
Validating High-Level Synthesis �

Sudipta Kundu, Sorin Lerner, and Rajesh Gupta

University of California, San Diego, La Jolla, CA 92093-0404
Email: {skundu, lerner, rgupta}@ cs.ucsd.edu

Abstract. The growing design-productivity gap has made designers
shift toward using high-level languages like C, C++ and Java to do
system-level design. High-Level Synthesis (HLS) is the process of gener-
ating Register Transfer Level (RTL) design from these initial high-level
programs. Unfortunately, this translation process itself can be buggy,
which can create a mismatch between what a designer intends and what
is actually implemented in the circuit. In this paper, we present an ap-
proach to validate the result of HLS against the initial high-level program
using insights from translation validation, automated theorem proving
and relational approaches to reasoning about programs. We have imple-
mented our validating technique and have applied it to a highly paral-
lelizing HLS framework called SPARK. We present the details of our
algorithm and experimental results.

1 Introduction

While hardware designer productivity has grown at an impressive rate over the
past few decades, the rate of improvement has not kept pace with chip capacity
growth. High-Level Synthesis (HLS) [22, 17, 10] is often seen as a solution to
bridge the design-productivity gap. HLS is the process of generating Register
Transfer Level (RTL) design consisting of a data path and a control unit from
a high-level behavioral description of a digital system, expressed in languages
like C, C++ and Java. The synthesis process consists of several inter dependent
sub-tasks such as: specification, compilation, scheduling, allocation, binding and
control generation. HLS is an area that has been widely explored and relatively
mature implementations of various HLS algorithm have started to emerge [22,
17, 10]. HLS tools are large and complex software systems, often with hundreds of
thousands of lines of code, and as with any software of this scale, they are prone
to logical and implementation errors. Errors in these tools lead to the synthesis
of RTL designs with bugs in them, which often have expensive ramifications
if they go undetected until after fabrication or large-scale production. Hence,
correctness of these HLS tools has always been an important concern.

Despite significant amount of work in the area of verification we are still far
from being able to prove automatically that a given optimizing HLS tool al-
ways produces target programs that are semantically equivalent to their source
versions. However, even if one cannot prove an HLS tool correct once and for
all, one can try to show, for each translation that the HLS tool performs, that
the output program produced by the tool has the same behavior as the original
� This research was supported in part by NSF CAREER Grant 0644306.



2

program. Although this approach does not guarantee that the HLS tool is bug
free, it does guarantee that any errors in translation will be caught when the tool
runs, preventing such errors from propagating any further in the hardware fab-
rication process. This approach to verification, called translation validation, has
previously been applied with success in the context of optimizing compilers [20,
19, 21, 23, 8], and for automatically proving refinements of CSP programs [14].

The main contribution of this paper is to show how translation validation can
effectively be implemented in a previously unexplored setting: an HLS tool. In
particular, we present an algorithm for validating all the phases (except for pars-
ing, binding and code generation) of the SPARK HLS tool [10] against the initial
behavioral description. With over 4,000 downloads, and over 100 active mem-
bers in the user community, SPARK is a widely used tool. Although commercial
HLS tools exists, these tools are not available for academic experimentation –
SPARK represents the state of the art in the academic community.

Our algorithm uses a bisimulation relation approach to prove equivalence. In
particular, we automatically establish a bisimulation relation that states what
points in the specification program are related to what points in the implemen-
tation program. This bisimulation relation guarantees that for each execution
sequence in the specification, a related and equivalent execution sequence exists
in the implementation and vice versa. To deal with the parallelism introduced
by the scheduling step of SPARK, we exploit the structure of the transforma-
tions that SPARK applies during scheduling. These transformations convert
a sequential program to a program that contains instruction-level parallelism.
Our algorithm deals with this parallelism using standard techniques for comput-
ing weakest preconditions and strongest postconditions of parallel programs [4].
Furthermore, the algorithm we present also draws insights and techniques from
various areas, including translation validation [20, 19], theorem proving [5], and
relational approaches to reasoning about programs [11, 15].

We implemented our algorithm in a tool that validates SPARK’s HLS pro-
cess. We used our tool to verify the translation of a variety of benchmarks. Be-
cause our verification approach works on one procedure at a time, it is modular.
Furthermore, our validation tool took on average 6 seconds to run per procedure,
showing that translation validation of HLS transformations can be fast enough
to be practical. Finally, in running our tool, two failed validation runs have lead
us to discover two previously unknown bugs in the SPARK tool. These bugs
cause SPARK to generate incorrect RTL for a given high-level program. This
demonstrates that translation validation of the HLS process can catch bugs that
even testing and long-term use may not uncover.

2 Overview

We start by presenting a simple example that illustrates our approach (Figure 1).
The specification is a sequential function shown in Figure 1(a) using a transition
diagram. This function takes p as input and computes the sum from (p + 1) to
10 using a loop and returns it. A parallelizing HLS tool will apply various kinds
of transformations to this sequential function, with the goal of scheduling each
operation based on some resource constraints.



3

a2

a3

a4

a5

a1

i2: k = p

i1: sum = 0

i3: (k < 10) i6: ¬ (k < 10)

a6

i4: k = k + 1

i5: sum = sum + k

a0

i7: return sum

(a)

b1

b2 b3

b4

b0

j1: sum = 0
j2: k = p
j41: t = p + 1

j4: k = t
j5: sum = sum + t
j42: t = t + 1

j7: return sum

j6: ¬ (k < 10)j3: (k < 10)

+ + <Resource Alocation:

(b)

j6

b1

b3

a2

a5

sums = sumi

ks = ki ks + 1 = ti

i6

(d)

ks = ki
b1

b1

a2

a2 ks = ki
(c)

i3
i4
i5

j4
j5
j42

j3

Fig. 1. Our running example (a) Specification (b) Implementation (c) and (d) Parts
of 2nd iteration

(l1, l2) 1st iteration 2nd iteration 3rd iteration (φ)

1. (a0, b0) ps = pi ps = pi ps = pi

(ks = ki)∧ ks = ki∧
2. (a2, b1) ks = ki (sums = sumi)∧ sums = sumi∧

((ks + 1) = ti) (ks + 1) = ti

3. (a5, b3) sums = sumi sums = sumi sums = sumi

Table 1. Iterations for computing the bisimulation relation

Figure 1(b) shows the result of running SPARK’s HLS algorithm given re-
source constraints of 2 adders and a comparator. Instructions on the same tran-
sition edge are executed in parallel. For this example SPARK has performed sev-
eral transformations. First, it applied a loop-shifting transformation that moves
the operation i4 from the beginning of the loop body to the end of the loop body
(j42), while also placing a copy of the operation in the loop header (j41) using the
temporary variable t. The effect of this loop-shifting transformation is a form
of software pipelining [16]. Notice that without this pipelining transformation it
would not have been possible to schedule the operation i4 and i5 together due
to data dependence between them. In addition to loop-shifting, SPARK also
performed copy propagation of instruction j2 to j41 and instruction j4 to j42.

Bisimulation Relation. In order to show that the implementation is equiv-
alent to the specification, our approach computes a bisimulation relation be-
tween the two programs. The goal of the bisimulation relation is to guarantee
that the specification and the implementation perform the same set of visible
instructions. In our case, we consider visible instructions to be function calls
and return statements. Our technique thus guarantees that the specification and
the implementation perform the same sequence of function calls (with the same
arguments) and returns (with the same returned values).



4

The bisimulation relation (defined formally in Section 4) consists of a set of
entries of the form (l1, l2, φ), where l1 and l2 are locations in the specification
and implementation respectively, and φ is a predicate over variables of the spec-
ification and implementation. The pair (l1, l2) captures how the control state of
the specification is related to the control state of the implementation, whereas
φ captures how the data is related. For instance, Table 1 shows the bisimula-
tion relation for our running example. The control component of entries in the
bisimulation relation are shown in the first column and the data component in
the last column of the table.

The first entry in the bisimulation relation relates the start location of the
specification and the implementation. For this entry, the relevant data invariant
is ps = pi, which states that the value of the input argument p in the specifica-
tion is equal to the value of the input argument p in the implementation. We use
subscript s to denote variables in the specification and subscript i for variables
in the implementation. The second entry in the bisimulation relation relates the
loop head (a2) in the specification with the loop head (b1) of the implementa-
tion. This entry represent two loops that run in synchrony, one loop being in the
specification and the other being in the implementation. The invariant can be
seen as a loop invariant across the specification and the implementation, which
guarantee that the two loops produce the same effect on the visible instructions.
The control part of this entry guarantee that the two loops are in fact synchro-
nized. The last entry in the bisimulation relation relates the location a5 in the
specification with the location b3 of the implementation. The relevant invariant
for this entry is sums = sumi, since the value returned by both the program
should be same (our equivalence criterion).

The entries in the bisimulation relation must satisfy some simple local re-
quirements (which are made precise in Section 4). Intuitively, for any entry
(l1, l2, φ) in the bisimulation relation, if the specification and implementation
start executing in parallel at control locations l1 and l2 in states where φ holds,
and in doing so reach another bisimulation entry (l ′1, l ′2, φ′), then φ′ must hold
in the resulting states.

Our Approach. Our technique for equivalence checking starts by finding
pairs of locations in the implementation and the specification that need to be
related in the bisimulation. This amounts to computing the first column of Ta-
ble 1. In the given example, our algorithm first adds (a0, b0) as a pair of interest,
which is the entry location of both programs. Then it moves forward simulta-
neously in the implementation and the specification until it reaches a branch, a
function call or a return instruction. In the example from Figure 1, our algorithm
finds that there is a branch and a return instruction that must be matched (the
specification locations a2 and a5 should match, respectively, with the implemen-
tation location b1 and b3). While finding these pairs of locations, our algorithm
correlates the branch in the specification and the implementation (the details of
how we establish branch correlations is explained in Section 5).

Once the related pairs of locations have been collected we define, for each pair
of locations (l1, l2), a constraint variable ψ(l1,l2) to represent the state-relating



5

formula that will be computed in the bisimulation relation for that pair. We then
define a set of constraints over these variables that must be satisfied in order for
the would-be bisimulation relation to in fact be a bisimulation.

There are two kinds of constraints. First, for each pair of locations (l1, l2)
that are related, we want ψ(l1,l2) to imply that any visible instructions about
to execute at (l1, l2) behave the same way. For example, ψ(a5,b3) should imply
sums = sumi, so that the returned values are the same. Such constraints guar-
antee that the computed bisimulation relation is strong enough to show that
the visible instructions behave the same way in the specification and the imple-
mentation. A second kind of constraint is used to state the relationship between
one pair of related locations and other pairs of related locations. For example,
if starting at (l1, l2) in states satisfying ψ(l1,l2), the specification and implemen-
tation can execute in parallel to reach another related pair of locations (l ′1, l ′2),
then ψ(l′1,l′2) must hold in the resulting states. As shown in Section 5, such con-
straints can be stated over the variables ψ(l1,l2) and ψ(l′1,l′2) using the weakest
precondition operator (wp). This second kind of constraint guarantees that the
computed bisimulation relation is in fact a bisimulation.

Once the constraints are generated, we solve them using an iterative algo-
rithm that starts with all constraint variables set to true and then iteratively
strengthens the constraint variables until a theorem prover is able to show that
all constraints are satisfied. Although in general this constraint-solving algo-
rithm is not guaranteed to terminate, in practice it can quickly find the required
bisimulation relation.

The constraint solving for our example is shown in Table 1. Our algorithm
first initializes the constraint variables with the conditions that are required
for the visible instructions to be equivalent. Then it chooses any entry from the
table, say (a2, b1) and finds the entries that can reach it (i.e. (a2, b1) and (a0, b0)).
Consider the synchronized loop from (a2, b1) to (a2, b1) shown in Figure 1(c).
Our algorithm computes the weakest precondition of the formula at the bottom
(ks = ki) over the instructions in the implementation and in the specification,
which happens to be δ = [(ks < 10) ⇒ (ki < 10) ⇒ (ks + 1) = ti]. Next, it asks
a theorem prover if the condition at the top i.e. ks = ki implies δ. Since it does
not, our algorithm strengthens the condition at the top with (ks + 1) = ti which
is a stronger condition than δ. A similar pass through Figure 1(d) strengthens
the condition at (a2, b1) with (sums = sumi). Our constraint solving continues in
this manner until a fixpoint is reached.

3 Definition of Equivalence

Having illustrated our approach using a simple example, we now present a formal
description. Our approach verifies each procedure from the specification against
the corresponding procedure from the implementation. We represent each proce-
dure in the specification and the implementation using a transition diagram that
describes the control structure of the procedure in terms of program locations
and program transitions. A program location represents a point of control in the
procedure, and a transition describes how the program state changes from one
program location to another. We represent these transitions by instructions.



6

More formally, we define a program state to be a function VAR → VAL
assigning values to variables, where VAR denotes the set of variables and VAL
denotes the domain of values. We denote by Σ the a set of all program states.
We define an instruction to be a pair (c, f) where c : Σ → B is a predicate and
f : Σ → Σ is a state transformation function. The predicate c is the condition
under which the state transformation function f can happen. For instance, in
Figure 1(a) the instruction i3 has c = (k < 10) and f(σ) = σ, whereas the
instruction i2 has c = true and f(σ) = σ[k �→ σ(p)].

Finally a transition diagram is defined as follows.

Definition 1 (Transition Diagram) A transition diagram π is a tuple
(L, I,→, ι), where L is a finite set of locations, I is a finite set of instructions,
→ ⊆ L× I × L is a finite set of triples (l , a, l ′) called transitions, and ι ∈ L is
the entry location. We write l i−→ l ′ to denote (l , i, l ′) ∈ →.

Definition 2 (Semantic Step) Given a transition diagram π = (L, I,→, ι),
we define a configuration to be a pair 〈l , σ〉, where l ∈ L and σ ∈ Σ. Given
two configurations 〈l , σ〉 and 〈l ′, σ′〉, and an instruction i ∈ I, the semantic step
relation is defined as follows:

〈l , σ〉 i� 〈l ′, σ′〉 iff l
i−→ l′ and i = (c, f) and c(σ) = true and σ′ = f(σ)

Definition 3 (Execution Sequence) For a given transition diagram π =
(L, I,→, ι), an execution sequence η starting in σ0 ∈ Σ is a sequence of config-
urations such that:

〈l0, σ0〉 i1� 〈l1, σ1〉 i2� · · · in� 〈ln, σn〉
We denote by N the set of all execution sequences.

We define ϑ to be the set of visible instructions. These are the instructions
whose semantics we would like preserved between the specification and imple-
mentation. In our system we consider visible instructions to be function calls
and returns. For v1, v2 ∈ ϑ, we write 〈v1, σ1〉 ≡ 〈v2, σ2〉 to represent that v1 in
program state σ1 is equivalent to v2 in program states σ2. For two visible instruc-
tions to be equivalent, they must both be returns, or both calls. Furthermore,
returns are equivalent if the returned value and the state of the memory are the
same. Two function calls are equivalent if the state of globals, the arguments
and the address of the called function are the same. This concept of equivalence
for visible instruction can be extended to execution sequences as follows.

Definition 4 (Equivalence of Execution Sequences) Two execution se-
quences η1 and η2 are said to be equivalent, written η1 ≡ η2, if the two sequences
contain visible instructions that are pairwise equivalent.

Definition 5 (Equivalence of Transition Diagrams) For given initial
states σ1 ∈ Σ1 and σ2 ∈ Σ2, two transition diagrams π1 = (L1, I1,→1, ι1) and
π2 = (L2, I2,→2, ι2) are said to be equivalent if for every execution sequence of
π1 starting in configuration 〈ι1, σ1〉 there is an equivalent execution sequence of
π2 starting in configuration 〈ι2, σ2〉 and vice-versa.



7

4 Bisimulation Relation

A verification relation between two transition diagrams π1 and π2 is a set of
triples (l1, l2, φ), where l1 ∈ L1, l2 ∈ L2 and ψ is a predicate over the variables live

at locations l1 and l2. Let the set of such predicates be denoted by Φ
def
= Σ×Σ →

B. We write φ(σ1, σ2) = true to indicate that φ is satisfied in (σ1, σ2) ∈ Σ ×Σ.
Simulation relations and bisimulation relations are verification relations with

a few additional properties. To define these properties, we make use of a cumu-
lative semantic step relation �∗, which works like �, except that it can take
multiple steps at once, and it accumulates the steps taken into an execution
sequence.

Definition 6 (Cumulative Semantic Step) Given configurations 〈l0, σ0〉
and 〈ln, σn〉, and an execution sequence η that contains at least one transition,
we define �∗ as follows:

〈l0, σ0〉
η

�∗ 〈ln, σn〉 iff η = 〈l0, σ0〉 i1� · · · in� 〈ln, σn〉
Definition 7 (Simulation Relation) A simulation relation R for two transi-
tion diagrams π1 = (L1, I1,→1, ι1) and π2 = (L2, I2,→2, ι2) is a verification
relation such that:

R(ι1, ι2, true)

∀(l1, l2, l ′1, σ1, σ2, σ
′
1, φ, η2) ∈ L1 × L2 × L1 ×Σ ×Σ ×Σ × Φ×N .[

〈l1, σ1〉
η1

�∗
1 〈l ′1, σ′

1〉 ∧R(l1, l2, φ) ∧ φ(σ1, σ2) = true
]
⇒

∃(l ′2, σ
′
2, φ

′, η2) ∈ L2 ×Σ × Φ×N .[
〈l2, σ2〉

η2

�∗
2 〈l ′2, σ′

2〉 ∧R(l ′1, l ′2, φ′) ∧ φ′(σ′
1, σ

′
2) = true ∧ η1 ≡ η2

]

Intuitively, these conditions respectively state that (1) the entry location of π1

must be related to the entry location of π2; and (2) if π1 and π2 are in a pair
of related configurations, and π1 can proceed one or more steps producing an
execution sequence η1, then π2 must also be able to proceed one or more steps,
producing a sequence η2 that is equivalent to η1, and the two resulting configu-
rations must be related.

Even though in the above definition, the state-relating predicate for the entry
locations is true, dummy assignments to a procedure’s arguments allow us to
prove that the arguments in the specification are equal to those in the imple-
mentation, at the beginning of each procedure.

Definition 8 (Bisimulation Relation) A verification relation R is a bisim-
ulation relation for π1, π2 iff R is a simulation relation for π1, π2 and R−1 =
{(l2, l1, φ) | R(l1, l2, φ)} is a simulation relation for π2, π1.

The following lemma and theorem connect the definition of bisimulation with
our definition of equivalence for transition diagrams (Definition 5).



8

Lemma 1. If R is a bisimulation relation for π1, π2, then for each element
(l1, l2, ψ) ∈ R, all pairs of executions of π1 started at l1 and of π2 started at l2,
in states that satisfy the predicate ψ, are equivalent.

Theorem 1. If there exists a bisimulation relation for π1, π2, then π1 and π2

are equivalent.

The conditions from Definition 7 are the base case and the inductive case of
a proof by induction showing that π2 is equivalent to π1. Thus, a bisimulation
relation is a witness that two transition diagrams are equivalent.

5 Translation Validation Algorithm

Our translation validation algorithm works by inferring a bisimulation relation.
Given a transition diagram π, we define Pπ to be the set of locations for which
our approach will try to infer bisimulation entries. These include all locations
before visible events and also all locations before branch statements. To focus
our attention on only those locations for which our approach infers bisimulation
entries, we define the skipping transition relation ↪−→, which is a version of −→
that skips over all locations not in Pπ.

Definition 9 (Skipping Transition) Let π = (L, I,→, ι) be a transition dia-
gram, l , l ′ ∈ Pπ, and w ∈ I∗, where w = i0 · · · in. We define ↪−→ as follows:

l
w
↪−→ l ′iff there exists l1, · · · , ln ∈ (L − Pπ) such that l i0−→ l1 · · · ln in−→ l ′

Throughout the rest of this section, we assume that π1 = (L1, I1,→1, ι1) rep-
resents the procedure in the specification whose translation we want to verify,
and π2 = (L2, I2,→2, ι2) represents the corresponding procedure in the imple-
mentation. We let P1 = Pπ1 and P2 = Pπ2 . We also let ↪−→1 and ↪−→2 be the
skipping transitions for π1 and π2 respectively.

We now define a parallel transition relation ↪−→↪−→ that essentially traverses
the two transition diagrams (specification and implementation) in synchrony.

Definition 10 (Parallel Transition) Given (l1, l2) ∈ P1 × P2, (l ′1, l ′2) ∈ P1 ×
P2, w1 ∈ I∗

1 and w2 ∈ I∗
2 , we define ↪−→↪−→ as follows:

(l1, l2)
(w1,w2)
↪−→↪−→ (l ′1, l

′
2) iff l1

w1
↪−→1 l ′1 and l2

w2
↪−→2 l ′2 and Rel(w1, w2, l1, l2)

The predicate Rel : I∗ × I∗ × P1 × P2 → B used in the above definition is a
heuristic that tries to estimate when a path in the specification is related to a
path in the implementation. Consider for example the branch in the specification
of Figure 1 and the corresponding branch in the implementation. For any two
such branches, the Rel function uses heuristics to guess a correlation between
them: either they always go in the same direction, or they always go in opposite
direction. Using these correlations, Rel(w1, w2, l1, l2) returns true only if the paths
w1 and w2 follow branches in a correlated way. Although Rel makes guesses about



9

the correlation of branches, the later constraint solving phase of our approach
makes sure that these guesses are correct.

Our implementation of Rel correlates branches in two ways. First, using the
results of a strongest postcondition pre-pass over the specification and the im-
plementation, Rel tries to use a theorem prover to prove that certain branches
are correlated. If the theorem prover is not able to determine a correlation, Rel
uses the structure of the branch predicate and the structure of the instructions
on each side of the branch to guess a correlation. For instance, in the example
of Figure 1, since the strongest postcondition involves the input parameter p,
the theorem prover is unable to reason about it. However, because SPARK does
not change the structure of the branch predicate, Rel can conclude that the two
branches go in the same direction.

We now define the relation R ⊆ P1 ×P2 of location pairs that will form the
entries of our bisimulation relation.

Definition 11 (Pairs of Interest) The relation R ⊆ P1 ×P2 is defined to be
the minimal relation that satisfies the following two properties:

R(ι1, ι2)[
R(l1, l2) ∧ (l1, l2)

(w1,w2)
↪−→↪−→ (l ′1, l

′
2)

]
=⇒ R(l ′1, l

′
2)

The set R defined above can easily be computed by starting with the empty
set, and applying the above two rules exhaustively.

For our approach to successfully validate a translation, the computed set R
must relate locations where the instructions to be executed are similar. This is
made precise by the following definition of well-matching of R. If the computed
set R is not well-matched, then our validation approach immediately rejects the
translation from specification to implementation.

Definition 12 (Well-matching) For each (l1, l2) ∈ R, if we let i1 and i2 be
the instructions to be executed after l1 and l2, respectively, then for R to be
well-matched, the following must hold: i1 is a branch iff i2 is a branch; i1 is a
function call iff i2 is a function call; and i1 is a return iff i2 is a return.

We describe our translation validation approach in terms of constraint solv-
ing. In particular, for each (l1, l2) ∈ R we define a constraint variable ψ(l1,l2)

representing the predicate that we want to compute for the bisimulation en-
try (l1, l2). We denote by Ψ the set of all such constraint variables. Using
these constraint variables, the final bisimulation relation will have the form
{(l1, l2, ψ(l1,l2)) | R(l1, l2)}.

To compute the predicates that the constraint variables ψ(l1,l2) stand for, we
define a set of constraints on these variables, and then solve the constraints. The
constraints are defined as follows.

Definition 13 (Constraint) A constraint is a formula of the form ψ1 ⇒
f(ψ2), where ψ1, ψ2 ∈ Ψ , and f is a boolean function.



10

1. function SolveConstraints(C)
2. for each (l1, l2) ∈ R do
3. ψ(l1,l2) := true
4. let worklist := C
5. while worklist not empty do
6. let [ψ(l1,l2) ⇒ f(ψ(l′1 ,l′2))] := worklist .Remove

7. if ATP(ψ(l1,l2) ⇒ f(ψ(l′1,l′2))) �= Valid then

8. if (l1, l2) = (ι1, ι2) then
9. Error(“Start Condition not strong enough”)
10. ψ(l1,l2) := ψ(l1,l2) ∧ f(ψ(l′1,l′2))

11. worklist := worklist ∪ {c ∈ C | ∃ψ, g . c = [ψ ⇒ g(ψ(l1,l2))]}

Fig. 2. Algorithm for solving constraints

Definition 14 (Set of Constraints) The set C of constraints is defined by:

For each (l1, l2) in R:
[
ψ(l1,l2) ⇒ CreateSeed(l1, l2)

] ∈ C
For each (l1, l2)

(w1,w2)
↪−→↪−→ (l ′1, l

′
2):

[
ψ(l1,l2) ⇒ wp(w1,wp(w2, ψ(l′1,l′2)))

] ∈ C
The CreateSeed function above creates for each pair of locations (l1, l2) a

formula (which does not refer to any constraint variables) that captures the con-
dition under which the instructions about to execute at l1 and l2 are equivalent.
Because R is well-matched (see Definition 12), there are three cases: if the in-
structions about to execute at l1 and l2 are calls, then the formula returned by
CreateSeed states that the parameters of the calls are equal; if the two instruc-
tions are returns, then the formula states that the returned values are equal; if
the two instructions are branches, then the formula states the two branches are
correlated (either they both go in the same direction, or in opposite directions).

The other function wp used above computes the weakest precondition with
respect to w2 and then with respect to w1. When computing wp with respect to
one sequence, we treat all variables from the other sequence as constants. As a
result, the order in which we process the two sequences does not matter.

Having created a set of constraints C, our validation approach now solves
these constraints using the algorithm in Figure 2. The algorithm starts by setting
each constraint variable to true (line 3) and initializing a worklist with the set
of all constraints (line 4). Next, while the worklist is not empty, it removes a
constraint from the worklist (line 6), and checks using a theorem prover if it is
Valid (line 7). If not, then it appropriately strengthens the left-hand-side variable
of the constraint (line 10) and adds to the worklist all the constraints that have
this variable in the right-hand side (line 11).

6 Evaluation

We implemented our validation algorithm on the intermediate representation
(IR) of the SPARK HLS framework [10]. SPARK is a C-to-VHDL parallelizing
high-level synthesis framework that employs a set of compiler, parallelizing com-
piler, and synthesis transformations to improve the quality of high-level synthesis



11

results. SPARK starts with a behavioral description in ANSI-C as input – cur-
rently with the restrictions of no pointers, no recursion, and no irregular control-
flow jumps. It converts the input program into its own IR, and then applies a
set of code transformations, including loop unrolling, loop fusion, common sub-
expression elimination, copy propagation, dead code elimination, loop-invariant
code motion, induction variable analysis, and operation strength reduction. Fol-
lowing these transformations, SPARK performs a scheduling phase using re-
source allocation information provided by the user. This scheduling phase also
performs a variety of transformations, including speculative code motion, dy-
namic renaming of variables, dynamic branch balancing, chaining of operations
across conditional blocks, and scheduling on multi-cycle operations. The schedul-
ing phase is followed by a resource binding phase and finally by a back-end code
generation pass that produces RTL VHDL.

We implemented our translation validation algorithm using the Simplify the-
orem prover [5] in a tool that validates SPARK’s HLS process. Our tool takes
as input the IR program that is produced by the parser, and the IR program
right before resource binding, and verifies that the two are equivalent. Our tool
therefore validates the entire HLS process of SPARK, except for parsing, re-
source binding and code generation. Our tool is around 7,500 lines of C++ code,
whereas SPARK’s implementation excluding the parser consists of over 125,000
lines of C++ code. Thus, with around 15 times less effort compared to SPARK’s
implementation we can build a framework that validates its synthesis process.

We tested our tool on 12 benchmarks obtained from SPARK’s test suite. Of
these benchmarks, 10 passed and 2 failed. For the ones that passed, our tool was
able to quickly find the simulation relation, taking on average around 6 seconds
per procedure, and a maximum of 27 seconds for the largest procedure (80 lines of
code). Furthermore, the computed bisimulation relations were small, ranging in
size from 6 to 29 entries, with an average of about 14. To infer these bisimulation
relations, our approach made an average of 189 calls to the theorem prover per
procedure (with a minimum of 9 and a maximum of 797). Our approach is
compositional since it works on one procedure at a time, and the above results
show that our approach can handle realistically size procedures.

As mentioned previously, two benchmarks failed our validation test. Upon
further analysis each of them lead us to discover previously unknown bugs in
SPARK. One bug occurs in a particular corner case of copy propagation for
array elements. The other bug is in the implementation of the code motion
algorithm in the scheduler. The fact that our translation validation approach
found two previously unknown bugs in a widely-used HLS framework emphasizes
the usefulness and bug-isolating capabilities of our tool.

In general, our tool will perform well when the transformations that are
performed preserve most of the program’s control flow structure. Such trans-
formations are called structure-preserving transformations [23]. The only non
structure-preserving transformation that SPARK performs is loop unrolling,
but in our examples this transformation did not trigger.



12

7 Related Work

Our work is related to translation validation [20, 19, 21, 23, 8, 14], HLS verifica-
tion [1, 6, 18, 13], and relational approaches to reasoning about programs [7, 3,
15, 2, 11]. Despite long lines of work in each one of these areas, our work distin-
guishes itself in the following way: it the first to show that translation validation
can be effective in the context of a realistic HLS tool. We now discuss each area
in more detail.

Translation Validation. The technique described in this paper is similar
to our previous translation-validation algorithm for CSP programs [14]. The
algorithm presented here, however, runs in the context of a realistic HLS tool,
as opposed to the more theoretical results from our previous work. Furthermore,
our current algorithm handles a more restricted form of concurrency than found
in CSP, which allows it to run more efficiently. Our work also bears similarities
to Necula’s translation-validation algorithm for inferring simulation relations
that prove equivalence of sequential programs [19]. Unlike Necula’s approach,
our algorithm must take into account statements running parallel, since one of
the main tasks that HLS tools perform is to schedule statements for parallel
execution. Furthermore our algorithm is expressed in terms of calls to a general
theorem prover, rather than using specialized solvers and simplifiers. In this sense
our algorithm is more modular, since the theorem proving part of the algorithm
has been modularized into a component with a very simple interface (it takes a
formula and returns Valid or Invalid).

HLS verification. Techniques like correctness-preserving transforma-
tions [6], formal assertions [18] and relational approaches for functional equiva-
lence of FSMDs [13, 12] have been used to validate the scheduling step of HLS.
However, all these techniques assume that the scheduler does not move code
across basic blocks and variable names do not change, which would prevent
them from validating SPARK’s HLS process. In work that is complementary to
ours, model checking was used to validate the binding step of HLS [1], which is
the only internal step of SPARK that our tool does not validate.

Relational approaches. Relational approaches have been used for a va-
riety of verification tasks, including model checking [7, 3], translation valida-
tion [20, 19], and reasoning about optimizations once and for all [15, 2]. In this
context, our work can be seen as automating Joseph’s relational approach for
proving refinement of concurrent systems [11].

8 Conclusion and Future Work

We have presented an algorithm for translation validation of the HLS process,
and have implemented it within the context of a HLS tool called SPARK. The
innovation in our work lies in showing that translation validation approaches
work well in the application domain of high-level synthesis. In particular, with
only a fraction of the development cost of SPARK, our algorithm can validate
the translations performed by SPARK, and it also uncovered bugs that eluded
long-term use. Moving forward, we intend to implement translation validation in
SPARK for the remaining phases: parsing, binding and code generation. We also
intend to adapt our translation validation techniques to SystemC [9] programs.



13

References

1. P. Ashar, S. Bhattacharya, A. Raghunathan, and A. Mukaiyama. Verification of
RTL generated from scheduled behavior in a high-level synthesis flow. In ICCAD,
pages 517–524, 1998.

2. N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In POPL 2004, Jan. 2004.

3. D. Bustan and O. Grumberg. Simulation based minimization. In D. A. McAllester,
editor, CADE 2000, volume 1831 of LNCS. Springer Verlag, 2000.

4. K. M. Chandy. Parallel program design: a foundation. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1988.

5. D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program
checking. Journal of Association Computing Machinery, 52(3):365–473, May 2005.

6. H. Eveking, H. Hinrichsen, and G. Ritter. Automatic verification of scheduling
results in high-level synthesis. In DATE ’99, NY, USA, 1999.

7. K. Fisler and M. Y. Vardi. Bisimulation and model checking. In Correct Hardware
Design and Verification Methods, Sept. 1999.

8. B. Goldberg, L. Zuck, and C. Barrett. Into the loops: Practical issues in translation
validation for optimizing compilers. Electronic Notes in Theoretical Computer
Science, 132(1):53–71, May 2005.

9. T. Grötker. System Design with SystemC. Kluwer Academic Publishers, 2002.
10. S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark: A high-level synthesis frame-

work for applying parallelizing compiler transformations. In VLSI Design ’03, 2003.
11. M. B. Josephs. A state-based approach to communicating processes. Distributed

Computing, 3(1):9–18, Mar. 1988.
12. C. Karfa, C. Mandal, D. Sarkar, S. R. Pentakota, and C. Reade. A formal verifi-

cation method of scheduling in high-level synthesis. ISQED, pages 71–78, 2006.
13. Y. Kim, S. Kopuri, and N. Mansouri. Automated formal verification of scheduling

process using finite state machines with datapath (fsmd). In ISQED ’04, 2004.
14. S. Kundu, S. Lerner, and R. Gupta. Automated refinement checking of concurrent

systems. In ICCAD ’07, 2007.
15. D. Lacey, N. D. Jones, E. V. Wyk, and C. C. Frederiksen. Proving correctness of

compiler optimizations by temporal logic. In POPL ’02, Jan. 2002.
16. M. Lam. Software pipelining: an effective scheduling technique for VLIW machines.

In PLDI 1988, June 1988.
17. Y.-L. Lin. Recent developments in high-level synthesis. ACM Transactions on

Design Automation of Electronic Systems., 2(1):2–21, 1997.
18. N. Narasimhan, E. Teica, R. Radhakrishnan, S. Govindarajan, and R. Vemuri.

Theorem proving guided development of formal assertions in a resource-constrained
scheduler for high-level synthesis. Form. Methods Syst. Des., 19(3):237–273, 2001.

19. G. C. Necula. Translation validation for an optimizing compiler. In PLDI 2000,
June 2000.

20. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In TACAS ’98,
volume 1384 of Lecture Notes in Computer Science, pages 151–166, 1998.

21. M. Rinard and D. Marinov. Credible compilation. In Proceedings of the FLoC
Workshop Run-Time Result Verification, July 1999.

22. R. Walker and R. Camposano. A Survey of High-Level Synthesis Systems. Kluwer
Academic Publishers, Boston, MA, USA, 1991.

23. L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A methodology for the
translation validation of optimizing compilers. Journal of Universal Computer
Science, 9(3):223–247, Mar. 2003.


