Beyond Refactoring: A Framework for Modular
Maintenance of Crosscutting Design Idioms

Macneil Shonle William G. Griswold Sorin Lerner
Computer Science & Engineering, UC San Diego
La Jolla, CA 92093-0404
{mshonle, wgg, lerner }@cs.ucsd.edu

ABSTRACT In this paper we introduce the Arcum framewdrRrcum allows

Despite the automated refactoring support provided by today’s IDEs_for celrtaln f‘?rm? oflcrosscut_tlng de:ugn idioms t(ch bitransforme_d
many program transformations that are easy to conceptualize—'.nto faternactjlvle |mpk;enjenltat|onsd reum expﬁm S t. e opportuni-
such as improving the implementation of a design pattern—are not i€ for modular subsitution and reasoning throwgions An

supported and are hence hard to perform. We propose an extensioﬁrc_um_optiorj declares th_e implemen_tation details'of a crosscutting
to the refactoring paradigm that provides for the modular mainte- entity, including any required supporting code and infrastructure. A

nance of crosscutting design idioms, supporting both substitutabil- 9"0UP of options are related to each other when they all implement

ity of design idiom implementations and the checking of essential the same Arr]cumnterface An Arc”um |.nterfar(]:e §tat?s the gtableh
constraints. We evaluate this new approach through the design and’rOPerties that are common to all options that implement it. The

use of Arcum, an IDE-based mechanism for declaring, checking relationship between an Arcum interface and its options is simi-
and evolving (;rosscutting design idioms ' " lar to the relationship between a Jan&rface and the classes that

implement that interface.
Arcum declarations are auxiliary supplements to Java programs.

Categories and SUbJeCt Descriptors A programmer may be motivated to declare one or more options

D.2.11 [Software Engineering: Software Architectures-Bomain- when the need arises for either transforming a crosscutting design

specific architectures, languages, patterns idiom or for better checking of a particular implementation. Once
declared, transformation is merely a matter of specifying the re-

General Terms placement of the prevailing option with an alternative option. The

correctness of such a replacement is aided by checks specified in
the Arcum declarations. An Arcum interface specifies behavioral
constraints on its options, and each option specifies additional con-

Languages, Design.

Keywords straints specific to its implementation. Arcum declarations can be

Refactoring, design patterns. written in a generic fashion and then instantiated for a specific case,
enabling reuse of Arcum declarations.

1. INTRODUCTION There are several unique benefits of retaining Arcum declara-

) o) tions as persistent, supplemental descriptions to a Java program.
One of the benefits of modular programming is that the imple- For one, being persistent, unlike the typical refactoring operations
mentation of a module can be improved or replaced by another jnyoked by a programmer via an IDE, an instantiated option is con-
without requiring changes to, or extensive retesting of, other parts tinyously checked, not just during refactoring. In this respect, the
of the system. However, many change tasks are crosscutting inpenefits of static checking of classes extend to crosscutting enti-
nature and thus outside of modular bounds [9]. For example, not ties. Continuous checking also ensures that the ability to replace
every future change can be anticipated, meaning that the existingthe prevailing option for an alternative option is preserved. Two,
abstractions may not modularize the given change. Sometimes, theyye to its declarative nature, an option provides a precise mecha-
language’s abstraction mechanisms are not powerful enough to pernism for documenting a crosscutting design idiom and expressing
mit an efficient modularization. Other times, an agile development he programmer’s intentions for its implementation. Finally, be-
process like XP may intentionally delay the introduction of such cayuse Arcum declarations are supplements, the core source code

abstractions [4]. remains unchanged, and in pure Java. The program is only changed
*This work was supported in part by an Eclipse Innovation Award whc_en one implementation is transformed to one of the alternative
from IBM and NSF Science of Design grant CCF-0613845. options. Such transformations are always done within the IDE at

the programmer’s discretion, by specifying a change in the prevail-
ing option. The separation of Arcum code and Java code reduces
the cost and risk of initiating the use of Arcum, and enables late-
Permission to make digital or hard copies of all or part of this work for Stage adoption.
personal or classroom use is granted without fee provided that copies are In the next section we introduce the Arcum approach with a com-
not made or distributed for profit or commercial advantage and that copies parative example. We then review the Arcum language in greater

bear this notice and the full citation on the first page. To copy otherwise, to detail and describe our algorithm for transforming between two op-
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. 1 . ' .
ESEC/FSE'07September 3—7, 2007, Cavtat near Dubrovnik, Croatia. Arcum’s general goals were first proposed in a short paper at the
Copyright 2007 ACM 978-1-59593-811-4/07/00085.00. ICSE 2007 Doctoral Symposium [24].

8; p“@{‘fm‘;'ajﬁT'e’Q@ge { A developer could use Eclipse’s built-in refactorings in the fol-
03 . _ _ lowing way: (1) Replace all references to thietext field in the

8‘; PUb'L'_C Image(String alternative) { original code with calls to getter and setter methods with the “En-
06 :h:;(;mext = alternative: capsulate Field” refactoring; (2) Manually edit the_se getter and set-
07 } ter methods to call the appropriate map operations instead; and,
08 public String toString() { optionally, (3) Inline away calls to the getter and setter methods
% i (rilttuTriXtd;f;uﬂuAll?Text(). with the “Inline Method” refactoring.

11 else ' Although these built-in refactorings make manual modification
12 return altText; less onerous, the problem remains the same: refactorings gener-
ﬁ } ally require many changes to be made to the code, and the tool

}
Figure 1: Internal field implementation of the altText attribute.

performing the transformations is simply not aware of the struc-
ture that is present in the code being manipulated. This lack of

12 puzlt';ﬁf Ia,\j;pm?gge,{ String> altText structure awareness results in a variety of drawbacks, including:
17 = new IdentityHashMap<Iimage, String>(); (1) code refactoring is error-prone and tedious—it is error-prone,
ig gugllic Image(String alternative) { for example, because the manual editing of the getter and setter
20 this(): methods by the programmer occurs outside of Eclipse’s meaning-
21 Image.altText.put(this, alternative); preserving operations; (2) it is often difficult to switch back and
gg Lubnc String toString) { forth from the original implementation to the refactored implemen-
24 if (Image.altText.get(this) == null) tation; (3) subtle bugs can be |ntroduqed, for example transforming
25 return defaultAltText(); f(this.altText=y) Into f(Image.altText.put(this,y)) IS an incorrect trans-

gg elsreetum Image.aliText get(this); formation because theit method returns thpreviousvalue in the

28 } ge. 9 ' map; and (4) little of the work done for refactoring therext field

29 } can be reused for refactoring other fields.
Figure 2: Static map implementation of thealtText attribute.

. . : . 2.2 Refactoring using Arcum

tions. Next, to provide an evaluation of our approach, we describe o)
the design of the Arcum refactoring engine, report on our devel- The Arcum approach addresses the above limitations by enabling
opment of a related group of options, and compare several changeh€ programmer to formally capture implicit structure in his or her
tasks versus the state of the art in Eclipse and Aspectd [13]. Wwecode. Rather than directly applying refactoring transformations,

close with a discussion of future work, related work, and a few the programmer first declares behavior (in the interface) and im-
concluding remarks. plementation descriptions (in the options) for the code that will be

changed. After the options and their interface have been described,
. the prevailing implementation can be replaced by any other related
2. EXAMPLE: ATTRIBUTE STORAGE option. The chosen option is retained and continues to impose
In this section we illustrate the Arcum framework with a sim- checks to ensure that new or modified code also satisfies the trans-
ple Java program that processes HTML image elements. Imageformation’s pre- and post-conditions. Figure 3 shows the Arcum
elements in HTML have an optionalit'-tag attribute that specifies plug-in for Eclipse performing the refactoring.
alternate text to display in place of the image. There are a variety of Figure 5 shows how thienage constructor from our example is
ways of implement this concept of “alternate text” in Java. For ex- transformed with Arcum. At the bottom left of the figure is the
ample, one can simply add a field nanadext to thelmage class original Java code for the constructor, and at the bottom right is the
that represents image elements, as shown in Figure 1. Alternatively,desired target Java code. At the top of the figure is the Arcum code
if one expects the alternate text to be absent often, meaning that itspecifying the interface that both options implement. The declara-
takes on a predefined default value, then storing the alternate texttions of the two options are directly below the interface: one using
in an external table can save memory at the expense of processoan internal field (thénternalField option), and another using a static
cycles. Such an implementation is shown in Figure 2. map (theStaticMap option).
Although this intentionally simplistic problem might be easy to Initially the programmer declares theternalField option to be
anticipate, itis difficult to design software abstractions that are flex- the current realization of thattributeConcept interface. This spec-
ible enough to support all future changes. Furthermore, some pro-ification is made concrete with the mapping show in Figure 4. Note
gramming methodologies, such as Agile development, in fact favor that rather than designing a refactoring that applies only to the “at-
rapid development of prototypes, with refactorings being applied tribute for alternate text” concept, the programmer has designed a
later in the development process, as needed. In either case, theparameterized interface so that it can be applied to any attribute of
end result is that refactoring and software evolution in general is a any class. In particular, thattributeConcept from Figure 5 takes
common occurrence in the development of large software systems.three parameterstargetType is the class for which the attribute
To give an overview of our approach, we describe how a devel- is defined,attrType is the type of the attribute, anattrName is
oper would refactor a large body of code from the internal field im- its name. Oftentimes a programmer might find the desired set of
plementation of the “alternate text” concept to the static map imple- options in a library, rather than having to implement them from
mentation, first using a regular IDE such as Eclipse (Section 2.1), scratch.
and then using the Arcum framework (Section 2.2).
. . . The relevant part of thattributeConcept code for this example
2.1 Refactoring using Eclipse is theattrSet “trait” (Figure 5, boxed), which represents all loca-
Although the code shown in Figure 1 has only two reads (lines 9 tions in the Java program where the attribute’s value is set. The
and 12) and one write (line 6), in a realistic code base one would parameters to the trait, in this casgExpr, targetExpr andvalExpr,
expect to encounter many references todikext field that need to are fragments of Java code that are extracted from the locations in
be modified. the code where the attribute is set. For examgplgetExpr is the

= Java - Modifierjava - Eclipse SDK = Refactoring

File Edit Source Refactor
il F-O0-- Ed
- - Ho o - -

[Modifierjava 2}

Navigate §

The following changes are necessary to perform the refactoring.

D8 MyCode.arcum

Changes to be performed SURR T IS

rt.getID() == Resource._ MH = = =
rt.getID() == Resource. MAH %D Classifierjava - JTP/src/jtp/classifier| o
rt.getID({) == Resource._MJ @ Kojava - JTP/src/jtp/classifier =

{ Modifier. - e =

5 Modifier java - JTP/src/jtp/classifier

oiis . conc = conch (W1 Modifierjava - JTP/stctp/ u
if (rt.getID() == Resourcd

card val = (1); // Tepd | 3 Classifierjava

4 Original Source Refactored Source
else if (rt.getID() == Reg
rt.getID() == Resource. MJ .]
rt.getID() == Resource. MA ap += mgs. rel.containsMark(rel pattern, rel sq ap += mg3. rel.containsMark(rel pattern, re

if (Modifier. conc.get(mgs) != nmll && Hnd_i

if (mgs. conc != noll && m. conc !'= nuoll) -
{ i

{

card val = ival;
- - ap += mgs. conc.containsMark(conc pattern, ap += Modifier. conc.get (mgs).contains}
a] ap += mgs. conc.equals(m. conc) ap += Modifier. conc.get (mgs).egquals (Mq —
ap += (m._card val >= mgs._card val)
ap += (m._card val <= mgs._card val)

Focus on map entry: | InternalStc = | | Refres 1 1 3 4

ap += (m._card val >= mgs._card val)
ap += (m._card val <= mgs._card val)

[l Map Visualization and Transformation P

Trait Program Fragment

attrGet m._conc a

attrGet m._conc K

attrGet this._conc N @ Back e Finish l | Cancel
attrGet this._conc M

attrSet this._conc=conc Modifier.java JTR/src/jtp/classifier/Modifierjava 95 'Eﬂ'

attrSet this._conc=conc Modifier.java JITR/src/jtp/classifier/Modifierjava 109

=4 tﬁ iEg

Figure 3: Refactoring in Arcum for Eclipse: The front-most window is a preview that shows the changes the refactoring would
perform. In the background is the Eclipse environment itself, with an Arcum view at the bottom that shows a compressed view of
the implementation’s scattered code fragments.

map {

InternalField(targetType=Image, attrType=String,
attrName="altText");
}

Figure 4. Map file for the original InternalField implemen-
tation of the altText attribute. By using Eclipse to change
‘InternalField ’ to ‘ StaticMap ,’ the Java code is automatically
transformed to make the revised mapping hold.

object whose attribute is being seslExpr is the value to which
the attribute is being set, ardtExpr is the entire expression that
performs the set operation. Arcum variables, sucbe&sxpr store

other direction, to generate Java code from trait instances.

The directionality of the mapping is determined by how the map-
ping is instantiated and later changed. As declared in Figure 4, the
InternalField implementation is the prevailing option at the begin-
ning of our scenario. To refactor to the sparse implementation of
the altText field, the programmer changes the named option in the
mapping toStaticMap, which triggers a refactoring of the code.

In our scenario, thaltText field is initially implemented as a sim-
ple class field and the conceptual flow of information in Figure 5
goes in the clockwise direction, following the solid arrows. How-
ever, this refactoring can be run in either direction. The field as-
signment on line 6 in the original code is pattern matched into a

references (i.e., pointers) to code fragments, and so in this exampletrait instance, at which point the refereneetExpr, targetExpr and
the setExpr variable identifies the location and scope of the set op- valExpr are bound. The newly constructed trait instance is lifted
eration, which is later used to determine what portion of the code to the interface level, and then pushed back down to the alternate

gets transformed or preserved.
Each option specifies a differemalizationof theattrSet trait. A

StaticMap option, at which point the pattern along wisletExpr,
targetExpr andvalExpr, are used to construct the replacement code.

trait is realized by providing a pattern that identifies the fragments ~ Due to the bi-directional nature of trait patterns, the mapping
of Java code that are instances of the trait. For example, the boxedcan be changed later to perform the refactoring in the other direc-
pattern in thenternalField option shows how a regular assignment tion. Because our approach explicitly and persistently identifies
to a field becomes an instance of theSet trait. In our Image substitutable crosscutting entities and their prevailing options, their
constructor example, line 6 of the Java code matches this pattern,consistency properties can be continuously checked. This makes
and therefore becomes an instance of the trait. Similarly, the boxedfuture transformations easier to perform because the checking aids
pattern in theStaticMap option states which map operations become code compliance. For instance, in our example, we would like
instances of thattrSet trait. to prevent the incorrect application of the refactoring to transform
Patterns in the Arcum framework declaratively state the mapping f(this.altText=y) into f(iImage.altText.put(this,y)), because, as mentioned
between a crosscutting design idiom and the various fragments ofpreviously, theput method returns thpreviousvalue in the map.
Java code that implement an option. A key feature of Arcum is that This requirement is checked by the interface withrthgires clause
these mappings at#-directional: not only are the patterns usedto ~ (whereisSubExpression(e) checks whethee is embedded in an-
build trait instances from Java code, but they are also used in theother expression). This requires clause can be checked continu-

interface AttributeConcept { Attribute Concept

singleton parameters(Class targetType, Type attrType, String attrName);
singleton accessSpecifier (AccessSpecifier spec);

attrGet (Expr getExpr, Expr targetExpr) require isSubExpression(getExpr) && /*..*/;

| attrSet (Expr setExpr, Expr targetExpr, Expr valExpr)l require !isSubExpression(setExpr) /*..*/;
}

concept mapping / \concept remapping
| / Internal Field Option Static Map Option
option InternalField implements AttributfeConcept { opf\ion StaticMap implements AttributeConcept {
realize singleton(Field field), accessfSpecifier (spec) with reallize singleton(Field mapField, Type mapType,
field == [?transient spec " attrType/ attrName] Expr mapInit), accessSpecifier(spec) with
&& hasField(targetType, field) mapTYpe == [Map< targetType, attrType>]
&& (isAssignableFrom(Serializable, ftargetType) && mapInit == [new IdentityHashMap< targetType, attrType>()]

<=> isTransient (field)); eld == [static “spec "mapType " attrName = ‘mapInit]
&& hasFigld(targetType, mapField);

realize attrGet(getExpr, targetExpfr) with

getExpr == [targetExpr. field]; realize attXGet (getExpr, targetExpr) with
getExpr == |\ targetType. mapField.get (targetExpr)];
realize |attrSet (setExpr, targetExpr, valExpr)|with
setExpr == “field i "] H realize |atttSet (setExpr, targetExpr, valExpr)| with
} setExpr == |[“targetType. mapField.put (E'\"E;;Eéti.'xpr,‘;" valExpr)i|;
pattern‘matching / node-generation
N / Original Program N | Trangférmed Program
01 publlg’i Image (String alterrf;tive { 01 public Image($€ring altern &ive) {
02 this(); 02 this(); e L
03 |ithisi. altText = éalternativegl: 03 Image.altText.put (ithisi, ialternative:)I;
04 } 04 }

Figure 5: Overview of how Arcum transforms code into an alternative implementation. By changing the mapping, which describes
the current option deployed, the code is automatically transformed in accordance with the substituted option.

ously, to make sure that developers don’t accidentally change codesimilar to a trait is referred to as a sub-concept in [15]). A trait
in a way that prevents the entity from being transformed. can either be a tuple (calledsingleton trai) or a set of tuples
Much of the power of the Arcum approach arises from the fact (potentially the empty set). Traits can have boolesgquirements
that its transformations are focused on preserving the requirementsassociated with them (described below, Section 3.1.1), which allow
as asserted in the interface, rather than slavishly preserving everyoptional user-readable error messages to describe what the require-
detail of language-semantics-level behavior. We still call this refac- ment expects.
toring, in deference to the programmer’s intent that an Arcum in- The AttributeConcept in Figure 5 specifies four traitparame-
terface specifies the important behaviors that need to be preserveders, accessSpecifier, attrGet, andattrSet. Because an Arcum inter-
during transformation to another implementation. face is abstract, its traits are, too. Only a trait's name, tuple mem-
ber types, requirements clause, and optional error message may be
specified here. These abstract traits are given concrete definitions
3. THE ARCUM LANGUAGE via patterns specified in the options that implement an Arcum in-
The key construct of the Arcum language is trat, which de- terface.
scribes a tuple of Java program fragments (Section 3.1). All Arcum TheattrGet andattrSet traits represent, respectively, the abstract
code appears in one of three declarations: an interface, an option,operations of getting and setting the attribute, where both opera-
or a map. An interface (3.2) specifies the names and types of thetions can occur in the program multiple times. The two single-
traits common to all options that implement the interface. An op- ton traits, parameters and accessSpecifier, represent unique pro-
tion (3.3) provides concrete definitions of the traits in the interface gram fragments that occur exactly once in the implementation. The
by realizing them vigatterns(3.3.1). Finally, a map (3.4) allows unique program fragments in a singleton may sometimes be reifi-

options to be parameterized for a particular application. cations of entities that are only abstractly present in the program.
] Each trait tuple has a root program fragment, of which all other
3.1 The Trait Construct members in the tuple are sub-members. In syntactic terms, the root

A trait is used to describe one distinct role, structure, or opera- Program fragment is an AST node that is directly or indirectly the
tion that occurs in a crosscutting design implementation (a concept Parent of all other AST nodes in the tuple. For example,dhe

Predicate Name Description 3.2 The Interface Construct
iIsSAssignableFront(, ¢2) | IsZ2 equal to or a subtype @i ?)) .
hasMethod§,) Does class have a method:? An Arcum interface declares at the behavioral level what is com-
isTransientf) [s field f declared as transient? mon to all of its implementing options. The interface’s primary pur-
isJavaldentifier) Is the strings a valid identifier? pose is to document the crosscutting design idiom’s interface and
isReferenceType) Ist areference type? to centrally specify requirements that apply equally to all options
iISSUbEXpressiomj Doese exist as a sub-expression? that implement it.

Table 1: Example built-in predicates. Traits specified in the Arcum interface are abstract and all traits

except for the special parameters trait must be concretely realized

in all options that implement the interface. The special parame-
trSet trait has three tuple members, each of which are expressions:ters trait is always abstract and is only allowed in Arcum interfaces
setExpr, targetExpr, andvalExpr. ThetargetExpr is the expression (however, its options inherit it).

whose value is the object that has the attribute asixpr is the TheaccessSpecifier trait in Figure 5 is an abstract singleton with
new value for the attribute. Both of these are sub-expressions ofa single memberspec. This singleton trait is used by that-
setExpr. tributeConcept to simplify the parameters list. The spec member

When a trait’s root fragment is an expression or statement it rep- is used to specify one of the modifigigvate, public, protected or
resents an operation. But traits can also express structural properthe implicit “package” modifier. Both thinternalField and Stat-
ties of code and other crosscutting forms. For example, one couldicMap options infer this specifier by defining it to be the access
declare a trait that represents “all declarations of tygugor.” Such specifier of the field nameattrName. This same kind of inference
a trait would be useful for porting from one library to another (for can be used to remove tlagrType member from theparameters
example, changing uses of thiector collection class to the newer list as well. The decision on whether to let a program fragment
ArrayList class, as done by Balaban et al. [1]). Structural examples be a parameter or an inferred singleton depends on the current and

of traits include methods, fields, and annotations. expected options that the interface will modularize.
3.1.1 The Requires Clause 3.3 The Option Declaration
Programmers can add multiples requirement clauses with error An option describes one complete implementation of a cross-
messages to a trait. For example, the abspaetmeters trait in cutting design idiom specified by an Arcum interface. Options
Figure 5 can additionally declare: use themplements keyword to specify which interface they imple-
ment. Unlike classes, an option can only implement one interface.
require isJavaldentifier(attrName) The next section (3.3.1) describes how options use patterns to con-
catch error("%s’ must be a valid Java ID", aftrName); cretely realize the abstract traits specified in the interface.

The above requirement states that the name provided for the at- 3.3.1 Patterns

tribute must be a valid Java identifier. Options realize traits using declarative patterns, which are used

" . .) , to both identify and construct program fragments. Patterns are ex-
In general, the Boolean condition provided ireguire clause is resseq as Java-like pseudo-code inside square brackets, with back
evaluated for each trait instance. Conditions are expressed UsinGi.x marks to identify Arcum variables inside the pseudo-code. For

a simple propositional logic, augmented with built-in primitives, - gy ample, thenternalField option in Figure 5 uses the following pat-
examples of which are shown in Table 1re§uire clause can have tern to match (or generate) all valid set expressions:

an optional error message associated with it, to provide a compile-
time error message to the user in the event that the condition cannot .- attrSet(setExpr, targetExpr, valExpr) with
be satisfied. setExpr == [‘targetExpr.field = ‘valExpr];

3.1.2 The Parameters Trait Arcum supports patterns to match different kinds of Java pro-
The speciabarameters trait is a trait whose members are spec- gram fragments. The algorithms that use patterns for matching and
ified in the map file instead of by the options that implement the for generating new AST nodes are discussed in Section 4. An Ar-

interface. cum variable can be associated with either a single pattern expres-
Parameters are typically required for an Arcum interface decla- sion or a union of several pattern expressions (combined with the

ration to be instantiated for multiple uses. TAwibuteConcept in ||-operator).

Figure 5 has three parametersClass namedargetType (the class An option can realize an anonymous singleton trait to describe

that has the attribute), Bype namedattributeType (the type of the a program fragment that is specific to the implementation of the
attribute), and &tring namedattrName (the name of the attribute). option. For example, the anonymous singleton inithernalField
This parameterization permits théributeConcept to be applied to option in Figure 5 has the single memlfierd:
several different attributes instead of, e.g., being hard-coded only
for Strings in thelmage class. realize singleton(Field field) ... with

The type of the parameter tuple in this example demonstrates field == [?transient ‘spec ‘attrType ‘attrName] ...
how interface properties must hold for all options. Becauserthe
ternalField option assumes a field can be added totéingetType it Because this singleton is local to the option this field does not have
must assume thargetType is a Javalass and not a Javaterface, to be present in any of the alternative options. The question-mark
and thus all other options must make the same assumption as wellin the above pattern is a convenience notation for specifying that
This is an example of how the interface must accept the least com-the transient modifier may or may not be present. It is equivalent
mon denominator—an essential property of modular substitution to the union of two versions of field-declaration pattern: one with
in general. For example, last interface would not allow random the keyword and one without. Section 4.2 discusses how Arcum
access, even though some implementationssotould permit it. determines which pattern to use for code generation.

3.3.2 Option Invariants 3. Remove from the program all AST nodes that were pattern

An option can place additional requirements on an interface trait matched into the source option’s local singleton t_raits. For
with therequires clause. This is needed, for instance, for the field example, when refactoring from theternalField option to
access pattern shownlitternalField’s realization of theattGet trait, the AttributeConcept option in Figure 5, theltText field gets
which requires additional constraints that are equivalent to: removed from the program because its AST node was pattern

i) matched into an option-local trait. AST nodes that match

’eag'}'éfEXapt:r‘ii‘@[’fatgxept’éx;arrggg]xpr) with into option-local traits are removed during transformation

require ' because by design these traits are option-specific—otherwise,

isAssignableFrom(attrType, TypeOf(getExpr)) && the traits would be specified at the interface-level.
@sAssignabIeF_rom(targetType, TypeOf(targetExpr)) &&
isSubExpression(getExpr); 4. Construct new AST nodes using the patterns from the desti-

nation option’s local traits and insert them into the program.
In the refactoring scenario from Figure 5, the singleton trait
mapField in the StaticMap option will add a declaration of a
staticMap to the program.

Consider thasSubExpression requirement, for example. In Java,
you cannot use a field access as a statement. Therefore, the expres-
sion statementthis.altText; is rejected even though the expression
statementimage.altText.get(this);" is accepted. ThésSubExpres-
sion requirement prevents the latter from being inadvertently writ- 5.
ten.

This requirement must hold over all declared options for the in-
terface, otherwise substitutability is not preserved. Hence, Arcum
considers all the requirements that options place on interface traits,

and continuously checks them. This is'a slight departure from The main challenge in the above algorithm lies in processing pat-
typical interface semantics, which doesn't allow implementations arns poth to perform pattern matching (in step 1), and to generate

to automatically impose constraints on its alternatives. Such con- new AST nodes (in steps 4 and 5). We describes these two uses of
straints are best stated in the interface declaration, but the Arcumpatterns in Section 4.1 and Section 4.2, respectively.

approach allows for the emergent requirements to be stated either))
in an option or explicitly pushed up to the interface. 4.1 Using Patterns for Matching

Options may also define static traits purely for checking imp- Arcum patterns are represented using ASTSs that can have vari-
lementation-specific details. As an example, in our substitution 5pje nodes for sub-trees in addition to concrete AST nodes. A
scenario from Figure 5, once the code has been refactored to thestangard unification routine is used to perform the pattern match-
StaticMap option, we want to prevent programmers from perform- g The concrete syntax of the program is canonicalized before
ing operations other than callinget and put on thealtText map, the matching is performed, so that operations are closer to their
because these method calls (suchl&iext.clear()) would not have semantic meaning. For instance, even though the pattern
an analogue in thmternalField option. A static trait can be used to

match these illegal uses of the map to prevent a programmer from setExpr == [targetExpr.field = ‘valExpr];
writing new code that violates thtributeConcept’s specifications:

Replace each trait instance with a new AST node generated
from the destination option’s trait patterns; construct the new
AST node such that it satisfies the destination option’s con-
straints (if present).

lize stati A £ ith uses the “dot” notation, it will also match program fragments that
reaelfsr = "ft;'gﬁt%rfisfnggé,jgp? " use the implicithis (without the dot). Predicate expressions can be
require attrSet(expr, _, _) || attrGet(expr, _); conjoined to the pattern to filter the matches further.

Here, the special underscore variable is used to accept any bindingd.2 Using Patterns for Node Generation
that matches. This example also demonstrates how already realized one of the key features of Arcum is that patterns are bi-directional:
traits (likeattrSet andattrGet) can be used as predicates. not only are they used for matching Java code fragments into trait
34 M instances, but they are also used in the other direction, to gener-
. aps T
. .) _ate Java code fragments from trait instances. As an example, the
Arcum maps are used to state which options are implemented intq)5ing pattern in thestaticMap option is used in our refactoring

a program. Figure 4 shows a sample Arcum map. In general, an Ar-gcenario to insert a call to that method of the static map:
cum map is a list of option instantiations, where each instantiation

states the option’s name, and a set bindings for all of the option’s setExpr ==
parameters. One benefit of the map format is that there is a separate [targetType.‘mapField.put(‘targetExpr, ‘valExpr)];

file that documents some of the architecture of the program. o o
A trait instance and a destination pattern generate an AST node

4. TRANSFORMATION ALGORITHM _by tak_ing_the partially specified AST repre§enting the pattern, _and
i . . inserting into it the values of the Arcum variables from the trait in-

The Arcum transformation algorithm takes code thatimplements siance. Because Arcum variables store references to program frag-
a source option and translates it to new code that implements a desynents the above pattern creates an AST node representing the call
t!nation option. The following process performs such a transforma- 1, put, and the equality<=) makes the newly created AST at the
tion: location in the program specified lsgtExpr.

For some patterns, there are multiple possible AST nodes that
could be generated. For example, tledd pattern shown in Sec-
tion 3.3.1 (and in Figure 5) shows two possibilities for the field-
'declaration: either theansient modifier is present or not.

Its conjoined constraint specifies when fietd should be tran-
2. Perform all option-specific and interface-level constraint checksient: thefield must betransient exactly when theargetType class

and stop with an error if any of the checks fail. implements theerializable interface:

1. Use the patterns specified in the source option to bind option-
local traits and interface-level traits. The pattern matching
identifies the program fragments, represented as AST nodes
that participate in the refactoring.

&& (isAssignableFrom(Serializable, targetType) The target program did not employ serialization of the target
<=> isTransient(field)) type, and as a result the previously discussed serialization checks
o) were not required. Later, when we came across some serialization
Here, the<=> represents the logical if and only if operator. When .4e \ve realized that a general-purptsernalField specification
there are multiple possible AST nodes that could be generated from,,,51d have to account for this special case. If we had been just
a pattern or union of pattern;, we use a generate-and-test approaChdeveloping the related options for our own use, we might have ig-
we generate all of the possible AST nodes, and then use the con-qre this insight or simply added a check to prevent the application
joined constraints to prune nodes out. This approach works well as ¢ the AttributeConcept to a serializable class. However, under the
long as there are a small number of possible AST nodes to ge”erateassumption thaAttributeConcept might become part of a reusable
In the above example we would generate both field-declarations: library—and thus clients might also not think of this corner case—

one with the modifier and one without. The evaluation of the con- \ye added the necessary checks to insure that the attribute will be
straint determines which of the two AST nodes to use. appropriately serialized in all options.

The replacement algorithm uses a top-down ordering to replace Examples of checks added have been given throughout the paper,
nodes once they have been generated, to allow for sub-nodes of . as:

traits to be replaced by other traits. By using this top-down order,

we are able to correctly transform: e Type consistency constraints;
anlmage.altText = defaultimage.altText; e Restrictions on the use of certain methods and fields; and
into: e Checks for making sure that fields are appropriately labeled

transient in the face ofSerializable classes.

altText.put(animage, altText.get(defaultimage)); .) , S
put 9 get oe) Over the history ofttributeConcept’s development, the trait sig-

natures did not change, thus its external clients were unaffected
5. EVALUATION by the numerous improvements. However, there were a variety of
To evaluate the Arcum framework we (1) implemented a proto- changes that involved an interaction between the interface and an
type Arcum refactoring system for Java; (2) developed a complete option. This is not surprising, as their interaction is analogous to
AttributeConcept with three options; and (3) applied Arcum to three the interplay between a superclass and its subclasses, which often
different change tasks and compared the ease of change with thecollaborate intimately.

state of the art in Eclipse and AspectJ [13].
5.3 Change Tasks

5.1 Arcum Prototype Implementation We considered three different change tasks that could plausibly
The Arcum prototype supports most of Java 5 except for gener- be required in a large program, each with different degrees of cross-

ics with wildcards, and some aspects of anonymous inner classescutting. A discussion of each change task follows.

The prototype is a plug-in for the Eclipse IDE and is built on top of Task 1: Application of AttributeConceptTo get a preliminary

Eclipse’s Java Development Tools plug-in and uses the Languagefeeling for whether Arcum imparts some of the benefits of modu-

Toolkit API to perform AST transformations. Arcum comprises lar substitution to crosscutting idioms, we pAttributeConcept to

11 KLOC of Java code. Arcum uses Eclipse’s parsers and type work. We chose the Polyglot framework [20], since we understand

checkers for pattern matching and Eclipse’s factories for node gen-it well. Polyglot is an extensible compiler that heavily uses dele-

eration. gators and extension objects. To support theseNthe class in
. Polyglot has two fieldsdel andext. A compiler extension to Poly-
5.2 Development of the Attribute Concept glot uses these fields to extend the compiler’s behavior. Based on
In this section, we describe some of the design decisions that their infrequent usage on a per-object basis, a sparse representation
came up in the process of writing the Arcum codeAaributeCon- of these fields could conserve memory usage.

cept. In doing so, we bring to the forefront common issues that ~ We first externalized the storage of thel field. We instanti-
Arcum developers will think about and have to address when they ated annternalField mapping fordel and Arcum'’s checks for con-
write Arcum code. formance passed. We then changed it to instantiatStiteMap
We found that there were two key considerations in the design of option, thus triggering the refactoring and resulting in 13 substitu-
a group of related options. The first, of course, is that any resulting tions. To measure the program’s new memory usage we compared
transformations should satisfy the specifications for the crosscut- its previous memory footprint from compiling an 80K line program
ting design idiom. Analogously, if the programmer edits Arcum to the modified version. In our measurements3taticMap version
code in a way that violates the intended use of the specification, actually required more memory than tineernalField version. One
then an error should be reported. The second is how to structurecause could be padding issues: removing one field might not gen-
the interface so that it admits a suitable range of options without erate gains in real space.
being so general as to unnecessarily complicate the implementa- To see if this was the case we externalized dkeeattribute as
tion of options. well, resulting in 12 substitutions. After this refactoring was per-
In practice, we found that it was hard to get these right the first formed, the total memory usage was less than the original, unmod-
time. We also found that it wasn’t necessary. Our first version ified program. However, the gains in saved space were not large,
of the AttributeConcept interface was correctly parameterized, but for example saving 100KB for a program run that used 11MB to-
its internals omitted all requirement checks. When we wrote an tal. Consequently, we changed the mapping to reinstantisge
option, which described one particular implementation, we added nalField for del and forext to reverse both refactorings.
explicit checks to the interface—the requirement invariance nature A lesson from this experience is that the consequences of some
of Arcum drove this process (see Section 3.3.2). As aresult, Arcum refactorings are difficult to anticipate, and the ability to quickly
handles some of the burden of knowing and applying Java languageand safely try and undo refactorings is valuable. The equivalent
rules. steps necessary to perform the same changes in Eclipse (covered in

Section 2.1) would not make this kind of exploration as easy. The match all speciahull argument cases and change them into calls to
experience of switching implementations by editing the mappings the new method instead.
was similar to modular substitution, such as tweaking an object

factory to return different object types under different conditions. 6§, DISCUSSION AND FUTURE WORK

Task 2: Message Log Redirectiofi:or a second test, we edited .
the source for the Arcum plug-in itself. The plug-in has a mode ThehforechJqlng has only scdratched the surfacel of the ,I:\rcum ap-
) oo - : proach. In this section we discuss some novel ways that Arcum
for sending taSystem.out debugging information. We considered might be usefully employed in software development. These uses

2;(:;?:;?1 W?ﬁ;ecvgnginégi ?;ii?uhpeugiig;rigﬁggtzd trz;ggg: suggest additional kinds of crosscutting design idioms that might
. 9 ASIly D€ ¢ P Y . Ye checked and refactored with Arcum, and are directions for fu-
System.out itself. However, redirection is too blunt of a solution ture work

in Ec_Ilpse, because it redirects the console output from all other Rapid Prototyping. The DJ library for Java makes extensive use
plug-ins as well. X - o

The solution requires that the our plud-in uses one stream. while of reflection to support a dynamic form of the visitor pattern [21].
all other plug-ins gontinue to USRSt 2 gt Eclinse can erfo}m The traditional visitor pattern only partially modularizes depth-first

. plug SBystem.out. P P traversals over objects connected by the “has-a” relationship. In
this change more thoroughly than a standard textual find and re- d ib hiah-level h ifies th

lace: Eclipse allowed us at the semantic level to find all refer- DJ, programmers describe a high-leve strategy that specifies the
P X source and destination types of the traversal. As a result, all of

ences to the field (which numbered just over 1,000) regardless of . X : :
; : g . the method infrastructure required for the intermediate types can
the whitespace formatting or static imports used. However, despite be omitted. Because the high-level strategy specifies only what is

Ecllpses_ semantic Ie\{el search, all modlflc_atlons still needed to be important about the traversal, it is less redundant and more flexible
made with a textual find and replace. This global change caught hen the cl hch
most instances, but another semantic search revealed the rare synv-v en the class graph changes. .

' However, the use of reflection to descend down object graphs en-

tactic exceptions missed by the search pattern. i iceabl . head h imol . f th
Aspect] was better suited at performing the change than justta.u.S a noticeable runtime overhea '.BOt. implementations of the
Eclinse alone. Aspect] hasat pointcut similar to Arcum’s field- visitor pattern satisfy the same specification: traversing an object
accgss atter.n' itpcan mat?:]h ;II references to a specific field Thegraph. Thus, this traversal should be encoded in an Arcum inter-
ointcutpcan aléo be narrowed down to match clas?ses contaiﬁed inface, with each implementation being a separate option. With both
P o - . . . options in place, it is possible to begin development with the more

a specific set of packages. A simpl®und advice applied to this . X . -
flexible and convenient reflection-based visitor, and then use the

pointcut can replace the value used$gstem.out in every location T . S
in the project. The AspectJ solution also had the advantage that thenormal visitor implementation once application development has

; . settled down. Should development return to a rapid-prototyping
stream returned by the advice could be either the value of a Storedphase, the options can be flipped again.
stream or the result of a method call.

: . . . Product Line Architecture Components can be used to describe
Finally, the same change was made using Arcum. A simple in-

terface was written that had one trait with only one member (of type a family of applications that may have, for example, different scala-
=) i v . er (ottyp bility or security needs. There are opportunities for Arcum to allow
Expr) in it. Then, an option was written to realize this trait with all

accesses tvstem.out. To test the option. we used Arcum’s search & mixing of implementation styles. Implementation requirements
) oY I ption, .. can be specified in the form easiest to express (for example, a Java
view to display all program fragments that belonged to the trait.

. field) and transformed at compile-time to the target product’s needs
Once we were convinced the results were as expected, we wrote

X ! . e . (for example, a data-base access).
an alternative option tha_u acc_:essed a _dlfferent field instead. Sim A special case would be an in house product line instrumented
ilar to the AspectJ solution, it was a simple matter to change the

. : .~ with performance measurement and debugging support that would
stream used to the result of a method call instead, just by adding not be part of the release version of the software. Any modifica-
yet another option.

One advantage of the Arcum solution over the AspectJ solution tlgrr]fz:r?]etlrrlﬁes\?vfct)\ijvl?jr;?o;:]:tirc):gljlcet?es ;f Im%r?glgﬁjvi?gi;?éasurmg
is that it refactors the program itself, instead of only modifying P Porting and Retaraetina The A)r/cum gp roach can also bé Use-
the program’s semantics through byte-code weaving. As a reSUIt’{ul in porgt]ing code be?ses gI.:or instance EIF;SS library migration is an
design decisions are more visible and can better reflect t_he nature o important problem addressed by Balaban et al. [1]: one example is
the program. The prior disadvantages of such crosscutting code are . ; .
no longer disadvantages with Arcum- for example. even thouah the refactoring code using the old Javector class to use the more effi-
calls tc?a heloer methg dma crosscu't the obro r[;m' this crossguttin cientArrayList class. Thevector class is less efficient because all of

P y program, Yits methods are synchronized by default, whileAnayList class is

Lig(:]teaega;ﬁligtgsbecause the code can easily be changed back WhenonIy synchronized when explicitly requested. The Arcum method-

Task 3: Remove Control Couplingor the final test, we consid- ology would be particularly well-suited for this task because it can

ered refactoring calls to a method that took on the duty of two dif- be continuously checked. For example, if new code is written that
ng . . Y ¢ allows anArrayList instance to escape from the thread that created

ferent operations: the operation to perform was determined basedit it should be explicitly synchronized

ggsggﬁgmerbogcg%g;efg thgn%rg;rl?se:tse mgﬁe;hsmaé?uen;egé a re- In order for the Arcum framework to support such refactorings,
y a flag, ge pe : 9 §fs constraint checking system would need to be extended to include

sult where calls to th|§ method would pm into this argument. forms of data-flow analysis. This is a subject of future work.

Such a usage pattern increases the coupling between modules and i© Design Pattern CheckingDesign patterns are another class of

would be better to refactor the source code so that these calls would. '

invoke a separate method that iust performs the expected o eration|mplementation techniques that could benefit from checking. For
P natjust pe ; P P example, the initialization of a Singleton instance can be incorrect
Our goal was to perform this refactoring using Arcum.

The Eclipse “Change Signature” feature is useful for introducing in the context of a multi-threaded system (for example, the instance

A new argument or removing one. but it's not suited for the task of might become initialized twice). Checks can be written for these
arg 9 ' common error cases. Looking further ahead, it may be possible
changing some but not all method calls. In Arcum we were able to

for such errors to drive an automated refactoring that fixes the im-

plementation. Related work that addresses this problem includescorrect library call replacements that otherwise could not be found
Spine, a declarative language for checking design patterns [6]. automatically (due to subtle issues like synchronization).

Other implementation styles can also be checked. For example, The Feature Oriented Refactoring (FOR) work of Liu et al. rec-
an internationalization strategy could have rigid requirements for ognizes the crosscutting and non-modular nature of the implemen-
the ways string literals are used (such as always wrapping themtation of software features, which are often crosscutting [16]. For
around method calls). Arcum code can be written to check and example, adding bounds checking to a data-structure could crosscut
enforce these rules. In the process, the potential exists later on forthat structure’s implementation. With FOR, certain types of pro-
providing an alternative implementation. grams can be refactored into a base program and modular feature

Bug finding tools check for common coding errors and have the refinements. The features are refactored and composed through the
potential for finding bugs that code reviews and test cases miss [23].application of advanced delegation techniques. The application of
A project that uses a specialized library could benefit by having an FOR allows optional features, such as bounds checking, to be re-
accompanying option perform similar checks. For example, per- moved, allowing for better-suited variants.
formance bugs or other common errors can be detected, providing Simonyi's Intentional Programming (IP) [25] is related in spirit
junior-level programmers with extra assistance and knowledge. to the goals of Arcuni. IP aims to have programmers work at the

Aspects and Fluid AOPExtending Arcum to support Aspect] 5 level of their intentions, allowing for easier change to programs.
would allow for more sophisticated kinds of refactorings, such as Instead of being a refactoring system, IP utilizes a program-as-
suggested by Relationship Aspects [22]. Due to Arcum’s bi-dir- database approach: if any linked entry changes, the change follows
ectional semantics, fluid aspect-oriented programming [12] is pos- all links backward.
sible: code could be edited and modified in a crosscutting imple- The REFINE system also employs a program-as-database ap-
mentation, but refactored as needed into a localized aspect to enablg@roach, in addition to program templates, which can be used for
changes to the concern to be expressed locally; after the change idboth pattern matching and code transformation [14]. The code
made, the code could be refactored back into the scattered imple-transformations discussed were not bi-directional in nature and are
mentation. directed at uses such as “eliminate redundant multiplies by 1” and

Hybridized Options. Currently, an Arcum option implements code mutations for test suite validation. The source template and
just a single interface, akin to single inheritance. However, just as destination template are bound in the same transformation rule,
design patterns can be hybridized, a single option could be used tostopping short of a notion of a (persistent) option. Also, alternative
implement two interfaces. For example, specifications for the me- transformations cannot be introduced without duplicating existing
diator pattern and the observer pattern could be realized by a singlerules.
option for the mediator-observer pattern, which could enforce that As a departure from REFINE, Kozaczynski et al. employ se-
the mediator is also the observer. mantic pattern matching—including control-flow and data-flow—

Some implementations might coincidentally hybridize, causing to recognize “concepts” as part of a code transformation system for
unexpected interactions that would be caught during checking. For software maintenance [15]. Concepts were not persistent like Ar-
example, a visitor implementation and an observer implementation cum options, however, and transformations were explicitly defined
might coincidentally share participant code fragments. If the visi- as predicate—action pairs, not inferred from patterns, thus limiting
tor code were to be refactored, it could violate a constraint of the transformations to being one-way. In many respects this supports

observer code, triggering a constraint violation. user-programmable role-based refactoring. A more recent work in
this area is the DMS system, which is similar to Kozaczynski et al.
7. RELATED WORK but has a much wider scope [3].

Arcum'’s ability to express program properties, both in patterns
and inrequire clauses, is related to the work on static program anal-
ysis tools, such as SLAM [2], and PDL [19]. Better support for
static analysis in Arcum could lead both to richer source matching
and error detection.

The bi-directional nature of Arcum relates to the area of multiple-

Arcum is a departure from the role-based refactoring work of
Hannemann et al., which permits programmers to build macro-
refactorings from micro-refactorings [11]. The basic idea is to sup-
port the refactoring of crosscutting entities like design patterns by
separately recognizing the code for each role in a design pattern
(with programmerinteraction)z and then applying micr(_)-rel‘actoringsviewS into a program, for example the recent work of Black et
to each of those roles to achieve the macro-refactoring. Abstract al. [5], Eisenberg et al. [8], and Mens et al. [18]. Different views

roles are essentially the same as Arcum’s abstract traits. The ap_demonstrate different aspects of the proaram and can thus be more
proach is a traditional refactoring approach in that it does not exter- P prog

nally specify the underlying interface or implementation options, expressive than the other in different circumstances. A program-

thus not providing continuous checking or bi-directional refactor- mer using Ar(.:um can trgnsform a crosscutting design idiom im-
ings. Marin et al. take a similar approach, although they assemble plementation into the option where the change can be most easily

macro-refactorings from micro-concerns rather than roles [17]. expressed. Once the change is made, the implementation can be

AOP languages like Aspect] can manifest many crosscutting de_changed back to the previous option, bringing all changes with it.
sign idioms, including many design patterns, as modular abstrac-
tions [10]. However, when dealing with existing tangled code, this 8. CONCLUSION

requirfas refactoring the existing code _to modularize_the tangled One of the benefits of traditional class and method abstraction is
;:.Ode 'n.tt?] arl ﬁsp_ect.t Arcucrir) C‘;? speglfy_ and check |81fplementa- modular substitution of their implementations. However, the im-
ions without having to modify the code in any way. course, plementations of some design idioms are naturally crosscutting or

when Arcumlls extendgd to support .AspectJ,.Arcum can assist pro- intentionally scattered across other code. Design patterns are
grammers with refactoring crosscutting code into aspects (and bathypicaI examples

again).
Balaban et al. employ declarative semantic notations for auto- 2tpe name “arcum” is derived from the Latin phrasietendere

matically retargeting code libraries in large code bases [1]. They arcum” which means “to aim a bow and arrow at” and is the
use a rich type system and a constraint solver to enable finding metaphorical root of the word “intention” [7, p.333].

Arcum expands the opportunities for modular analysis and sub-
stitution for such idioms. Based on a paradigm of declarative pat-
tern matching and substitution, Arcum specifications are declara-
tive supplements to the program, neither modifying the code nor its (10

behavior. Only the substitution process changes the code.

Arcum separates the behavior and implementation of a crosscut-

ting design idiom into an interface and an option. An option uses
semantic patterns that correspond to traits in the interface to pro-[11]

vide a concrete implementation of the specification. Interfaces may

be parameterized, supporting reuse and the development of Arcum
refactoring libraries.

When the programmer uses a mapping to specify that a given

option instantiation is expected to hold in the program, the Arcum

engine can check this by matching the option’s patterns over the

[12]

program and then checking the matched elements against the in-
terface’s behavioral constraints. If the programmer specifies that [13]
a new, different option should now hold, the Arcum engine not

only performs these checks for the old option, but then replaces
the matched elements with the code specified in the patterns of the
new option. Due to the declarative nature of the language, as well
as the fact that the current option is continuously checked, the trans-

formation process can be run in either direction.

To evaluate the Arcum approach we developed a prototype Ar-

[14]

cum’s transformation engine, completely developed an interface [15]

with three options, and applied it to the Polyglot code base. We

found that Arcum provided the feel of substitutability to the cross-
cutting design idiom.

9.

ACKNOWLEDGMENTS

We would like to thank Andrew P. Black and the anonymous

reviewers, who reviewed an earlier draft of this paper. Our thanks

also go to the Programming Systems Group at UCSD, for lively
discussions about Arcum.

10. REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

|. Balaban, F. Tip, and R. Fuhrer. Refactoring support for class
library migration. INOOPSLA '05: Proceedings of the 20th annual
ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applicatippages 265-279, New York,
NY, USA, 2005. ACM Press.

T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs Rroceedings of the ACM
SIGPLAN 2001 Conference on Programming Language Design and
ImplementationSnowbird, Utah, June 2001.

I. D. Baxter, C. Pidgeon, and M. Mehlich. Dms: Program
transformations for practical scalable software evolutionCIBE

'04: Proceedings of the 26th International Conference on Software
Engineering pages 625-634, Washington, DC, USA, 2004. IEEE
Computer Society.

K. Beck and C. AndresExtreme Programming Explained: Embrace
Change Addison-Wesley Professional, second edition, November
2004.

A. P. Black and M. P. Jones. The case for multiple views. In
Workshop on Directions in Software Engineering Environments,
ICSE 2004

A. Blewitt, A. Bundy, and I. Stark. Automatic verification of design
patterns in java. INSE '05: Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineepages
224-232, New York, NY, USA, 2005. ACM Press.

D. C. DennettConsciousness ExplaineBack Bay Books, 1992.

A. D. Eisenberg and G. Kiczales. Expressive programs through
presentation extension. KOSD '07: Proceedings of the 6th
international conference on Aspect-oriented software development
pages 73-84, New York, NY, USA, 2007. ACM Press.

W. G. Griswold. Coping with crosscutting software changes using
information transparency. IREFLECTION '01: Proceedings of the

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

Third International Conference on Metalevel Architectures and
Separation of Crosscutting Concerqages 250-265, London, UK,
2001. Springer-Verlag.

] J. Hannemann and G. Kiczales. Design pattern implementation in

java and aspectj. IDOPSLA '02: Proceedings of the 17th ACM
SIGPLAN conference on Object-oriented programming, systems,
languages, and applicationpages 161-173, New York, NY, USA,
2002. ACM Press.

J. Hannemann, G. C. Murphy, and G. Kiczales. Role-based
refactoring of crosscutting concerns.A@SD '05: Proceedings of

the 4th international conference on Aspect-oriented software
developmentpages 135-146, New York, NY, USA, 2005. ACM
Press.

G. Kiczales. Aspect-oriented programming: The fun has just begun.
In Software Design and Productivity Coordinating Group —
Workshop on New Visions for Software Design and Productivity:
Research and Applicationblashville, Tennessee, Dec. 2001.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of AspectJ. Ih5th European Conference on
Object-Oriented Programming (ECOOP 200pages 327-353, June
2001.

G. Kotik and L. Markosian. Automating software analysis and testing
using a program transformation systemTWV3: Proceedings of the
ACM SIGSOFT '89 third symposium on Software testing, analysis,
and verification pages 75-84, New York, NY, USA, 1989. ACM
Press.

W. Kozaczynski, J. Ning, and A. Engberts. Program concept
recognition and transformatiofEEE Trans. Softw. Eng.
18(12):1065-1075, 1992.

J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of
legacy applications. IICSE '06: Proceeding of the 28th
international conference on Software engineeripages 112-121,
New York, NY, USA, 2006. ACM Press.

M. Marin, L. Moonen, and A. van Deursen. An approach to aspect
refactoring based on crosscutting concern typeMACS '05:
Proceedings of the 2005 workshop on Modeling and analysis of
concerns in softwargpages 1-5, New York, NY, USA, 2005. ACM
Press.

K. Mens, T. Mens, and M. Wermelinger. Maintaining software
through intentional source-code views.S&KE '02: Proceedings of
the 14th international conference on Software engineering and
knowledge engineeringages 289-296, New York, NY, USA, 2002.
ACM Press.

C. Morgan, K. D. Volder, and E. Wohlstadter. A static aspect
language for checking design rules A®SD '07: Proceedings of the
6th international conference on Aspect-oriented software
developmentpages 63—72, New York, NY, USA, 2007. ACM Press.
N. Nystrom, M. Clarkson, and A. Myers. Polyglot: An extensible
compiler framework for java, 2003.

D. Orleans and K. J. Lieberherr. Dj: Dynamic adaptive programming
in java. INREFLECTION ’'01: Proceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concernpages 73-80, London, UK, 2001.
Springer-Verlag.

D. J. Pearce and J. Noble. Relationship aspectaO8D '06:
Proceedings of the 5th international conference on Aspect-oriented
software developmerages 75-86, New York, NY, USA, 2006.
ACM Press.

N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of bug
finding tools for java. INSSRE '04: Proceedings of the 15th
International Symposium on Software Reliability Engineering
(ISSRE’04)pages 245-256, Washington, DC, USA, 2004. IEEE
Computer Society.

M. Shonle. Modular-like transformations and style checking for
crosscutting programming conceptsICSE COMPANION '07:
Companion to the proceedings of the 29th International Conference
on Software Engineeringrages 95-96, Washington, DC, USA,
2007. IEEE Computer Society.

C. Simonyi. The death of computer languages, the birth of intentional
programming, 1995.

