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Abstract. Church–Turing computability, which is the standard notion
of computation, is based on functions for which there is an effective
method for constructing their values. However, intuitionistic mathematics,
as conceived by Brouwer, extends the notion of effective algorithmic
constructions by also admitting constructions corresponding to human
experiences of mathematical truths, which are based on temporal intuitions.
In particular, the key notion of infinitely proceeding sequences of freely
chosen objects, known as free choice sequences, regards functions as being
constructed over time. This paper describes how free choice sequences
can be embedded in an implemented formal framework, namely the
constructive type theory of the Nuprl proof assistant. Some broader
implications of supporting such an extended notion of computability in
a formal system are then discussed, focusing on formal verification and
constructive mathematics.

1 Introduction

Church–Turing computability is the standard notion of computation. It defines
the computable functions as those for which there is an effective method for
obtaining the values of the function. Turing used the term ‘purely mechanical’,
whereas Church used ‘effectively calculable’:

“define the notion ... of an effectively calculable function of positive
integers by identifying it with the notion of a recursive function of positive
integers (or of a λ-definable function of positive integers).” [13]

Intuitionistic mathematics, which originated in the ideas of L.E.J. Brouwer,
extends the Church–Turing notion of computability by putting forward novel
forms of computation, namely the bar induction principle and the continuity
principle. Bar induction is a strong intuitionistic induction principle which is
equivalent to the classical principle of transfinite induction [34] 1, while the
continuity principle for numbers states that all functions from N→ N to N are
continuous. Brouwer used the bar induction principle to derive the fan theorem,
which was used in turn, together with the continuity principle for numbers,
to derive the uniform continuity principle [12, Thm 3]. The uniform continuity
principle states that every continuous function on a closed interval of the reals into

1 Variants of bar induction were shown to be compatible with constructive type theory,
and used to enhance the logical functionality implemented by proof assistants [29,32].



the reals is uniformly continuous and has a supremum. Historians of mathematics
consider that “in just ten lines a revolution was launched” [40].

But to obtain these foundational principles, the standard function space had
to be expanded to include non-recursive functions. For this, Brouwer proposed
accepting non-lawlike computations, and thus he introduced the bold notion
of choice sequences. Choice sequences are fundamental objects that are at the
core of intuitionistic mathematics. They are never-finished sequences of objects
created over time by continuously picking elements from a previously well-defined
collection, e.g., the natural numbers.2 Choice sequences can be lawlike, in the
sense that they are determined by an algorithm (i.e., standard computable
functions), or lawless (i.e., free), in the sense that they are not subject to any
law (e.g., generated by throwing dice), or a combination of both. Free choice
sequences are described as

“new mathematical entities ... in the form of infinitely proceeding
sequences, whose terms are chosen more or less freely from mathematical
entities previously acquired...” [11]

While this notion clearly steps out of the realm of sequences constructed by an
algorithm, there is a mental conception of how to create such sequences: the ideal
mathematician, or creative subject, can simply pick elements as time proceeds.
Brouwer used the concept of choice sequences to develop a novel theory of the
continuum, defining real numbers as choice sequences of nested rational intervals.

The foundations of Brouwer’s intuitionistic mathematics have been widely
studied [21,38,35,34,41,26]. These works have examined Brouwer’s ideas from a
theoretical, foundational point of view. However, the focus of this paper is the
study of intuitionistic mathematics and its extended notion of computability in
a formal setting, namely that of a proof assistant. We show that while choice
sequences, and in particular free choice sequences, are considered non-computable
in the traditional sense, they can be integrated into a mechanized system and used
in computations. This will not only extend the standard notion of computation
in theory, but will in practice provide us with a mechanized system in which such
forms of computation are supported and utilized, which, in turn, will enable the
exploration of the wider implications of the resulting computational theory.

Currently, the standard Church–Turing notion of computability is the one
that underlies the computational theories invoked by standard constructive type
theories, which in turn are the basis of extant proof assistants such as Nuprl [14,2],
Coq [17], and Agda [1].3 Thus, for example, the elements of the function type
N → T are taken to be the effective (computable) functions from the type of
the natural numbers, N, to the type T . The integration of the notion of choice
sequences into the constructive type theory would entail, among other things, that
choice sequences whose elements are chosen from T become first-class citizens of
the function type N→ T .

2 For simplicity, throughout this paper we focus on choice sequences of natural numbers.
3 For a survey of the status of Church Thesis in type-theory-based proof assistants

see [20].
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While many of Brouwer’s intuitionistic principles and theorems have already
been implemented in the Nuprl proof assistant [30,29,28], the constructive type
theory underlying Nuprl has only recently been extended to fully integrate the
notion of choice sequences. This extension required major modifications to the
type theory, starting from the structure of the underlying library of definitions and
lemmas, and working up to the semantics of the type system. The current paper
presents the main components of that extension, with full details available in [6,7].
We further discuss the wider implications of the resulting mechanized theory,
especially with respect to formal verification and constructive mathematics.

2 Integrating Choice Sequences into a Proof Assistant

The Nuprl proof assistant [14,2] implements a type theory called constructive type
theory, which is a dependent type theory in the spirit of Martin-Löf’s extensional
theory [25], based on an untyped functional programming language. It has a rich
type theory including equality types, W-types, quotient types, set types, union
and (dependent) intersection types, partial equivalence relation (PER) types,
approximation and computational equivalence types, and partial types. This
section demonstrates how the constructive type theory implemented by the Nuprl
proof assistant can be consistently extended to an intuitionistic type theory, that
is, a type theory that supports Brouwer’s intuitionistic principles. In particular,
we focus on the integration of Brouwer’s broader sense of computability through
an embedding of choice sequences [6,7]. This extended theory provides a formal
account of the notion of choice sequences driven by the design constraints of their
implementation in a theorem prover.4

The Nuprl proof assistant can be (very roughly) described as consisting of the
following components. Underlying the whole system is the library, which stores
all the definitions and proofs the system currently holds. The computation system
encapsulates the operational semantics of the system. The type system defines the
type constructors, the behaviors of types and their associated equalities, based on
the semantics of types employed. Then there is a set of axioms and inference rules
for manipulating the terms and types of the system.5 Fully integrating choice
sequences into Nuprl required a major overhaul to all of the aforementioned
components, as we will describe below.

2.1 Storing Choice Sequences in the Library

Choice sequences are implemented as a new type of entry in the digital library of
facts and definitions underlying Nuprl, which holds a (finite) list of terms. Thus,
the library is used as a state in which we store the choices of values that have
been made for a particular choice sequence at a given point in time ([31] provides
details on the treatment of choice sequences in the library). We utilize the library

4 The extended framework described was formalized in Coq’s formalization of Nuprl’s
constructive type theory [3,27].

5 This simplified description omits many components of the system which are not
relevant to the current paper.
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to perform what is known as memoization, a programming language method
originally designed to improve efficiency. In this scheme, we allow the values of a
choice sequence to be chosen freely, but once the fifth element of the sequence has
been chosen to be 7, say, we store that in the library, and from that point on we
return it whenever the input is 5. Thus, the Nuprl library can be extended in two
orthogonal directions: by adding more entries to the library, or by adding more
values to a specific choice sequence entry. The fact that the library can always be
extended allows choice sequences to be represented as finite at any given point
in time (i.e., the state of the library), but as infinitely proceeding as the library
extends over time. This corresponds to Brouwer’s notion of a choice sequence
progressing over time, as implemented by progressing over library extensions.

Concretely, each choice sequence entry in the library has a name, taken from
a nominal set of atoms, and it also comes equipped with a restriction6, in the
form of a predicate, which specifies which sequence extensions are valid (e.g., the
restriction ‘λn, t. if n < 10 then true else 2 ≤ t’ forces the choices starting
from position 10 to be greater than or equal to 2). The restriction constitutes a
proof obligation that has to be enforced when adding more values to a choice
sequence. Using the restriction mechanism we can also define the lawlike choice
sequences, by simply posing their generating rule as the restriction.

Since choice sequences are open-ended objects, it may be the case that, to
prove a theorem or carry out a computation, the value of a choice sequence at a
certain point may need to be known, but at that stage it has yet to be defined.
There are different implementation approaches in such cases. In the intuitionistic
theory of choice sequences, a reasonable answer is to ‘wait until the creative
subject picks enough values in the sequence’ (consistent with thinking about
a choice sequence as the advancement of knowledge over time). This suggests
one possible implementation: the system can print out a message to the user
asking for more values until there is sufficient data. Another possibility is to have
the system automatically fill in values up to the desired place in the sequence,
using some number generator. The generator could be random or not, or even
probabilistic. The current implementation in Nuprl takes the first approach, but
can be combined with the second approach if needed.

2.2 Extending the Computation System

Nuprl’s programming language is an untyped (à la Curry), lazy λ-calculus with
pairs, injections, a fixpoint operator, etc. For efficiency, integers are primitive and
Nuprl provides operations on integers as well as comparison operators. Nuprl’s
computation system also had to be revised to support choice sequences and, in
particular, to make explicit the tight dependency on the library. Fig. 1 presents
a subset of Nuprl’s extended syntax and small-step operational semantics, where
the additional components related to choice sequences are highlighted in blue.

Choice sequences are incorporated as values of the form η, and the new type
Free is the type of choice sequences. The operational semantics is then extended
so that all small-step reduction rules are parameterized by a library, lib. In

6 See, e.g., [37,38,35] for discussions on the various types of restrictions.
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T ∈ Type ::= N | Ui |Πx:t.t | Σx:t.t | {x : t | t} | t = t ∈ t | t+t | . . .
| Free (choice sequence type)

v ∈ Value ::= T | ? | n | λx .t | 〈t , t〉 | inl(t) | inr(t) | . . .
| η (choice sequence name)

t ∈ Term ::= x | v | t t | fix(t) | let x := t in t | case t of inl(x )⇒ t | inr(y)⇒ t
| if t=t then t else t | . . .

(λx.t1) t2 7−→lib t1[x\t2]
fix(v) 7−→lib v fix(v)
η(i) 7−→lib η[i] , if η[i] is defined in lib

let x1, x2 = 〈t1, t2〉 in t 7−→lib t[x1\t1;x2\t2]
. . .

Fig. 1: Extended syntax (top) and operational semantics (bottom)

particular, an application of the form η(i) reduces to η[i] if 0 ≤ i and the ith
value in the choice sequence named η is available in the current library, in which
case η[i] returns that value; otherwise it is left undefined.

2.3 Possible Library Semantics

The introduction of choice sequences entails a radical shift in our understanding
of mathematical truth. The meaning of proposition P (η) mentioning a choice
sequence η may not be determined by our current knowledge of η, and so
mathematical truth is no longer a timeless concept. Instead, truth now depends
on current knowledge of η and the possible ways that η may be extended in the
future. To support this, the semantics of the Nuprl system was turned into a
possible-world-style semantics [24,18], in which the possible worlds correspond
to extensions of the library (thus providing a computational interpretation of
the possible-world semantics in terms of libraries). In any particular state of the
library the semantics is induced by Nuprl’s standard realizability semantics.

Nonetheless, the standard Kripke semantics, in which a statement is true
in a library only if it is true in all possible extensions of the current library, is
insufficient to support choice sequences. To demonstrate the problem, consider
the claim “there is some value in a given place of a choice sequence” (e.g.,
formally, ∃x.η(100) = x). This should be a valid statement in the theory of
choice sequences, based on their “infinitely proceeding” nature. However, if in the
current stage of the library the choice sequence a has only three values, this will
be false under the Kripke-like semantics, since there are extensions of the library
in which the 100th value is yet to be filled in. Thus, to support the evolving
nature of choice sequences the possible-world semantics has to be more subtle in
its treatment of possible extensions.

Two different possible-world semantics that depend on the current Nuprl
library lib and its possible extensions, lib 7→ lib′, have been considered [6,7]. The
two semantics are especially well-suited to model choice sequences because in both,
expressions only need to “eventually” compute to values, which is compatible
with the “eventual” nature of choice sequences that are only partially available
at a given time, with the promise that they can always be extended in the future.
The first semantics is a Beth-style semantics [5,18], where P (η) is true in library
lib when, roughly speaking, there is a bar for lib (i.e., a collection of libraries such
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that each path in the tree of library extensions that goes through lib intersects it)
in which P (η) is true [6]. This is equivalent to saying that there is a proof of P (η)
by bar induction on the tree of possible extensions of lib. Another semantics is a
variant of the Beth-style semantics called open bar semantics [7]. In the open bar
semantics, P (η) is true in library lib when, for each extension lib′ of lib, P holds
for some extension of lib′. The open bar semantics enables a more general bar
induction argument and hence validates some classical principles (see Section 3).

2.4 Extending the Type System

These new semantics entail new interpretations of Nuprl’s type system, in which
types are interpreted as PERs on closed terms. The resulting type systems
satisfy all the standard properties (e.g., transitivity and symmetry), but also
two additional properties that are unique to such a possible-world interpretation:
monotonicity and locality. Monotonicity ensures that true facts remain true in
the future, and locality allows one to deduce a fact about the current library
if it is true in a bar of that library. While monotonicity is a general feature of
possible-world semantics (including Kripke semantics), locality is a distinctive
feature of Beth-like models.

3 The Resulting Theories of Choice Sequences

The two semantics induce two theories: the one based on the Beth-style semantics
is called BITT, for ‘Brouwerian Intuitionistic Type Theory’, and the one based on
the open bar semantics is called OTT. Both theories fully embed choice sequences
as first-class citizens, in the sense that choice sequences inhabit the extended
function type N→ N (also called the Baire space, B). That is, in both BITT and
OTT the following holds: η ∈ Free→ η ∈ B.

3.1 Axioms for Choice Sequences

Both BITT and OTT validate (variants) of the following key properties governing
choice sequences that have been suggested in the literature (see, e.g., [39,23]). In
what follows we write Bn for Nn → N, where Nn = {k : N | k < n}.

Density Axiom Πn:N.Πf :Bn.Σα:Free.f = α ∈ Bn
Discreteness Axiom Πα, β:Free.(α=β ∈ B)+(¬α=β ∈ B)
Open Data Axiom Πα:Free.P(α)→ Σn:N.Πβ:Free.(α=β ∈ Bn → P(β))

The Density Axiom intuitively states that, for any finite list of values, there
is a choice sequence that extends it. In BITT, proving its validity required an
additional machinery of name spaces for choice sequences (see [6] for full details).
In OTT, however, such machinery is not necessary for validating the variant of
the statement in which the existential quantifier is ‘squashed’. The squashing
mechanism erases the evidence that a type is inhabited by squashing it down
to a single constant inhabitant using set types: ↓T = {x : True | T} [14, p. 60].
Intuitively, a squashed existential quantifier asserts the existence of an object
without specifying how it can be computed. The Discreteness Axiom states that
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intensional equality over choice sequences is decidable, and it is easily validated
since choice sequences are identified by their names in the library, which are
unique.

The Open Data Axiom, roughly speaking, states that if a property (with
certain side-conditions essentially ensuring that α is the only free choice sequence
in P (α)) holds for a free choice sequence, then there is a finite initial segment of
that sequence such that this property holds for all free choice sequences with the
same initial segment. Since the axiom does not provide information on a specific
choice sequence, but rather on the collection of all sequences determined by an
initial segment, it constitutes a continuity principle in a sense. The non-squashed
continuity principle is, however, incompatible with Nuprl (following similar
arguments to those in [22,33,19]). Nonetheless, in OTT two squashed variants of
the Open Data Axiom have been validated. The key observation is that when
the Σ type is ↓-squashed, there is no need to provide a witness for the modulus
of continuity of P at α. Instead, one can simply find a suitable meta-theoretical
number in the proof of its validity, without having to provide an expression from
the object theory that computes that number.

3.2 Classical Axioms

One main difference between BITT and OTT relates to compatibility with classical
logic. BITT is incompatible with classical logic in the sense that it validates
the negation of many classically valid principles. In particular, it proves the
negation of the ↓-squashed law of excluded middle, ¬ΠP.↓(P+¬P ), the negation
of Markov’s principle (a principle of constructive recursive mathematics [9, ch. 3]),
and the negation of the independence of premise axiom (a controversial axiom
which is classically true but generally not accepted by constructivists, which was
used by Gödel in his famous Dialectica interpretation [4]). Proofs of these negated
properties follow similar arguments such as in [16,15]. For example, notice that
in order to prove the validity of the ↓-squashed law of excluded middle, we would
have to prove in the metatheory that for all propositions, there exists a bar of
the current library such that either the proposition is true at the bar, or that it
is false in all extensions of the bar. To prove its negation we show that neither
option is valid anymore because choice sequences can always evolve differently
when multiple choices are possible. The open bar semantics invoked by OTT, on
the other hand, is based on a more relaxed notion of time that is flexible enough
to be compatible with classical reasoning. In particular, it enables the validation
of the ↓-squashed law of excluded middle.

4 Implications of the Formalization of Choice Sequences

The integration of Brouwer’s ex ed notion of computation into a mechanized
proof assistant is not only important from a foundational standpoint, but also has
interesting consequences and practical applications. This section informally and
briefly discusses such implications in two main fields, namely formal verification
and constructive mathematics.
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4.1 Formal Verification

Leveraging the foundational, novel computational capabilities that go beyond the
Church–Turing notion of computation has the potential to facilitate significant
advances in the internal verification of complex systems, e.g., distributed protocols.
The dominant approach in verification of such systems is external ; that is, one
develops a model of the system and then proves that the system behaves correctly
according to its desired specification, assuming this model is correct. While this
strategy is extremely flexible (a model can describe any kind of computational
system), it has the major disadvantage that the model may be incorrect. Extending
the computation system with Brouwer’s broader notion of computation enables
an internal approach in such verifications. This is because the embedding of the
notion of choice sequences within the computational system provides a means to
internally formalize non-deterministic behaviors. In large distributed systems, a
lot of information is, de facto, ‘lawless’, in the sense that it is unpredictable. It is
far too expansive (source and money-wise) to keep track of all the computation
steps, and the environment cannot be controlled, and so in practice there is no
way to determine, e.g., the order of messages sent. Therefore, one can use standard
computable functions to model the processes of a distributed system, and free
choice sequences to model sensors (or unpredictable environmental inputs).

4.2 Intuitionistic Mathematics

Standard mathematical discourse is based on classical mathematics, and thus
standard textbooks in mathematics contain, e.g., proofs by contradiction or by
cases, as well as impredicative structures. Constructive mathematics (e.g., [8]),
on the other hand, does not allow “non-constructive” methods of formal proof,
and in particular rejects the law of excluded middle. Because of this restriction,
the practice of constructive mathematics is often quite remote from the (classical)
standard practice of mathematics, and proofs tend to require more elaborate
arguments. For example, without some version of the compactness theorem
(which, classically, requires the axiom of choice), point-wise versions of continuity
and the derivative are of no use and the more complicated notions of uniform
continuity and a uniform version of the derivative must be used.

Most works in constructive mathematics adopt E. Bishop’s approach [10,8]
and remain agnostic towards the fundamental intuitionistic principles such as
choice sequences, bar induction and the uniform continuity principle.7 But these
intuitionistic principles, which go beyond constructive mathematics, have the
potential to simplify the practice of mathematical theories. For one, the uniform
continuity principle obviates the need for the compactness theorem, thus making
intuitionistic calculus more elegant than constructive calculus, because restrictions
on key theorems can be eliminated. For example, in intuitionistic mathematics we
can again use the point-wise versions of continuity and the derivative in a manner
similar to the way they are employed in classical mathematics. Thus, Brouwer’s
intuitionistic mathematics has the computational advantages of constructive

7 Notable exceptions include, e.g., [36,42].
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mathematics, while at the same time enabling proofs that resemble those of
classical mathematics to a greater extent than constructive ones.

The computational account of choice sequences in Nuprl also provides a
natural framework for the formalization of the Brouwerian, choice-sequence-based
constructive real numbers, and, in turn, the development of the corresponding
real analysis, and the exploration of its computational benefits. Brouwer used
choice sequences to define the constructive real numbers as sequences of nested
rational intervals. The standard formalization of the reals, even in classical or
constructive mathematics, is also achieved via converging sequences. Nonetheless,
there are two major differences between the standard formalizations and the
intuitionistic (Brouwerian) formalization. First, in the intuitionistic formalization,
a real number is the choice sequence itself, as opposed to it being the limit
point (i.e., equivalence class). Second, the notion of what these sequences can be
incorporates, in the intuitionistic setting, the free choice sequences.

Acknowledgments. The author thanks Vincent Rahli, Robert Constable and
Mark Bickford as the framework described in the paper is based on a joint
ongoing work with them.
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