Vol. 1, No. 1, Article . Publication date: October 2020.

14 Liron Cohen and Reuben N. S. Rowe

– Otherwise, there are 𝑎0, . . . , 𝑎𝑛 ∈ 𝐷 (𝑛 > 0) such that 𝜌𝜔 (𝑠) = 𝑎0, 𝜌𝜔 (𝑡) = 𝑎𝑛 and 𝑀𝜔 , 𝜌𝜔 [𝑥 :=

𝑎𝑖 , 𝑦 := 𝑎𝑖+1] |= 𝜑 for each 𝑖 < 𝑛. However this directly contradicts the auxiliary result proved

above.

In both cases, we have derived a contradiction, and so we conclude that𝑀𝜔 , 𝜌𝜔 ̸ |= (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡)
as required. □

The completeness result therefore follows since, by construction, a sequent 𝑆 is contained within

its corresponding limit sequents.

Theorem 4.17 (Completeness). RTC𝜔
𝐺
is complete for standard semantics.

Proof. Now given any sequent 𝑆 , if some search tree 𝑇𝜔 contracted for 𝑆 is not an RTC𝜔
𝐺
proof

then it follows from Lemma 4.16 that 𝑆 is not valid (𝑀𝜔 is a counter model for it). Thus if 𝑆 is valid,

then 𝑇𝜔 is a recursive RTC𝜔
𝐺
proof for it. □

We obtain admissibility of cut for the full infinitary system as the search tree 𝑇𝜔 is cut-free.

Corollary 4.18 (Cut admissibility). Cut is admissible in RTC𝜔
𝐺
.

4.3 The Proof System CRTC𝜔
𝐺

In general, one cannot reason effectively about infinite proofs as in RTC𝜔
𝐺
. In order to do so we need

to restrict our attention to those proof trees which are finitely representable. These are the regular
infinite proof trees, which contain only finitely many distinct subtrees. They can be specified as

systems of recursive equations or, alternatively, as cyclic graphs [19]. Note that a given regular

infinite proof may have many different graph representations. One possible way of formalizing

such proof graphs is as standard proof trees containing open nodes (called buds), to each of which

is assigned a syntactically equal internal node of the proof (called a companion).

The cyclic proof system CRTC𝜔
𝐺
for LRTC is (essentially) the subsystem of RTC𝜔

𝐺
comprising of

all and only the finite and regular infinite proofs (i.e. those proofs that can be represented as finite,

possibly cyclic, graphs).

Definition 4.19 (Cyclic Proofs). A CRTC𝜔
𝐺
pre-proof is a pair ⟨𝑃, 𝑓 ⟩, where 𝑃 is a finite derivation

tree formed using the inference rules of RTC𝜔
𝐺
and 𝑓 is a function assigning a companion to every

bud node in 𝑃 . The graph associated with a pre-proof is the one induced by 𝑃 by identifying each

bud node with its companion. A CRTC𝜔
𝐺
proof is then a CRTC𝜔

𝐺
pre-proof whose graph satisfies

the global trace condition, i.e., every infinite path is followed by some infinitely progressing trace.

It is decidable whether a cyclic pre-proof satisfies the global trace condition, using a construction

involving an inclusion between Büchi automata (see, e.g., [9, 34]). However since this requires

complementing Büchi automata (a PSPACE procedure), our system cannot be considered a proof

system in the Cook-Reckhow sense [18]. The problem of deciding whether the global trace condition

holds for a cyclic proofs in a fragment of linear logic with fixed points has in fact recently been

shown to be PSPACE-complete [30]. We also think it likely that a similar technique will serve to

give similar lower bounds for our system, as well as others. Notwithstanding, checking the trace

condition for cyclic proofs found in practice is not prohibitive [32, 37].

Since every CRTC𝜔
𝐺
proof is also a RTC𝜔

𝐺
proof, soundness of CRTC𝜔

𝐺
is an immediate corollary

of Theorem 4.8.

Corollary 4.20 (Soundness of CRTC𝜔
𝐺
). If there is a CRTC𝜔

𝐺
proof of Γ ⇒ Δ, then Γ ⇒ Δ is

valid (w.r.t. the standard semantics).

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 15

Notice that the construction of Definition 4.10 does not necessarily produce CRTC𝜔
𝐺
pre-proofs,

and so we do not obtain a completeness result using this technique. Indeed, since one may encode

arithmetic in TC and the set ofCRTC𝜔
𝐺
proofs is recursively enumerable,CRTC𝜔

𝐺
cannot be complete

w.r.t. the standard semantics. In Section 6 below we show that CRTC𝜔
𝐺
subsumes RTC𝐺 , which

entails its Henkin-completeness. However, the question of whether CRTC𝜔
𝐺
is sound w.r.t. Henkin

semantics remains open.

5 VARIANTS OF LRTC

We now present two important variants of TC logic—one with an assumed pairing function, and

one without a designated equality symbol—and show how the theory of the previous sections

extends to them.

5.1 LRTC with Pairs
To obtain full inductive expressivity we must allow the formation of the transitive closure of not

only binary relations, but any 2𝑛-ary relation. In [2] it was shown that taking a 2𝑛-ary operator

RTC𝑛
for every 𝑛 ≥ 1 results in a more expressive logic, namely one that captures all finitary

first-order definable inductive definitions and relations. However one may argue that, from a proof

theoretical point of view, having infinitely many such operators is sub-optimal: the language is no

longer generated using a finite signature and proof systems must also contain an infinite number

of rule schemata.

Instead, we incorporate the notion of ordered pairs and use it to encode such operators. For

example, writing ⟨𝑥,𝑦⟩ for the application of the pairing function ⟨⟩(𝑥,𝑦), the 2𝑛-ary RTC-formula

(RTC2

𝑥1,𝑥2,𝑦1,𝑦2

𝜑) (𝑠1, 𝑠2, 𝑡1, 𝑡2) can be encoded by:

(RTC𝑥,𝑦 ∃𝑥1, 𝑥2, 𝑦1, 𝑦2 . 𝑥 = ⟨𝑥1, 𝑥2⟩ ∧ 𝑦 = ⟨𝑦1, 𝑦2⟩ ∧ 𝜑) (⟨𝑠1, 𝑠2⟩, ⟨𝑡1, 𝑡2⟩)
Accordingly, we may assume languages that explicitly contain a pairing function, providing that we

(axiomatically) restrict to structures that interpret it as such (i.e. the admissible structures). For such
languages we can consider two induced semantics: admissible standard semantics and admissible

Henkin semantics, obtained by restricting the (first-order part of the) structures to be admissible.

The proof systems we have considered above can be extended to capture ordered pairs as follows.

Definition 5.1. For a signature containing at least one constant 𝑐 , and a binary function symbol

denoted by ⟨⟩, the proof systems ⟨RTC⟩𝐺 , ⟨RTC⟩𝜔𝐺 , and ⟨CRTC⟩𝜔𝐺 are obtained from RTC𝐺 , RTC𝜔
𝐺
,

CRTC𝜔
𝐺
(respectively) by the addition of the following rules:

Γ ⇒ ⟨𝑥,𝑦⟩ = ⟨𝑢, 𝑣⟩,Δ
Γ ⇒ 𝑥 = 𝑢 ∧ 𝑦 = 𝑣,Δ Γ, ⟨𝑥,𝑦⟩ = 𝑐 ⇒ Δ

The proofs of Theorems 3.2 and 4.17 can easily be extended to obtain the following results

for languages with a pairing function. For completeness, the key observation is that the model

comprising the counter-interpretation is one in which every binary function is a pairing function.

That is, the interpretation of any binary function is such that satisfies the standard pairing axioms.

Therefore, the model of the counter-interpretation is an admissible structure.

Theorem 5.2 (Soundness and Completeness of ⟨RTC⟩𝐺 and ⟨RTC⟩𝜔𝐺). The proof systems
⟨RTC⟩𝐺 and ⟨RTC⟩𝜔𝐺 are both sound and complete for the admissible forms of Henkin and standard
semantics, respectively.

5.2 LRTC without Equality
For the sake of simplicity of presentation we have thus far included a designated equality symbol

in the language LRTC. Nonetheless, under both the standard semantics and Henkin semantics for

, Vol. 1, No. 1, Article . Publication date: October 2020.

16 Liron Cohen and Reuben N. S. Rowe

the language, the equality relation is definable and thus there is no need to explicitly include it

in our languages. The proof-theoretic results obtained in the previous sections for languages that

do assume an equality symbol can be adapted without too much difficulty to hold for languages

without equality. This is a noteworthy added degree of expressivity over other logics.

5.2.1 Adaptations of the Language and Proof Rules. We remove 𝑠 = 𝑡 as atomic formulas of the

language, and instead include a constant ⊥, whose interpretation is defined such that 𝑀, 𝑣 |= ⊥
never holds.

4
For the Henkin semantics, we must also add to the parametric closure condition in

the definition of Henkin structures (Definition 2.5) the requirement that {𝑎} ∈ D for all 𝑎 ∈ 𝐷 .

This is to ensure that Henkin models are fine-grained enough to allow individual elements to be

distinguished via formula-definability. Equality is then definable under both semantics by:

𝑠 = 𝑡 := (RTC𝑥,𝑦 ⊥)(𝑠, 𝑡). (5)

We also modify the proof systems slightly by removing the three equality rules of LK= and instead

including the following rule:

(⊥) ⊥ ⇒
While the rules pertaining to RTC formulas in the finitary system remain unchanged, cf. Rules (1)

to (3), in the infinitary systems Rule (4) is reformulated as follows

Γ′
{
𝑠
𝑣
, 𝑡
𝑤

}
⇒ Δ′{ 𝑠

𝑣
, 𝑡
𝑤

}
Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧), 𝜑

{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ

Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ
(6)

where 𝑧 is fresh, i.e. 𝑧 does not occur free in Γ, Δ, or (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡); and Γ′ and Δ′
are such that

Γ = Γ′
{
𝑡
𝑣
, 𝑠
𝑤

}
and Δ = Δ′{ 𝑡

𝑣
, 𝑠
𝑤

}
. This formulation essentially combines the RTC case-split rule with

the equality rules: in the left-hand premise, corresponding to the case that 𝑠 = 𝑡 , we may swap

occurrences of 𝑠 in the context for 𝑡 , and vice-versa. As a consequence, the definition of trace pairs

for this rule becomes slightly more complex.

Definition 5.3 (Trace Pairs for LRTC without Equality). Let 𝜏 and 𝜏 ′ be RTC formulas occurring in

the left-hand side of the conclusion 𝑠 and a premise 𝑠 ′, respectively, of (an instance of) an inference

rule. (𝜏, 𝜏 ′) is said to be a trace pair for (𝑠, 𝑠 ′) if the rule is:
• the (Subst) rule, and 𝜏 = 𝜏 ′\ where \ is the substitution associated with the rule instance;

• Rule (6), and either:

a) 𝜏 is the principal formula of the rule instance and 𝜏 ′ is the immediate ancestor of 𝜏 , in

which case we say that the trace pair is progressing;
b) 𝑠 ′ is the right-hand premise and 𝜏 = 𝜏 ′; or
c) 𝑠 ′ is the left-hand premise and 𝜏 ′ = 𝜏 ′′

{
𝑠
𝑣
, 𝑡
𝑤

}
for some 𝜏 ′′ ∈ Γ′.5

• any other rule, and 𝜏 = 𝜏 ′.

The proof of soundness (Theorem 4.8) can be trivially adapted for this modified infinitary system.

5.2.2 Derivability of the Equality Rules. In these variations of both the finitary and infinitary

systems, the equality rules of LK= become derivable using the 𝑅𝑇𝐶-defined equality. Rule (=R) is

derivable since 𝑡 = 𝑡 stands for (RTC𝑥,𝑦 ⊥)(𝑡, 𝑡), which is provable using Rule (1). In the finitary

variation, Rule (=L1) is derivable as follows:

Γ ⇒ Δ,𝜓
{
𝑠
𝑥

} Γ,𝜓,⊥ ⇒ Δ,𝜓
{ 𝑦

𝑥

} (⊥+WL+WR)

Γ,𝜓
{
𝑠
𝑥

}
, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ,𝜓

{
𝑡
𝑥

} (3)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ,𝜓
{
𝑡
𝑥

} (Cut)

4
Note that the inclusion of ⊥ is itself also only a notational convenience since it may be encoded via any contradiction.

5
Here, Γ′, 𝑣, 𝑤, 𝑠 and 𝑡 refer to the instantiations of these same meta-variables appearing in the schema of Rule (6).

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 17

and Rule (=L2) is derived dually, as follows:

Γ,𝜓
{
𝑠
𝑥

}
⇒ Δ,𝜓

{
𝑠
𝑥

} (Ax+WL+WR)

Γ ⇒ Δ,𝜓
{
𝑠
𝑥

}
,¬𝜓

{
𝑠
𝑥

} (¬R)
Γ,𝜓,⊥ ⇒ Δ,𝜓

{ 𝑦

𝑥

} (⊥+WL+WR)

Γ,¬𝜓
{
𝑠
𝑥

}
, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ,¬𝜓

{
𝑡
𝑥

} (3)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ,𝜓
{
𝑠
𝑥

}
,¬𝜓

{
𝑡
𝑥

} (Cut)
Γ ⇒ Δ,𝜓

{
𝑡
𝑥

}
Γ,¬𝜓

{
𝑡
𝑥

}
⇒ Δ

(¬L)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ,𝜓
{
𝑠
𝑥

} (Cut)

In the infinitary variations, both Rule (=L1) and Rule (=L2) are simply instances of Rule (6). For

example, Rule (=L1) is derivable as follows:

Γ ⇒ Δ,𝜓
{
𝑠
𝑥

}
Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑧),⊥ ⇒ Δ,𝜓

{
𝑡
𝑥

} (⊥+WL+WR)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ,𝜓
{
𝑡
𝑥

} (6)

where the only occurrences of 𝑡 in the context of the conclusion that are swapped for 𝑠 in the

left-hand premise are those in the formula𝜓 (and no occurrences of 𝑠 in the conclusion are swapped

for 𝑡). Rule (=L2) is derived symmetrically.

5.2.3 Completeness. The adaptation of the completeness proof for the finitary variation is standard.

Completeness of the infinitary system follows from the fact that, in addition to the equality rules

derived above, we can also derive the original form of the case-split rule as follows.

(1)

⇒ (RTC𝑥,𝑦 ⊥) (𝑠, 𝑠)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑡) ⇒ Δ

Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧), 𝜑
{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ

(WL)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑠), (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧), 𝜑
{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ

(6)

Γ, (RTC𝑥,𝑦 ⊥) (𝑠, 𝑠), (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ
(Cut)

Γ, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ

Notice that this uses a cut, so we do not obtain cut-free completeness this way. The technique

used in Section 4.2 to show cut-admissibility of RTC𝜔
𝐺
does not immediately apply in the setting

without equality since the limit sequent no longer contains formulas explicitly witnessing equalities

between terms. Although we believe the technique can be adapted for the case without explicit

equality, since this is tangential to our main contributions we leave this for future work.

6 RELATING THE FINITARY AND INFINITARY PROOF SYSTEMS
This section discusses the relation between the explicit and the cyclic system for TC. In Section 6.1

we show that the former is contained in the latter. The converse direction, which is much more

subtle, is discussed in Section 6.2.

6.1 Inclusion of RTC𝐺 in CRTC𝜔
𝐺

Provability in the explicit induction system implies provability in the cyclic system. The key

property is that we can derive the explicit induction rule in the cyclic system, as shown in Figure 2.

Lemma 6.1. Rule (3) is derivable in CRTC𝜔
𝐺
.

This leads to the following result (an analogue to [11, Theorem 7.6]).

Theorem 6.2. CRTC𝜔
𝐺
⊇ RTC𝐺 , and is thus complete w.r.t. Henkin semantics.

Proof. Let P be a proof in RTC𝐺 and P ′
be the corresponding pre-proof in CRTC𝜔

𝐺
obtained

by replacing each instance of Rule (3) by the corresponding instance of the proof schema given in

Lemma 6.1. We argue that P ′
is a valid CRTC𝜔

𝐺
proof. Since the only cycles in P ′

are internal to

the subproofs that simulate Rule (3), any infinite path in P ′
must eventually end up traversing one

of these cycles infinitely often. Therefore, it suffices to show that there is an infinitely progressing

, Vol. 1, No. 1, Article . Publication date: October 2020.

18 Liron Cohen and Reuben N. S. Rowe

(WL,WR,Ax)

Γ,𝜓
{
𝑣
𝑥

}
⇒ Δ,𝜓

{
𝑣
𝑥

}
(=L1)

Γ,𝜓
{
𝑣
𝑥

}
, 𝑣 = 𝑤 ⇒ Δ,𝜓

{
𝑤
𝑥

}
.
.
.
.
.
.
.
.

Γ,𝜓
{
𝑣
𝑥

}
, (RTC𝑥,𝑦 𝜑) (𝑣,𝑤) ⇒ Δ,𝜓

{
𝑤
𝑥

}
(Subst)

Γ,𝜓
{
𝑣
𝑥

}
, (RTC𝑥,𝑦 𝜑) (𝑣, 𝑧) ⇒ Δ,𝜓

{
𝑧
𝑥

} Γ,𝜓, 𝜑 ⇒ Δ,𝜓
{ 𝑦

𝑥

}
(Subst)

Γ,𝜓
{
𝑧
𝑥

}
, 𝜑

{
𝑧
𝑥
, 𝑤
𝑦

}
⇒ Δ,𝜓

{
𝑤
𝑥

}
(Cut)

Γ,𝜓
{
𝑣
𝑥

}
, (RTC𝑥,𝑦 𝜑) (𝑣, 𝑧), 𝜑

{
𝑧
𝑥
, 𝑤
𝑦

}
⇒ Δ,𝜓

{
𝑤
𝑥

}

(4)

Γ,𝜓
{
𝑣
𝑥

}
, (RTC𝑥,𝑦 𝜑) (𝑣,𝑤) ⇒ Δ,𝜓

{
𝑤
𝑥

}
(Subst)

Γ,𝜓
{
𝑠
𝑥

}
, (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) ⇒ Δ,𝜓

{
𝑡
𝑥

}
Fig. 2. CRTC𝜔

𝐺
derivation simulating Rule (3). The variables 𝑣 and𝑤 are fresh (i.e. not free in Γ, Δ, 𝜑 , or𝜓).

trace following each such path. This is clearly the case since we can trace the active RTC formulas

along these paths, which progress once each time around the cycle, across Rule (4). □

Lemma 6.1 is the TC counterpart of [11, Lemma 7.5]. It is interesting to note that the simulation

of the explicit LKID induction rule in the cyclic LKID system is rather complex since each predicate

has a slightly different explicit induction rule, which depends on the particular productions defining

it. Thus, the construction for the cyclic LKID system must take into account the possible forms

of arbitrary productions. In contrast, CRTC𝜔
𝐺
provides a single, uniform way to unfold an RTC

formula: the construction given in Fig. 2 is the cyclic representation of the RTC operator semantics,

with the variables 𝑣 and 𝑤 implicitly standing for arbitrary terms, which we then subsequently

substitute for the particular terms begin reasoned over.

This uniform syntactic translation of the explicit RTC𝐺 induction rule into CRTC𝜔
𝐺
allows us

to syntactically identify a proper subset of cyclic proofs which is also complete w.r.t. Henkin

semantics.
6
The criterion we use is based on the notion of overlapping cycles. Recall the definition

of a basic cycle, which is a path in a (proof) graph starting and ending at the same point, but

containing no other repeated nodes. We say that two distinct basic cycles (i.e. ones not identical

up to cyclic permutation) overlap if they share any nodes in common; that is, at some point they

both traverse the same path in the graph. We say that a cyclic proof is non-overlapping whenever

no two distinct basic cycles it contains overlap. The restriction to non-overlapping proofs has an

advantage for automation, since one has only to search for cycles in one single branch.

Definition 6.3 (Normal Cyclic Proofs). The normal cyclic proof system NCRTC𝜔
𝐺
is the subsystem

of RTC𝜔
𝐺
comprising of all and only the non-overlapping cyclic proofs.

The following theorem is immediate due to the fact that the translation of an RTC𝐺 proof into

CRTC𝜔
𝐺
, using the construction shown in Figure 2, results in a proof with no overlapping cycles.

Theorem 6.4. NCRTC𝜔
𝐺
⊇ RTC𝐺 .

Henkin-completeness of the normal cyclic system then follows fromTheorem 6.4 and Theorem 3.2.

6.2 Inclusions of CRTC𝜔
𝐺
in RTC𝐺

This section addresses the question of whether the cyclic system is equivalent to the explicit one,

or strictly stronger. In [11] it was conjectured that for the system with inductive definitions, LKID
6
Note that it is not clear that a similar complete structural restriction is possible for LKID.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 19

and CLKID𝜔
are equivalent. Later, it was shown that they are indeed equivalent when containing

arithmetics [7, 34]. We obtain a corresponding theorem in Section 6.2.1 for the TC systems. However,

it was also shown in [6] that in the general case the cyclic system is stronger than the explicit one.

We discuss the general case for TC and its subtleties in Section 6.2.2.

6.2.1 The Case of Arithmetics. Here we show equivalence of the systems RTC𝐺+A and CRTC𝜔
𝐺
+A

for languages LRTC based on the signature {0, s, +}, obtained by adding to RTC𝐺 and CRTC𝜔
𝐺
,

respectively, the standard axioms of Peano arithmetic (PA) together with the RTC characterization

of the natural numbers
7
, i.e.:

i) s𝑥 = 0 ⇒
ii) s𝑥 = s𝑦 ⇒ 𝑥 = 𝑦

iii) ⇒ 𝑥 + 0 = 𝑥

iv) ⇒ 𝑥 + s𝑦 = s(𝑥 + 𝑦)
v) ⇒ (RTC𝑤,𝑢 s𝑤 = 𝑢) (0, 𝑥)

Note that we do not need to assume multiplication explicitly in the signature, nor add axioms for it,

since multiplication is definable in LRTC and its standard axioms are derivable in RTC𝐺+A [2, 16]

and thus also in CRTC𝜔
𝐺
+A. In the presence of pairs, addition is also definable in LRTC for languages

based on the signature {0, s}, and corresponding versions of axioms (iii) and (iv) are derivable.

Furthermore, recall that we can express facts about sequences of numbers in PA by using a

𝛽-function such that for any finite sequence 𝑘0, 𝑘1, ..., 𝑘𝑛 there is some 𝑐 such that for all 𝑖 ≤ 𝑛,

𝛽 (𝑐, 𝑖) = 𝑘𝑖 . Accordingly, let 𝐵 be a well-formed formula of the language of PA with three free

variables which captures in PA a 𝛽-function. The 𝛽-translation of a formula 𝜑 in LRTC is defined

inductively. For atomic formulas 𝜑𝛽 = 𝜑 , the translation is homomorphic with respect to the

first-order logical connectives, and for RTC-formulas ((RTC𝑥,𝑦 𝜑) (𝑠, 𝑡))𝛽 is defined as:

𝑠 = 𝑡 ∨
(
∃𝑧, 𝑐 . 𝐵(𝑐, 0, 𝑠) ∧ 𝐵(𝑐, s𝑧, 𝑡) ∧

(
∀𝑢 ≤ 𝑧 . ∃𝑣,𝑤 . 𝐵(𝑐,𝑢, 𝑣) ∧ 𝐵(𝑐, s𝑢,𝑤) ∧ 𝜑𝛽

{
𝑣
𝑥
, 𝑤
𝑦

}))
.

Proof Outline. We demonstrate the equivalence of RTC𝐺+A and CRTC𝜔
𝐺
+A in two stages.

First, we use a result from [13, 16] that RTC𝐺+A is equivalent to Gentzen’s system PA𝐺 for Peano

arithmetic, modulo translation via the 𝛽-function. It is mainly based on the fact that in RTC𝐺+A all

instances of the PA𝐺 induction rule are derivable.

Theorem 6.5 (cf. [16]). The following hold.
(1) ⊢RTC𝐺+A 𝜑 ⇔ 𝜑𝛽 .
(2) ⊢RTC𝐺+A Γ ⇒ Δ iff ⊢PA𝐺 Γ𝛽 ⇒ Δ𝛽 .

Secondly we show that, also modulo translation via the 𝛽-function, CRTC𝜔
𝐺
+A is equivalent

to Simpson’s Gentzen-style cyclic system CA𝐺 for arithmetic. Simpson’s result [34] that CA𝐺 is

equivalent to PA𝐺 provides the final link in the chain. This is summarised in Fig. 3 below.

Cyclic Arithmetic. We reprise the salient details of the cyclic system CA𝐺 for arithmetic

introduced in [34]. Sequents Γ ⇒ Δ of CA𝐺 consist of sets Γ and Δ of formulas of the language

over the signature {0, s, +, ·, <,=}. Pre-proofs of CA𝐺 are the regular, non-wellfounded derivation

trees formed using the standard inference rules of Gentzen’s system LK (with substitution), as

well as the following inference rules

(Eq):

Γ
{
𝑢
𝑥
, 𝑡
𝑦

}
⇒ Δ

{
𝑢
𝑥
, 𝑡
𝑦

}
Γ
{
𝑡
𝑥
, 𝑢
𝑦

}
, 𝑡 = 𝑢 ⇒ Δ

{
𝑡
𝑥
, 𝑢
𝑦

} (Ind):

Γ, 𝑡 = s𝑥 ⇒ Δ
𝑥 is fresh

Γ, 0 < 𝑡 ⇒ Δ

7
Axioms are added as new inference rules without any premises.

, Vol. 1, No. 1, Article . Publication date: October 2020.

20 Liron Cohen and Reuben N. S. Rowe

⊢RTC𝐺+A Γ ⇒ Δ

⊢PA𝐺 Γ𝛽 ⇒ Δ𝛽 ⊢CA𝐺 Γ𝛽 ⇒ Δ𝛽

⊢CRTC𝜔
𝐺
+A Γ ⇒ Δ

Theorem 6.5(2)

Simpson [34]

Lemma 6.10Lemma 6.13

Theorem 6.15

Fig. 3. The structure of the equivalence proof for RTC𝐺+A and CRTC𝜔
𝐺
+A.

and the following axiom schemas:

𝑡 < 𝑢,𝑢 < 𝑣 ⇒ 𝑡 < 𝑣

𝑡 < 𝑢,𝑢 < 𝑡 ⇒
𝑡 < 𝑢,𝑢 < s𝑡 ⇒

𝑡 < 0 ⇒
𝑡 < 𝑢 ⇒ s𝑡 < s𝑢

⇒ 𝑡 < s𝑡
⇒ 𝑡 < 𝑢, 𝑡 = 𝑢,𝑢 < 𝑡

⇒ 𝑡 + 0 = 𝑡

⇒ 𝑡 + s𝑢 = s(𝑡 + 𝑢)
⇒ 𝑡 · 0 = 0

⇒ 𝑡 · s𝑢 = (𝑡 · 𝑢) + 𝑡

Traces of CA𝐺 consist of terms, rather than formulas as in CRTC𝜔
𝐺
. If sequents 𝑆 and 𝑆 ′ are the

conclusion and premise, respectively, of a CA𝐺 inference rule, and 𝑡 and 𝑡 ′ are terms occurring,

respectively, in 𝑆 and 𝑆 ′ (possibly as subterms), then we say that 𝑡 ′ is a precursor of 𝑡 when the

following holds:

– if 𝑆 and 𝑆 ′ are the conclusion and premise of an instance of the (Subst) rule, then 𝑡 = 𝑡 ′\ ,
where \ is the substitution applied in the rule instance;

– if 𝑆 and 𝑆 ′ are the conclusion and premise of an instance of the (Eq) rule with principal

formula 𝑢 = 𝑣 , then 𝑡 = 𝑡 ′′
{
𝑢
𝑥
, 𝑣
𝑦

}
and 𝑡 ′ = 𝑡 ′′

{
𝑣
𝑥
, 𝑢
𝑦

}
for some term 𝑡 ′′; and

– if 𝑆 and 𝑆 ′ are the conclusion and premise of an instance of any other rule, then 𝑡 ′ = 𝑡 .

A pair of terms (𝑡, 𝑡 ′) is a CA𝐺 trace pair for (𝑆, 𝑆 ′) if either 𝑡 ′ is a precursor of 𝑡 or there is a

formula 𝑡 ′ < 𝑡 ′′ in the antecedent of 𝑆 ′ with 𝑡 ′′ a precursor of 𝑡 . In the latter case, the trace pair is

called progressing. We say that a CA𝐺 trace 𝑡0, 𝑡1, . . . (, 𝑡𝑛) follows a path 𝑆0, 𝑆1, . . . (, 𝑆𝑚) in a CA𝐺

pre-proof when there is some 𝑘 ≥ 0 such that (𝑡𝑖 , 𝑡𝑖+1) is a trace pair for (𝑆𝑖+𝑘 , 𝑆𝑖+𝑘+1), for all 𝑖 ≥ 0.

A CA𝐺 proof is a pre-proof in which every infinite path is followed by a trace containing infinitely

many progressing trace pairs.

Inclusion of CA𝐺 in CRTC𝜔
𝐺
+A. We give a translation of CA𝐺 proofs into CRTC𝜔

𝐺
+A proofs.

Since CRTC𝜔
𝐺
subsumes RTC𝐺 in the general case (Theorem 6.2), this translation is not actually

necessary to prove the main result of this section (Theorem 6.15). However we show the inclusion

of CA𝐺 in CRTC𝜔
𝐺
+A as part of a proof of the equivalence of CA𝐺 and CRTC𝜔

𝐺
+A, which stands

as an interesting result in its own right. This provides a fuller picture, mirroring the equivalence

between PA𝐺 and RTC𝐺+A, and establishes a correlation between the different forms of tracing in

the two systems: namely via terms and via formulas.

Technically, the signature of CA𝐺 includes the relation symbol < for strict ordering, and the

function symbol ‘ · ’ for multiplication. As mentioned above, multiplication (and its axioms) are

derivable in RTC𝐺+A. The strict ordering on natural numbers 𝑠 < 𝑡 is definable in LRTC as

𝑠 ≠ 𝑡 ∧ (RTC𝑥,𝑦 s𝑥 = 𝑦) (𝑠, 𝑡), and its standard axioms are also derivable in RTC𝐺+A. Therefore,
in the following result, we implicitly assume that all CA𝐺 terms of the form 𝑠 · 𝑡 and 𝑠 < 𝑡 are

translated in CRTC𝜔
𝐺
into their defining formulas in LRTC.

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 21

We call an occurrence of a (sub)term free if it does not contain any variables bound by quantifiers

under whose scope it occurs.

Definition 6.6 ([·]∗
𝑋
-translation). Let 𝑋 be a finite set of variables, and fix an injection, ·̂, from

the set of terms into the set of variablesV \ 𝑋 . Then, for a set of formulas Γ, define Γ∗
𝑋
to be the

smallest set satisfying Γ ⊆ Γ∗
𝑋
and, for all free (sub)terms 𝑡 occurring in formulas in Γ, 𝑡 = 𝑡 ∈ Γ∗

𝑋

and (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) ∈ Γ∗
𝑋
. For 𝑆 = Γ ⇒ Δ, we define 𝑆∗

𝑋
= Γ∗

𝑋
⇒ Δ.

To prove the inclusion, notice that it suffices to prove that if𝑋 is the set of free variables occurring

in a CA𝐺 proof of Γ ⇒ Δ then there is a CRTC𝜔
𝐺
+A proof of Γ∗

𝑋
⇒ Δ. Thence we may obtain

a CRTC𝜔
𝐺
+A proof of Γ ⇒ Δ by cutting all the added formulas (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) in Γ∗

𝑋
using

instances of axiom (v), then introducing existential quantifiers binding all variables 𝑡 and cutting

the resulting formulas ∃𝑧.𝑡 = 𝑧.

The key to this is showing that the [·]∗
𝑋
-translations of the CA𝐺 axioms and inference rules

are derivable in CRTC𝜔
𝐺
+A in such a way that (progressing) CA𝐺 trace pairs are simulated by

(progressing) CRTC𝜔
𝐺
traces.

Lemma 6.7. Let 𝑆 and 𝑆1, . . . , 𝑆𝑛 be the conclusion and the premises, respectively, of an instance of
a CA𝐺 inference rule or axiom, and 𝑋 a superset of the set of free variables occurring therein. The
following inference rule is derivable in CRTC𝜔

𝐺
+A

(𝑆1)∗𝑋 . . . (𝑆𝑛)∗𝑋
(𝑆)∗𝑋

such that the following hold.
1. If 𝑡 ′ is a precursor (in 𝑆𝑖) of 𝑡 (in 𝑆) then each path in the derived inference rule from the

conclusion to the premise corresponding to 𝑆𝑖 is followed by a CRTC𝜔
𝐺
trace starting with the

formula (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) and ending with the formula (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡 ′). Furthermore,
all infinite paths in the derived inference rule are followed by infinitely progressing (CRTC𝜔

𝐺
)

traces.
2. If (𝑡, 𝑡 ′) is a (progressing) CA𝐺 trace pair for (𝑆, 𝑆𝑖) then each path in the derived inference

rule from the conclusion to the premise corresponding to 𝑆𝑖 is followed by a (progressing)
CRTC𝜔

𝐺
trace starting with the formula (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) and ending with the formula

(RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡 ′).

Proof. The axioms ofCA𝐺 can be derived straightforwardly using axioms (i) to (v) and reasoning

inductively (i.e. with cycles) over the RTC definition of the ordering relation <. For axiomatic rules

the properties (1) and (2) hold trivially: there are no precursors or trace pairs since there are no

premises.

For non-axiomatic rules, we build the required derivations in two stages. Firstly the (Eq) rule

and standard LK inference rules can be applied directly to the [·]∗
𝑋
-translations, and cuts used to

introduce formulas (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) and 𝑡 = 𝑡 in the antecedents of the premises for any new

terms 𝑡 that appear there. The (Ind) rule may be derived using an instance of Rule (4) that unfolds

the RTC-formula in the translation of 0 < 𝑡 . Property (1) immediately holds, since we can trace

occurrences of formulas (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) in the conclusion to their ancestors in the premises.

Secondly, to show that property (2) holds, for each premise we construct a further derivation

containing progressing CRTC𝜔
𝐺
traces simulating each CA𝐺 progressing trace pair. That is, for each

pair of terms 𝑡 and 𝑡 ′ with 𝑡 ′ < 𝑡 occurring in the premise, the subderivation contains progressing

traces between formulas (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡) and (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑡 ′). The schema for these

subderivations is shown in Figs. 4 and 5, where (for a term 𝑢) the notation N𝑢 abbreviates the

, Vol. 1, No. 1, Article . Publication date: October 2020.

22 Liron Cohen and Reuben N. S. Rowe

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 = 𝑡 ⇒ 0 = 𝑡
(Ax)

𝑡 = 𝑡, 0 = 𝑡 ⇒ 0 = 𝑡
(=L2)

Fig. 5a

.

.

.

.

𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 0 = 𝑧 ⇒
𝑡 ′ < 𝑡, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 0 = 𝑡 ⇒

(Subst)

𝑡 ′ < 𝑡, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡, 0 = 𝑡 ⇒
(Cut)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡, 0 = 𝑡 ⇒ Δ
(WL/WR)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

s𝑧 = 𝑡 ⇒ s𝑧 = 𝑡
(Ax)

𝑡 = 𝑡, s𝑧 = 𝑡 ⇒ s𝑧 = 𝑡
(=L2)

Fig. 5b

.

.

.

.

𝑡 ′ < 𝑧, s𝑧 ′ = 𝑧 ⇒ 𝑡 ′ = 𝑧 ′ ∨ 𝑡 ′ < 𝑧 ′

𝑡 ′ < 𝑡, s𝑧 = 𝑡 ⇒ 𝑡 ′ = 𝑧 ∨ 𝑡 ′ < 𝑧
(Subst)

𝑡 ′ < 𝑡, 𝑡 = 𝑡, s𝑧 = 𝑡 ⇒ 𝑡 ′ = 𝑧 ∨ 𝑡 ′ < 𝑧
(Cut)

(∗) Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑡 ′ ⇒ Δ

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑧, 𝑡 = 𝑡,N 𝑡, N 𝑧 ⇒ Δ
(Subst)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 ⇒ Δ
(WL)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 5a

.

.

.

.

𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 0 = 𝑧 ⇒
Γ, 𝑡 ′ < 𝑡, 𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, 0 = 𝑧 ⇒ Δ

(WL)

.

.

.

.

.

.

.

.

Fig. 5b

.

.

.

.

𝑡 ′ < 𝑧, s𝑧 ′ = 𝑧 ⇒ 𝑡 ′ = 𝑧 ′ ∨ 𝑡 ′ < 𝑧 ′

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑧 ∨ 𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 ⇒ Δ

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑧 ′ ∨ 𝑡 ′ < 𝑧 ′, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 ′ ⇒ Δ
(Subst)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 ′ , s𝑧 ′ = 𝑧 ⇒ Δ
(Cut)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 ⇒ Δ
(4)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑧 ∨ 𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 ⇒ Δ
(∨L)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡,N 𝑡, N 𝑧 , s𝑧 = 𝑡 ⇒ Δ
(Cut)

Γ, 𝑡 ′ < 𝑡, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 𝑡 = 𝑡, N 𝑡 ⇒ Δ
(4)

Fig. 4. A derivation schema simulating a CA𝐺 trace progression point in CRTC𝜔
𝐺
+A.

RTC-formula (RTC𝑥,𝑦 s𝑥 = 𝑦) (0, 𝑢) and the symbols †, ‡ and ✠ (in Fig. 5) denote straightforward

CRTC𝜔
𝐺
proofs of the ∗-translations of the appropriate axioms. Fig. 4 presents the core of the

derivation, and Fig. 5 presents auxiliary subderivations. The CA𝐺 progression point from 𝑡 to 𝑡 ′ is
simulated by the CRTC𝜔

𝐺
traces consisting of the boxed formulas in Fig. 4, following paths from

the conclusion to the premise (marked with ∗). These traces progress at the point indicated by the

doubly boxed formula. Thus, in the resulting CRTC𝜔
𝐺
derivation, each CA𝐺 trace pair (consisting of

terms) is simulated by CRTC𝜔
𝐺
traces (consisting of formulas). □

This allows us to construct a global translation of CA𝐺 proofs into CRTC𝜔
𝐺
+A proofs.

Lemma 6.8. If ⊢CA𝐺 Γ ⇒ Δ then ⊢CRTC𝜔
𝐺
+A Γ ⇒ Δ.

Proof. Take a CA𝐺 proof P of Γ ⇒ Δ. Let 𝑋 be the set of variables occurring free in the

sequents appearing in P. By Lemma 6.7(2), it follows that we can transform a CA𝐺 pre-proof, via

the [·]∗
𝑋
-translation of each rule, into a CRTC𝜔

𝐺
+A pre-proof with the same global structure. It

remains to show that each suchCRTC𝜔
𝐺
+A pre-proof resulting from aCA𝐺 proof is also aCRTC𝜔

𝐺
+A

proof. That is, it satisfies the CRTC𝜔
𝐺
global trace condition. Consider an arbitrary infinite path in

the CRTC𝜔
𝐺
+A pre-proof. There are two cases to consider:

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 23

𝑡 ′ < 𝑧 ⇒ 𝑡 ′ < 𝑧
(Ax)

𝑡 ′ < 𝑧, 0 = 𝑧 ⇒ 𝑡 ′ < 0

(=L2)

⇒ 0 = 0
(=R) ⇒ N 0

(1)

⇒ 0 = 0 ∧ N 0

(∧R)
⇒ ∃𝑥 .0 = 𝑥 ∧ N𝑥

(∃R)

†
.
.
.
.

𝑡 ′ < 0, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 0 = 0̂,N 0̂ ⇒
𝑡 ′ < 0, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 0 = 0̂ ∧ N 0̂ ⇒

(∧L)

𝑡 ′ < 0, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, ∃𝑥 .0 = 𝑥 ∧ N𝑥 ⇒
(∃L)

𝑡 ′ < 0, 𝑡 ′ = 𝑡 ′,N 𝑡 ′ ⇒
(Cut)

𝑡 ′ < 𝑧, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, 0 = 𝑧 ⇒
(Cut)

(a) Subderivation leading to CRTC𝜔
𝐺
+A simulation of axiom 𝑡 ′ < 0 ⇒ .

𝑡 ′ < 𝑧 ⇒ 𝑡 ′ < 𝑧
(Ax)

𝑡 ′ < 𝑧, s𝑧 ′ = 𝑧 ⇒ 𝑡 ′ < s𝑧 ′
(=L2)

.

.

.

.

.

.

.

.

‡
.
.
.
.

⇒ 𝑧 ′ < 𝑡 ′, 𝑧 ′ = 𝑡 ′, 𝑡 ′ < 𝑧 ′
⇒ 𝑧 ′ = 𝑧 ′

(=R)

𝑧 ′ = 𝑡 ′ ⇒ 𝑡 ′ = 𝑧 ′
(=L1)

⇒ 𝑧 ′ < 𝑡 ′, 𝑡 ′ = 𝑧 ′, 𝑡 ′ < 𝑧 ′
(Cut)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⇒ 𝑧 ′ = 𝑧 ′
(=R) ⇒ N 𝑧 ′

(v)

⇒ 𝑧 ′ = 𝑧 ′ ∧ N 𝑧 ′
(∧R)

⇒ ∃𝑥 .𝑧 ′ = 𝑥 ∧ N𝑥
(∃R)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

⇒ 𝑡 ′ = 𝑡 ′
(=R) ⇒ N 𝑡 ′

(v)

⇒ 𝑡 ′ = 𝑡 ′ ∧ N 𝑡 ′
(∧R)

⇒ ∃𝑥 .𝑡 ′ = 𝑥 ∧ N𝑥
(∃R)

.

.

.

.

.

.

⇒ s𝑧 ′ = s𝑧 ′
(=R) ⇒ N s𝑧 ′

(v)

⇒ s𝑧 ′ = s𝑧 ′ ∧ N s𝑧 ′
(∧R)

⇒ ∃𝑥 .s𝑧 ′ = 𝑥 ∧ N𝑥
(∃R) ✠

.

.

.

.

𝑧 ′ < 𝑡 ′, 𝑡 ′ < s𝑧 ′, 𝑧 ′ = 𝑧 ′,N 𝑧 ′, 𝑡 ′ = 𝑡 ′,N 𝑡 ′, s𝑧 ′ = ˆs𝑧 ′,N ˆs𝑧 ′ ⇒
𝑧 ′ < 𝑡 ′, 𝑡 ′ < s𝑧 ′, ∃𝑥 .𝑧 ′ = 𝑥 ∧ N𝑥, ∃𝑥 .𝑡 ′ = 𝑥 ∧ N𝑥, ∃𝑥 .s𝑧 ′ = 𝑥 ∧ N𝑥 ⇒ (∃L/∧L)

𝑧 ′ < 𝑡 ′, 𝑡 ′ < s𝑧 ′, ∃𝑥 .𝑧 ′ = 𝑥 ∧ N𝑥, ∃𝑥 .𝑡 ′ = 𝑥 ∧ N𝑥 ⇒ (Cut)

𝑧 ′ < 𝑡 ′, 𝑡 ′ < s𝑧 ′, ∃𝑥 .𝑧 ′ = 𝑥 ∧ N𝑥 ⇒ (Cut)

𝑧 ′ < 𝑡 ′, 𝑡 ′ < s𝑧 ′ ⇒ (Cut)

𝑡 ′ < s𝑧 ′ ⇒ 𝑡 ′ = 𝑧 ′, 𝑡 ′ < 𝑧 ′
(Cut)

𝑡 ′ < 𝑧, s𝑧 ′ = 𝑧 ⇒ 𝑡 ′ = 𝑧 ′, 𝑡 ′ < 𝑧 ′
(Cut)

𝑡 ′ < 𝑧, s𝑧 ′ = 𝑧 ⇒ 𝑡 ′ = 𝑧 ′ ∨ 𝑡 ′ < 𝑧 ′
(∨R)

(b) Subderivation of key case-split in CRTC𝜔
𝐺
+A simulation of CA𝐺 progression point.

Fig. 5. Subcomponents of the derivation schema simulating a CA𝐺 trace progression point in CRTC𝜔
𝐺
+A.

• The infinite path ends up traversing an infinite path local to the [·]∗
𝑋
-translation of an

inference rule or CA𝐺 axiom; in this case notice that each such infinite path has an infinitely

progressing trace.

• The infinite path corresponds to an infinite path in the CA𝐺 proof (possibly interspersed

with finite traversals of the cycles local to the [·]∗
𝑋
-translation of each rule instance). Since

there is an infinitely progressing trace following the path in the CA𝐺 proof, by the properties

above there is also a corresponding infinitely progressing trace following the path in the

CRTC𝜔
𝐺
+A pre-proof. □

The following result also entails that 𝛽-translation of a sequent is provable in CA𝐺 only if the

sequent is provable in CRTC𝜔
𝐺
.

Proposition 6.9. ⊢CRTC𝜔
𝐺
+A 𝜑 ⇔ 𝜑𝛽 .

Proof. This follows from Theorem 6.5(1) and Theorem 6.2. □

Lemma 6.10. If ⊢CA𝐺 Γ𝛽 ⇒ Δ𝛽 then ⊢CRTC𝜔
𝐺
+A Γ ⇒ Δ.

Proof. We first use Lemma 6.8 to derive Γ𝛽 ⇒ Δ𝛽
in CRTC𝜔

𝐺
+A, and then combine this with

derivations in CRTC𝜔
𝐺
+A of 𝜑 ⇒ 𝜑𝛽

(resp. 𝜑𝛽 ⇒ 𝜑) for each 𝜑 ∈ Γ (resp. 𝜑 ∈ Δ), which exist by

Proposition 6.9, with applications of cuts to derive Γ ⇒ Δ. □

, Vol. 1, No. 1, Article . Publication date: October 2020.

24 Liron Cohen and Reuben N. S. Rowe

Inclusion of CRTC𝜔
𝐺
+A in CA𝐺 . We next show that from a CRTC𝜔

𝐺
+A proof one can construct

an analogous proof in CA𝐺 which preserves cycles. Our construction introduces free variables that

we are then able to trace in the cyclic CA𝐺 proof. This is similar to the use of ‘stage’ variables to

show the equivalence of the explicit and cyclic systems for LKID in [7]. There, LKID predicates 𝑃 (®𝑡)
are translated into predicates 𝑃 ′(®𝑡, 𝑛) with equivalent inductive definitions and an extra parameter

𝑛 comprising a stage variable. The equivalence is then derived by using the cycles in a proof to

construct an explicit induction hypothesis over these stage variables.

As for the proof of Lemma 6.8 above, we define a local translation on proof rules that preserves

CRTC𝜔
𝐺
+A traces as CA𝐺 traces. For this, we use a parameterised variant

¯𝛽 [𝑛] of the 𝛽-translation,
which introduces its parameter as a free variable in the translation.

Definition 6.11 (Parameterised 𝛽-translation). The variant ¯𝛽 of the 𝛽-translation takes a variable

𝑛 as an additional parameter and is similarly defined inductively. For atomic formulas 𝜑
¯𝛽
𝑛 = 𝜑 , the

translation is homomorphic with respect to the first-order logical connectives, and for RTC-formulas

(RTC𝑥,𝑦 𝜑) (𝑠, 𝑡)
¯𝛽
𝑛 is defined as follows:

𝑠 = 𝑡 ∨ ∃𝑧, 𝑐 . 𝑛 = s𝑧 ∧ 𝐵(𝑐, 0, 𝑠) ∧ 𝐵(𝑐, s𝑧, 𝑡) ∧ ∀𝑢 ≤ 𝑧 . ∃𝑣,𝑤 . 𝐵(𝑐,𝑢, 𝑣) ∧ 𝐵(𝑐, s𝑢,𝑤) ∧ 𝜑𝛽
{
𝑣
𝑥
, 𝑤
𝑦

}
Note the use of the original 𝛽-translation for the body of the RTC formula 𝜑 . We define a translation

ˆ𝛽 on sets of formulas, sequents, and inference rules as follows.

(i) For a set of formulas Γ, we define Γ
ˆ𝛽
to be the set of

¯𝛽-translations of the formulas in Γ
such that each translation of an RTC (sub-)formula uses a fresh (i.e. distinct) variable 𝑧 for the

parameter. If 𝜑 is a (sub-)formula in Γ, then we write 𝜑
¯𝛽
𝑧 to indicate that the variable 𝑧 was used in

the
¯𝛽-translation of 𝜑 to produce Γ

ˆ𝛽
.

(ii) For sequents, we define (Γ ⇒ Δ) ˆ𝛽
to be Γ

ˆ𝛽 ⇒ Δ𝛽
such that the variable parameters used by

the
ˆ𝛽-translation of the antecedent Γ are distinct from the free variables in the succedent Δ.

(iii) For an inference rule with premises Γ1 ⇒ Δ1, . . . , Γ𝑛 ⇒ Δ𝑛 and conclusion Γ ⇒ Δ, we define

its
ˆ𝛽-translation as the inference rule with premises (Γ1 ⇒ Δ1)

ˆ𝛽 , . . . , (Γ𝑛 ⇒ Δ𝑛)
ˆ𝛽
and conclusion

(Γ ⇒ Δ) ˆ𝛽
such that RTC (sub-)formulas in the premises are

¯𝛽-translated using the same variable

parameter as the
¯𝛽-translations of their immediate descendants in conclusion.

Remark 1. Note that for any sequence of formulas Σ, we can straightforwardly derive Γ, Σ𝛽 ⇒ Δ

from Γ, Σ
ˆ𝛽 ⇒ Δ by first introducing existential quantifiers for the variable parameters in Σ

ˆ𝛽
and

then eliminating the terms 𝑛 = s𝑧 with cuts. We abbreviate such a derivation using the label (ˆ𝛽).

We now show that the
ˆ𝛽-translation of each CRTC𝜔

𝐺
+A inference rule can be derived in CA𝐺 in

such a way that there is a (progressing) CA𝐺 trace simulating each (progressing) CRTC𝜔
𝐺
+A trace

pair present in the original rule. This is done by tracing the variables introduced as parameters in

the
ˆ𝛽-translation of the rule.

Lemma 6.12. Let (𝑟) be an instance of a CRTC𝜔
𝐺
+A axiom or inference rule, with conclusion 𝑆

and premises 𝑆1, . . . , 𝑆𝑛 . Then the inference rule (𝑟) ˆ𝛽 is derivable in CA𝐺 ; moreover, if (𝜏, 𝜏 ′) is a
(progressing) CRTC𝜔

𝐺
trace pair for (𝑆, 𝑆𝑖), with 𝜏

¯𝛽
𝑛 in 𝑆 and (𝜏 ′)

¯𝛽
𝑚 in 𝑆𝑖 , then there is a (progressing)

CA𝐺 trace following the path in the derived rule from the conclusion to the premise corresponding to
𝑆𝑖 that starts with 𝑛 in the conclusion and finishes with𝑚 in the premise.

Proof. We here show the construction for Rule (4); the other rules are straightforward, and

do not contain progressing CRTC𝜔
𝐺
traces. Take an instance of Rule (4) with contexts Γ and Δ,

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 25

𝑧 = 0, Σ(𝑧) ⇒ 0 < s0
(PA-Ax)

𝑧 = 0, Σ(𝑧) ⇒ 0 < 𝑛
(=L)

.

.

.

.

.

.

.

.

𝑧 = 0, Σ(𝑧) ⇒ 𝑠 = 𝑠
(=R)

𝑧 = 0, Σ(𝑧) ⇒ 𝑠 = 𝑠 ∨𝐴(0, 𝑠, 𝑠) (∨R)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝜑𝛽
{
𝑠
𝑥
, 𝑡
𝑦

}
⇒ 𝜑𝛽

{
𝑠
𝑥
, 𝑡
𝑦

} (Ax)

𝑠 = 𝑣, 𝑡 = 𝑤,𝜑𝛽
{
𝑣
𝑥
, 𝑤
𝑦

}
⇒ 𝜑𝛽

{
𝑠
𝑥
, 𝑡
𝑦

} (=L)

𝐵(𝑐, 0, 𝑠), 𝐵(𝑐, s0, 𝑡), 𝐵(𝑐, 0, 𝑣), 𝐵(𝑐, s0,𝑤), 𝜑𝛽
{
𝑣
𝑥
, 𝑤
𝑦

}
⇒ 𝜑𝛽

{
𝑠
𝑥
, 𝑡
𝑦

} (𝐵)

𝐵(𝑐, 0, 𝑠), 𝐵(𝑐, s0, 𝑡),∀𝑢 ≤ 0 . 𝜗 (𝑢) ⇒ 𝜑𝛽
{
𝑠
𝑥
, 𝑡
𝑦

} (≤0/∃L)

𝑧 = 0, Σ(𝑧) ⇒ 𝜑𝛽
{
𝑠
𝑥
, 𝑡
𝑦

} (WL/=L)

𝑧 = 0, Σ(𝑧) ⇒ ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽
{
𝑧
𝑥
, 𝑡
𝑦

} (∃R/∧R)

(a) One step from 𝑠 to 𝑡 .

Π(𝑧 ′) ⇒ s𝑧 ′ < ss𝑧 ′
(PA-Ax)

Π(𝑧 ′) ⇒ s𝑧 ′ < 𝑛
(=L)

.

.

.

.

.

.

.

.

Π(𝑧 ′) ⇒ s𝑧 ′ = s𝑧 ′
(=R)

Π(𝑧 ′) ⇒ 𝐵(𝑐, 0, 𝑠) (Ax)
Π(𝑧 ′) ⇒ 𝐵(𝑐, s𝑧 ′, 𝑣) (Ax)

Π(𝑧 ′) ⇒ ∀𝑢 ≤ 𝑧 ′ . 𝜗 (𝑢) (Ax)

Π(𝑧 ′) ⇒ ∃𝑧, 𝑐 . s𝑧 ′ = s𝑧 ∧ 𝐵(𝑐, 0, 𝑠) ∧ 𝐵(𝑐, s𝑧, 𝑣) ∧ ∀𝑢 ≤ 𝑧 . 𝜗 (𝑢) (∃R/∧R)

Π(𝑧 ′) ⇒ 𝑠 = 𝑣 ∨𝐴(s𝑧 ′, 𝑠, 𝑣) (∨R)

𝜑𝛽
{
𝑣
𝑥
, 𝑡
𝑦

}
⇒ 𝜑𝛽

{
𝑣
𝑥
, 𝑡
𝑦

} (Ax)

𝑡 = 𝑤,𝜑𝛽
{
𝑣
𝑥
, 𝑤
𝑦

}
⇒ 𝜑𝛽

{
𝑣
𝑥
, 𝑡
𝑦

} (=L)

Π(𝑧 ′) ⇒ 𝜑𝛽
{
𝑣
𝑥
, 𝑡
𝑦

} (𝐵/𝑊𝐿)

Π(𝑧 ′) ⇒ ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽
{
𝑧
𝑥
, 𝑡
𝑦

} (∃R/∧R)

𝑛 = ss𝑧 ′, 𝐵(𝑐, 0, 𝑠), 𝐵(𝑐, ss𝑧 ′, 𝑡), 𝜗 (s𝑧 ′),∀𝑢 ≤ 𝑧 ′ . 𝜗 (𝑢) ⇒ 𝜓
(∃L/∧L)

𝑛 = ss𝑧 ′, 𝐵(𝑐, 0, 𝑠), 𝐵(𝑐, ss𝑧 ′, 𝑡),∀𝑢 ≤ s𝑧 ′ . 𝜗 (𝑢) ⇒ 𝜓
(≤s)

∃𝑧 ′ . 𝑧 = s𝑧 ′, Σ(𝑧) ⇒ 𝜓
(∃L/=L)

(b) Multi-step from 𝑠 to 𝑡 .

†
.
.
.
.

⇒ 𝑧 = 0 ∨ ∃𝑧 ′ . 𝑧 = s𝑧 ′

𝑎
.
.
.
.

𝑧 = 0, Σ(𝑧) ⇒ 𝜓

𝑏
.
.
.
.

∃𝑧 ′ . 𝑧 = s𝑧 ′, Σ(𝑧) ⇒ 𝜓

𝑧 = 0 ∨ ∃𝑧 ′ . 𝑧 = s𝑧 ′, Σ(𝑧) ⇒ 𝜓
(∨L)

Σ(𝑧) ⇒ ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽
{
𝑧
𝑥
, 𝑡
𝑦

} (Cut)

𝐴(𝑛, 𝑠, 𝑡) ⇒ ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽
{
𝑧
𝑥
, 𝑡
𝑦

} (∃L)

Fig. 6. The core subderivation of the simulation of Rule (4) in CA𝐺 .

and principal formula (RTC𝑥,𝑦 𝜑) (𝑠, 𝑡) with immediate ancestor (RTC𝑥,𝑦 𝜑) (𝑠, 𝑧) in the right-hand

premise. For terms 𝑟 , 𝑠 , and 𝑡 , let 𝜗 (𝑟) abbreviate ∃𝑣,𝑤 .𝐵(𝑐, 𝑟, 𝑣)∧𝐵(𝑐, s𝑟,𝑤)∧𝜑𝛽
{
𝑣
𝑥
, 𝑤
𝑦

}
, and𝐴(𝑟, 𝑠, 𝑡)

abbreviate ∃𝑧, 𝑐 . 𝑟 = s𝑧 ∧𝐵(𝑐, 0, 𝑠) ∧𝐵(𝑐, s𝑧, 𝑡) ∧∀𝑢 ≤ 𝑧 . 𝜗 (𝑢). Additionally, we define the following
two abbreviations for sets of formulas:

Σ(𝑟) = {𝑛 = s𝑟, 𝐵(𝑐, 0, 𝑠), 𝐵(𝑐, s𝑟, 𝑡),∀𝑢 ≤ 𝑟 . 𝜗 (𝑢)}
Π(𝑟) = {𝑛 = ss𝑟, 𝐵(𝑐, 0, 𝑠), 𝐵(𝑐, ss𝑟, 𝑡), 𝐵(𝑐, s𝑟, 𝑣), 𝐵(𝑐, ss𝑟,𝑤), 𝜑𝛽

{
𝑣
𝑥
, 𝑤
𝑦

}
,∀𝑢 ≤ 𝑟 . 𝜗 (𝑢)}

Moreover, note the following.

, Vol. 1, No. 1, Article . Publication date: October 2020.

26 Liron Cohen and Reuben N. S. Rowe

(Γ′) ˆ𝛽
{
𝑠
𝑢
, 𝑡
𝑤

}
⇒ (Δ′)𝛽

{
𝑠
𝑢
, 𝑡
𝑤

}
Γ

ˆ𝛽 , 𝑠 = 𝑡 ⇒ Δ𝛽
(=L)

.

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 6
.
.
.
.

𝐴(𝑛, 𝑠, 𝑡) ⇒ ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽
{
𝑧
𝑥
, 𝑡
𝑦

}
Γ

ˆ𝛽 , (𝑠 = 𝑧 ∨𝐴(𝑚 , 𝑠, 𝑧)), 𝜑 ˆ𝛽
{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ𝛽

Γ
ˆ𝛽 , (𝑠 = 𝑧 ∨𝐴(𝑚 , 𝑠, 𝑧)), 𝜑𝛽

{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ𝛽

(ˆ𝛽)

Γ
ˆ𝛽 , 𝑚 < 𝑛, (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)), 𝜑𝛽

{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ𝛽

(WL)

Γ
ˆ𝛽 , ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽

{
𝑧
𝑥
, 𝑡
𝑦

}
⇒ Δ𝛽

(∃L/∧L)

Γ
ˆ𝛽 , 𝐴(𝑛 , 𝑠, 𝑡) ⇒ Δ𝛽

(Cut)

Γ
ˆ𝛽 , 𝑠 = 𝑡 ∨𝐴(𝑛 , 𝑠, 𝑡) ⇒ Δ𝛽

(∨L)

Fig. 7. A derivation schema simulating Rule (4) in CA𝐺 .

i) We can easily derive ⇒ 𝑧 = 0 ∨ ∃𝑧 ′ . 𝑧 = s𝑧 ′ using standard first-order rules and the axioms

of CA𝐺 ; we refer to this derivation using †.
ii) Technically, ∀𝑢 ≤ 𝑡 . 𝛾 abbreviates the CA𝐺 formula ∀𝑢 . (𝑢 = 𝑡 ∨ 𝑢 < 𝑡) → 𝛾 , and so we may

straightforwardly derive both ∀𝑢 ≤ 0 . 𝛾 (𝑢) ⇒ 𝛾 (0) and ∀𝑢 ≤ s𝑡 . 𝛾 (𝑢) ⇒ 𝛾 (s𝑡) ∧ ∀𝑢 ≤ 𝑡 . 𝛾 (𝑢);
for brevity, we refer to an instance of the (Cut) rule that applies these sequents using the labels

(≤0) and (≤s), respectively.
iii) Recall that, since the formula 𝐵 captures a 𝛽-function, we may derive 𝐵(𝑟, 𝑠, 𝑡), 𝐵(𝑟, 𝑠,𝑢) ⇒

𝑡 = 𝑢; we abbreviate using the label (𝐵) instances of (Cut) that apply an instance of this sequent.

Using these elements, Fig. 6 shows a derivation (in which we have abbreviated the consequent

formula by𝜓) of the sequent𝐴(𝑛, 𝑠, 𝑡) ⇒ ∃𝑧,𝑚 . 𝑚 < 𝑛 ∧ (𝑠 = 𝑧 ∨𝐴(𝑚, 𝑠, 𝑧)) ∧ 𝜑𝛽
{
𝑧
𝑥
, 𝑡
𝑦

}
. Then, using

Fig. 6 as a subderivation, we derive the
ˆ𝛽-translation of Rule (4) in CA𝐺 as shown in Fig. 7. Recall

that the rule labelled (
ˆ𝛽) abbreviates a derivation as described above in Remark 1. Note that this

derivation admits non-progressing traces for all the
¯𝛽-translation variable parameters in Γ. However

the crucial feature is that there is a CA𝐺 trace (indicated by the boxed variables in Fig. 7) from the

variable parameter 𝑛 in the conclusion to𝑚 in the right-hand premise, which progresses at the

sequent containing the double-boxed variable𝑚. Also, since the context Γ
ˆ𝛽
is preserved along the

paths in the derivation from conclusion to premises, all non-progressing traces are simulated as

well. □

Lemma 6.13. If ⊢CRTC𝜔
𝐺
+A Γ ⇒ Δ then ⊢CA𝐺 Γ𝛽 ⇒ Δ𝛽 .

Proof. By Remark 1, it suffices to show that if ⊢CRTC𝜔
𝐺
+A Γ ⇒ Δ then ⊢CA𝐺 (Γ ⇒ Δ) ˆ𝛽

. Using the

derivations of
ˆ𝛽-translations of the inference rules given in Lemma 6.12, from aCRTC𝜔

𝐺
+A pre-proof

we can build a CA𝐺 pre-proof with the same global structure. For each bud in the resulting CA𝐺

pre-proof, we first apply an instance of the substitution rule that substitutes each variable parameter

of the
¯𝛽-translated RTC-formulas in order to match those used in its companion. Notice that this is

possible, since the parameter variable is unique for the
¯𝛽-translation of each RTC sub-formula. We

can then form a cycle in the CA𝐺 pre-proof. Since the CRTC𝜔
𝐺
traces for each rule are simulated by

the CA𝐺 derived rules, for each trace following a (finite or infinite) path in the CRTC𝜔
𝐺
+A pre-proof

there is a trace following the corresponding path in the CA𝐺 pre-proof containing a progression

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 27

point for each progression point in the CRTC𝜔
𝐺
+A trace. From this it follows that if the CRTC𝜔

𝐺
+A

pre-proof satisfies the CRTC𝜔
𝐺
global trace condition, then its translation satifies the CA𝐺 global

trace condition. □

Theorem 6.14. ⊢CRTC𝜔
𝐺
+A Γ ⇒ Δ iff ⊢CA𝐺 Γ𝛽 ⇒ Δ𝛽 .

Proof. By Lemmas 6.10 and 6.13. □

Equivalence ofRTC𝐺+A andCRTC𝜔
𝐺
+A. These results allow us to show an equivalence between

the finitary and cyclic systems for TC with arithmetic.

Theorem 6.15. RTC𝐺+A and CRTC𝜔
𝐺
+A are equivalent.

Proof. The fact that RTC𝐺+A ⊆ CRTC𝜔
𝐺
+A follows immediately from Theorem 6.2. For the

converse, suppose Γ ⇒ Δ is provable in CRTC𝜔
𝐺
+A. By Lemma 6.13 we get that ⊢CA𝐺 Γ𝛽 ⇒ Δ𝛽

.

Using the equivalence between CA𝐺 and PA𝐺 , we obtain ⊢PA𝐺 Γ𝛽 ⇒ Δ𝛽
. Then we conclude using

Theorem 6.5(2). □

Note that the result above can easily be extended to show that adding the same set of additional

axioms to both RTC𝐺+A and CRTC𝜔
𝐺
+A results in equivalent systems. Also note that in the systems

with pairs, to embed arithmetics there is no need to explicitly include addition and its axioms.

Thus, by only including the signature {0, s} and the corresponding axioms for it we can obtain that

⟨RTC⟩𝐺+A and ⟨CRTC⟩𝜔𝐺+A are equivalent.

In [7], the equivalence result of [34] was improved to show it holds for any set of inductive

predicates containing the natural number predicate N. On the one hand, our result goes beyond

that of [7] as it shows the equivalence for systems with a richer notion of inductive definition, due

to the expressiveness of TC. On the other hand, TC does not support restricting the set of inductive

predicates, i.e. the RTC operator may operate on any formula in the language. To obtain a finer

result which corresponds to that of [7] we need to further explore the transformations between

proofs in the two systems. This is left for future work.

6.2.2 The General Case. As mentioned, the general equivalence conjecture between LKID and

CLKID𝜔
was refuted in [6], by providing a concrete example of a statement which is provable

in the cyclic system but not in the explicit one. The statement, involving the 2-Hydra predicate

described above in Section 2.2, is the following:

((∀𝑥 .0 ≠ s𝑥) ∧ (∀𝑥 .∀𝑦.s𝑥 = s𝑦 → 𝑥 = 𝑦)) → ∀𝑥 .∀𝑦.((N(𝑥) ∧ N(𝑦)) → H(𝑥,𝑦))
where N is a predicate defined by the induction scheme for natural numbers. That is, assuming

that 0 is not a successor element and that the successor function is injective, then every pair of

natural numbers is related by the 2-Hydra predicate. The non-provability of this statement in LKID
(i.e. using explicit induction) follows from the existence of a Henkin model in which the statement

does not hold, whose construction was given in [6].

However, a careful examination of this counter-example reveals that it only refutes a strong form

of the conjecture, according to which both systems are based on the same set of productions. In

fact, already in [6] it is shown that if the explicit system is extended by another inductive predicate,

namely one expressing the standard ordering ≤ over natural numbers, then the 2-Hydra statement

above becomes provable. Therefore, the less strict formulation of the question, namely whether for

any proof in CLKID𝜔
𝜙
there is a proof in LKID𝜙′ for some 𝜙 ′ ⊇ 𝜙 , has not yet been resolved. Notice

that in TC the equivalence question is of this weaker variety, since the RTC operator ‘generates’ all

inductive definitions at once. That is, there is no a priori restriction on the inductive predicates

one is allowed to use. Indeed, the 2-Hydra counter-example from [6] can be expressed in LRTC

, Vol. 1, No. 1, Article . Publication date: October 2020.

28 Liron Cohen and Reuben N. S. Rowe

(cf. Section 2.2) and proved in CRTC𝜔
𝐺
. However this does not produce a counter-example to the

equivalence of the two TC proof systems, since it is also provable in RTC𝐺 due to the fact that 𝑠 ≤ 𝑡

is definable via the formula (RTC𝑤,𝑢 s𝑤 = 𝑢) (𝑠, 𝑡).
Despite our best efforts, we have not yet managed to settle this question, which appears to

be harder to resolve in the TC setting. One possible approach to solving it is the semantical one,

i.e. exploiting the fact that the explicit system is known to be sound w.r.t. Henkin semantics. This is

what was done in [6]. Thus, to show strict inclusion one could construct an alternative statement

that is provable in CRTC𝜔
𝐺
whilst also demonstrating a Henkin model for TC that is not a model of

the statement. However, it has become apparent through communications with one of the authors

of [6] that constructing a Henkin model appears to be much more difficult for TC than for LKID, due
to its rich inductive power. In particular, it is not at all clear whether the structure that underpins

the LKID counter-model for 2-Hydra admits a Henkin model for TC [5]. Alternatively, to prove

equivalence, one could show thatCRTC𝜔
𝐺
is also sound w.r.t. Henkin semantics. Here, again, proving

this does not seem to be straightforward.

In our setting, there is also the question of the inclusion of CRTC𝜔
𝐺
in NCRTC𝜔

𝐺
, which amounts

to the question of whether overlapping cycles can be eliminated. Moreover, we can ask if NCRTC𝜔
𝐺

is included in RTC𝐺 , independently of whether this also holds for CRTC𝜔
𝐺
. Again, the semantic

approach described above may prove fruitful in answering these questions.

7 CONCLUSIONS AND FUTUREWORK
Transitive closure logic seems to offer a congenial framework for inductive reasoning. In this paper

we have enhanced its proof theory by developing a natural infinitary proof system which is cut-free

complete for its standard semantics. We further explored the restriction of this framework to cyclic

proofs which provides the basis for an effective system for automating inductive reasoning and

subsumes its explicit proof system. In particular, we syntactically identified a subset of cyclic proofs

that is Henkin-complete.

As mentioned in the introduction, as well as throughout the paper, this research was motivated

by other work on systems of inductive definitions, particularly the LKID framework of [11], its

infinitary counterpart LKID𝜔
, and its cyclic subsystem CLKID𝜔

. In terms of the expressive power

of the underlying logic, TC (assuming pairs) subsumes the inductive machinery underlying LKID.
This is because for any inductive predicate 𝑃 of LKID, there is an LRTC formula 𝜓 such that for

every standard admissible structure𝑀 for LRTC, 𝑃 has the same interpretation as𝜓 under𝑀 . This

is due to Theorem 3 in [2] and the fact that the interpretation of 𝑃 must necessarily be a recursively

enumerable set. As for the converse inclusion, for any positiveLRTC formula there is a production of

a corresponding LKID inductive definition. This is due to the fact that since productions can be seen

as Horn clauses they can capture disjunction and conjunction. However, the RTC operator can also

be applied on complex formulas (whereas LKID productions only consider atomic predicates). This

indicates that TCmight be more expressive. It was noted in [11, p. 1180] that complex formulas may

be handled by stratifying the theory of LKID, similar to [27], but the issue of relative expressiveness

of the resulting theory is not addressed. While we strongly believe it is the case that TC is strictly

more expressive than the logic of LKID, proving so is left for future work. Also left for future

research is establishing the comparative status of the corresponding formal proof systems.

It is already clear that TC logic, as a framework, diverges from existing systems for inductive

reasoning (e.g. LKID) in interesting, non-trivial ways. At this point, it is still unclear whether or

not the added flexibility of transitive closure logic over that of LKID is sufficient for establishing an

equivalence between RTC𝐺 and CRTC𝜔
𝐺
even in the absence of arithmetic. Thus an immediate open

question that remains for future work is that of the (in)equivalence of the systems in the general

case, as discussed in Section 6.2. However the question of general equivalence notwithstanding, the

, Vol. 1, No. 1, Article . Publication date: October 2020.

Non-well-founded Proof Theory of Transitive Closure Logic 29

uniformity provided by the transitive closure operator may offer a way to better study the more

subtle relationship between implicit and explicit induction. That is, it can help in the investigation

of the connections between cuts required in each system, or the relative complexity of proofs that

each system admits.

In addition, several other questions and directions for further study naturally arise from the work

of this paper. An obvious one would be to implement our cyclic proof system in order to investigate

the practicalities of using TC logic to support automated inductive reasoning. In particular, we

would like to further study the applications of the logic, and the proof systems we have defined for

it, in various areas of computer science such as those described in Section 2.2. Furthermore, our

preliminary investigations suggest we could enable coinductive reasoning in a variant of the formal

system. Determining how naturally such a variant would capture styles of coinductive reasoning

commonly found in the literature, and the extent of its expressivity, is left for future work.

REFERENCES
[1] Bahareh Afshari and Graham E. Leigh. Cut-free Completeness for Modal Mu-calculus. In Proceedings of the 32nd

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pages 1–12,
2017. doi:10.1109/LICS.2017.8005088.

[2] Arnon Avron. Transitive Closure and the Mechanization of Mathematics. In F. D. Kamareddine, editor, Thirty Five
Years of Automating Mathematics, volume 28 of Applied Logic Series, pages 149–171. Springer, Netherlands, 2003.
doi:10.1007/978-94-017-0253-9_7.

[3] David Baelde, Amina Doumane, and Alexis Saurin. Infinitary Proof Theory: the Multiplicative Additive Case. In

Proceedings of the 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 – September 1, 2016,
Marseille, France, pages 42:1–42:17, 2016. doi:10.4230/LIPIcs.CSL.2016.42.

[4] Johan van Benthem. The Logic of Time. Synthese Library. Springer Netherlands, 2nd edition, 2012.

[5] Stefano Berardi. Personal Communication (10
th
April 2018).

[6] Stefano Berardi and Makoto Tatsuta. Classical System of Martin-Löf’s Inductive Definitions Is Not Equivalent to Cyclic

Proof System. In Proceedings of the 20th International Conference on Foundations of Software Science and Computation
Structures, FOSSACS 2017, Uppsala, Sweden, April 22–29, 2017, pages 301–317, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg. doi:10.1007/978-3-662-54458-7_18.

[7] Stefano Berardi and Makoto Tatsuta. Equivalence of Inductive Definitions and Cyclic Proofs Under Arithmetic. In

Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20–23, 2017, pages 1–12, 2017. doi:10.1109/LICS.2017.8005114.

[8] Patrick Blackburn and Johan van Benthem. Modal Logic: A Semantic Perspective. In Patrick Blackburn, Johan van

Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of Studies in Logic and Practical Reasoning,
pages 1–84. Elsevier, 2007. doi:10.1016/S1570-2464(07)80004-8.

[9] James Brotherston. Formalised Inductive Reasoning in the Logic of Bunched Implications. In Proceedings of Static
Analysis, 14th International Symposium, SAS 2007, Kongens Lyngby, Denmark, August 22–24, 2007, pages 87–103, 2007.
doi:10.1007/978-3-540-74061-2_6.

[10] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic Proofs of Program Termination in Separation

Logic. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, San Francisco, California, USA, January 7–12, 2008, pages 101–112, 2008. doi:10.1145/1328438.1328453.

[11] James Brotherston and Alex Simpson. Sequent Calculi for Induction and Infinite Descent. Journal of Logic and
Computation, 21(6):1177–1216, 2010. doi:10.1093/logcom/exq052.

[12] Samuel R. Buss. Handbook of Proof Theory. Studies in Logic and the Foundations of Mathematics. Elsevier Science,

1998.

[13] Liron Cohen. Ancestral Logic and Equivalent Systems. Master’s thesis, Tel-Aviv University, Israel, 2010.

[14] Liron Cohen. Completeness for Ancestral Logic via a Computationally-Meaningful Semantics. In Proceedings of the
26th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017,
Brasília, Brazil, September 25–28, 2017, pages 247–260, 2017. doi:10.1007/978-3-319-66902-1_15.

[15] Liron Cohen and Arnon Avron. Ancestral Logic: A Proof Theoretical Study. In U. Kohlenbach et al., editor, Logic,
Language, Information, and Computation, volume 8652 of Lecture Notes in Computer Science, pages 137–151. Springer,
2014. doi:10.1007/978-3-662-44145-9_10.

[16] Liron Cohen and Arnon Avron. The Middle Ground–Ancestral Logic. Synthese, pages 1–23, 2015.

doi:10.1007/s11229-015-0784-3.

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-94-017-0253-9_7
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1016/S1570-2464(07)80004-8
https://doi.org/10.1007/978-3-540-74061-2_6
https://doi.org/10.1145/1328438.1328453
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/978-3-319-66902-1_15
https://doi.org/10.1007/978-3-662-44145-9_10
https://doi.org/10.1007/s11229-015-0784-3

30 Liron Cohen and Reuben N. S. Rowe

[17] Liron Cohen and Reuben N. S. Rowe. Uniform Inductive Reasoning in Transitive Closure Logic via Infinite Descent. In

Proceedings of the 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018, Birmingham,
UK, pages 16:1–16:17, 2018. doi:10.4230/LIPIcs.CSL.2018.16.

[18] Stephen A. Cook and Robert A. Reckhow. The Relative Efficiency of Propositional Proof Systems. The Journal of
Symbolic Logic, 44(1):36–50, 1979. doi:10.2307/2273702.

[19] Bruno Courcelle. Fundamental Properties of Infinite Trees. Theoretical Computer Science, 25:95–169, 1983.
doi:10.1016/0304-3975(83)90059-2.

[20] Anupam Das and Damien Pous. A Cut-Free Cyclic Proof System for Kleene Algebra. In Proceedings of the 26th

International Conference Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2017, Brasília,
Brazil, September 25–28, 2017, pages 261–277, 2017. doi:10.1007/978-3-319-66902-1_16.

[21] AnupamDas and Damien Pous. Non-Wellfounded Proof Theory for (Kleene+Action)(Algebras+Lattices). In Proceedings
of the 27th EACSL Annual Conference on Computer Science Logic, CSL 2018, September 4–7, 2018, Birmingham, UK, pages
19:1–19:18, 2018. doi:10.4230/LIPIcs.CSL.2018.19.

[22] Amina Doumane. Constructive Completeness for the Linear-time `-calculus. In Proceedings of the 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20–23, 2017, pages 1–12, 2017.
doi:10.1109/LICS.2017.8005075.

[23] Gerhard Gentzen. Untersuchungen über das Logische Schließen. I. Mathematische Zeitschrift, 39(1):176–210, 1935.
doi:10.1007/BF01201353.

[24] Leon Henkin. Completeness in the Theory of Types. Journal of Symbolic Logic, 15(2):81–91, 1950. doi:10.2307/2266967.
[25] Ryo Kashima and Keishi Okamoto. General Models and Completeness of First-order Modal `-calculus. Journal of

Logic and Computation, 18(4):497–507, 2008. doi:10.1093/logcom/exm077.

[26] Laurie Kirby and Jeff Paris. Accessible Independence Results for Peano Arithmetic. Bulletin of the London Mathematical
Society, 14(4):285–293, 1982. doi:10.1112/blms/14.4.285.

[27] Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Inductive Definitions. In J. E. Fenstad, editor,

Proceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and the Foundations of
Mathematics, pages 179–216. Elsevier, 1971. doi:10.1016/S0049-237X(08)70847-4.

[28] Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory, volume 9. Bibliopolis Napoli, 1984.

[29] Raymond McDowell and Dale Miller. Cut-elimination for a Logic with Definitions and Induction. Theoretical Computer
Science, 232(1-2):91–119, 2000. doi:10.1016/S0304-3975(99)00171-1.

[30] Remi Nollet, Christine Tasson, and Alexis Saurin. The Complexity of Thread Criterion for Least and Greatest fixed

points. In Proceedings of the 27th International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, TABLEAUX 2019, London, UK, September 3–7, 2019, 2019.

[31] Amir Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual Symposium on Foundations of
Computer Science (SFCS 1977), pages 46–57, 1977. doi:10.1109/SFCS.1977.32.

[32] Reuben N. S. Rowe and James Brotherston. Automatic Cyclic Termination Proofs for Recursive Procedures in Separation

Logic. In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,
January 16–17, 2017, pages 53–65, 2017. doi:10.1145/3018610.3018623.

[33] Luigi Santocanale. A Calculus of Circular Proofs and Its Categorical Semantics. In Mogens Nielsen and Uffe Engberg,

editors, Proceedings of the 5th International Conference on Foundations of Software Science and Computation Structures,
FOSSACS 2002, Grenoble, France, April 8–12, 2002, pages 357–371, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

doi:10.1007/3-540-45931-6_25.

[34] Alex Simpson. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In Proceedings of the 20th International Conference
on Foundations of Software Science and Computation Structures, FOSSACS 2017, Uppsala, Sweden, April 22–29, 2017, pages
283–300, 2017. doi:10.1007/978-3-662-54458-7_17.

[35] Christoph Sprenger and Mads Dam. On the Structure of Inductive Reasoning: Circular and Tree-Shaped Proofs in the

`Calculus. In Andrew D. Gordon, editor, Proceedings of the 6th International Conference on Foundations of Software
Science and Computation Structures, FOSSACS 2003, Warsaw, Poland, April 7–11, 2003, pages 425–440, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg. doi:10.1007/3-540-36576-1_27.

[36] Gaisi Takeuti. Proof Theory. Courier Dover Publications, 1987.
[37] Gadi Tellez and James Brotherston. Automatically Verifying Temporal Properties of Pointer Programs with Cyclic

Proof. In Proceedings of the 26th International Conference on Automated Deduction, CADE 26, Gothenburg, Sweden,
August 6–11, 2017, pages 491–508, 2017. doi:10.1007/978-3-319-63046-5_30.

[38] Alwen Tiu. A Logical Framework For Reasoning About Logical Specifications. PhD thesis, Penn. State University, 2004.

, Vol. 1, No. 1, Article . Publication date: October 2020.

https://doi.org/10.4230/LIPIcs.CSL.2018.16
https://doi.org/10.2307/2273702
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1007/978-3-319-66902-1_16
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1109/LICS.2017.8005075
https://doi.org/10.1007/BF01201353
https://doi.org/10.2307/2266967
https://doi.org/10.1093/logcom/exm077
https://doi.org/10.1112/blms/14.4.285
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1016/S0304-3975(99)00171-1
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/978-3-319-63046-5_30

	Abstract
	1 Introduction
	2 Transitive Closure Logic and its Expressivness
	2.1 The Syntax and Semantics
	2.2 Applications of Transitive Closure Logic

	3 A Finitary Proof System for LRTC
	3.1 The Proof System RTCG
	3.2 Soundness and Completeness

	4 Infinitary Proof Systems for LRTC
	4.1 The Proof System RTCG
	4.2 Soundness and Completeness
	4.3 The Proof System CRTCG

	5 Variants of LRTC
	5.1 LRTC with Pairs
	5.2 LRTC without Equality

	6 Relating the Finitary and Infinitary Proof Systems
	6.1 Inclusion of RTCG in CRTCG
	6.2 Inclusions of CRTCG in RTCG

	7 Conclusions and Future Work
	References

