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ABSTRACT
Despite the automated refactoring support provided by today’s IDEs
many program transformations that are easy to conceptualize—
such as improving the implementation of a design pattern—are not
supported and are hence hard to perform. We propose an extension
to the refactoring paradigm that provides for the modular mainte-
nance of crosscutting design idioms, supporting both substitutabil-
ity of design idiom implementations and the checking of essential
constraints. We evaluate this new approach through the design and
use of Arcum, an IDE-based mechanism for declaring, checking,
and evolving crosscutting design idioms.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—Domain-
specific architectures, languages, patterns

General Terms
Languages, Design.

Keywords
Refactoring, design patterns.

1. INTRODUCTION
One of the benefits of modular programming is that the imple-

mentation of a module can be improved or replaced by another
without requiring changes to, or extensive retesting of, other parts
of the system. However, many change tasks are crosscutting in
nature and thus outside of modular bounds [9]. For example, not
every future change can be anticipated, meaning that the existing
abstractions may not modularize the given change. Sometimes, the
language’s abstraction mechanisms are not powerful enough to per-
mit an efficient modularization. Other times, an agile development
process like XP may intentionally delay the introduction of such
abstractions [4].
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In this paper we introduce the Arcum framework.1 Arcum allows
for certain forms of crosscutting design idioms to be transformed
into alternative implementations. Arcum expands the opportuni-
ties for modular substitution and reasoning throughoptions. An
Arcum option declares the implementation details of a crosscutting
entity, including any required supporting code and infrastructure. A
group of options are related to each other when they all implement
the same Arcuminterface. An Arcum interface states the stable
properties that are common to all options that implement it. The
relationship between an Arcum interface and its options is simi-
lar to the relationship between a Javainterface and the classes that
implement that interface.

Arcum declarations are auxiliary supplements to Java programs.
A programmer may be motivated to declare one or more options
when the need arises for either transforming a crosscutting design
idiom or for better checking of a particular implementation. Once
declared, transformation is merely a matter of specifying the re-
placement of the prevailing option with an alternative option. The
correctness of such a replacement is aided by checks specified in
the Arcum declarations. An Arcum interface specifies behavioral
constraints on its options, and each option specifies additional con-
straints specific to its implementation. Arcum declarations can be
written in a generic fashion and then instantiated for a specific case,
enabling reuse of Arcum declarations.

There are several unique benefits of retaining Arcum declara-
tions as persistent, supplemental descriptions to a Java program.
For one, being persistent, unlike the typical refactoring operations
invoked by a programmer via an IDE, an instantiated option is con-
tinuously checked, not just during refactoring. In this respect, the
benefits of static checking of classes extend to crosscutting enti-
ties. Continuous checking also ensures that the ability to replace
the prevailing option for an alternative option is preserved. Two,
due to its declarative nature, an option provides a precise mecha-
nism for documenting a crosscutting design idiom and expressing
the programmer’s intentions for its implementation. Finally, be-
cause Arcum declarations are supplements, the core source code
remains unchanged, and in pure Java. The program is only changed
when one implementation is transformed to one of the alternative
options. Such transformations are always done within the IDE at
the programmer’s discretion, by specifying a change in the prevail-
ing option. The separation of Arcum code and Java code reduces
the cost and risk of initiating the use of Arcum, and enables late-
stage adoption.

In the next section we introduce the Arcum approach with a com-
parative example. We then review the Arcum language in greater
detail and describe our algorithm for transforming between two op-

1Arcum’s general goals were first proposed in a short paper at the
ICSE 2007 Doctoral Symposium [24].



01 public class Image {
02 String altText;
03 // ...
04 public Image(String alternative) {
05 this();
06 this.altText = alternative;
07 }
08 public String toString() {
09 if (altText == null)
10 return defaultAltText();
11 else
12 return altText;
13 }
14 }

Figure 1: Internal field implementation of the altText attribute.
15 public class Image {
16 static Map<Image, String> altText
17 = new IdentityHashMap<Image, String>();
18 // ...
19 public Image(String alternative) {
20 this();
21 Image.altText.put(this, alternative);
22 }
23 public String toString() {
24 if (Image.altText.get(this) == null)
25 return defaultAltText();
26 else
27 return Image.altText.get(this);
28 }
29 }

Figure 2: Static map implementation of thealtText attribute.

tions. Next, to provide an evaluation of our approach, we describe
the design of the Arcum refactoring engine, report on our devel-
opment of a related group of options, and compare several change
tasks versus the state of the art in Eclipse and AspectJ [13]. We
close with a discussion of future work, related work, and a few
concluding remarks.

2. EXAMPLE: ATTRIBUTE STORAGE
In this section we illustrate the Arcum framework with a sim-

ple Java program that processes HTML image elements. Image
elements in HTML have an optional ‘alt’-tag attribute that specifies
alternate text to display in place of the image. There are a variety of
ways of implement this concept of “alternate text” in Java. For ex-
ample, one can simply add a field namedaltText to theImage class
that represents image elements, as shown in Figure 1. Alternatively,
if one expects the alternate text to be absent often, meaning that it
takes on a predefined default value, then storing the alternate text
in an external table can save memory at the expense of processor
cycles. Such an implementation is shown in Figure 2.

Although this intentionally simplistic problem might be easy to
anticipate, it is difficult to design software abstractions that are flex-
ible enough to support all future changes. Furthermore, some pro-
gramming methodologies, such as Agile development, in fact favor
rapid development of prototypes, with refactorings being applied
later in the development process, as needed. In either case, the
end result is that refactoring and software evolution in general is a
common occurrence in the development of large software systems.

To give an overview of our approach, we describe how a devel-
oper would refactor a large body of code from the internal field im-
plementation of the “alternate text” concept to the static map imple-
mentation, first using a regular IDE such as Eclipse (Section 2.1),
and then using the Arcum framework (Section 2.2).

2.1 Refactoring using Eclipse
Although the code shown in Figure 1 has only two reads (lines 9

and 12) and one write (line 6), in a realistic code base one would
expect to encounter many references to thealtText field that need to
be modified.

A developer could use Eclipse’s built-in refactorings in the fol-
lowing way: (1) Replace all references to thealtText field in the
original code with calls to getter and setter methods with the “En-
capsulate Field” refactoring; (2) Manually edit these getter and set-
ter methods to call the appropriate map operations instead; and,
optionally, (3) Inline away calls to the getter and setter methods
with the “Inline Method” refactoring.

Although these built-in refactorings make manual modification
less onerous, the problem remains the same: refactorings gener-
ally require many changes to be made to the code, and the tool
performing the transformations is simply not aware of the struc-
ture that is present in the code being manipulated. This lack of
structure awareness results in a variety of drawbacks, including:
(1) code refactoring is error-prone and tedious—it is error-prone,
for example, because the manual editing of the getter and setter
methods by the programmer occurs outside of Eclipse’s meaning-
preserving operations; (2) it is often difficult to switch back and
forth from the original implementation to the refactored implemen-
tation; (3) subtle bugs can be introduced, for example transforming
f(this.altText=y) into f(Image.altText.put(this,y)) is an incorrect trans-
formation because theput method returns thepreviousvalue in the
map; and (4) little of the work done for refactoring thealtText field
can be reused for refactoring other fields.

2.2 Refactoring using Arcum
The Arcum approach addresses the above limitations by enabling

the programmer to formally capture implicit structure in his or her
code. Rather than directly applying refactoring transformations,
the programmer first declares behavior (in the interface) and im-
plementation descriptions (in the options) for the code that will be
changed. After the options and their interface have been described,
the prevailing implementation can be replaced by any other related
option. The chosen option is retained and continues to impose
checks to ensure that new or modified code also satisfies the trans-
formation’s pre- and post-conditions. Figure 3 shows the Arcum
plug-in for Eclipse performing the refactoring.

Figure 5 shows how theImage constructor from our example is
transformed with Arcum. At the bottom left of the figure is the
original Java code for the constructor, and at the bottom right is the
desired target Java code. At the top of the figure is the Arcum code
specifying the interface that both options implement. The declara-
tions of the two options are directly below the interface: one using
an internal field (theInternalField option), and another using a static
map (theStaticMap option).

Initially the programmer declares theInternalField option to be
the current realization of theAttributeConcept interface. This spec-
ification is made concrete with the mapping show in Figure 4. Note
that rather than designing a refactoring that applies only to the “at-
tribute for alternate text” concept, the programmer has designed a
parameterized interface so that it can be applied to any attribute of
any class. In particular, theAttributeConcept from Figure 5 takes
three parameters:targetType is the class for which the attribute
is defined,attrType is the type of the attribute, andattrName is
its name. Oftentimes a programmer might find the desired set of
options in a library, rather than having to implement them from
scratch.

The relevant part of theAttributeConcept code for this example
is theattrSet “trait” (Figure 5, boxed), which represents all loca-
tions in the Java program where the attribute’s value is set. The
parameters to the trait, in this casesetExpr, targetExpr andvalExpr,
are fragments of Java code that are extracted from the locations in
the code where the attribute is set. For example,targetExpr is the



Figure 3: Refactoring in Arcum for Eclipse: The front-most window is a preview that shows the changes the refactoring would
perform. In the background is the Eclipse environment itself, with an Arcum view at the bottom that shows a compressed view of
the implementation’s scattered code fragments.

map {
InternalField(targetType=Image, attrType=String,

attrName="altText");
}

Figure 4: Map file for the original InternalField implemen-
tation of the altText attribute. By using Eclipse to change
‘ InternalField ’ to ‘ StaticMap ,’ the Java code is automatically
transformed to make the revised mapping hold.

object whose attribute is being set,valExpr is the value to which
the attribute is being set, andsetExpr is the entire expression that
performs the set operation. Arcum variables, such assetExpr store
references (i.e., pointers) to code fragments, and so in this example
thesetExpr variable identifies the location and scope of the set op-
eration, which is later used to determine what portion of the code
gets transformed or preserved.

Each option specifies a differentrealizationof theattrSet trait. A
trait is realized by providing a pattern that identifies the fragments
of Java code that are instances of the trait. For example, the boxed
pattern in theInternalField option shows how a regular assignment
to a field becomes an instance of theattrSet trait. In our Image
constructor example, line 6 of the Java code matches this pattern,
and therefore becomes an instance of the trait. Similarly, the boxed
pattern in theStaticMap option states which map operations become
instances of theattrSet trait.

Patterns in the Arcum framework declaratively state the mapping
between a crosscutting design idiom and the various fragments of
Java code that implement an option. A key feature of Arcum is that
these mappings arebi-directional: not only are the patterns used to
build trait instances from Java code, but they are also used in the

other direction, to generate Java code from trait instances.
The directionality of the mapping is determined by how the map-

ping is instantiated and later changed. As declared in Figure 4, the
InternalField implementation is the prevailing option at the begin-
ning of our scenario. To refactor to the sparse implementation of
the altText field, the programmer changes the named option in the
mapping toStaticMap, which triggers a refactoring of the code.

In our scenario, thealtText field is initially implemented as a sim-
ple class field and the conceptual flow of information in Figure 5
goes in the clockwise direction, following the solid arrows. How-
ever, this refactoring can be run in either direction. The field as-
signment on line 6 in the original code is pattern matched into a
trait instance, at which point the referencessetExpr, targetExpr and
valExpr are bound. The newly constructed trait instance is lifted
to the interface level, and then pushed back down to the alternate
StaticMap option, at which point the pattern along withsetExpr,
targetExpr andvalExpr, are used to construct the replacement code.

Due to the bi-directional nature of trait patterns, the mapping
can be changed later to perform the refactoring in the other direc-
tion. Because our approach explicitly and persistently identifies
substitutable crosscutting entities and their prevailing options, their
consistency properties can be continuously checked. This makes
future transformations easier to perform because the checking aids
code compliance. For instance, in our example, we would like
to prevent the incorrect application of the refactoring to transform
f(this.altText=y) into f(Image.altText.put(this,y)), because, as mentioned
previously, theput method returns thepreviousvalue in the map.
This requirement is checked by the interface with therequires clause
(where isSubExpression(e) checks whethere is embedded in an-
other expression). This requires clause can be checked continu-



...

01 public Image(String alternative) {

02   this();

03   Image.altText.put( this , alternative );

04 }

Transformed Program

option StaticMap implements AttributeConcept {

realize singleton(Field mapField, Type mapType,

Expr mapInit), accessSpecifier(spec) with

mapType == [Map<`targetType,`attrType>]

&& mapInit == [new IdentityHashMap<`targetType,`attrType>()]

&& mapField == [static `spec `mapType `attrName = `mapInit]

&& hasField(targetType, mapField);

realize attrGet(getExpr, targetExpr) with

getExpr == [`targetType.`mapField.get(`targetExpr)];

realize attrSet(setExpr, targetExpr, valExpr) with

setExpr == [`targetType.`mapField.put(`targetExpr,`valExpr)];

}

Static Map Option

interface AttributeConcept {

singleton parameters(Class targetType, Type attrType, String attrName);

singleton accessSpecifier(AccessSpecifier spec);

attrGet(Expr getExpr, Expr targetExpr) require isSubExpression(getExpr) && /*..*/;

attrSet(Expr setExpr, Expr targetExpr, Expr valExpr) require !isSubExpression(setExpr) /*..*/;

}

pattern matching

concept mapping

Attribute Concept

concept remapping

node generation

...

01 public Image(String alternative) {

02   this();

03   this . altText = alternative ;

04 }

Original Program

option InternalField implements AttributeConcept {

realize singleton(Field field), accessSpecifier(spec) with

field == [?transient `spec `attrType `attrName]

&& hasField(targetType, field)

&& (isAssignableFrom(Serializable, targetType)

<=> isTransient(field));

realize attrGet(getExpr, targetExpr) with

getExpr == [`targetExpr.`field];

realize attrSet(setExpr, targetExpr, valExpr) with

setExpr == [ `targetExpr.`field = `valExpr ] ;

}

Internal Field Option

Figure 5: Overview of how Arcum transforms code into an alternative implementation. By changing the mapping, which describes
the current option deployed, the code is automatically transformed in accordance with the substituted option.

ously, to make sure that developers don’t accidentally change code
in a way that prevents the entity from being transformed.

Much of the power of the Arcum approach arises from the fact
that its transformations are focused on preserving the requirements
as asserted in the interface, rather than slavishly preserving every
detail of language-semantics-level behavior. We still call this refac-
toring, in deference to the programmer’s intent that an Arcum in-
terface specifies the important behaviors that need to be preserved
during transformation to another implementation.

3. THE ARCUM LANGUAGE
The key construct of the Arcum language is thetrait, which de-

scribes a tuple of Java program fragments (Section 3.1). All Arcum
code appears in one of three declarations: an interface, an option,
or a map. An interface (3.2) specifies the names and types of the
traits common to all options that implement the interface. An op-
tion (3.3) provides concrete definitions of the traits in the interface
by realizing them viapatterns(3.3.1). Finally, a map (3.4) allows
options to be parameterized for a particular application.

3.1 The Trait Construct
A trait is used to describe one distinct role, structure, or opera-

tion that occurs in a crosscutting design implementation (a concept

similar to a trait is referred to as a sub-concept in [15]). A trait
can either be a tuple (called asingleton trait) or a set of tuples
(potentially the empty set). Traits can have booleanrequirements
associated with them (described below, Section 3.1.1), which allow
optional user-readable error messages to describe what the require-
ment expects.

The AttributeConcept in Figure 5 specifies four traits:parame-
ters, accessSpecifier, attrGet, andattrSet. Because an Arcum inter-
face is abstract, its traits are, too. Only a trait’s name, tuple mem-
ber types, requirements clause, and optional error message may be
specified here. These abstract traits are given concrete definitions
via patterns specified in the options that implement an Arcum in-
terface.

TheattrGet andattrSet traits represent, respectively, the abstract
operations of getting and setting the attribute, where both opera-
tions can occur in the program multiple times. The two single-
ton traits,parameters and accessSpecifier, represent unique pro-
gram fragments that occur exactly once in the implementation. The
unique program fragments in a singleton may sometimes be reifi-
cations of entities that are only abstractly present in the program.

Each trait tuple has a root program fragment, of which all other
members in the tuple are sub-members. In syntactic terms, the root
program fragment is an AST node that is directly or indirectly the
parent of all other AST nodes in the tuple. For example, theat-



Predicate Name Description
isAssignableFrom(t1, t2) Is t2 equal to or a subtype oft1?
hasMethod(c, m) Does classc have a methodm?
isTransient(f ) Is fieldf declared as transient?
isJavaIdentifier(s) Is the strings a valid identifier?
isReferenceType(t) Is t a reference type?
isSubExpression(e) Doese exist as a sub-expression?

Table 1: Example built-in predicates.

trSet trait has three tuple members, each of which are expressions:
setExpr, targetExpr, andvalExpr. The targetExpr is the expression
whose value is the object that has the attribute andvalExpr is the
new value for the attribute. Both of these are sub-expressions of
setExpr.

When a trait’s root fragment is an expression or statement it rep-
resents an operation. But traits can also express structural proper-
ties of code and other crosscutting forms. For example, one could
declare a trait that represents “all declarations of typeVector.” Such
a trait would be useful for porting from one library to another (for
example, changing uses of theVector collection class to the newer
ArrayList class, as done by Balaban et al. [1]). Structural examples
of traits include methods, fields, and annotations.

3.1.1 The Requires Clause
Programmers can add multiples requirement clauses with error

messages to a trait. For example, the abstractparameters trait in
Figure 5 can additionally declare:

require isJavaIdentifier(attrName)
catch error("’%s’ must be a valid Java ID", attrName);

The above requirement states that the name provided for the at-
tribute must be a valid Java identifier.

In general, the Boolean condition provided in arequire clause is
evaluated for each trait instance. Conditions are expressed using
a simple propositional logic, augmented with built-in primitives,
examples of which are shown in Table 1. Arequire clause can have
an optional error message associated with it, to provide a compile-
time error message to the user in the event that the condition cannot
be satisfied.

3.1.2 The Parameters Trait
The specialparameters trait is a trait whose members are spec-

ified in the map file instead of by the options that implement the
interface.

Parameters are typically required for an Arcum interface decla-
ration to be instantiated for multiple uses. TheAttributeConcept in
Figure 5 has three parameters: aClass namedtargetType (the class
that has the attribute), aType namedattributeType (the type of the
attribute), and aString namedattrName (the name of the attribute).
This parameterization permits theAttributeConcept to be applied to
several different attributes instead of, e.g., being hard-coded only
for Strings in theImage class.

The type of the parameter tuple in this example demonstrates
how interface properties must hold for all options. Because theIn-
ternalField option assumes a field can be added to thetargetType it
must assume thetargetType is a Javaclass and not a Javainterface,
and thus all other options must make the same assumption as well.
This is an example of how the interface must accept the least com-
mon denominator—an essential property of modular substitution
in general. For example, aList interface would not allow random
access, even though some implementations ofList could permit it.

3.2 The Interface Construct
An Arcum interface declares at the behavioral level what is com-

mon to all of its implementing options. The interface’s primary pur-
pose is to document the crosscutting design idiom’s interface and
to centrally specify requirements that apply equally to all options
that implement it.

Traits specified in the Arcum interface are abstract and all traits
except for the special parameters trait must be concretely realized
in all options that implement the interface. The special parame-
ters trait is always abstract and is only allowed in Arcum interfaces
(however, its options inherit it).

TheaccessSpecifier trait in Figure 5 is an abstract singleton with
a single member,spec. This singleton trait is used by theAt-
tributeConcept to simplify theparameters list. The spec member
is used to specify one of the modifiersprivate, public, protected or
the implicit “package” modifier. Both theInternalField and Stat-
icMap options infer this specifier by defining it to be the access
specifier of the field namedattrName. This same kind of inference
can be used to remove theattrType member from theparameters
list as well. The decision on whether to let a program fragment
be a parameter or an inferred singleton depends on the current and
expected options that the interface will modularize.

3.3 The Option Declaration
An option describes one complete implementation of a cross-

cutting design idiom specified by an Arcum interface. Options
use theimplements keyword to specify which interface they imple-
ment. Unlike classes, an option can only implement one interface.
The next section (3.3.1) describes how options use patterns to con-
cretely realize the abstract traits specified in the interface.

3.3.1 Patterns
Options realize traits using declarative patterns, which are used

to both identify and construct program fragments. Patterns are ex-
pressed as Java-like pseudo-code inside square brackets, with back
tick marks to identify Arcum variables inside the pseudo-code. For
example, theInternalField option in Figure 5 uses the following pat-
tern to match (or generate) all valid set expressions:

realize attrSet(setExpr, targetExpr, valExpr) with
setExpr == [‘targetExpr.‘field = ‘valExpr];

Arcum supports patterns to match different kinds of Java pro-
gram fragments. The algorithms that use patterns for matching and
for generating new AST nodes are discussed in Section 4. An Ar-
cum variable can be associated with either a single pattern expres-
sion or a union of several pattern expressions (combined with the
||-operator).

An option can realize an anonymous singleton trait to describe
a program fragment that is specific to the implementation of the
option. For example, the anonymous singleton in theInternalField
option in Figure 5 has the single memberfield:

realize singleton(Field field) ... with
field == [?transient ‘spec ‘attrType ‘attrName] ...

Because this singleton is local to the option this field does not have
to be present in any of the alternative options. The question-mark
in the above pattern is a convenience notation for specifying that
the transient modifier may or may not be present. It is equivalent
to the union of two versions of field-declaration pattern: one with
the keyword and one without. Section 4.2 discusses how Arcum
determines which pattern to use for code generation.



3.3.2 Option Invariants
An option can place additional requirements on an interface trait

with the requires clause. This is needed, for instance, for the field
access pattern shown inInternalField’s realization of theattGet trait,
which requires additional constraints that are equivalent to:

realize attrGet(getExpr, targetExpr) with
getExpr == [‘targetExpr.‘field]

require
isAssignableFrom(attrType, TypeOf(getExpr)) &&
isAssignableFrom(targetType, TypeOf(targetExpr)) &&
isSubExpression(getExpr);

Consider theisSubExpression requirement, for example. In Java,
you cannot use a field access as a statement. Therefore, the expres-
sion statement ‘this.altText;’ is rejected even though the expression
statement ‘Image.altText.get(this);’ is accepted. TheisSubExpres-
sion requirement prevents the latter from being inadvertently writ-
ten.

This requirement must hold over all declared options for the in-
terface, otherwise substitutability is not preserved. Hence, Arcum
considers all the requirements that options place on interface traits,
and continuously checks them. This is a slight departure from
typical interface semantics, which doesn’t allow implementations
to automatically impose constraints on its alternatives. Such con-
straints are best stated in the interface declaration, but the Arcum
approach allows for the emergent requirements to be stated either
in an option or explicitly pushed up to the interface.

Options may also define static traits purely for checking imp-
lementation-specific details. As an example, in our substitution
scenario from Figure 5, once the code has been refactored to the
StaticMap option, we want to prevent programmers from perform-
ing operations other than callingget and put on thealtText map,
because these method calls (such asaltText.clear()) would not have
an analogue in theInternalField option. A static trait can be used to
match these illegal uses of the map to prevent a programmer from
writing new code that violates theAttributeConcept’s specifications:

realize static anyAccess(Expr expr) with
expr == [‘targetType.‘mapField...]

require attrSet(expr, _, _) || attrGet(expr, _);

Here, the special underscore variable is used to accept any binding
that matches. This example also demonstrates how already realized
traits (likeattrSet andattrGet) can be used as predicates.

3.4 Maps
Arcum maps are used to state which options are implemented in

a program. Figure 4 shows a sample Arcum map. In general, an Ar-
cum map is a list of option instantiations, where each instantiation
states the option’s name, and a set bindings for all of the option’s
parameters. One benefit of the map format is that there is a separate
file that documents some of the architecture of the program.

4. TRANSFORMATION ALGORITHM
The Arcum transformation algorithm takes code that implements

a source option and translates it to new code that implements a des-
tination option. The following process performs such a transforma-
tion:

1. Use the patterns specified in the source option to bind option-
local traits and interface-level traits. The pattern matching
identifies the program fragments, represented as AST nodes,
that participate in the refactoring.

2. Perform all option-specific and interface-level constraint checks,
and stop with an error if any of the checks fail.

3. Remove from the program all AST nodes that were pattern
matched into the source option’s local singleton traits. For
example, when refactoring from theInternalField option to
theAttributeConcept option in Figure 5, thealtText field gets
removed from the program because its AST node was pattern
matched into an option-local trait. AST nodes that match
into option-local traits are removed during transformation
because by design these traits are option-specific—otherwise,
the traits would be specified at the interface-level.

4. Construct new AST nodes using the patterns from the desti-
nation option’s local traits and insert them into the program.
In the refactoring scenario from Figure 5, the singleton trait
mapField in theStaticMap option will add a declaration of a
staticMap to the program.

5. Replace each trait instance with a new AST node generated
from the destination option’s trait patterns; construct the new
AST node such that it satisfies the destination option’s con-
straints (if present).

The main challenge in the above algorithm lies in processing pat-
terns both to perform pattern matching (in step 1), and to generate
new AST nodes (in steps 4 and 5). We describes these two uses of
patterns in Section 4.1 and Section 4.2, respectively.

4.1 Using Patterns for Matching
Arcum patterns are represented using ASTs that can have vari-

able nodes for sub-trees in addition to concrete AST nodes. A
standard unification routine is used to perform the pattern match-
ing. The concrete syntax of the program is canonicalized before
the matching is performed, so that operations are closer to their
semantic meaning. For instance, even though the pattern

setExpr == [‘targetExpr.‘field = ‘valExpr];

uses the “dot” notation, it will also match program fragments that
use the implicitthis (without the dot). Predicate expressions can be
conjoined to the pattern to filter the matches further.

4.2 Using Patterns for Node Generation
One of the key features of Arcum is that patterns are bi-directional:

not only are they used for matching Java code fragments into trait
instances, but they are also used in the other direction, to gener-
ate Java code fragments from trait instances. As an example, the
following pattern in theStaticMap option is used in our refactoring
scenario to insert a call to theput method of the static map:

setExpr ==
[‘targetType.‘mapField.put(‘targetExpr, ‘valExpr)];

A trait instance and a destination pattern generate an AST node
by taking the partially specified AST representing the pattern, and
inserting into it the values of the Arcum variables from the trait in-
stance. Because Arcum variables store references to program frag-
ments the above pattern creates an AST node representing the call
to put, and the equality (==) makes the newly created AST at the
location in the program specified bysetExpr.

For some patterns, there are multiple possible AST nodes that
could be generated. For example, thefield pattern shown in Sec-
tion 3.3.1 (and in Figure 5) shows two possibilities for the field-
declaration: either thetransient modifier is present or not.

Its conjoined constraint specifies when thefield should be tran-
sient: thefield must betransient exactly when thetargetType class
implements theSerializable interface:



&& (isAssignableFrom(Serializable, targetType)
<=> isTransient(field))

Here, the<=> represents the logical if and only if operator. When
there are multiple possible AST nodes that could be generated from
a pattern or union of patterns, we use a generate-and-test approach:
we generate all of the possible AST nodes, and then use the con-
joined constraints to prune nodes out. This approach works well as
long as there are a small number of possible AST nodes to generate.
In the above example we would generate both field-declarations:
one with the modifier and one without. The evaluation of the con-
straint determines which of the two AST nodes to use.

The replacement algorithm uses a top-down ordering to replace
nodes once they have been generated, to allow for sub-nodes of
traits to be replaced by other traits. By using this top-down order,
we are able to correctly transform:

anImage.altText = defaultImage.altText;

into:

altText.put(anImage, altText.get(defaultImage));

5. EVALUATION
To evaluate the Arcum framework we (1) implemented a proto-

type Arcum refactoring system for Java; (2) developed a complete
AttributeConcept with three options; and (3) applied Arcum to three
different change tasks and compared the ease of change with the
state of the art in Eclipse and AspectJ [13].

5.1 Arcum Prototype Implementation
The Arcum prototype supports most of Java 5 except for gener-

ics with wildcards, and some aspects of anonymous inner classes.
The prototype is a plug-in for the Eclipse IDE and is built on top of
Eclipse’s Java Development Tools plug-in and uses the Language
Toolkit API to perform AST transformations. Arcum comprises
11 KLOC of Java code. Arcum uses Eclipse’s parsers and type
checkers for pattern matching and Eclipse’s factories for node gen-
eration.

5.2 Development of the Attribute Concept
In this section, we describe some of the design decisions that

came up in the process of writing the Arcum code forAttributeCon-
cept. In doing so, we bring to the forefront common issues that
Arcum developers will think about and have to address when they
write Arcum code.

We found that there were two key considerations in the design of
a group of related options. The first, of course, is that any resulting
transformations should satisfy the specifications for the crosscut-
ting design idiom. Analogously, if the programmer edits Arcum
code in a way that violates the intended use of the specification,
then an error should be reported. The second is how to structure
the interface so that it admits a suitable range of options without
being so general as to unnecessarily complicate the implementa-
tion of options.

In practice, we found that it was hard to get these right the first
time. We also found that it wasn’t necessary. Our first version
of the AttributeConcept interface was correctly parameterized, but
its internals omitted all requirement checks. When we wrote an
option, which described one particular implementation, we added
explicit checks to the interface—the requirement invariance nature
of Arcum drove this process (see Section 3.3.2). As a result, Arcum
handles some of the burden of knowing and applying Java language
rules.

The target program did not employ serialization of the target
type, and as a result the previously discussed serialization checks
were not required. Later, when we came across some serialization
code, we realized that a general-purposeInternalField specification
would have to account for this special case. If we had been just
developing the related options for our own use, we might have ig-
nored this insight or simply added a check to prevent the application
of theAttributeConcept to a serializable class. However, under the
assumption thatAttributeConcept might become part of a reusable
library—and thus clients might also not think of this corner case—
we added the necessary checks to insure that the attribute will be
appropriately serialized in all options.

Examples of checks added have been given throughout the paper,
such as:

• Type consistency constraints;

• Restrictions on the use of certain methods and fields; and

• Checks for making sure that fields are appropriately labeled
transient in the face ofSerializable classes.

Over the history ofAttributeConcept’s development, the trait sig-
natures did not change, thus its external clients were unaffected
by the numerous improvements. However, there were a variety of
changes that involved an interaction between the interface and an
option. This is not surprising, as their interaction is analogous to
the interplay between a superclass and its subclasses, which often
collaborate intimately.

5.3 Change Tasks
We considered three different change tasks that could plausibly

be required in a large program, each with different degrees of cross-
cutting. A discussion of each change task follows.

Task 1: Application of AttributeConcept.To get a preliminary
feeling for whether Arcum imparts some of the benefits of modu-
lar substitution to crosscutting idioms, we putAttributeConcept to
work. We chose the Polyglot framework [20], since we understand
it well. Polyglot is an extensible compiler that heavily uses dele-
gators and extension objects. To support these, theNode class in
Polyglot has two fields:del andext. A compiler extension to Poly-
glot uses these fields to extend the compiler’s behavior. Based on
their infrequent usage on a per-object basis, a sparse representation
of these fields could conserve memory usage.

We first externalized the storage of thedel field. We instanti-
ated anInternalField mapping fordel and Arcum’s checks for con-
formance passed. We then changed it to instantiate theStaticMap
option, thus triggering the refactoring and resulting in 13 substitu-
tions. To measure the program’s new memory usage we compared
its previous memory footprint from compiling an 80K line program
to the modified version. In our measurements theStaticMap version
actually required more memory than theInternalField version. One
cause could be padding issues: removing one field might not gen-
erate gains in real space.

To see if this was the case we externalized theext attribute as
well, resulting in 12 substitutions. After this refactoring was per-
formed, the total memory usage was less than the original, unmod-
ified program. However, the gains in saved space were not large,
for example saving 100KB for a program run that used 11MB to-
tal. Consequently, we changed the mapping to reinstantiateInter-
nalField for del and forext to reverse both refactorings.

A lesson from this experience is that the consequences of some
refactorings are difficult to anticipate, and the ability to quickly
and safely try and undo refactorings is valuable. The equivalent
steps necessary to perform the same changes in Eclipse (covered in



Section 2.1) would not make this kind of exploration as easy. The
experience of switching implementations by editing the mappings
was similar to modular substitution, such as tweaking an object
factory to return different object types under different conditions.

Task 2: Message Log Redirection.For a second test, we edited
the source for the Arcum plug-in itself. The plug-in has a mode
for sending toSystem.out debugging information. We considered
a scenario where we wanted this output to be redirected to a differ-
ent stream. This change can easily be accomplished by redirecting
System.out itself. However, redirection is too blunt of a solution
in Eclipse, because it redirects the console output from all other
plug-ins as well.

The solution requires that the our plug-in uses one stream, while
all other plug-ins continue to useSystem.out. Eclipse can perform
this change more thoroughly than a standard textual find and re-
place: Eclipse allowed us at the semantic level to find all refer-
ences to the field (which numbered just over 1,000) regardless of
the whitespace formatting or static imports used. However, despite
Eclipse’s semantic level search, all modifications still needed to be
made with a textual find and replace. This global change caught
most instances, but another semantic search revealed the rare syn-
tactic exceptions missed by the search pattern.

AspectJ was better suited at performing the change than just
Eclipse alone. AspectJ has aget pointcut similar to Arcum’s field-
access pattern: it can match all references to a specific field. The
pointcut can also be narrowed down to match classes contained in
a specific set of packages. A simplearound advice applied to this
pointcut can replace the value used forSystem.out in every location
in the project. The AspectJ solution also had the advantage that the
stream returned by the advice could be either the value of a stored
stream or the result of a method call.

Finally, the same change was made using Arcum. A simple in-
terface was written that had one trait with only one member (of type
Expr) in it. Then, an option was written to realize this trait with all
accesses toSystem.out. To test the option, we used Arcum’s search
view to display all program fragments that belonged to the trait.
Once we were convinced the results were as expected, we wrote
an alternative option that accessed a different field instead. Sim-
ilar to the AspectJ solution, it was a simple matter to change the
stream used to the result of a method call instead, just by adding
yet another option.

One advantage of the Arcum solution over the AspectJ solution
is that it refactors the program itself, instead of only modifying
the program’s semantics through byte-code weaving. As a result,
design decisions are more visible and can better reflect the nature of
the program. The prior disadvantages of such crosscutting code are
no longer disadvantages with Arcum: for example, even though the
calls to a helper method may crosscut the program, this crosscutting
is not a liability because the code can easily be changed back when
the need arises.

Task 3: Remove Control Coupling.For the final test, we consid-
ered refactoring calls to a method that took on the duty of two dif-
ferent operations: the operation to perform was determined based
on whether or not one of the arguments wasnull. This argument
essentially became a flag, and a usage pattern emerged as a re-
sult where calls to this method would passnull into this argument.
Such a usage pattern increases the coupling between modules and it
would be better to refactor the source code so that these calls would
invoke a separate method that just performs the expected operation.
Our goal was to perform this refactoring using Arcum.

The Eclipse “Change Signature” feature is useful for introducing
a new argument or removing one, but it’s not suited for the task of
changing some but not all method calls. In Arcum we were able to

match all specialnull argument cases and change them into calls to
the new method instead.

6. DISCUSSION AND FUTURE WORK
The foregoing has only scratched the surface of the Arcum ap-

proach. In this section we discuss some novel ways that Arcum
might be usefully employed in software development. These uses
suggest additional kinds of crosscutting design idioms that might
be checked and refactored with Arcum, and are directions for fu-
ture work.

Rapid Prototyping.The DJ library for Java makes extensive use
of reflection to support a dynamic form of the visitor pattern [21].
The traditional visitor pattern only partially modularizes depth-first
traversals over objects connected by the “has-a” relationship. In
DJ, programmers describe a high-level strategy that specifies the
source and destination types of the traversal. As a result, all of
the method infrastructure required for the intermediate types can
be omitted. Because the high-level strategy specifies only what is
important about the traversal, it is less redundant and more flexible
when the class graph changes.

However, the use of reflection to descend down object graphs en-
tails a noticeable runtime overhead. Both implementations of the
visitor pattern satisfy the same specification: traversing an object
graph. Thus, this traversal should be encoded in an Arcum inter-
face, with each implementation being a separate option. With both
options in place, it is possible to begin development with the more
flexible and convenient reflection-based visitor, and then use the
normal visitor implementation once application development has
settled down. Should development return to a rapid-prototyping
phase, the options can be flipped again.

Product Line Architecture.Components can be used to describe
a family of applications that may have, for example, different scala-
bility or security needs. There are opportunities for Arcum to allow
a mixing of implementation styles. Implementation requirements
can be specified in the form easiest to express (for example, a Java
field) and transformed at compile-time to the target product’s needs
(for example, a data-base access).

A special case would be an in house product line instrumented
with performance measurement and debugging support that would
not be part of the release version of the software. Any modifica-
tions to the software in the process of improving and measuring
performance would automatically be applied to all versions.

Porting and Retargeting.The Arcum approach can also be use-
ful in porting code bases. For instance, class library migration is an
important problem addressed by Balaban et al. [1]: one example is
refactoring code using the old JavaVector class to use the more effi-
cientArrayList class. TheVector class is less efficient because all of
its methods are synchronized by default, while theArrayList class is
only synchronized when explicitly requested. The Arcum method-
ology would be particularly well-suited for this task because it can
be continuously checked. For example, if new code is written that
allows anArrayList instance to escape from the thread that created
it, it should be explicitly synchronized.

In order for the Arcum framework to support such refactorings,
its constraint checking system would need to be extended to include
forms of data-flow analysis. This is a subject of future work.

Design Pattern Checking.Design patterns are another class of
implementation techniques that could benefit from checking. For
example, the initialization of a Singleton instance can be incorrect
in the context of a multi-threaded system (for example, the instance
might become initialized twice). Checks can be written for these
common error cases. Looking further ahead, it may be possible
for such errors to drive an automated refactoring that fixes the im-



plementation. Related work that addresses this problem includes
Spine, a declarative language for checking design patterns [6].

Other implementation styles can also be checked. For example,
an internationalization strategy could have rigid requirements for
the ways string literals are used (such as always wrapping them
around method calls). Arcum code can be written to check and
enforce these rules. In the process, the potential exists later on for
providing an alternative implementation.

Bug finding tools check for common coding errors and have the
potential for finding bugs that code reviews and test cases miss [23].
A project that uses a specialized library could benefit by having an
accompanying option perform similar checks. For example, per-
formance bugs or other common errors can be detected, providing
junior-level programmers with extra assistance and knowledge.

Aspects and Fluid AOP.Extending Arcum to support AspectJ 5
would allow for more sophisticated kinds of refactorings, such as
suggested by Relationship Aspects [22]. Due to Arcum’s bi-dir-
ectional semantics, fluid aspect-oriented programming [12] is pos-
sible: code could be edited and modified in a crosscutting imple-
mentation, but refactored as needed into a localized aspect to enable
changes to the concern to be expressed locally; after the change is
made, the code could be refactored back into the scattered imple-
mentation.

Hybridized Options. Currently, an Arcum option implements
just a single interface, akin to single inheritance. However, just as
design patterns can be hybridized, a single option could be used to
implement two interfaces. For example, specifications for the me-
diator pattern and the observer pattern could be realized by a single
option for the mediator-observer pattern, which could enforce that
the mediator is also the observer.

Some implementations might coincidentally hybridize, causing
unexpected interactions that would be caught during checking. For
example, a visitor implementation and an observer implementation
might coincidentally share participant code fragments. If the visi-
tor code were to be refactored, it could violate a constraint of the
observer code, triggering a constraint violation.

7. RELATED WORK
Arcum is a departure from the role-based refactoring work of

Hannemann et al., which permits programmers to build macro-
refactorings from micro-refactorings [11]. The basic idea is to sup-
port the refactoring of crosscutting entities like design patterns by
separately recognizing the code for each role in a design pattern
(with programmer interaction), and then applying micro-refactorings
to each of those roles to achieve the macro-refactoring. Abstract
roles are essentially the same as Arcum’s abstract traits. The ap-
proach is a traditional refactoring approach in that it does not exter-
nally specify the underlying interface or implementation options,
thus not providing continuous checking or bi-directional refactor-
ings. Marin et al. take a similar approach, although they assemble
macro-refactorings from micro-concerns rather than roles [17].

AOP languages like AspectJ can manifest many crosscutting de-
sign idioms, including many design patterns, as modular abstrac-
tions [10]. However, when dealing with existing tangled code, this
requires refactoring the existing code to modularize the tangled
code into an aspect. Arcum can specify and check implementa-
tions without having to modify the code in any way. Of course,
when Arcum is extended to support AspectJ, Arcum can assist pro-
grammers with refactoring crosscutting code into aspects (and back
again).

Balaban et al. employ declarative semantic notations for auto-
matically retargeting code libraries in large code bases [1]. They
use a rich type system and a constraint solver to enable finding

correct library call replacements that otherwise could not be found
automatically (due to subtle issues like synchronization).

The Feature Oriented Refactoring (FOR) work of Liu et al. rec-
ognizes the crosscutting and non-modular nature of the implemen-
tation of software features, which are often crosscutting [16]. For
example, adding bounds checking to a data-structure could crosscut
that structure’s implementation. With FOR, certain types of pro-
grams can be refactored into a base program and modular feature
refinements. The features are refactored and composed through the
application of advanced delegation techniques. The application of
FOR allows optional features, such as bounds checking, to be re-
moved, allowing for better-suited variants.

Simonyi’s Intentional Programming (IP) [25] is related in spirit
to the goals of Arcum.2 IP aims to have programmers work at the
level of their intentions, allowing for easier change to programs.
Instead of being a refactoring system, IP utilizes a program-as-
database approach: if any linked entry changes, the change follows
all links backward.

The REFINE system also employs a program-as-database ap-
proach, in addition to program templates, which can be used for
both pattern matching and code transformation [14]. The code
transformations discussed were not bi-directional in nature and are
directed at uses such as “eliminate redundant multiplies by 1” and
code mutations for test suite validation. The source template and
destination template are bound in the same transformation rule,
stopping short of a notion of a (persistent) option. Also, alternative
transformations cannot be introduced without duplicating existing
rules.

As a departure from REFINE, Kozaczynski et al. employ se-
mantic pattern matching—including control-flow and data-flow—
to recognize “concepts” as part of a code transformation system for
software maintenance [15]. Concepts were not persistent like Ar-
cum options, however, and transformations were explicitly defined
as predicate–action pairs, not inferred from patterns, thus limiting
transformations to being one-way. In many respects this supports
user-programmable role-based refactoring. A more recent work in
this area is the DMS system, which is similar to Kozaczynski et al.
but has a much wider scope [3].

Arcum’s ability to express program properties, both in patterns
and inrequire clauses, is related to the work on static program anal-
ysis tools, such as SLAM [2], and PDL [19]. Better support for
static analysis in Arcum could lead both to richer source matching
and error detection.

The bi-directional nature of Arcum relates to the area of multiple-
views into a program, for example the recent work of Black et
al. [5], Eisenberg et al. [8], and Mens et al. [18]. Different views
demonstrate different aspects of the program and can thus be more
expressive than the other in different circumstances. A program-
mer using Arcum can transform a crosscutting design idiom im-
plementation into the option where the change can be most easily
expressed. Once the change is made, the implementation can be
changed back to the previous option, bringing all changes with it.

8. CONCLUSION
One of the benefits of traditional class and method abstraction is

modular substitution of their implementations. However, the im-
plementations of some design idioms are naturally crosscutting or
are intentionally scattered across other code. Design patterns are
typical examples.

2The name “Arcum” is derived from the Latin phrase “intendere
arcum,” which means “to aim a bow and arrow at” and is the
metaphorical root of the word “intention” [7, p.333].



Arcum expands the opportunities for modular analysis and sub-
stitution for such idioms. Based on a paradigm of declarative pat-
tern matching and substitution, Arcum specifications are declara-
tive supplements to the program, neither modifying the code nor its
behavior. Only the substitution process changes the code.

Arcum separates the behavior and implementation of a crosscut-
ting design idiom into an interface and an option. An option uses
semantic patterns that correspond to traits in the interface to pro-
vide a concrete implementation of the specification. Interfaces may
be parameterized, supporting reuse and the development of Arcum
refactoring libraries.

When the programmer uses a mapping to specify that a given
option instantiation is expected to hold in the program, the Arcum
engine can check this by matching the option’s patterns over the
program and then checking the matched elements against the in-
terface’s behavioral constraints. If the programmer specifies that
a new, different option should now hold, the Arcum engine not
only performs these checks for the old option, but then replaces
the matched elements with the code specified in the patterns of the
new option. Due to the declarative nature of the language, as well
as the fact that the current option is continuously checked, the trans-
formation process can be run in either direction.

To evaluate the Arcum approach we developed a prototype Ar-
cum’s transformation engine, completely developed an interface
with three options, and applied it to the Polyglot code base. We
found that Arcum provided the feel of substitutability to the cross-
cutting design idiom.
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