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Abstract
Verified compilers, such as Leroy’s CompCert, are accompanied by
a fully checked correctness proof. Both the compiler and proof are
often constructed with an interactive proof assistant. This technique
provides a strong, end-to-end correctness guarantee on top of a
small trusted computing base. Unfortunately, these compilers are
also challenging to extend since each additional transformation
must be proven correct in full formal detail.

At the other end of the spectrum, techniques for compiler cor-
rectness based on a domain-specific language for writing optimiza-
tions, such as Lerner’s Rhodium and Cobalt, make the compiler
easy to extend: the correctness of additional transformations can
be checked completely automatically. Unfortunately, these systems
provide a weaker guarantee since their end-to-end correctness has
not been proven fully formally.

We present an approach for compiler correctness that provides
the best of both worlds by bridging the gap between compiler veri-
fication and compiler extensibility. In particular, we have extended
Leroy’s CompCert compiler with an execution engine for optimiza-
tions written in a domain specific language and proved that this ex-
ecution engine preserves program semantics, using the Coq proof
assistant. We present our CompCert extension, XCert, including
the details of its execution engine and proof of correctness in Coq.
Furthermore, we report on the important lessons learned for making
the proof development manageable.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification – Correctness proofs; D.3.4
[Programming Languages]: Processors – Optimization; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs – Mechanical verification

General Terms Languages, Verification, Reliability

Keywords Compiler Optimization, Correctness, Extensibility

1. Introduction
Optimizing compilers are a foundational part of the infrastructure
developers rely on every day. Not only are compilers expected to
produce high-quality optimized code, but they are also expected to
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be correct, in that they preserve the behavior of the compiled pro-
grams. Even though developers hit bugs only occasionally when
using mature optimizing compilers, getting compilers to a level
of reliability that is good enough for mainstream use is challeng-
ing and extremely time consuming. Furthermore, in the context of
safety-critical applications, e.g. in medicine or avionics, compiler
correctness can literally become a matter of life and death. Devel-
opers in these domains are aware of the risk presented by compiler
bugs; imagine the care you would take in writing a compiler if a
human life depended on its correctness. To guard against disaster
they often disable compiler optimizations, perform manual reviews
of generated assembly, and conduct exhaustive testing, all of which
are expensive precautions.

One approach to ensure compiler reliability is to implement the
compiler within a proof assistant like Coq and formally prove its
correctness, as done in the CompCert verified compiler [9]. Us-
ing this technique provides a strong end-to-end guarantee: each
step of the compilation process is fully verified, from the first AST
transformation down to register allocation. Unfortunately, because
the proofs are not fully automated, this technique requires a large
amount of manual labor by developers who are both compiler ex-
perts and comfortable using an interactive theorem prover. Fur-
thermore, extending such a compiler with new optimizations re-
quires proving each new transformation correct in full formal de-
tail, which is difficult and requires substantial expertise [15–17].

Another approach to compiler reliability is based on using a
domain-specific language (DSL) for expressing optimizations; ex-
amples include Rhodium [8] and PEC [7]. These systems are able
to automatically check the correctness of optimizations expressed
in their DSL. This technique provides superior extensibility: not
only are correctness proofs produced without manual effort, but the
DSL provides an excellent abstraction for implementing new opti-
mizations. In fact, these systems are designed to make compilers
extensible even for non-compiler experts. Unfortunately, the DSL
based approach provides a weaker guarantee than verified compil-
ers, since the execution engine that runs the DSL optimizations is
not proved correct.

In this paper we present a hybrid approach to compiler cor-
rectness that achieves the best of both techniques by bridging the
gap between verified compilers and compiler extensibility. Our
approach is based on a DSL for expressing optimizations cou-
pled with both a fully automated correctness checker and a ver-
ified execution engine that runs optimizations expressed in the
DSL. We demonstrate the feasibility of this approach by extend-
ing CompCert with a new module XCert (“Extensible CompCert”).
XCert combines the DSL and automated correctness checker from
PEC [7] with an execution engine implemented as a pass within
CompCert and verified in Coq.

XCert achieves a strong correctness guarantee by proving the
correctness of the execution engine fully formally, but it also pro-
vides excellent extensibility because new optimizations can be eas-
ily expressed in the DSL and then checked for correctness fully



automatically. In particular, while adding only a relatively small
amount to CompCert’s trusted computing base (TCB), our tech-
nique provides the following benefit: additional optimizations that
are added using PEC do not require any new manual proof effort,
and do not add anything to the TCB.

The main challenge in adding a PEC execution engine to Com-
pCert lies in verifying its correctness in Coq. The verification is dif-
ficult for several reasons. First, it introduces new constructs into the
CompCert framework including parameterized programs, substitu-
tions, pattern matching, and subtle CFG-manipulation operations.
These constructs require careful design to make reasoning about
the execution engine manageable. Second, the execution engine
imports correctness guarantees provided by PEC into CompCert,
which requires properly aligning the semantics of PEC and Com-
pCert. Third, applying the PEC guarantee within the correctness
proof of the engine is challenging and tedious because it requires
knowing information outside the engine about tests performed deep
within the engine.

We discuss three general techniques that we found extremely
useful in mitigating these difficulties: (1) Verified Validation, a tech-
nique inspired by Tristan et al, where, for certain algorithms in the
PEC engine, we reduce proof effort by implementing a verified re-
sult checker rather than directly verifying the algorithm; (2) Seman-
tics Alignment, where we factor out into a separate module the is-
sues related to aligning the semantics between PEC and CompCert,
so that these difficulties do not pervade the rest of the proof; and
(3) Witness Propagation, where we return extra information with
the result of a transformation which allows us to simplify applying
the PEC guarantee and reduce case analyses.

Our contributions therefore include:

• XCert, an extension to CompCert based on PEC that provides
both extensibility and a strong end-to-end guarantee. We first
review PEC and CompCert in Section 2, and then present our
system and its correctness proof in Sections 3 and 4.

• Techniques to mitigate the complexity of such proofs and
lessons learned while developing our proof (Sections 3, 4
and 5). These techniques and lessons are more broadly appli-
cable than our current system.

• A quantitative and qualitative assessment of XCert in terms of
trusted computing base, lines of code, engine complexity and
proof complexity, and a comparison using these metrics with
CompCert and PEC (Section 6).

2. Background
In this section, we review background material on the PEC sys-
tem [7] and the CompCert verified compiler [9].

2.1 Parameterized Equivalence Checking (PEC)
PEC is a system for implementing optimizations and checking their
correctness automatically. PEC provides the programmer with a
domain-specific language for implementing optimizations. Once
optimizations are written in this language, PEC takes advantage of
the stylized forms of the optimizations to check their correctness
automatically.

Loop peeling We show how PEC works through a simple exam-
ple, loop peeling. Loop peeling is a transformation that takes one
iteration of a loop, and moves it either before or after the loop. An
instance of this transformation is shown in Figure 1. Loop peeling
can be used for a variety of purposes, including modifying loop
bounds to enable loop unrolling or loop merging.

Optimizations in PEC are expressed as guarded rewrite rules of
the following form:

G` Z=⇒ Gr where S

k := 0
while (i < 100) {

a[k] += k;
k++;

}

k := 0
while (k < 99) {

a[k] += k;
k++;

}
a[k] += k;
k++;

(a) (b)

Figure 1. Loop peeling: (a) shows the original code, and (b) shows
the transformed code.


I := 0
while (I < E) {

S
I++

}

 Z=⇒



I := 0
while (I < E-1) {

S
I++

}
S
I++


where NotMod(S, I) ∧ NotMod(S,E) ∧ StrictlyPos(E)

Figure 2. Loop peeling expressed in PEC

where G` is a code pattern to match, Gr is the code to replace any
matches with, and the side condition S is a boolean formula stat-
ing the condition under which the rewrite may safely be performed.
Throughout the paper we use subscript ` (which stands for “left”)
for the original program and subscript “r” (which stands for “right”)
for the transformed program. Figure 2 shows a simple form of loop
peeling, expressed in PEC’s domain-specific language. The vari-
ables S, I and E are PEC pattern variables that can match against
pieces of concrete syntax: S matches statements, I variables, and
E expressions.

The semantics of a rewrite rule G` Z=⇒ Gr where S is that, for
any substitution θ mapping pattern variables to concrete syntax, if
θ(G`) is found somewhere in the original program (where θ(G`)
denotes applying the substitution θ to G` to produce concrete
code), then the matched code is replaced with θ(Gr), as long as
S(θ(G`), θ(Gr)) holds.

The side condition S is a conjunction over a fixed set of side
condition predicates, such as NotMod and StrictlyPos. These side
condition predicates have a fixed semantic meaning – for example,
the meaning of StrictlyPos(I) is that I is greater than 0. PEC trusts
that the execution engine provides an implementation of these pred-
icates that implies their semantic meaning: if the implementation of
the predicate returns true, then its semantic meaning must hold.

Correctness checking PEC tries to show that a rewrite rule
G` Z=⇒ Gr where S is correct by matching up execution states
in G` and Gr using a simulation relation. A simulation relation ∼
is a relation over program states in the original and transformed
programs. Intuitively, ∼ relates a given state η` of the original pro-
gram with its corresponding state ηr in the transformed program.

The key property to establish is that the simulation relation
is preserved throughout execution. Using → to denote small-step
semantics, this property can be stated as follows:

η` ∼ ηr ∧ η` → η′` ⇒ ∃η′r, η′` ∼ η′r ∧ ηr → η′r (1)

Essentially, if the original and transformed programs are in a pair
of related states, and the original program steps, then the trans-
formed program will also step, in such a way that the two resulting
states will be related. Furthermore, if the original states of the two
programs are related by ∼, then the above condition guarantees
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A(σℓ , σr)
σℓ=σr ∧ eval(σℓ , I < E)

∧ eval(σr   , I < E-1)

B(σℓ , σr)
σℓ=σr ∧ eval(σℓ  , I < E)

∧ eval(σr   , I ≥ E-1)

σℓ=σr

σℓ=σr

Figure 3. Simulation relation for loop peeling

through an inductive argument over program traces that the two
program always executes in lock step on related states.

Figure 3 shows G` and Gr for loop peeling, and shows the
simulation relation that PEC automatically infers for this example.
G` and Gr are shown in CFG form, where a node is a program
point, and edges are statements. A dashed edge between G` and
Gr indicates that the program points being connected are related in
the simulation relation. Furthermore, each dashed edge is labeled
with a formula showing how the heaps σ` and σr (of G` and Gr)
are related at those program points.

The entry and exit points are related with state equality (σ` =
σr), which means that the simulation relation shows that if G` and
Gr start in equal states, then they will end in equal states (if the
exit points are reached). Aside from the entry points, there are two
other entries in the simulation relation, labeled with formulasA and
B in Figure 3 (shown below the CFGs). The notation eval(σ, e)
represents the result of evaluating expression e in heap σ.

The PEC checker takes as input the rewrite rule shown in Fig-
ure 2, and it automatically generates the relation shown in Figure 3.
After generating this relation, PEC checks that the relation satisfies
the properties required for it to be a simulation relation, namely
property (1). PEC does this by enumerating the paths from each
simulation relation entry to other entries that are reachable. In this
case, there are five such paths: entry to A, entry to B, A to A, A to
B, and B to exit. While enumerating paths, PEC prunes infeasible
ones. For example, PEC prunes the path “A to exit”, because the
simulation entry atA tells us that I < E−1, which after executing
I++ in the original program gives I < E, which forces the original
program to go back into the loop. For each feasible path that PEC
enumerates, PEC shows using an automated theorem prover (more
specifically an SMT solver) that if the original and transformed pro-
grams start executing at the beginning of the path, in related heap
states, then they end up in related heap states at the end of the path.
One important property of the simulation relation is that all loops
are cut, and so there are no loops between entries in the simulation
relation. As a result, the SMT solver only has to reason about short
sequences of straight line code, which SMT solvers do very well in
a fully automated way.

Guarantee provided by PEC The PEC work [7] initially consid-
ered the following as its correctness guarantee: starting with any
initial heap σ, if the original program executes to its exit and yields
heap σ′, then the transformed program will also execute to its exit
and produce the same σ′. However, as we will show in Section 3,
this fails to capture the correctness guarantee that PEC in fact pro-
vides for non-terminating computations. As a result, to integrate
PEC within CompCert and prove the PEC execution engine cor-
rect, particularly for non-terminating computations, we will have
to update the interface of the PEC checker so that it also returns the
simulation relation it discovered.

The techniques we present in this paper work for the “Relate”
module from PEC, which accounts for about three quarters of the
optimizations presented in [7]. The remaining optimizations, which
include some of the more sophisticated loop optimizations like
loop reversal, are handled by the PEC “Permute” module, which
presents additional challenges that we leave for future work.

2.2 CompCert
We now give a brief overview of the CompCert [9] compiler.
CompCert takes as input Clight, a large subset of C, and produces
PowerPC or ARM assembly. The compiler is implemented inside
the Coq proof assistant. CompCert is organized into several stages
that work over a sequence of increasingly detailed intermediate
representations (IRs): from various C-like AST representations,
through CFG based representations like RTL, and finally down to
abstract syntax for PowerPC assembly.

CompCert is accompanied by a proof of correctness, also imple-
mented in Coq. This proof provides a strong end-to-end correctness
guarantee. The guarantee is strong because the entire proof is for-
malized in Coq, not leaving any parts to a paper-and-pencil proof.
The guarantee is end-to-end because it covers all the steps of com-
pilation, from the source language all the way to assembly code.

The proof is organized around CompCert’s compilation stages.
For each stage, there is a proof showing that if the input program
to the stage has a certain behavior, then the program produced by
the stage will have the same behavior. The particular details of how
each proof is done depends on the particular stage and the seman-
tics of the input and output IR for the stage. The individual proofs
are then composed together to produce an end-to-end correctness
argument.

A common strategy used in CompCert for proving optimiza-
tions correct is to use a simulation relation. For each optimization
that the programmer wants to add, the programmer must carefully
craft a simulation relation for the optimization, and prove that it
satisfies property (1) in Coq. Once this is done, CompCert has sev-
eral useful theorems about small-step semantics that allows the pro-
grammer to conclude that the semantics is preserved by the opti-
mization.

In general, proving property (1) requires a substantial amount
of manual effort, and more importantly, it requires in depth knowl-
edge of Coq, CompCert’s data-structures, and proof infrastructure
provided by CompCert. In contrast, in the PEC system, once the
checker has been implemented, new optimizations can be checked
for correctness fully automatically, with no manual proof effort.

3. XCert: CompCert + PEC
We have seen in Section 2.1 how PEC provides extensibility, and
in Section 2.2 how CompCert provides strong guarantees. We now
give an overview of how XCert extends CompCert with PEC to get
both extensibility and a strong correctness guarantee. This section
gives a high-level informal description of the approach, whereas
Section 4 will describe the formalism as implemented in Coq.

Our general approach is to implement an execution engine for
PEC optimizations in CompCert, and prove that this execution en-



gine preserves semantics, given that the optimizations being exe-
cuted have successfully been checked using PEC.

3.1 Execution engine
To add a PEC engine to CompCert, we must decide where in
CompCert’s compilation pipeline the PEC engine should be added.
Although there are many different points in the pipeline, each using
a different IR, the decision really comes down to picking between
a CFG-based IR and an AST-based IR.

We decided to apply PEC optimizations to the RTL intermediate
representation, which is CompCert’s highest level CFG-based IR.
This is also the IR over which CompCert’s primary optimizations
work: the RTL stage in the compilation pipeline is perfectly suited
for implementing general optimizations because all of the source
language constructs have been compiled away, but none of the
target specific details have yet been introduced. Although running
PEC optimizations on a CFG has many benefits, it also presents
several challenges.

Pattern matching First, pattern matching is more difficult on a
CFG than an AST. At a high-level, given a rewrite rule G` Z=⇒
Gr where S, the PEC execution engine must find occurrences of
G` in the program being optimized. An AST pattern-matcher is
quite simple to implement recursively using a simultaneous traver-
sal over the pattern and the expression being matched. A CFG pat-
tern matcher, on the other hand, is more complex, primarily because
CFGs can have cycles, whereas ASTs are acyclic. Not only does
this make the pattern matcher itself more complex, but reasoning
about it formally also becomes more difficult.

Verified Validation To address the challenge of reasoning about
a CFG-based pattern matcher, we make use of Verified Validation,
a technique inspired by the work of Tristan et al. on verified trans-
lation validation [15–17]. The insight is that the result checker for
an algorithm is often much simpler than the algorithm itself, and so
proving the result checker correct is often much simpler than prov-
ing the algorithm correct. In our context, Verified Validation allows
us to produce matches that are guaranteed to be correct, while only
reasoning about a pattern-match result checker, rather than the pat-
tern matcher itself.

Transforming the CFG The second challenge in executing PEC
optimizations on a CFG is that a CFG is more difficult to transform
than an AST, and this difficulty is reflected in the Coq proof of
correctness. Because ASTs are trees with no cycles or sharing,
one can easily perform transformations locally, replacing a whole
subtree with another subtree. In a CFG, however, replacing one
subgraph with another requires appropriately connecting incoming
and outgoing edges for the region that has been replaced.

To make this task as easy as possible, we take advantage of the
way that CFGs are represented in CompCert. A CFG in CompCert
is a map from program points to instructions, and each instruction
contains successor program points. For example, a branch instruc-
tion would contain two successor program points, whereas a simple
assignment would only contain one successor program point. Con-
sider for example the original CFG shown in Figure 4(a), with a
matched region of the CFG that we want to transform. We graph-
ically display each entry in a CompCert CFG as a box that is sub-
divided into two parts: the left part of the box contains a program
point p and the right part the instruction i that the program point is
mapped to. We use arrows from an instruction directly to its suc-
cessor program points.

Side Conditions As noted in Section 2.1, PEC relies on the exe-
cution engine to provide correct implementations for a fixed set of
side conditions predicates, which are used to create the side condi-
tions of the PEC rewrite rules. For achieving a strong correctness
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i2p2
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Figure 4. Example of CFG splicing

P1 I:=I+1; next: P2

P2 I:=I+1; next: P3

P4 I:=I+2; next: P3

Gℓ Gr

Figure 5. PEC rewrite rule using Parameterized CFGs

guarantee, it is crucial that the implementation of these side condi-
tion predicates be verified. To this end, we have implemented and
verified a handful of side condition predicates, e.g. NotMod and
StrictlyPos from Figure 2.

Parametrized CFGs Given a PEC rewrite rule G` Z=⇒
Gr where S, we represent G` and Gr as parametrized CFGs. A
parametrized CFG (PCFG) is a CompCert CFG that can contain
pattern variables like S, E, and I, which must be instantiated to get
a concrete CFG. Furthermore, these PCFGs also use pattern vari-
ables wherever a program point would be expected. Thus, when
the PEC engine finds a match for the loop-peeling rewrite from
Figure 2, the resulting substitution not only states what S, E, and
I map to, but also how the program points of G` map to program
points of the CFG being transformed.

For example, Figure 5 shows how the rewrite rule I++;I++ Z=⇒
I+=2 would be represented using PCFGs. Note that the transformed
PCFG, namely Gr , contains a program point pattern variable P4

that is not bound in the original PCFG, namely G`. Such unbound
pattern variables (of which there can be many in the transformed
PCFG) represent fresh program points that the engine will need
to generate when it applies the transformation. Although in general
it’s perfectly legal for two pattern variables to map to the same piece
of concrete syntax, these unbound program points have a special
semantics, in that the engine generates a fresh (and thus distinct)
program point for each unbound program point pattern variable.

For simplicity of presentation, we will assume that all
parametrized program points in the domain of Gr (i.e. program
points in the left parts of the boxes in the diagrams) must be free,
in that they do not appear in G`. This makes the example easier to
understand intuitively and slightly simplifies the formalization in
Section 4. Our actual implementation in Coq does not make this
assumption.

Connecting outgoing edges To see how we connect edges leav-
ing the transformed region, let’s take a look at Figure 5 again. Note
that the transformed PCFG uses the pattern variable P3, which is
bound in the original PCFG. Thus, when the PEC engine finds a
match for G` in Figure 5, the resulting substitution will have an



entry for P3, which essentially captures the fall-through of the
matched region of code. When the engine applies this substitution
to Gr , to produce the transformed region of code, P3 will be re-
placed with the fall-through of the original region. In this way, the
regular match-and-transform process in the PEC engine naturally
connects outgoing edges in the transformed region, without requir-
ing a special case.

Connecting incoming edges For connecting edges entering the
transformed region, let’s go back to Figure 4(a), and suppose the
pattern matcher has found a sub-CFG g` in the original CFG that
matches G`, and let’s assume that the resulting substitution is θ.
Furthermore, suppose that applying θ to Gr produces the replace-
ment CFG shown in Figure 4(b). As mentioned previously, the en-
gine generates new fresh program points in the transformed CFG,
which means that we can simply union the CFG from Figures 4(a)
and (b) without any name clashes in the program points. Further-
more, after this union is performed, outgoing edges of the replace-
ment CFG are already connected, as mentioned previously. As a
result, we are only left with connecting the incoming edges.

Our approach to doing this is simple yet effective. In particu-
lar, we take the entry program point in the matched region from
Figure 4(a) and update the instruction at that point with the first
instruction of the replacement region from Figure 4(b). Figure 4(c)
shows the result of this process. In essence, instruction i′ has been
copied to the entry of the matched region, and since i′ contains in-
side of it all its successor program points, the instruction at p now
has successor links pointing directly into the transformed region.
The remainder of the original matched region is left unchanged, al-
though disconnected (except if there are other entry points into the
matched region). Any unreachable code will be removed by a sub-
sequent dead code elimination phase. Note that in our example, the
program point p′ is also left disconnected, but this does not have
to be the case in general, since instructions from the transformed
region may point to it (for example, in the case of a loop).

Witness Propagation In general, applying the PEC guarantee
within the Coq correctness proof of the execution engine is chal-
lenging and tedious because it requires knowing information out-
side the engine about tests performed deep within the engine. To
facilitate the task of applying the PEC guarantee, we use Witness
Propagation, a technique in which functions are made to return ad-
ditional information that is used only for reasoning purposes. For
example, we make the PEC execution engine in CompCert return
not only the final transformed CFG, but also the substitution that
was used to generate this transformed CFG. When executing the
compiler, the substitution is not used outside the engine; however,
in the proof it makes applying the PEC guarantee much easier, and
it simplifies case analysis for code that calls the execution engine.

3.2 Correctness
Recall that optimizations at the RTL level are proved correct in
CompCert using a simulation relation, and this amounts to showing
property (1) in Coq, where η` and η′` are states in the original pro-
gram, and ηr and η′r are states in the program produced by the PEC
execution engine. When performing this proof in Coq, we assume
that all the rules executed by the engine have been checked success-
fully by PEC, and therefore, we know that the correctness condition
provided by PEC holds for those rules (outlined in Section 2.1).

One of the challenges that comes up in performing this proof
is that the original program and the transformed program don’t
execute in perfect synchrony anymore with respect to the small-
step semantics→: given a piece of code that has been transformed,
it may take, say, 5 steps to go through it in the original program,
and only 2 steps in the transformed one. This misalignment in the
semantics means that, strictly speaking, property (1) does not hold.

Although CompCert has stuttering variations of (1) that can be used
in this case, using these variations makes the proof more complex,
but more importantly it also conflates issues: the proof would have
to deal at the same time with the misalignment of semantics, and
with the complexities of reasoning about PEC rewrites.

Semantics alignment To separate these concerns, and to modu-
larize the proof, we introduce two new semantics for the purposes
of Semantics Alignment,→` and→r , which are meant to align ex-
actly: each step taken by →` should correspond to precisely one
step of →r , making it easier to show the equivalence of →` and
→r . In a separate Semantics Alignment module, we can then show
the equivalence between→ and→` for the original program, and
between→r and→ for the transformed program.

Our first attempt at defining→` and→r unfortunately was not
strong enough. In particular, we stated that→` and→r act like→,
but step “over” any regions of code transformed by PEC in the orig-
inal or optimized programs, respectively. Although this approach
works well for terminating computations, non-terminating com-
putations introduce additional challenges. When CompCert proves
that an optimization preserves behavior, the definition of behavior
includes the possibility of running forever (with a infinite trace of
externally visible events, such as calls to printf). Thus, we need
to prove that the PEC engine preserves non-terminating behaviors
(including the details of the infinite trace). In general formally rea-
soning about the preservation of non-termination has proven chal-
lenging in the context of formally verified compilers. Indeed, many
verified compilers, for example the recent work of Chlipala [3], still
don’t have a proof that non-termination is preserved.

The big-step problem The problem with our original definition of
→` and→r in regards to non-termination is that they take a big step
over regions that PEC has transformed, and such a big step does
not provide a guarantee when the program gets into an infinite loop
inside these “stepped over” regions. The checks that PEC performs
does however guarantee that non-termination is preserved inside of
the regions it transforms. Thus, one way to address this problem
is to strengthen the original guarantee provided by the PEC work
(stated in Section 2.1), using a similar approach to what CompCert
does at the optimization level: define the behavior of a region
of code as either “terminates” or “runs forever”. The guarantee
that PEC provides would then state that the behavior of a region
transformed by PEC is preserved, which would include the “runs
forever” case.

While pursuing this approach, we realized that the proof was
getting unwieldy. Applying the new PEC correctness guarantee was
difficult because in the non-terminating case, CompCert requires
the proof to produce the infinite trace in the transformed program,
which in turn requires a lot of accounting to properly “glue” traces
together. The complexity is in part due to the fact that different
kinds of traces must be glued together: finite (inductively defined)
traces with infinite (co-inductively defined) traces.

By carefully observing the challenges in the proof, we realized
that, in the end, all the problems stemmed from a single mismatch
in the semantics: big-step vs. small step. The CompCert RTL theory
works using a small-step semantics, and our “step-over” approach
essentially introduces a big step over potentially non-terminating
computations.

Changing the PEC interface Our solution to this problem is an-
other instance of the Semantic Alignment technique, where we es-
sentially change the PEC interface so that it aligns with CompCert’s
small-step proofs. The key to achieving this alignment stems from
the realization that PEC actually performs its checking using small
steps. In particular, the simulation relation that PEC generates has
the property that there are no loops between entries. If there is a
loop, PEC will generate an entry in the simulation relation that cuts



the loop into acyclic paths, in much the same way that a loop invari-
ant cuts loops in program verification. Entry A in Figure 3 is such
a loop-cutting entry in the simulation relation. Therefore, there is
no possibility that a program will not terminate between simulation
relation entries. Furthermore, PEC uses a simulation relation in its
checking, which is precisely the technique used in CompCert too.
It would therefore make sense to change the interface between the
two systems to take advantage of their similarities.

To this end, we modify the interface between PEC and Com-
pCert so that the PEC checker returns the simulation relation that it
used to prove a particular optimization correct, and we import this
simulation relation into CompCert. When we prove that running
this optimization in CompCert using the PEC execution engine pre-
serves behavior, we can make use of CompCert’s simulation rela-
tion approach, by creating a simulation relation for the entire pro-
gram as follows: if we’re not in a region that has been transformed,
use state equality; if we are in a region that has been transformed,
use the simulation relation returned by the PEC checker for that
optimization.

Furthermore, along with the PEC simulation relation, we as-
sume that the PEC checker returns a Coq proof that the simula-
tion relation satisfies the simulation property, namely property (1).
This proof is nothing more than a Coq reification of the proofs that
PEC’s SMT solver performed. If PEC used an SMT solver that re-
turned proofs, it could perform a translation from the SMT proofs
into Coq’s proof language. The proof returned by PEC is used in
our proof to show that the simulation relation we created for the
entire program is preserved while inside transformed code.

Function calls are handled in CompCert using small steps, so
that a call instruction transfers execution to the CFG of the callee. If
a call instruction occurs inside the transformed region, we consider
the call to essentially leave the transformed region. As a result,
inside the callee, the simulation relation we construct will simply
use state equality, not the PEC simulation relation. Once the call
returns, execution comes back into the transformed region, and
the simulation relation we construct goes back to using the PEC
simulation relation.

Left and right semantics, revisited Now that PEC returns a sim-
ulation relation, we can give the definitions of→` and→r that we
use in our proof: if we’re not in a region that has been transformed,
→` and→r work the same as→; if we are in a region that has been
transformed,→` and→r simply step from one entry to another in
the simulation relation returned by PEC.

To illustrate how →, →` and →r work, Figure 6 shows part
of an execution trace trace` for the original program (with round
circles for program states), and part of a trace tracer for the trans-
formed program (with crosses for program states), along with the
simulation relation as it unfolds throughout execution (shown as
dotted edges between the original and transformed traces). The
simulation relation inside the transformed region is the one that
PEC returns. Figure 6 also shows how the three step semantics op-
erate on the original and transformed programs:→ and→` on the
original program and→r and→ on the transformed program.

3.3 Proof architecture
To summarize, our proof is therefore organized into three steps,
which we show separately: (1) if a program π has behavior b
under→, then π has behavior b under→`; (2) if a program π has
behavior b under→`, then the program produced by our execution
engine on π has behavior b under →r; (3) if a program π has
behavior b under →r , then π has behavior b under →. Steps (1)
and (3) are where semantics alignment issues are resolved, and
step (2) is where we build a simulation relation for the original and
transformed programs using the simulation relation returned by the
PEC checker.

Matched
Region

Transformed
Region

traceℓ tracer

ℓ r 

Figure 6. Traces showing how→,→` and→r work

Instruction i ∈ Instr
Program point p ∈ PP

CFG g ∈ CFG = PP ⇀ Instr
Program π ∈ Prog = String ⇀ CFG

Program heap σ ∈ Heap
Program state η ∈ State = CFG × PP ×Heap
PEC Sim Rel ψ ∈ Sim = P(State × State)

Substitution θ ∈ Subst
Param. Sim Ψ ∈ PSim

Param. CFG G ∈ PCFG
Side condition S ∈ SC = CFG × CFG

Rewrite rule r ∈ Rule = PCFG × PCFG × SC

Figure 7. Common types used in our formalism

4. Formalization
In this section, we make the ideas from Section 3 more precise, by
presenting a formalization of the PEC engine and its proof. The
development presented here closely mirrors our implementation
in Coq. Later, in Section 5, we describe some of the additional
challenges that arose when translating these high level ideas into
Coq code.

4.1 Basic definitions
We start with some basic definitions, shown in Figure 7. An instruc-
tion imay be any one of a number of basic RTL instructions already
defined in CompCert. A CFG g is a map from program points to in-
structions, and a program is map from function names (strings) to
CFGs. A program heap σ contains the state of dynamically allo-
cated memory blocks. For simplicity of presentation, we assume
the heap also contains the state of the registers and stack, even
though in the implementation they are kept separate. A program
state η consists of a CFG (representing the current code being exe-
cuted), a program point in that CFG (representing where execution
has reached), and the heap (which includes the stack). We project



these fields of a program state η as follows: g(η) denotes the CFG,
p(η) denotes the program point, and s(η) denotes the heap.

A PEC simulation relation ψ is a relation over program states
that is returned by the PEC checker. Because they are generated
by PEC, these simulation relations have entries for related program
points, and each entry is a predicate over program heaps (recall
Figure 3). Therefore, such relations have the form:

ψ((g`, p`, σ`), (gr, pr, σr)) , ψP (p`, pr)(σ`, σr)

whereψP ∈ (PP×PP) ⇀ P(Heap×Heap). We use the notation
p ∈ ψ to denote that p is in the domain of ψP (either as a first
parameter or second parameter).

A substitution θ is a map from pattern variables to concrete
pieces of syntax. A parametrized simulation relation Ψ is a ver-
sion of a simulation relation that contains pattern variables which
must be instantiated to yield a concrete simulation relation. For ex-
ample, the simulation relation shown in Figure 3 is parametrized
because syntactic values for S, E, and I must be provided before
the simulation relation can apply to concrete program states. Given
a parametrized simulation relation Ψ, and a substitution θ that maps
every free pattern variable in Ψ to concrete syntax, the result of ap-
plying θ to Ψ, denoted θ(Ψ), is a concrete simulation relation ψ.
Similarly, a parameterized CFG G is a parametrized version of a
CFG. A side condition is a boolean function from two concrete
CFGs (here expressed as a relation). A PEC rewrite rule r contains
two parametrized CFGs (representing the pattern to match, and the
replacement to perform), and a side condition.

4.2 PEC checker and guarantee
PEC takes a rewrite rule and attempts to construct a parameterized
simulation relation. If PEC is able to check that the rewrite rule is
correct, it also returns a proof that the simulation relation satisfies
the simulation property. Specifically, PEC has the type:

PEC(r : Rule) : (Ψ : PSim × Proof[IsSimRel(r,Ψ)]) ∪ {Fail}
The proof returned by PEC plays a central role in our Coq

proof of the correctness of the execution engine. To describe the
proof returned by PEC we’ll make use of a modified step relation,
η

t→ψ η′, which essentially steps over any program points not in
the PEC simulation relation ψ. That is, t→ψ combines the sequence
of regular t→ steps from one entry in ψ to the next into a single
“medium” step.

Using this definition, we now define IsSimRel(r,Ψ), the guar-
antee provided by the proof term returned by PEC:

DEFINITION 1. We say IsSimRel((G`, Gr, S),Ψ) holds iff:

S(θ(G`), θ(Gr))⇒ IsConSimRel(θ(Ψ), θ(G`), θ(Gr))

where IsConSimRel(ψ, g`, gr) holds iff:

ψP (Entry(g`),Entry(gr)) = HeapEq ∧

ψP (Exit(g`),Exit(gr)) = HeapEq ∧[
g` = g(η`) ∧ gr = g(ηr) ∧

ψ(η`, ηr) ∧ η`
t→ψ η

′
`

]
⇒
[
∃η′r .ψ(η′`, η

′
r) ∧ ηr

t→ψ η
′
r

]
Intuitively, the above definition guarantees that the simulation rela-
tion returned by PEC: (a) relates states on entry and exit to G` and
Gr by heap equality – HeapEq is defined by ∀σ.HeapEq(σ, σ);
and (b) satisfies the simulation property (1).

4.3 Execution engine
Figure 8 shows pseudo code for the PEC execution engine in XCert.
Given a program π and a PEC rewrite r, TrProg applies r to each

TrProg(π, r) :

return λs.

fst(TrCFG(π(s), r))

TrCFG(g, r) :

C ← ∅
for p ∈ ProgPoints(g) do

x← TrPoint(g, r, p)

C ← C ∪ {x}
return Pick(C)

TrPoint(g`, (G`, Gr, S), p) :

θ ← Match(G`, g`, p)

if ¬ θ(G`)
p
= g`

return (g`,⊥)

θ ← Fresh(θ,Gr)

if ¬ S(θ(G`), θ(Gr))

return (g`,⊥)

gr ← g` ∪ θ(Gr)
i← gr(θ(Gr.entry))

gr ← gr[p 7→ i]

return (gr, θ)

Figure 8. PEC execution engine

CFG in π using TrCFG. It projects the first element of the result
of TrCFG because it contains both the transformed CFG and the
substitution used to produce this CFG. TrCFG iterates over all the
program points in the given CFG g, and for each program point
it attempts to apply the rewrite starting at that point by calling
TrPoint. It gathers the resulting CFGs and chooses one as the
transformed version of g.

TrPoint first tries to match the left parameterized CFG G` of
the rewrite rule to the given concrete CFG g`. It then checks that
any generated substitution θ applied to G` is identical to the CFG
fragment of g` rooted at p; we denote this as θ(G`)

p
= g`. If

this check or the pattern match fails, TrPoint simply returns the
original CFG and ⊥ which indicates an invalid substitution.This
instance of Verified Validation allows us to avoid reasoning about
Match directly and instead simply show that our comparison

p
=

is correct, which is a much smaller proof burden. Next TrPoint
creates fresh program points for any parameterized program points
that are free inGr . Now, TrPoint checks that the rewrite rule’s side
condition holds on the CFGs generated by applying θ to the left and
right parameterized programs,G` andGr . Once again, if the check
fails, TrPoint simply returns the original CFG and⊥. Next TrPoint
generates the transformed version of the code gr by applying the
substitution θ to the right parameterized CFG Gr . TrPoint then
changes gr so that program location p points to the first instruction
of the transformed part of the CFG. Finally, TrPoint returns the
transformed CFG gr and the substitution θ.

4.4 Correctness condition
We define the set of behaviors of a program as follows:

Beh = {term(t) | t ∈ Trace} ∪ {forever(t) | t ∈ Trace}

where t represents a potentially infinite trace of observable events,
and term(t) and forever(t) respectively denote executions termi-
nating or diverging with a trace t. We use π ⇓ b to indicate that π
has behavior b, as defined below.

DEFINITION 2. The relation π ⇓ b is defined as follows:

• if ηi(π)
t→
∗
ηf and ηf ∈ Final then π ⇓ term(t)

• if ηi(π)
t→
∞

then π ⇓ forever(t)

where: ηi(π) is the initial state of program π; t→
∗

is the reflexive
transitive closure of t→; Final is the set of final program states (in-
dicating program termination); and η t→

∞
indicates that execution

runs forever producing trace t under→ when started at η.



To show the correctness of our execution engine, we prove the
following theorem in Coq:

THEOREM 1. If PEC(r) 6= Fail and π ⇓ b then TrProg(π, r) ⇓ b.

In the following, we describe a Coq proof of Theorem 1. To do
this, we fix a particular rule r and assume PEC(r) = (Ψ, ρ), where
Ψ is the parametrized simulation relation found by PEC for r and
ρ is a proof of IsSimRel(r,Ψ) (which essentially guarantees that
IsSimRel(r,Ψ) holds).

Step left and step right To simplify applying the proof ρ of
IsSimRel(r,Ψ), we construct two new, closely related semantics
that are specialized to a concrete simulation relation:

DEFINITION 3. We define η`
t→` η

′
` as the smallest relation satis-

fying:[
TrCFG(g(η`), r) = (g(ηr), θ)

ψ = θ(Ψ)

]
=⇒


p(η`) 6∈ θ ∧ p(η′`) 6∈ θ ∧ η`

t→ η′` ⇒ η`
t→` η

′
`

p(η`) 6∈ θ ∧ p(η′`) ∈ ψ ∧ η`
t→ η′` ⇒ η`

t→` η
′
`

p(η`) ∈ ψ ∧ p(η′`) ∈ ψ ∧ η`
t→ψ η

′
` ⇒ η`

t→` η
′
`

p(η`) ∈ ψ ∧ p(η′`) 6∈ θ ∧ η`
t→ η′` ⇒ η`

t→` η
′
`


Note that formulas in square brackets are implicit conjunctions of
formulas, one formula per line. The relation ηr

t→r η
′
r is defined

analogously to t→` by substituting ηr for η` in the right-hand side
of the main implication above.

The notation p(η`) 6∈ θ indicates that the program point of
state η is not in a region of CFG transformed by TrCFG. This
is implemented by searching θ to determine if a parameterized
program point maps to p(η`) such that the parameterized program
point is not one of the exit points from the transformed code back
to unmodified code. For briefness, we may speak of a state η not
being in the transformed region; this simply means p(η) 6∈ θ.

Intuitively, t→` captures distinct ways in which the original code
can step from state η` to η′`. In Definition 3, the first line of the
main implication’s right-hand side handles situations where neither
η` nor η′` are in the transformed region. In this case η`

t→` η
′
` holds

whenever η`
t→ η′` holds, that is whenever η` could take a normal

RTL step to η′`. The second and fourth lines capture entering and
exiting the transformed region, which again requires η`

t→ η′`. Note
that we only allow entering and exiting transformed code through
program locations that are in ψ. The third line captures the situation
where the original program executes from entry to entry of ψ using
→ψ .

Similar to the definition of ⇓ (Definition 2), we also define ⇓`
and ⇓r , which respectively use→` and→r rather than→.

4.5 Proof architecture
To establish Theorem 1 for program π and rewrite rule r =
(G`, Gr, S) where PEC(r) 6= Fail, our Coq proof shows following
three lemmas, which we describe in more detail below:

LEMMA 1. If π ⇓ b then π ⇓` b.

LEMMA 2. If π ⇓` b then TrProg(π, r) ⇓r b.

LEMMA 3. If π ⇓r b then π ⇓ b.

Lemma 1 CompCert’s library for small-step semantics allows us
to demonstrate Lemma 1 if we can exhibit a simulation relation∼1

and a well-founded order < on program states such that:

η ∼1 η` ∧ η
t→ η′ ⇒ ∃η′`, η′ ∼1 η

′
` ∧ (η`

t→` η
′
` ∨ η′ < η) (2)

Intuitively, this is the same as the standard simulation property (1),
except that we allow for the possibility that η` does not step as long
as the order is decreasing from η to η′.

We define η ∼1 η` to hold when either: (a) η = η` and either η
and η` are outside transformed code or both are at an entry in ψ or
(b) η is in a transformed region, but not at an entry in ψ, η` is at an
entry in ψ, and η t→ψ η`. Furthermore, we define the < order as
follows: η′ < η iff m(η′) < m(η) where m(η) and m(η′) are the
number of steps that η and η′ have, respectively, until reaching the
next entry in ψ.

We now have to show condition (2). The first and simpler case
corresponds to (a) in the definition of η ∼1 η`. Here we show that
the executions are in lockstep and that the successor states η′ and
η′l are equal. The second and more difficult case, corresponding to
(b) in the definition of η ∼1 η`, involves accounting for the steps
of π’s execution between entries in ψ. In this case: η` is at an entry
in ψ (because we are in case (b) of the definition of η ∼1 η`) and
it does not step; η is not at an entry in ψ and steps to η′; and from
the definition of ∼1 (the second case) we know η

t→ψ η`. Thus η′

is closer than η to the next entry in ψ (namely the program point of
η`), which allows us to show that η′ < η.

Lemma 2 Lemma 2 is the most difficult aspect of our Coq proof.
CompCert’s library for small-step semantics provides a theorem
which allows us to demonstrate Lemma 2 if we can exhibit a
simulation relation ∼2 between the states of π and TrProg(π, r)
that satisfies the following (which is essentially property (1)):

η` ∼2 ηr ∧ η`
t→` η

′
` ⇒ ∃η′r, η′` ∼2 η

′
r ∧ ηr

t→r η
′
r (3)

DEFINITION 4. We define η` ∼2 ηr as the smallest relation satis-
fying:[

TrCFG(g(η`), r) = (g(ηr), θ)
ψ = θ(Ψ)

]
=⇒

[
p(η`) 6∈ θ ∧ p(η`) = p(ηr) ∧ s(η`) = s(ηr) ⇒ η` ∼2 ηr

ψ(η`, ηr) ⇒ η` ∼2 ηr

]
Intuitively ∼2 relates states using heap equality when the pro-

gram points are outside of a transformed region, and using the sim-
ulation relation returned by PEC when the program points are in-
side of a transformed region.

Proving condition (3) has four main cases, which correspond to
the four conjuncts in the definitions of→` and→r .

Case 1: η` and ηr are both outside of transformed regions and
so are their successor states. This case is straightforward. Because
η` ∼2 ηr we know their heaps and program points are equal
and because they are outside of transformed code, we know they
are executing the same instruction. Thus ηr will step to η′r where
p(η′r) = p(η′`) and s(η′r) = s(η′`), which implies η′` ∼2 η

′
r (using

the first case of ∼2).
Case 2: η` and ηr are both stepping from outside the trans-

formed region into the transformed region. Because both states start
outside the transformed region, we know their heaps are equal and
that they’re executing the same instruction. Thus ηr will step to η′r
such that s(η′`) = s(η′r). Furthermore, because PEC guarantees that
the entries of matched code will be related in ψ with heap equal-
ity (see the part of definition 1 that uses HeapEq), s(η′`) = s(η′r)
implies ψ(η′`, η

′
r). Thus η′` ∼2 η

′
r (using the second case of ∼2).

Case 3: η` and ηr are both stepping from one entry of ψ to
the next. We use the fact that TrCFG(g(η`), r) = (g(ηr), θ)
to invoke the guarantee provided by PEC’s proof



of IsSimRel(r,Ψ). Specifically, TrCFG(g(η`), r) =
(g(ηr), θ) implies that S(θ(G`), θ(Gr)) which ensures
IsConSimRel(θ(Ψ), θ(G`), θ(Gr)) (see Definition 1 and
TrCFG in Figure 8) . This fact ensures that the ηr will execute to
η′r and ψ(η′`, η

′
r). Thus η′` ∼2 η

′
r (using the second case of ∼2).

Case 4: η` and ηr are both stepping from inside the transformed
region to outside the transformed region. Similar to Case 2 above,
PEC guarantees that exits of matched code will be related in ψ with
heap equality (see the part of definition 1 that uses HeapEq), mean-
ing that ψ(η`, ηr) at the exit implies s(η`) = s(ηr). Furthermore,
the way our pattern matching works ensures that p(η`) = p(ηr)
and that the instruction at these program points are equal. Thus ηr
will step to η′r where p(η′r) = p(η′`) and s(η′r) = s(η′`). From this
it follows that η′` ∼2 η

′
r (using first case of ∼2).

Lemma 3 CompCert’s library for small-step semantics provides a
theorem which allows us to demonstrate Lemma 3 if we can show:

ηr
t→r η

′
r ⇒ ηr

t→
+
η′r

The above follows immediately from the definition of→r .

5. Coping with challenges
Throughout Sections 3 and 4, we have already shown how three
techniques are very useful in managing the complexity of extend-
ing CompCert to support PEC rewrite rules: Verified Validation,
Semantics Alignment and Witness Propagation. In this section we
present several additional important challenges that we faced in our
development and their solutions.

5.1 Termination of Coq code
Functions expressed in Coq’s Calculus of Inductive Constructions
must be shown to terminate. In most cases, Coq can prove termi-
nation automatically by finding an appropriate measure on a func-
tion’s arguments that decreases with recursive calls. However, anal-
yses that attempt to reach a fixed point or traverse cyclic structures
like CFGs often pose problems for Coq’s automated termination-
proving strategy. One solution to this problem is to develop a ter-
mination proof for such functions in Coq. In general this can be
hard, and it also makes the functions more difficult to update, since
the termination proof also needs updating.

Another solution to is the introduction of a timeout parameter
that is decremented for each recursive call. If it ever reaches zero
the function immediately returns with a special ⊥ value. Using
this approach, Coq can now show termination automatically. The
downside of this simplistic approach is that the algorithm is now
incomplete, since in some cases it can return ⊥, and the proof of
correctness needs to take this into account. However, this is not
a problem in domains where there is a safe fallback return value
that makes the proof go through. This is indeed the case in the
compiler domain: the safe return value is the one that leads to no
transformations – for example a pattern matcher can always return
Fail. Although a constant timeout may appear to be crude solution
at first, we have found that it presents a very good engineering
trade-off, since a large timeout often suffices in practice.

5.2 Case explosion
Conceptually, our intermediate semantics →` and →r have only
four cases, as show in Section 4. However, such definitions on paper
often lead to formal Coq definitions with many cases. For example,
expressing→` and→r in terms of CompCert’s small-step→ leads
to a total of 9 cases. Most of these 9 cases use→ which itself has
12 cases, leading to an explosion in the number of cases. In the end,
however, only a handful of these case are actually feasible at any
one point in the proof, and a paper-and-pencil proof could easily

say “the only feasible cases are ...”. However, the formal proof
needs to handle every case, leading to complex accounting.

One approach that we have found very helpful with eliminating
the many infeasible cases is to thread additional information in the
return values of functions. This additional information is not used
by the computation itself, but rather in the proof, to provide the
right context in the callers to know how to prune appropriate cases.
One example of this approach is the PEC execution engine from
Figure 8, which threads the substitution found in TrPoint all the
way back up to TrProg, even though for the purposes of applying
PEC rules, this substitution is not needed outside of TrPoint. In
other cases, we have also found that implementing specialized
tactics in Coq’s tactic languages allows us to easily handle many
similar cases using few lines of proof.

5.3 Law of the excluded middle
The law of excluded middle occurs very naturally when working
out high level proof sketches. Unfortunately, the constructive logic
underlying Coq does not provide this luxury. As an example, one
could be tempted in a proof sketch to split on termination: either
execution returns from a given function call or it does not. How-
ever, this intuitive fact cannot be shown in Coq, because it would
require deciding algorithmically if the function terminates. Instead
one must create an inductive construct with two constructors corre-
sponding to the intuitive case split. This is precisely how termina-
tion vs. non-termination is handled in CompCert, as shown in the
definition of ⇓ (Definition 2). Alternatively, in situations where it
is possible, one can implement a decision procedure that correctly
distinguishes between the various cases of interest. Then, within a
proof, one can perform case analysis on the result produced by this
decision procedure.

6. Evaluation
XCert extends the CompCert verified compiler with an execution
engine that applies parameterized rewrite rules checked by PEC.
Below we characterize our implementation of XCert by compar-
ing it to both an untrusted prototype execution engine and to some
of the manual optimizations found within CompCert (Sections 6.1
and 6.2). Next, we evaluate XCert in terms of its trusted computing
base (Section 6.3), extensibility (Section 6.4) and correctness guar-
antee (Section 6.5). We conclude by considering the limitations of
our current execution engine (Section 6.6).

6.1 Engine Complexity
The PEC execution engine that we added to CompCert comprises
approximately 1,000 lines of Coq code. Its main components are
the pattern matching and the substitution application which al-
low us to easily implement the transformations specified by PEC
rewrite rules.

The PEC untrusted prototype execution engine mentioned in [7]
was roughly 400 lines of OCaml code. Although both execution
engines apply PEC rewrite rules to perform optimizations, they
work in very different settings. The CompCert execution engine
targets the CFG-based RTL representation in CompCert, while the
prototype in [7] targets an AST-based representation of a C-like IR.

We also compare the PEC execution engine against CompCert’s
two main RTL optimizations, common subexpression elimination
(CSE) and constant propagation (CP). CSE is 440 lines of Coq
code, and CP is 1,000 lines. Both of these optimizations make use
of a general purpose dataflow solver, which is about 1,200 lines.
Structurally, the PEC execution engine is very different from the
optimizations in CompCert. Most of the code in the PEC engine
performs pattern matching and tricky CFG splicing to achieve the
task of replacing an entire region of the CFG with another. In-
stead, CSE and CP in CompCert perform simple CFG rewrites (one



statement to another), and instead focus their efforts on computing
dataflow information.

6.2 Proof Complexity
The proof of correctness for our execution engine is approximately
3,000 lines of Coq proof code. This code defines (1) the intermedi-
ate semantics→` and→r that facilitate applying the PEC guaran-
tee, (2) Coq proof scripts demonstrating the semantic preservation
of transformations performed by the execution engine and (3) tac-
tics that make developing these proofs easier and more concise.

CompCert’s correctness proofs for CSE and CP each span
nearly 1,000 lines of proof code. Structurally, the correctness
proofs for these CompCert optimizations are quite different from
the execution engine’s correctness proof, because they deal with
different challenges. The CSE and CP proofs are mainly devoted to
extracting useful facts from the result of the dataflow analysis per-
formed by the transformation. These facts are then used to estab-
lish sufficient conditions for semantic preservation. In contrast, the
proof of the execution engine focuses on showing that the many-to-
many CFG rewrites that the PEC engine performs are correct. This
typically involves splitting into two cases: cases where execution
is not in the transformed code, which are typically straightforward;
and cases where execution is in some region that has been trans-
formed, in which case the proof effort involves either showing the
case cannot arise or the simulation relation from PEC applies.

Note that the correctness proof for the PEC execution engine is
three times larger than the PEC execution engine itself. However,
the engineering effort for developing the proof was at least an order
of magnitude greater than the effort for developing the execution
engine. This is because we re-engineered the proof several times to
make it simpler, cleaner, and more manageable using tactics.

6.3 Trusted Computing Base
The trusted computing base (TCB) consists of those components
that are trusted to be correct. A bug in these components could
invalidate any of the correctness guarantees that are being provided.
The TCB for the regular CompCert compiler (without the PEC
engine) includes CompCert’s implementation of the C semantics,
Coq’s underlying theory (the Calculus of Inductive Constructions),
and Coq’s internal proof checker.

When CompCert is extended with the PEC execution engine,
the TCB grows because, even though the engine is proved correct in
Coq, we trust that the PEC checker correctly checks any simulation
relation it returns. Within the PEC implementation this checker is
implemented in about 100 lines of OCaml code and makes calls to
an SMT solver like Simplify [5] or Z3 [4]. Thus, the PEC engine
adds the following to CompCert’s TCB: 100 lines of OCaml for the
PEC checker, an SMT solver like Simplify or Z3, and the encoding
of CompCert’s RTL semantics to be used by the SMT solver.

6.4 Extensibility
With this relatively small increase in TCB comes the following ben-
efit: additional optimizations that are added using PEC do not re-
quire any new manual proof effort, and do not add anything to the
TCB. In contrast, for each new optimization added to CompCert,
unless a verified validator has already been specifically designed
for it, the new optimization would either have to be proved correct,
or if not, it would be trusted, thus increasing the TCB. Thus, the
provably correct PEC execution engine brings all of the expressive-
ness and extensibility shown previously in [7] to CompCert while
adding only a small amount to the TCB.

To test the extensibility of our system, we implemented and ran
all the optimizations checked by PEC’s “Relate” module in [7]. We
ran the optimizations on an array of CompCert C benchmarks to-
taling about 10,000 lines of code. The benchmarks included cryp-

tographic code like AES and SHA1, numeric computations such as
FFT and Mandelbrot, and a raytracer. We manually checked that
the transformations were carried out as expected.

6.5 Correctness Guarantee
While the size of the TCB tells us how much needs to be trusted,
it is also important to evaluate the correctness guarantee provided
in exchange for this trust. Essentially, the CompCert compiler ex-
tended with our PEC execution engine provides the same guaran-
tee as the original CompCert compiler: if the compiler produces
an output program, then the output program will be semantically
equivalent to the corresponding input program.

There are two ways in which this guarantee is not as strong as
one may hope for. First, CompCert extended with our PEC execu-
tion engine is not guaranteed to produce an output program, even on
a valid input program, because some passes from CompCert may
abort compilation. For example, during the stack layout phase of
CompCert, if a program spills too many variables and exceeds the
available stack for a given function, then CompCert is forced to
abort without producing an assembly output program. However, the
PEC engine itself always produces an output program, and there-
fore is not a source of incompleteness.

The other weakness in the PEC engine’s correctness guarantee
is shared by all systems that use verified validation. In particular,
those parts of the system that are checked using verified valida-
tion may still contain bugs in them. For example, the initial version
of our PEC execution engine did not always correctly instantiate
fresh nodes for the RHS of a PCFG. However, when this bug was
exercised, our verified validator detected that the generated nodes
did not have the required freshness property, and prevented the in-
correct transformation from being performed. Such bugs therefore
manifest themselves not as violations of the input/output equiva-
lence guarantee, but as missed optimization opportunities. The ex-
istence of such quality-of-optimization bugs emphasizes the value
of having run our PEC engine on real code, as described in Sec-
tion 6.4, and ensuring that the optimizations operate as expected.

6.6 Limitations
The PEC checker is currently not implemented in Coq. Thus, for
each PEC rewrite rule r, we must translate by hand the simulation
relation produced by the PEC checker for r into a Coq term and
axiomatize its correctness proof. We intend to develop a version of
PEC that directly outputs these simulation relations as Coq terms.
Eventually, we plan to also implement all of PEC in Coq and thus
eliminate the disconnect between the two systems.

Our current version of parameterized statements like S in Fig-
ure 2 are only able to match fixed length sequences of arbitrary in-
structions. Although this allows us to simulate parameterized state-
ments of a fixed size, we must properly implement parameterized
statements to achieve the full expressiveness of PEC.

7. Future Work
There are several directions for future work that we intend to ex-
plore. First, we plan to systematically and thoroughly compare the
quality of existing CompCert optimizations with their correspond-
ing PEC versions. Our evaluation will consider the runtime perfor-
mance of generated code and the number of missed optimization
opportunities. This comparison will enable us to fine tune our PEC
optimizations and execution engine which, eventually, we hope will
match the optimization capabilities currently found in CompCert.
More broadly, we will also evaluate the relative effort of adding
optimizations using XCert versus coding them directly in Coq or
within other optimization frameworks.

We also plan to explore further reductions to the TCB. When
our PEC execution engine is added to CompCert, the TCB grows



because the PEC checker becomes trusted. However, if we reim-
plement the PEC checker in Coq and formally prove its correct-
ness, then our PEC engine would not at all increase the size of the
TCB. The core of the PEC checker consists of only 100 lines of
stateless OCaml code, which we anticipate will be easy to imple-
ment and reason about in Coq. However, this core checker makes
queries to an SMT solver (like Z3) which could be challenging to
integrate into Coq. Fortunately, there are several reasons to be op-
timistic. First, some SMT solvers have recently been re-engineered
to produce proof terms, which we should be able to automatically
translate to Coq terms and thus integrate into a Coq proof (possibly
using the Coq Classical extension to accommodate for the refuta-
tion based proof strategies common in SMT solvers). Second, the
PEC checker’s SMT queries tend to be simple and highly stylized.
Thus, it may instead be possible to implement a sophisticated tactic
in Coq’s tactic language to discharge these obligations directly. We
plan to investigate both of these approaches, with the ultimate goal
of implementing a verified PEC checker in Coq.

Finally, we would also like to investigate extending XCert to
support the “Permute” module from PEC [7]. This would allow
additional loop optimizations to be easily added to CompCert,
such as loop reversal and loop distribution. Adding such support
to XCert would require formally developing the general theory
of loop reordering transformations found in [19], upon which the
PEC checker’s “Permute” module is based. Doing this will be
challenging because it’s not clear how to express the above theory
of loop transformations in a way that meshes well with CompCert’s
existing support for correctness proofs using simulation relations.
Nonetheless, formalizing such a theory in Coq is worthwhile, as
it would not only enable support for “Permute” optimizations in
XCert, but could also be broadly useful within CompCert.

8. Related work
Our work is closely related to three lines of research: verified
compilers, extensible compilers, and translation validation.

Verified Compilers Verified compilers are accompanied by a fully
checked correctness proof which ensures that the compiler pre-
serves the behavior of programs it compiles. Examples of such
compilers include Leroy’s CompCert compiler [9], Chlipala’s com-
pilers within the Lambda Tamer project [2, 3], and Nick Benton’s
work [1]. At a lower level, Sewell et. al.’s work [14] on formalizing
the semantics of real-world hardware like the x86 instruction set
provides a formal foundation for other verified tools to build on.

However, none of these compilers are easily extensible – ex-
tending these compilers with additional optimizations requires ei-
ther modifying the proofs or trusting the new optimizations without
proofs. The main goal of our work is to devise a mechanism to cross
this extensibility barrier for verified compilers. Although our work
was done in the context of the CompCert compiler, the general ap-
proach that we took for integrating PEC into a verified compiler
could be applied to other verified compilers.

Extensible Compilers There has been a long line of work on mak-
ing optimizers extensible. The Gospel language [18] allows com-
piler writers to express their optimizations in a domain-specific lan-
guage, which can then be analyzed to determine interactions be-
tween optimizations. The Broadway compiler [6] allows the pro-
grammer to give detailed domain-specific annotations about library
function calls, which can then be optimized more effectively. None
of these systems, however, are geared at proving guarantees about
correctness. The Rhodium [8] and PEC [7] work took the exten-
sible compilers work in the direction of correctness checking. In
these systems, correctness is checked fully automatically, but the
execution engine is still trusted. Our current work shows how to
bring a trusted execution engine to such systems.

Translation Validation Translation validation [10–13] is a tech-
nique for checking the correctness of a program transformation af-
ter it has been performed. Indeed, it is often easier to check that a
particular instance of a transformation is correct than to show that
transformation will always be correct. Although these techniques
may increase our confidence that a compiler is producing correct
code, only a verified translation validator can guarantee the correct-
ness of the a posteriori check performed by the validator. Tristan
et. al. examine such techniques for using verified translation val-
idation to add more aggressive optimizations to CompCert while
keeping the verification burden manageable [15–17].
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