
Deep Typechecking and Refactoring ∗

Zachary Tatlock
UC San Diego

ztatlock@cs.ucsd.edu

Chris Tucker
UC San Diego

cjtucker@cs.ucsd.edu

David Shuffelton
UC San Diego

dshuffel@cs.ucsd.edu

Ranjit Jhala
UC San Diego

jhala@cs.ucsd.edu

Sorin Lerner
UC San Diego

lerner@cs.ucsd.edu

Abstract
Large software systems are typically composed of multiple
layers, written in different languages and loosely coupled
using a string-based interface. For example, in modern web-
applications, a server written in Java communicates with a
database back-end by passing in query strings. This widely
prevalent approach is unsafe as the analyses developed for
the individual layers are oblivious to the semantics of the
dynamically constructed strings, making it impossible to
statically reason about the correctness of the interaction.
Further, even simple refactoring in such systems is daunting
and error prone as the changes must also be applied to
isolated string fragments scattered across the code base.

We present techniques for deep typechecking and refac-
toring for systems that combine Java code with a database
back-end using the Java Persistence API [10]. Deep type-
checking ensures that the queries that are constructed dy-
namically are type safe and that the values returned from
the queries are used safely by the program. Deep refactoring
builds upon typechecking to allow programmers to safely
and automatically propagate code refactorings through the
query string fragments.

Our algorithms are implemented in a tool called QUAIL.
We present experiments evaluating the effectiveness of
QUAIL on several benchmarks ranging from 3,369 to 82,907
lines of code. We show that QUAIL is able to verify that 84%
of query strings in our benchmarks are type safe. Finally, we

∗ Supported in part by the NSF grants CCF-0427202, CNS-0541606, and
CCF-0546170.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

show that QUAIL reduces the number of places in the code
that a programmer must look at in order to perform a refac-
toring by several orders of magnitude.

Categories and Subject Descriptors D.2.4 [Software En-
gineering]: Software/Program Verification

General Terms Reliability, Verification

Keywords JPA Query Analysis, Cross Language Type-
checking, Cross Language Refactoring

1. Introduction
Large software systems are built in multiple layers, employ-
ing various systems, languages, and run-times. For exam-
ple, companies like Amazon, Google, and Yahoo all produce
software that has three basic tiers: a browser front-end using
HTML and Javascript, a middle-tier running Java, .NET, or
a similar stack of server technology, and a storage tier using
a relational database or other long-lived storage platform. A
successful integration of these layers must enjoy three prop-
erties: it must be efficient, in that it must be able to exploit
the beneficial properties of the individual layers; it must be
usable, in that it must allow engineers to easily utilize the
full range of functionality available in the individual layers;
and it must be safe, in that it must prevent errors due to in-
teractions that cut across the different layers.

Unfortunately these three properties have hitherto re-
sisted reconciliation. For example, consider the problem of
interfacing between an object-oriented programming lan-
guage and a relational database. A number of approaches ex-
ist for translating data to and from objects and relations, each
of which attempts to deal with the so-called “impedance mis-
match” [13] that exists between relational data and object-
oriented data.

Orthogonal persistence solutions [1, 12] map the entire
database into a collection of persistent objects that are di-
rectly manipulated and navigated in the programming lan-
guage. This approach is safe, as the programming language’s

type system is in full control, but is often hard to use and sac-
rifices opportunities for optimization of data access. In par-
ticular, the programming language and database are tightly
coupled, resulting in a system whose data design is de-
pendent on programming language decisions, which in turn
leads to a less efficient and harder to use data store.

Language-based solutions [18, 15] extend programming
languages like Java [23] or C] [2] with syntax inspired by
functional programming constructs [24, 5] that can be di-
rectly compiled into database queries. Not only are these
approaches safe, but they can also be efficient. In particu-
lar, the programming language and database can be more
loosely coupled than in an orthogonal persistence solution,
resulting in improvement efficiency of data storage and re-
trieval. However, the usability of these techniques remains
to be seen. One barrier to adoption is that these techniques
hide the structure of the generated queries, which can lead to
unexpected performance bugs.

Finally, call-level interfaces [20] such as Toplink [6], EJB
[14], JDO [17], and Hibernate [9] — recently consolidated
under the Java Persistence API (JPA) [10, 11] standard for
Java — allow developers to describe mappings of relational
constructs onto Java types, which can then be queried us-
ing SQL-like query strings. This approach is both flexible
and efficient because the query strings are expressed in a
language specifically designed for data access, but are less
safe as the host language is unaware of the content of the
query strings, and is unable to apply its type constraints to
those queries. This approach has the loosest coupling be-
tween programming language and database, and makes it
easy for developers to efficiently query for and use data from
the database without having any direct knowledge of the re-
lational structures used to hold that data, but at the cost of a
loss of safety.

In general the approach of loosely coupling different sys-
tems using a string-based interface with a domain-specific
interfacing language is flexible, can leverage the properties
of each layer effectively, does not force the developer to
learn another language or paradigm, and hence is widely
adopted by large-scale system developers.

Unfortunately, this approach is unsafe in that it greatly
complicates two standard software engineering tasks: type-
checking and refactoring. Large systems that are made of
loosely coupled heterogeneous components have little sup-
port for performing typechecking at the boundaries of differ-
ent languages. Furthermore, performing even simple refac-
toring in such systems is daunting and error prone, because
the required changes cut across different layers, causing sub-
tle bugs to slip between the cracks.

As an illustrative example, consider the Java code snippet
from Figure 1. In this snippet, Q0 is an abbreviation for
the query string shown at the top of the figure. On line 2
the code creates a JPA query that returns the set of books
owned by a given person ?1. The person ?1 is a parameter

Q0:"SELECT b FROM Book b WHERE b.buyer = ?1"

1: Person user = getCurrentUser();
2: Query q = createQuery(Q0);
3: q.setParameter(1, user);
4: List<Object> result = q.getResultList();
5: for (Object b : result) {
6: Book book = (Book) b;
7 S t t i tl (b k)7: System.out.println(book.name);
8: }

Figure 1. Sample JPA Code

to the query, and this parameter is set (on line 3) using a
call to setParameter. Once the parameter is set, the query
is executed (on line 4), and the result of the query, a list of
Book objects, is stored in the result variable. The code then
proceeds to print the name of each book in the result list
(on lines 5-8). Note how in this code the Book and Person
classes crosscuts both Java and the query language: they are
meaningful in both contexts.

This code snippet illustrates two of the main difficulties
in writing and maintaining JPA code:

Type Errors: As objects are passed to and from the database
back-end through a single interface (namely setParameter
and getResultList), these interfaces use Object for the
type of parameters and results, which leads to the compiler
missing type errors. For example, if a Car object were passed
in to setParameter on line 3, the compiler would not
be able to flag this as a type error. Furthermore, because
getResultList() returns a list of Objects, the variable
on line 4 is declared as List<Object>, not List<Book>,
and as a result there is an additional cast on line 6, which at
run-time may fail if the programmer uses the wrong type in
the type cast.

Refactoring Errors: As names of classes appear in query
strings, for example in Q0, changing the name of a class in-
volves renaming all the queries that mention the class. Un-
fortunately, there is little support for helping the program-
mer make sure that all such strings have been renamed. The
class-rename refactoring in Eclipse does not refactor such
strings, and furthermore forgetting to rename a string does
not lead to a type error, unlike renaming a class directly in
Java, where forgetting to rename a mention of the renamed
class leads to a type error.

Our broad research agenda is to address these problems,
and thus reconcile safety, usability and efficiency, by devel-
oping techniques and tools for deep typechecking and deep
refactoring – type-checking and refactoring that cut across
different languages and systems. In this paper we present
techniques for deep typechecking and refactoring for sys-

tems that combine Java code with a database back-end using
JPA.

For deep typechecking, the main challenges lie in the fact
that the problem cuts across Java and the JPA query lan-
guages in non-trivial ways. First, the Java code manipulates
strings that represent JPA queries, making it difficult to iden-
tify the queries that are executed. Second, the Java code sets
the parameters to the JPA queries, and uses the results that
they produce, which requires tracking where these results
flow to determine if they are used correctly.

We address these challenges by using different techniques
for analyzing Java and JPA queries. We use a dataflow
analysis on the Java side to compute the set of query
strings that may be executed at a particular call site to
getSingleResult, and to propagate the result type of exe-
cuted queries through the code to make sure that downcasts
will not fail at run-time. On the JPA side, we use a type sys-
tem, augmented with some simple constructs to represent
sets of queries, to determine if a query (or set of queries)
typechecks. Working together, these two techniques allow
us to identify (1) what query strings are executed by the
Java code, (2) whether these query strings typecheck given
the parameters that the Java code has set on them, and (3)
whether the results of these queries are used correctly in the
Java code.

For deep refactoring, the main challenge lies in updat-
ing raw strings that represent JPA queries or fragments of
queries which are concatenated together by the Java code.
Fragments are particularly difficult, not only for an auto-
mated tool, but also for humans, because there is no context
available for understanding the query – it is difficult to tell if
a given substring should be refactored without knowing the
context in which the substring is typed.

We address this challenge by building upon deep type-
checking as follows. First our algorithm tags each query
fragment with an identifier that uniquely determines the Java
string literal that the fragment originated from. The string
dataflow analysis used for deep typechecking is used to com-
pute the set of complete tagged query strings that reach an
execution site. Next, our algorithm performs refactorings in
the context of an entire query, using the deep typechecker
as a subroutine to determine the types of identifiers. Finally,
our algorithm propagates the changes back to the Java code
using the tags.

In summary, this paper takes a step towards enabling
developers to safely combine different layers using efficient
and flexible call-level interfaces. In particular, we make the
following concrete contributions:

• Deep Typechecking. We present techniques for checking
that the parameters set by the Java code on JPA queries
are of the correct type, that all parameters of a query
are set before it is executed, and that the returned val-
ues of JPA queries are used correctly in the Java code
(Section 3).

Q1 : "SELECT w FROM WeblogTemplate w
WHERE w.website = ?1 AND w.link = ?2"

WeblogTemplate getPageByLink(Weblog site, String link){
1: Query q = createQuery(Q1);
2: q.setParameter(1, new Book()); //ERROR
3: q.setParameter(1, site); //OK
4: q.getSingleResult(); //ERROR
5: q setParameter(2 link); //OK5: q.setParameter(2, link); //OK
6: Book b = (Book) q.getSingleResult(); //ERROR
7: return (WeblogTemplate) q.getSingleResult();//OK
}

Figure 2. Query Type Checking

• Deep Refactoring. We present techniques for perform-
ing class-rename and field-rename refactorings on classes
and fields that may appear in query strings (Section 4).
Our refactoring technique renames not only direct refer-
ences from the Java code, but also references that appear
in query strings that the Java code manipulates.

• Experimental validation. We implemented the above
techniques in a tool called QUAIL, and present the re-
sults of running QUAIL on a variety of benchmarks (Sec-
tion 5), the largest of which is Roller, a web blogging
software system comprising 82,907 lines of code. We
show that QUAIL is able to verify that 84% of query
execution sites in the Java code use types correctly (the
remaining cases are false-positives where we incorrectly
report safe query executions as potential errors), and we
show that our tool reduces the number of places in the
code that a programmer must look at to perform refactor-
ings by several orders of magnitude.

2. Overview
We begin with an overview of Deep Typechecking and
Refactoring using simplified versions of examples taken
from the Roller code base.

Deep Typechecking
Consider the Java method shown in Figure 2. For clar-
ity, we write Q1 as an abbreviation for the query string
shown at the top of the Figure. For the moment, ignore the
shaded lines 2,4,6. The string Q1 corresponds to a SELECT
query, which is used to find all WeblogTemplate objects
w whose website and link fields respectively match the
arguments site and link passed into the method. To this
end, in line 1 the string Q1 is used to create a query ob-
ject q, and setParameter calls are used to bind the query
parameters to the corresponding Java values on lines 3,5
respectively. Next, the query is executed by calling the
getSingleResult method on line 7. The output of the
method, is downcast to WeblogTemplate and returned.
Motivation. The goal of deep typechecking is to statically
prove the absence of a variety of run-time errors (exceptions)

that can arise in buggy programs, but which, due to the poly-
lingual nature of the interaction, slip through the cracks of
Java’s type system.

Query Correctness: First, suppose that the method con-
tained the line 2, wherein the first query parameter is
bound to a Book object. The Java type system would not
flag any errors as the setParameter method takes any
Object as input. However, the subsequent query execu-
tion will fail as the website field of a WeblogTemplate
object is of type Weblog which cannot be compared
against a Book object. Of course, errors can be caused
independent of the ways that the parameters are set e.g. if
WeblogTemplate objects do not have a link field. Our
first goal is to ensure that in each query object, the pa-
rameters are set safely, i.e., so that the subseqent queries
execute without errors.

Query Completeness: Second, suppose that the method
contained the line 4, where the query is executed before
the second parameter is bound. At run time, this line will
cause the JPA implementation to throw an exception as
the second query parameter is not bound. Our second
goal is to ensure that in each query object, all the pa-
rameters have been set at the point where the query is
executed.

Output Correctness: Finally, suppose that the method con-
tained the line 6 where the query is executed and its result
downcast to type Book. As the query execution method
getSingleResult returns an Object result, the line
will typecheck but will cause a failed downcast excep-
tion to be thrown at run-time as the actual object returned
is of the type WeblogTemplate. Our third goal is to en-
sure that the objects, or as we shall see, lists of objects
returned by queries are safely used by the rest of the Java
code, i.e., do not cause failed downcast exceptions at run-
time.

Algorithm. The key to connecting the Java code with the
database back-end is the notion of a bound query which
is a pair of a query object and a (partial) mapping from
the parameters of the query to the types of the objects the
parameters are bound to. For example,(

select w from Template w where w.website = ?1,
?1 :Weblog

)
represents a bound select query where the first parameter is
bound to an object of type Weblog.

QUAIL uses bound queries to perform deep type checking
via a three-step algorithm. In the first step, Bound Query
Analysis, QUAIL performs a dataflow analysis to determine
the set of bound queries that flow to each program point
where a query is executed e.g. lines 6,7 from Figure 2. In
the second step, Type Analysis, QUAIL checks that each of
the bound queries that reach an execution point represent

Q2:"SELECT c.weblogEntry.website.name
FROM WeblogEntryComment c
WHERE c.weblogEntry.pubTime < ?1

AND c.weblogEntry.pubTime > ?2"
Q3:"SELECT c weblogEntry website name Q3:"SELECT c.weblogEntry.website.name

FROM WeblogEntryComment c
WHERE c.weblogEntry.pubTime < ?1"

List getMostCommentedWebsites(Date start, Date end){List getMostCommentedWebsites(Date start, Date end){
1: Query q = null;
2: if (end == null) end = new Date();
3: if (start != null) {
4: q = createQuery(Q2);
5: q.setParameter(1, new Timestamp(end.getTime()));
6: q.setParameter(2, new Timestamp(start.getTime()));
7: } else {
8: q = createQuery(Q3);
9: q.setParameter(1, new Timestamp(end.getTime()));
10: }
11: List qs q getResultList();11: List qs = q.getResultList();
12: List results = new ArrayList();
13: for (Iterator i = qs.iterator(); i.hasNext();){
14: results.add((String) i.next());
15: }

return results;;
}

Figure 3. Multiple Query Flow

a well typed JPA query – namely that all the parameters
are set to values of appropriate types. Further, in this step,
QUAIL analyzes the structure of the query to infer the type
of the query result. In the third step, Result Analysis, QUAIL
propagates the type inferred for the query result to the points
inside program where the result is downcast from Object,
to verify that the downcast is safe.

QUAIL verifies the code in Figure 2 (ignoring the shaded
lines), as exactly one bound query flows to the execution
point on Line 7, and in this bound query, the two parameters
?1 and ?2 are set to objects of correct types. Further, the
downcast succeeds as it is to the same type as that of w
defined in the query.

If line 2 is used instead of line 3, QUAIL flags a warning
as the bound query reaching line 7 fails to type check, as the
comparison w.website = ?1 fails to typecheck in a type en-
vironment where w has type WeblogTemplate (whose field
Website has type Weblog) and ?1 has type Book. If line 4 is
used, QUAIL flags a warning as the type of the parameter ?2
is undefined in the bound query flowing to line 4, causing the
comparison w.link = ?2 to not typecheck. If line 6 is used,
QUAIL flags a warning as the inferred type of the output of
the query reaching the execution point is not a superclass of
Book.

Multiple Queries. The JPA makes it easy to use run-time in-
formation to build different kinds of query objects. Consider
the method shown in Figure 3 which takes a start and end
date and returns a list of websites that were published be-
tween those dates. The start parameter is optional – if it is

null then the method should return all the sites published
before the end date.

As before, we use Q2 and Q3 as abbreviations for the two
query strings shown at the top of the Figure. The method
checks if the start parameter is non-null. In this case,
the method uses Q2 to create a query with two parame-
ters – a start and end, and sets the two parameters. If the
case that start is null, the method uses Q3 to create a
query with only one parameter and sets the parameter ap-
propriately. Finally, the method executes the query by call-
ing getResultList and iterates over the list of objects re-
turned, downcasting each object in the list to a String be-
fore adding it to the list of results.

QUAIL checks this method as follows. First, the bound
query analysis deduces that two bound queries flow into q
at the program point at line 11. The first bound query cor-
responds to Q2 and has the parameters ?1 and ?2 bound
to the type Timestamp. The second query corresponds to
Q3 and has the parameter ?1 bound to Timestamp. Second,
each of these bound queries typechecks as in the type en-
vironment where c is of type WeblogEntryComment, the
term c.weblogEntry.pubTime has type Timestamp and
so the comparison(s) typecheck. Third, both queries return
as output the field c.weblogEntry.website.name which
has type String. By propagating this output type through
the assignments on Lines 11,13,14, we infer that i.next()
is of type String and so the downcast succeeds.

Deep Refactoring
Though query strings make for a simple and expressive in-
terface between Java and the database back-end, they greatly
complicate the task of modifying the code or database
schemas as now the programmer must painstakingly go
through each of the strings to make sure they are appropri-
ately modified. For example, renaming (or deleting) a field
of a persistent class would require sifting through each query
string scattered across multiple files and appropriately re-
naming (or deleting) references to the modified field. Unfor-
tunately, the Java type checker is of little help as the refer-
ences are embedded within strings.

Motivation. The goal of deep refactoring is to simplify this
task by using the machinery developed for deep typecheck-
ing to automatically and correctly update the query strings
to reflect the changes made to the classes or the database. In
particular, we consider two refactoring tasks – Class Renam-
ing and Field Renaming. It is easy to extend our techniques
to other tasks like automatically determining which query
strings are impacted by the deletion of fields in persistent
classes.

Recall the example from Figure 3. Suppose that the pro-
grammer wishes to change the name of the field name of
the class Weblog to blogName. Unfortunately, one cannot
simply perform a search-and-replace of the string name with

Q4:"SELECT w.name FROM WeblogAggregate w
WHERE w.name = ?1"

boolean getTagComboExists(String tag, Weblog weblog){
1: StringBuffer s = new StringBuffer();
2: s.append(Q4);
3: params.add(tag);
4: if(weblog != null) {
5: s append(" AND w weblog = ?2");5: s.append(AND w.weblog = ?2);
6: params.add(weblog);
7: } else {
8: s.append(" AND w.weblog IS NULL");
9: }
10: Query q = createQuery(s.toString());Q y q Q y(g());
11: List results = q.getResultList ();

...
}

Figure 4. Query String Construction

blogName as several other classes can also have fields with
the same name.

To automatically refactor the query strings, QUAIL per-
forms a modified version of the bound query analysis, where
each query string is tagged with a unique identifier that indi-
cates the location of the string in the program source. For the
program in Figure 3, the set of tagged bound queries reach-
ing the execution point at Line 11 is:

{(〈Q2〉4, . . .), (〈Q3〉8, . . .)}

Next, QUAIL refactors each tagged bound query by refac-
toring each term appearing in the query. For exam-
ple, as c has the type WeblogEntryComment, the term
c.weblogEntry.website has the type Weblog and hence,
the term c.weblogEntry.website.name is changed to
c.weblogEntry.website.blogName. A similar change is
made to the second tagged query. Finally the tags are used
to substitute the new query strings in place of the old ones in
the program source.
Dynamic Query Construction. So far we have looked at
queries built from contiguous strings. A common pattern
is to dynamically construct queries by starting with a base
string to which extra conditions are appended depending
on run-time values. Consider the method shown in figure 4
which constructs a query from a base string Q4, to which,
depending on whether or not the weblog variable is null, an
extra condition is appended.

Suppose that the programmer wishes to rename the field
weblog of the class WeblogAggregate to blog. Again,
we cannot simply rename the substring weblog without
knowing the type of the preceding identifier w.

QUAIL does refactoring in the presence of such dynam-
ically created query strings as follows. First, we extend
our notion of bounded queries to extended bounded queries
which comprise a base query concatenated with a regular ex-
pression over query fragments that represent the set of pos-
sible extra conditions that can be appended to the end of the

base query. Each query fragment appearing in the extension
is also tagged with a unique identifier indicating the frag-
ment’s position in the source. As the variable declarations
are in the query prefix string and not scattered over the reg-
ular extension, it is easy to extend both the type checking
and refactoring algorithms to handle the extensions. Thus,
QUAIL starts by using a standard string analysis algorithm
[3] to compute the extended bounded queries that reach each
query execution point, then it refactors the extended queries
at the point, and finally replaces each tagged query fragment
in the source with its refactored version.

Thus, for the code shown in Figure 4, QUAIL first deter-
mines that the extended query

〈Q4〉2[〈AND w.weblog = ?2〉5 + 〈AND w.weblog = NULL〉8]

reaches the execution point at line 10. Notice the common
prefix with the declaration for the type of w, and the exten-
sion that includes the two possible extensions. Using the fact
that w is of type WeblogAggregate obtained from the base
query, QUAIL refactors the above to:

〈Q4〉2[〈AND w.blog = ?2〉5 + 〈AND w.blog = NULL〉8]

after which, the strings at lines 5,8 are refactored to:
"AND w.blog = ?2" and "AND w.blog = NULL" respec-
tively.

3. Deep Type checking
QUAIL performs deep type checking in three steps: a Bound
Query Analysis over the Java code determines the set of
bound queries that flow to each program point where queries
are executed; a Type Analysis over the JPA query language
then checks that each bound query is type-correct; finally
a Result Analysis over the Java code checks that objects
returned by the queries are used correctly in the Java code.

We start by presenting our type analysis (Section 3.1),
which consists of a type system for the JPA query language.
We then present the bound query analysis (Section 3.2),
which computes the set of bound queries that the type system
should be invoked with. Finally, we present the return anal-
ysis (Section 3.3), which propagates the return types from
the type system through the Java code.

3.1 Type Analysis

Type Environment. A type environment Γ is a partial func-
tion from parameter names and identifier names to types. A
type in our system can either be a base type or a class. Base
types are primitives or classes that are not handled by the
Java persistence API. As queries only refer to fields, we do
not need to capture methods or inheritance in classes. Thus,
we simply abstract a class as a record containing typed fields.

Syntax. The core syntax of JPA queries is shown in Fig-
ure 5. There are three kinds of queries: select, update and

delete. Each of these queries contains a where clause that
can be a conjunction, disjunction, or a comparison of two
terms using an operator ./ which ranges over comparison
operators like =, ≤, ≥, etc.. Each term is either a query
parameter, or an lvalue obtained by following the fields of
some identifier declared in the query. We briefly and infor-
mally summarize the semantics of queries – the interested
reader is referred to [10] for details.

• A select t1, . . . , tn from Γ where e query returns the
set of tuples t1, . . . , tn chosen from the set of persistent
classes described by the environment Γ, such that the
condition e holds for each tuple.

• An update x :C set a1, . . . , an where e query updates
each instance of C that satisfies the condition e, using the
assignments a1, . . . , an.

• A delete x :C where e deletes each instance of C that
satisfies the condition e.

Tags. Observe that base part of the query, which consists
of the select, update or delete clause, is tagged with
an identifier i representing the location in the code where
the base part originated from. For example, in Figure 3, the
query created on line 4 in our syntax will be 〈Q2〉4. These
tags allow our refactoring algorithm to map changes in the
query back to the strings in the Java code.

Extensions. To account for dynamically created queries, our
syntax allows for query extensions. An extension r repre-
sents additions to the base query that have been made pro-
gramatically using string concatenation. For example, 〈∧e〉i
represents the fact that e has been added as a conjunct to the
where clause of the base query, and 〈∨e〉i represents the fact
that e has been added as disjunct. Note that all the extensions
apply to the where clause of the base query. In some cases,
for example the method shown in Figure 4, the code that
creates query strings contains control flow. To account for
such control flow, query extensions can contain regular ex-
pression operators like concatenation and sum. QUAIL uses
standard string analysis algorithms [3] to compute, for each
site i in the code that calls CreateQuery, a query qi in our
syntax that overapproximates the set of queries that could
be created at site i. Control flow constructs in the query-
building code map directly to regular expression operators
in our query syntax: linear code introduces concat opera-
tors, branches introduce + operators. Like the base queries,
the each query fragment appearing in an extension is tagged
with the location in the code from which it originates.

For example, for the code shown in Figure 4, QUAIL
would determine that the query created on line 10 is ex-
pressed in our syntax as follows:

q10 = 〈Q4〉2[〈∧ w.weblog =?2〉5+〈∧ w.weblog = NULL〉8]

That is, the query created at line 10 is an extended query with
the base query Q4 and an extension which is the sum of the

q ::= Queries:
| 〈select t1, . . . , tn from Γ where e〉i r select
| 〈update x :τ set a1, . . . , an where e〉i r update
| 〈delete x :τ where e〉i r delete

e ::= Expressions:
| t ./ t atom
| e ∧ e conjunction
| e ∨ e disjunction

r ::= Extensions:
| ε empty
| 〈∧e〉i and
| 〈∨e〉i or
| r r concat
| r + r sum

Γ ::= Type Envs:
| x :τ ,Γ identifier
| ?p :τ ,Γ parameter

τ ::= Types:
| C = {f1 :τ1, . . . , fn :τn} Record
| B Base

a ::= lv :=t Assignments
t ::= Terms:

| ?p parameter
| c constant
| lv lvalue

lv ::= Lvalues:
| x identifier
| lv .f field-access

Figure 5. Query Syntax

two extensions of the then- and else- branch respectively.
The QUAIL typechecker currently does not handle query
strings that are created using a loop – such query strings will
fail to typecheck. As our experiments will show in Section 5,
JPA queries are rarely created in loops.

Type System. The type system for queries is shown in Fig-
ure 6. The system has five kinds of judgements:

• Terms: Γ ` t : τ which state that under the environment
Γ the term t has type τ . The type of identifiers and
parameters is found from the environment, and type of
field expressions lv .f is obtained via the type of the field
f of the recursively computed (record) type of lv .

• Assignments: Γ ` lv :=t which state that under the envi-
ronment Γ the assignment lv :=t typechecks. An assign-
ment only type checks if the type of the value t being
assigned is a subtype of the lvalue lv to which the assign-
ment occurs.

• Expressions: Γ ` e which state that under the environ-
ment Γ the expression e typechecks. An expression type
checks if each atomic comparison within e is between

values of comparable types, a notion made precise by the
∼ relation.

• Extensions: Γ ` r which state that under the environ-
ment Γ the extension r typechecks. An extension type-
checks if each of its constituent expressions typechecks.

• Queries: Γ ` q which state that under the environment
Γ the extended query q typechecks. Note that for the ex-
tended query to typecheck, its constituent where clause
and assignments must typecheck. Further, notice that we
use the type environment or declaration from the base
query to type check the extension.

3.2 Bound Query Analysis
We now describe our Bound Query Analysis. The goal of this
analysis is to compute the set of bound queries that could
be executed at each getSingleResult call site (where a
bound query is a query combined with the parameters that
have been set on it)

Domain. As described in Section 3.1, a type environment
Γ is a partial function from parameter names and identifier

Terms Γ ` t : τ

ty(c) = τ

Γ ` c : τ
[T-CONST]

?p :τ ∈ Γ
Γ ` ?p : τ

[T-PARAM]

Γ(x) = τ

Γ ` x : τ
[T-ID]

Γ ` lv : {. . . , f :τ , . . .}
Γ ` lv .f : τ

[T-LVAL]

Assignment Γ ` a

Γ ` lv : τ Γ ` t : τ ′ τ ′<:τ
Γ ` lv :=t

[ASGN]

Expressions Γ ` e

Γ ` t : τ Γ ` t′ : τ ′ τ ∼ τ ′

Γ ` t ./ t′
[E-ATOM]

Γ ` e Γ ` e′

Γ ` e ∧ e′
[E-AND]

Γ ` e Γ ` e′

Γ ` e ∨ e′
[E-OR]

Extensions Γ ` r

Γ ` e
Γ ` 〈∧e〉i

[R-AND]
Γ ` e

Γ ` 〈∨e〉i
[R-OR]

Γ ` r Γ ` r′

Γ ` r r′
[R-CAT]

Γ ` r Γ ` r′

Γ ` r + r′
[R-SUM]

Queries Γ ` q

Γ,Γ′ ` ti : τi, i ∈ [1 . . . n]
Γ,Γ′ ` e Γ,Γ′ ` r

Γ ` 〈select t1, . . . , tn from Γ′ where e〉i r
[Q-SEL]

Γ, x :τ ` ai, i ∈ [1 . . . n] Γ, x :τ ` e Γ, x :τ ` r
Γ ` 〈update x :τ set a1, . . . , an where e〉i r

[Q-UPD]

Γ, x :τ ` e Γ, x :τ ` r
Γ ` 〈delete x :τ where e〉i r

[Q-DEL]

Figure 6. Rules for Type Checking Queries

names to types. As the types of identifiers are declared inside
the query string, the bound query analysis needs only track
the types of the values bound to the query parameters. Thus,
we focus our attention on parameter type environments Γ,
which map parameter names to types, not identifiers. We
use P to denote the set of parameter names, T the set of
types, and TE = P ⇀ T the set of all parameter type
environments. We let Q be the set of queries.

A bound query is a pair (q ,Γ) where q ∈ Q and Γ ∈
TE . A bound query represents a query where some of the
parameters have been set. We denote by BQ = Q ×TE the
set of all bound queries.

Our analysis will map each variable in the program to
a set of bound queries. If we denote by V the set of Java
variables, then the domain D = (D ,v,⊥,>,t,u) of our
analysis is defined as:1

• D , V → 2BQ

• v is defined by a v b , ∀x . a(x) ⊆ b(x)
• ⊥ , λx.∅ and > , λx.BQ
• t is defined by (a t b)(x) , a(x) ∪ b(x)
• u is defined by (a u b)(x) , a(x) ∩ b(x)

Flow Function. We use F : Stmt × D → D to denote the
flow function of our analysis, where Stmt represents the set
of program statements. We now describe some representa-
tive cases of F . Given a map m, we denote by m[a 7→ b] the
map where a has been made to map to b.

F (v = CreateQueryk(s), in) = in[v 7→ {(qk, ∅)}]
where qk is the (extended) query computed
by the string analysis for creation site k.

F (v .SetParam(p, x), in) = in[v 7→ h(in(v))]
where h(R) = {(q ,Γ[p 7→ typeof (x)] | (q ,Γ) ∈ R}
and typeof (x) is the type of the Java variable x.

For conditionals, the information coming into the condi-
tional is propagated to both the true and the false successors.
At merge points, the information from the two sides of the
merge is joined using the lattice join operator t.

Checking. Now, consider a statement
y.getSingleResult(), and let bq be the final infor-
mation computed by the above dataflow analysis right
before the getSingleResult statement. Then we say that
the given getSingleResult is param-type-correct iff the
following condition holds:

∀(q ,Γ) ∈ bq(y) . Γ ` q

This condition states that for each bound query that flows
to the getSingleResult statement, all the parameters of
the query have been set using correct types. Note that this
check will catch type errors due to improper comparisons
and assignments and also errors due to parameters not being
set.

3.3 Return Analysis
For clarity of exposition, we assume that the only way to
execute a query is via a call to getSingleResult which re-

1 Throughout the paper we use the abstract interpretation convention that
⊥ represents no behaviors of the program and > represents all possible
behaviors. Thus, ⊥ is the most optimistic information, and > is the most
conservative information.

turns a single object. Our algorithms can be easily extended
to handle methods like getResultList which return lists
of objects, and our implementation handles these cases. As
all objects returned from JPA queries pass through a single
API, namely getSingleResult, the type of these objects is
the most general Java type possible, namely Object. Conse-
quently, to access specific fields of objects returned from the
database, the programmer must downcast to a more specific
type. The goal of our return analysis is to guarantee that such
downcasts, which are performed on values originating from
a JPA query, will not fail at runtime, or dually, pointing out
at compile-time, the downcasts that may fail.

Domain. The algorithm PropagateTypes for checking re-
turn types, shown in Figure 7, computes at each program
point a map that stores for each variable x the set of
types that x may contain which could have originated from
queries. Thus domain D of the analysis is D = (D ,v
,⊥,>,t,u) where D , V → 2T , ⊥ , λx.∅, > , λx.T ,
and v,t,u are defined as in Section 3.2.

Algorithm PropagateTypes. The algorithm maintains a
global worklist of methods to be analyzed, and a global map
GF from field names to the set of types stored in those fields.
As this map is global, fields are treated in a flow insensitive
manner. We also store in the maps Sumin and Sumout an
input and output summary for each method. For simplicity
of exposition, we assume that methods only take one param-
eter. The input summary of a method is the set of types that
flow into its parameter, and the return summary is the set of
types that the method returns.

Below the declaration of globals in Figure 7, we define a
simple construct that will help describe our algorithm. For
a map s, we define [s(i) := s(i) ∪ v if changed add m]
to perform two tasks: first, it performs the update s(i) :=
s(i) ∪ v; second it adds m to the global worklist of methods
if the update to s(i) has changed the value of s(i).

The algorithm PropagateTypes starts by initializing
worklist with the set of methods that contain calls to
getSingleResult, after which it processes method from
the worklist. In particular, while the worklist is not empty,
PropagateTypes removes a method from the worklist and
calls FixPoint(F ,m.cfg ,Sumin(m)). The FixPoint proce-
dure (not shown here) uses standard techniques to compute
the intraprocedural dataflow-analysis fixpoint of the flow
function F : Stmt × D → D . In particular, FixPoint starts
with ⊥ at every program point, and then iteratively calls F
until a fixed point is reached. Once the intraprocedural fix-
point has been computed, PropagateTypes uses ret info to
extract from the fixpoint δ the set of types computed for the
return value of the method. This set, which is stored in r , is
merged into the output summary of the current method, and
if the output summary changes, then the method’s callers –
callers(m) – are added to the worklist using the “if changed
add” construct.

Globals
worklist : 2M (worklist of methods)
GF : Field → 2T (map from fields to sets of types)
Sumin : M → 2T (method input summaries)
Sumout : M → 2T (method return summaries)

Notation
For map s, define [s(i) := s(i) ∪ v if changed add m] as:

let n := s(i) ∪ v
if s(i) 6= n then
s(i) := n
worklist .Add(m)

Procedure PropagateTypes()
worklist := new empty worklist of methods
for each m that contains a call to getSingleResult do

worklist .Add(m)
while worklist not empty do

let m := worklist .Remove
let δ := FixPoint(F ,m.cfg ,Sumin(m))
let r := ret info(δ)
Sumout(m) := Sumout(m) ∪ r if changed add callers(m)

Flow Function

F (x = y, in) = in[x 7→ in(y)]

F (x = y.getSingleResult(∗), in) =

in[x 7→ {τq | (q,Γ) ∈ bq(y)}]
where τq is the return type of query q, and bq is the
computed information for the incoming program point
by the bound query analysis from Section 3.2.

F (x = (τ)y, in) =
if ∃τ ′ ∈ in(y) . ¬τ ′ <: τ then

raise “Warning: JPA downcast may fail”
return in

F (x = ∗.f, in) = in[x 7→ GF (f)]

F (∗.f = y, in) =

GF (f) := GF (f) ∪ in(y) if changed add readers(f)
return in

F (x = y.m(a), in)
Sumin(m) := Sumin(m) ∪ in(a) if changed add m
return in[x 7→ Sumout(m)]

Figure 7. Propagating getSingleResult Return Types

Flow Functions. The cases for the flow function F : Stmt×
D → D are shown at the bottom of Figure 7. For a sim-

ple assignment x = y, the flow function maps x to the
set of types that y is mapped to. For a statement x =
y.getSingleResulti(∗), the flow function maps x to the
set of all types that could be returned by the query. The flow
function for a type cast makes sure that the type cast is cor-
rect, and if not displays a warning. For a field read x = ∗.f ,
the flow function maps x to what the current flow-insensitive
information is for the field f . For a field write ∗.f = y, the
flow-insensitive information for f is updated, and if this in-
formation changes for f then all the methods that read f –
readers(f) – are added to the worklist. Finally, for a method
call x = y.m(a), the input summary for method m is up-
dated with the set of types that a contains, and if m’s input
summary changes, then m is added to the worklist (using
the ‘if changed add” construct). The flow function also maps
x to the current output summary of m (note that this out-
put summary may not account for the new information that
is coming into m , but if the new incoming information to
m causes the analysis of m to change m’s output summary,
then m’s callers, including the current method, will be re-
analyzed).

4. Deep Refactoring
The goal of our refactoring algorithm is to automatically
identify all the places in a JPA application that need to be
updated if a class or field is renamed. Java references to the
renamed entities can easily be handled using Eclipse’s built-
in refactorings for renaming a class or a field. The difficulty
lies in updating raw strings that represent JPA queries or
fragments of queries which are concatenated together by
the Java code, due to the lack of a context within which to
understand the query.

While building an extended query, QUAIL tags each
query fragment with an identifier that uniquely determines
the Java string literal that the fragment originated from. Once
an extended query is constructed, QUAIL refactors the entire
query, which makes it is easy to understand identifiers and
their types. Finally, QUAIL propagates the changes back to
the Java code using the tags.

We now describe how we refactor an extended query q .
Once the query is refactored, propagating changes back to
the Java strings using the tags is straightforward. QUAIL
currently handles two refactoring tasks – class- and field-
renamining.

Algorithm RF(Γ,∆, q). Our refactoring algorithm, shown
in Figure 8, takes three parameters:

• Γ, a type environment, which for the top-level call to RF
is empty,

• ∆, a refactoring specification, which is either a class
renaming, written C 7→ C ′, or a field renaming, written
C.f 7→ C.f ′, and

• q , an extended query.

Refactoring Function

RF(Γ, C 7→ C ′, q) = q[C ′/C]

RF(Γ,∆, c) = c

RF(Γ,∆, ?p) = ?p

RF(Γ,∆, x) = x

RF(Γ, C.f 7→ C.f ′, lv .f ′′) =
if f = f ′′ and Γ ` lv : C ′′ and C ′′<:C
then lv .f ′ else lv .f ′′

RF(Γ,∆, t ./ t′) = RF(Γ,∆, t) ./ RF(Γ,∆, t′)

RF(Γ,∆, e ∧ e′) = RF(Γ,∆, e) ∧ RF(Γ,∆, e′)

RF(Γ,∆, e ∨ e′) = RF(Γ,∆, e) ∨ RF(Γ,∆, e′)

RF(Γ,∆, lv :=t) = RF(Γ,∆, lv):=RF(Γ,∆, t)

RF(Γ,∆, 〈∧e〉i) = 〈∧RF(Γ,∆, e)〉i

RF(Γ,∆, 〈∨e〉i) = 〈∨RF(Γ,∆, e)〉i

RF(Γ,∆, r + r′) = RF(Γ,∆, r) + RF(Γ,∆, r′)

RF(Γ,∆, r r′) = RF(Γ,∆, r) RF(Γ,∆, r′)

RF(Γ,∆, 〈select t1, . . . , tn from Γ′ where e〉i r) =
let Γ′′ := Γ,Γ′

let t′1, . . . , t′n := RF(Γ′′,∆, t1), . . . ,RF(Γ′′,∆, tn)
let e′ := RF(Γ′′,∆, e)
let r′ := RF(Γ′′,∆, r)
〈select t′1, . . . , t′n from Γ′ where e′〉i r

RF(Γ,∆, 〈update x :τ set a1, . . . , an where e〉i r) =
let Γ′ := Γ, x :τ
let a′1, . . . , a′n := RF(Γ′,∆, a1), . . . ,RF(Γ′,∆, an)
let e′ := RF(Γ′,∆, e)
let r′ := RF(Γ′,∆, r)
〈update x :τ set a′1, . . . , a

′
n where e′〉i r′

RF(Γ,∆, 〈delete x :τ where e〉i r) =
let Γ′ := Γ, x :τ
let e′ := RF(Γ′,∆, e)
let r′ := RF(Γ′,∆, r)
〈delete x :τ where e′〉i r′

Figure 8. Refactoring

Given these three parameters, the RF function returns a
refactored version of q as follows.

Class-Renaming. The first case in the definition of RF han-
dles the class-rename refactoring C 7→ C ′. In this case RF
simply replaces all occurrences of the class name C with the
new class name C ′. We use the notation q [C ′/C] to repre-
sent q with class C replaced with C ′. This substitution is
syntactic and is performed by traversing the abstract syntax
tree (AST) of the query, and replacing each node in the AST
that represents class C with C ′.

Field-Renaming. The remaining cases in the definition of
RF handle the field-rename refactoring C.f 7→ C.f ′. For
this refactoring, RF performs a traversal of the query’s AST,
maintaining in Γ the set of accumulated bindings from the
base query’s type declarations. Using these bindings, the
fifth case in the definition of RF renames a field access lv .f
to lv .f ′ if lv ’s type is a subtype of C.

Loops. Whereas the QUAIL typechecker fails to typecheck
query strings that are created using a loop, a simple insight
allows QUAIL to handle such query strings in the context of
refactoring: for the purposes of refactoring, QUAIL simply
needs to statically identify all query fragments, and this can
be done by simply assuming that the loop body creating
the query executes once or zero times. This approach is
guaranteed to refactor query fragments correctly if there are
no type errors to begin with.

5. Evaluation
To evaluate our deep typechecking and deep refactoring al-
gorithms, we implemented these algorithms in an Eclipse
plugin called QUAIL. For bound query analysis and return
analysis, we use Eclipse’s libraries to walk over the Java in-
structions. For the type analysis of queries, we built our own
JPA query parser and type checker. The type checker uses
Eclipse’s libraries to identify the types of lvalues (for exam-
ple w.website and w.link in Figure 2). In total, QUAIL
consists of 5700 lines of Java code.

Our goal is to evaluate QUAIL along two dimensions:

• Precision of deep typechecking. Can QUAIL prove a
large fraction of query executions type safe?

• Utility of deep refactoring. Can QUAIL help program-
mers perform refactorings that cross-cut Java and JPA?

To answer these questions, we ran QUAIL on several
benchmarks, which are listed in Table 1. These benchmarks
were executed on a 2.6 GHz Core2DuoTM machine with
4GB of RAM running Ubuntu 7.10, Eclipse 3.3, and Sun
JDK 1.6. Table 1 shows for each benchmark the number of
lines of Java code, the number of calls to CreateQuery, the
number of calls to SetParam, and the number of sites that
execute queries. This last number is further split into the
number of calls to getSingleResult, getResultList,
and executeUpdate. The executeUpdate procedure is

a query execution statement used for updates and delete
queries. The largest of our benchmarks is Roller, a web
blogging software system that comprises 82,907 lines of
code. Named queries, a feature of JPA that allows queries
to be named in the object-relational model and then invoked
later by name, are currently handled by inlining the query
string at the query execution site. However, we believe it
would be straightforward to extend QUAIL to handle these
directly in the object-relational mapping.

Deep typechecking. Table 2 shows the results of deep type
checking on our benchmarks. For each benchmark, we count
the number of query execution statements that pass each of
the following QUAIL checks:

• param: parameters passed to the executed query using
SetParam are of the correct type.

• completeness: parameters are set on all paths leading to
the query execution statement.

• result: typecasts on objects originating from the query
execution statement will not fail at runtime.

The “total” column refers to the total number of query
execution statements that were considered. For result check-
ing, the total is smaller than for param and complete-
ness because result checking does not check calls to
executeUpdate (which does not return any objects from
the database). The “time” column, which lists the number
of seconds to perform typechecking on each benchmark,
demonstrates the scalability of deep typechecking.

The results show that overall QUAIL succeeds in 84% of
the checks that it performs. The correctness of 84% of the
execution sites follows from the soundness of QUAIL. To
increase our confidence, we manually examined all 84% to
make sure that they are indeed type correct. Furthermore,
although the benchmarks presented do not contain query
type errors, our regression test suite includes an array of
erroneous queries which we check for failure.

The query execution sites that QUAIL cannot analyze in-
volve either construction of the query string by iterating
over heap-based data structures or reflection to obtain the
name of an object’s class at run time. Our dataflow anal-
ysis cannot currently handle such cases, but we believe
that with some extra precision, QUAIL could be extended
to deal with these programming patterns. Furthermore, al-
though QUAIL’s analysis is neither path sensitive nor inter-
procedural, neither of these would increase precision across
the 100,000 lines of deployed Java code in our benchmarks.
That is, neither of these would eliminate any of the false
positives. Furthermore, while imprecise aliasing information
can lead to imprecision for any static analysis, we have found
that in these benchmarks there are unique, method-local ref-
erences to query objects, and so a precise alias analysis is
not required.

Benchmark LOC CreateQuery SetParam
Number of query execution sites

Single + List + Update = Total
CaveatEmptor 3,369 6 5 1 + 5 + 0 = 6
PetStore 5,435 15 20 0 + 15 + 0 = 15
Planet 14,525 14 9 4 + 10 + 0 = 14
Roller 82,907 128 165 19 + 65 + 17 = 101
Total 106,236 163 199 24 + 95 + 17 = 136

Table 1. Benchmark statistics

Benchmark Kind of check # pass # fail Total Time (seconds)

CaveatEmptor
param 3 (50%) 3 (50%) 6 (100%)
completeness 3 (50%) 3 (50%) 6 (100%) 2.8
result 3 (50%) 3 (50%) 6 (100%)

PetStore
param 11 (73%) 4 (27%) 15 (100%)
completeness 11 (73%) 4 (27%) 15 (100%) 5.7
result 10 (67%) 5 (33%) 15 (100%)

Planet
param 11 (79%) 3 (21%) 14 (100%)
completeness 11 (79%) 3 (21%) 14 (100%) 6.1
result 12 (86%) 2 (14%) 14 (100%)

Roller
param 89 (88%) 12 (12%) 101 (100%)
completeness 89 (88%) 12 (12%) 101 (100%) 26.5
result 74 (88%) 10 (12%) 84 (100%)

Total 327 (84%) 64 (16%) 391 (100%) 41.1

Table 2. Number of checks that succeed in deep type checking

Deep refactoring. To evaluate QUAIL’s utility for per-
forming deep refactoring, we performed a variety of deep
refactoring tasks using QUAIL. Table 3 summarizes the re-
sults of doing these tasks. We picked those refactorings
of fields/classes that occurred most often in query strings
and query string fragments. Our refactoring is implemented
within the Eclipse refactoring framework, which makes sure
that the appropriate preconditions are satisfied before per-
forming any field/class rename refactoring. All the results
in Table 3 are for the part of the refactoring that deals with
query strings – refactoring references in Java is handled by
Eclipse’s’ refactorings, and we do not provide statistics for
this part of the refactoring.

For each refactoring, the column labeled “# changes” in
Table 3 shows the number of changes that QUAIL performed.
The column labeled “# refacstr” shows the number of refac-
torable strings, which are string literals occurring in the Java
code that represent queries or fragments of queries. These
are the strings that a programmer using existing tools would
have to consider to perform the refactoring. Note that in
some cases, the number of changes is larger than the num-
ber of refactorable strings, because there can be multiple
changes per string. The column labeled “# refacloc” shows
the number of places in the refactorable strings that are refac-
torable: for a class-rename, this is the number of class refer-

ences occurring in refactorable strings; for a field-rename,
this is the number field references occurring in refactorable
strings. The “# refacloc” column is an estimate of number
of places in the code that a programmer using existing tools
would have to consider to perform the refactoring. Finally,
the column labeled “# warnings” shows the number of lo-
cations in the code that QUAIL determined may need refac-
toring, but that QUAIL was not able to refactor because of
imprecision in the QUAIL string analysis. These are left to
the programmer to refactor. As Table 3 shows, the “# warn-
ings” column is much smaller than the “# refacloc”, showing
that QUAIL drastically reduces the number of places in the
code that the programmer needs to look at in order to per-
form a refactoring. The time to perform these refactorings is
within 5% of the corresponding typechecking time.

Comparison with hand-refactoring. Performing refactor-
ings by hand is difficult for two reasons. First, since some
identifiers like name are very common, it is not sufficient to
simply look at identifier names when refactoring field names
– one has to also look at the type of the receiver, and doing
this inside query fragments is tedious and error prone, be-
cause type information inside these query strings is not read-
ily available. This may lead the programmer to incorrectly
change a field having the correct name, but on the wrong
class. Second, it is often hard to find all strings that represent

Benchmark Refactoring performed # changes # refacstr # refacloc # warnings

CaveatEmptor

Bid 7→ Offer 4 3 5 0
Item 7→ Product 1 3 5 0
Bid.amount 7→ Bid.amt 4 3 7 0
Item.id 7→ Item.SerialNo 2 3 7 0

PetStore

Product 7→ Pet 4 11 13 0
Item 7→ PetStoreItem 5 11 13 0
Product.productID 7→ Product.id 2 11 24 0
Item.productID 7→ Item.id 5 11 24 0

Planet

Planet 7→ World 2 23 14 0
Subscription 7→ Feed 6 23 14 0
Planet.handle 7→ Planet.alias 3 23 17 0
Feed.feedURL 7→ Feed.url 2 23 17 0

Roller

WeblogEntry 7→ Entry 13 262 119 4
User 7→ Blogger 20 262 119 4
AutoPing 7→ APing 5 262 119 4
Weblog 7→ Blog 6 262 119 4
WeblogEntry.pubTime 7→ WeblogEntry.time 18 262 337 4
User.userName 7→ User.name 7 262 337 4
User.enabled 7→ User.valid 9 262 337 4
AutoPing.pingTarget 7→ AutoPing.target 3 262 337 4
Weblog.name 7→ Weblog.blogName 6 262 337 4

Table 3. Statistics for deep refactoring

query fragments, especially when the refactored field is a
common identifier like name, for which a grep will flood the
programmer with false positives. This may lead the program-
mer to miss changes that should be made. Neither of these
two kinds of errors can be found using the Java type system.
QUAIL will not only avoid these errors altogether, but if the
programmer for some reason chooses to perform JPA query
refactoring by hand, the QUAIL type checker would be able
to find such errors.

As anecdotal evidence, a software developer who works
with Hibernate [9] in a production environment has de-
scribed a problem he faces with a persistent class given the
unfortunate name Test. The class needs to be renamed to
something more descriptive, but doing so is practically im-
possible due to the frequency with which the string “Test”
occurs in the code-base: fixing occurrences by hand is too
time consuming and error prone, and a search and replace
will result in the incorrect replacement of far too many
strings. The developer expressed confidence that using a tool
like QUAIL the decision may be made to perform the refac-
toring.

Unit Testing. In a realistic scenario, a programmer who
would perform refactorings of query strings by hand would
make use of unit tests in order to make sure that the refac-
toring is performed correctly, and also to identify places that
need to be refactored further. However, even such safeguards
can easily fail. For example, in the case of Roller, we found
that refactoring Weblog.handle causes 15 query strings to

be changed, but despite the many unit tests in Roller, only
8 of these queries are covered by unit tests. The remaining 7
are slight variations on the ones that are tested. If a program-
mer inadvertently makes a typo while refactoring one of the
7 queries that are not covered by unit tests, then the typo will
not be caught at the unit level, and may even make it into a
production system.

6. Related work
The research most closely related to our work can be parti-
tioned into several categories.

Static Analyses for checking multi-lingual software are the
most closely related line of work. Of these, we have drawn
inspiration from [21] which gives a static technique for type-
checking the SQL queries dynamically generated by pro-
grams using JDBC [8]. The technique is based on using a
string analysis [3] to compute an automaton overapproxi-
mating the set of strings that can be sent as queries, and
an algorithm for typechecking the automaton. In contrast
to QUAIL, this work focuses on the typechecking the SQL
queries against the database schema, and unlike QUAIL, ig-
nores parameterized queries and return value type checking.
Further, as JDBC provides lower-level access to the database
(in contrast to the higher level Object-Relational Map of
JPA), the question of deep refactoring does not arise.

Further afield, there have been several recently proposed
static analyses for checking multilingual software. Examples
include [7] which presents a type system and dataflow anal-

ysis for checking the correctness of the OCaml/C foreign
function interface, and [19] which presents a system for en-
suring the type safety of programs that combine Java and C
code.

Orthogonal Persistence is an approach to integrating pro-
gramming languages and databases in a manner that entirely
sidesteps the need for deep typechecking and refactoring.
Here, the entire database is exposed to the programmer as a
collection of objects that can be navigated. Examples include
the PJAMA [1] and THOR [12] projects. In this tight cou-
pling, the string based interface is eliminated and hence one
can directly use the language’s typechecking and refactoring
tools. The drawback with this approach is that it sacrifices
the bulk-access optimizations possible by using SQL. To re-
cover some of the benefits of these optimizations [22] pro-
poses the use of abstract interpretation to statically extract
SQL queries from the code. It remains to be seen whether
in practice the query extraction yields systems with compet-
itive performance.

Programming Languages supporting SQL allow pro-
grammers to efficiently interact with the database while stay-
ing within a single programming language. This is achieved
by providing syntax to describe queries in a manner that
permits efficient compilation to SQL. Two classical exam-
ples are the DBPL [18] and Tycoon [15] languages. More
recently proposals include the functional languages Kleisli
[24], and Links [5] which provides a single unified language
for Web-programming. A more backwards-compatible ap-
proach are special extensions to existing languages, like
Linq [2] for C], and [23] for Java. The most compatible ap-
proach is to embed queries as instances of special classes
within Java [4] or C++ [16]. As for orthogonal persistence,
each of these approaches eliminate the need for deep type-
checking and refactoring. However, we conjecture that adop-
tion has been limited by the fact query strings provide a more
flexible and readable way to harness all of SQL, in contrast
to these approaches which only incorporate restricted sub-
sets. Moreover, there is a large amount of legacy code that
would have to be rewritten to benefit from these techniques.

7. Conclusions and Future Work
In this paper we presented QUAIL, a tool for deep type-
checking and refactoring Java code that uses query strings
to interact with databases, thereby allowing programmers
to use the efficient and flexible string-based interface in a
safe manner. Based on our experiences building and evalu-
ating QUAIL, we believe there are several avenues for fu-
ture work. First, we would like to improve the precision
of our technique to eliminate the few false positives where
we incorrectly flag safe query executions as potential errors.
For example, we would like to extend QUAIL so that it can
typecheck queries with dynamically generated parameters,
i.e., where the parameters are created and set by iterating

over a list or array. Second, we would like to enrich the type
system to prove more properties statically. For example, ver-
ifying that queries which are called with getSingleResult
indeed determine at most one object. This would require a
more precise modelling of the constraints of the database
schema, e.g. primary keys, to verify that the query returned
a unique result. Further, we would like to do some basic se-
mantic sanity checking on the queries, e.g. that the WHERE
clause is not a tautology or contradiction. Finally, we would
like to extend our techniques to obtain deep versions of other
software engineering tasks that are standard within a single
language. Examples include deep code completion, where
the tool would run in an online manner and suggest class
and field completions for query string fragments, and deep
impact analysis, where the tool would alert the programmer
to the string fragments that may change due to alterations in
the database schema or vice versa.

References
[1] Malcolm P. Atkinson, Laurent Daynès, Mick J. Jordan, Tony

Printezis, and Susan Spence. An orthogonally persistent java.
SIGMOD Record, 25(4):68–75, 1996.

[2] Gavin M. Bierman, Erik Meijer, and Mads Torgersen. Lost
in translation: formalizing proposed extensions to c#. In
OOPSLA, pages 479–498, 2007.

[3] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In SAS,
pages 1–18, 2003.

[4] William R. Cook and Siddhartha Rai. Safe query objects:
statically typed objects as remotely executable queries. In
ICSE, pages 97–106, 2005.

[5] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. In FMCO, LNCS
4709. Springer, 2006.

[6] Jacques-Antoine Dub, Rick Sapir, and Peter Purich. Oracle
application server toplink application developers guide, 10g
(9.0.4). Oracle Corporation, 2003.

[7] Michael Furr and Jeffrey S. Foster. Checking type safety of
foreign function calls. In PLDI, pages 62–72, 2005.

[8] G. Hamilton and R. Cattell. Jdbc: A java sql api. Sun
Microsystems, 1997.

[9] Hibernate reference documentation, may 2005. http:

//www.hibernate.org/hib_docs/v3/reference/en/

html.

[10] Java persistence api faq. http://java.sun.com/javaee/
overview/faq/persistence.jsp.

[11] Glassfish implementation of the java persistence api.
https://glassfish.dev.java.net/downloads/

persistence/JavaPersistence.html.

[12] Barbara Liskov, Atul Adya, Miguel Castro, Mark Day, Sanjay
Ghemawat, Robert Gruber, Umesh Maheshwari, Andrew C.
Myers, and Liuba Shrira. Safe and efficient sharing of
persistent objects in thor. In SIGMOD Conference, pages

318–329, 1996.

[13] David Maier. Representing database programs as objects.
In M. Atkinson, editor, Advances in Database Programming
Languages, pages 377–386. Springer, 1990.

[14] V. Matena and M. Hapner. Enterprise java beens specification
1.0. Sun Microsystems, 1998.

[15] F. Matthes, G. Schroder, and J. Schmidt. Tycoon: A
scalable and interoperable persistent system environment.
In M. Atkinson, editor, Fully Integrated Data Environments,
LNCS. Springer-Verlag, 1995.

[16] Russell A. McClure and Ingolf H. Krüger. Sql dom: compile
time checking of dynamic sql statements. In ICSE, pages
88–96, 2005.

[17] C. Russell. Java data objects (jdo) specification jsr-12. Sun
Microsystems, 2003.

[18] Joachim W. Schmidt and Florian Matthes. The dbpl project:
Advances in modular database programming. Inf. Syst.,
19(2):121–140, 1994.

[19] Gang Tan and Greg Morrisett. Ilea: inter-language analysis
across java and c. In OOPSLA, pages 39–56, 2007.

[20] Murali Venkatrao and Michael Pizzo. Sql/cli - a new binding
style for sql. SIGMOD Record, 24(4):72–77, 1995.

[21] Gary Wassermann, Carl Gould, Zhendong Su, and Premku-
mar T. Devanbu. Static checking of dynamically generated
queries in database applications. ACM Trans. Softw. Eng.
Methodol., 16(4), 2007.

[22] Ben Wiedermann and William R. Cook. Extracting queries
by static analysis of transparent persistence. In POPL, pages
199–210, 2007.

[23] Darren Willis, David J. Pearce, and James Noble. Efficient
object querying for java. In ECOOP, pages 28–49, 2006.

[24] Limsoon Wong. Kleisli: a functional query system. J. Funct.
Program., 10(1):19–56, 2000.

