
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 1

Runtime Verification of Crypto APIs:
An Empirical Study

Adriano Torres, Pedro Costa, Luis Amaral, Jonata Pastro, Rodrigo Bonifácio, Marcelo d’Amorim,
Owolabi Legunsen, Eric Bodden, and Edna Dias Canedo

Abstract—Cryptographic (crypto) API misuses often cause security vulnerabilities, so static and dynamic analyzers were recently
proposed to detect such misuses. These analyzers differ in strengths and weaknesses, and they can miss bugs. Motivated by the
inherent limitations of existing analyzers, we study runtime verification (RV) as an alternative for crypto API misuse detection. RV
monitors program runs against formal specifications and was shown to be effective and efficient for amplifying the bug-finding ability of
software tests. We focus on the popular JCA crypto API and write 22 RV specifications based on expert-validated rules in a static
analyzer. We monitor these specifications while running tests in five benchmarks. Lastly, we compare the accuracy of our RV-based
approach, RVSec, with those of three state-of-the-art crypto API misuses detectors: CogniCrypt, CryptoGuard, and CryLogger. RVSec
has higher accuracy in four benchmarks and is on par with CryptoGuard in the fifth. Overall, RVSec achieves an average F1 measure
of 95%, compared with 83%, 78%, and 86% for CogniCrypt, CryptoGuard, and CryLogger, respectively. We show that RV is effective
for detecting crypto API misuses and highlight the strengths and limitations of these tools. We also discuss how static and dynamic
analysis can complement each other for detecting crypto API misuses.

✦

1 INTRODUCTION

Developers often use cryptographic (crypto) APIs to protect
sensitive data [1], but incorrect usage of crypto APIs can
make software vulnerable to attack. For example, using
an insecure block cipher crypto schema (e.g., AES algo-
rithm with the ECB mode of operation)1 might compromise
system security [2], [3]. This paper is motivated by the
observation that developers often struggle to comprehend
the low-level requirements that are needed to correctly use
crypto APIs [1], [4], [5]. Also, even though recently proposed
static and dynamic analyzers are quite effective in detecting
crypto API misuses [6], [7], [8], [9], we show that they are
limited for detecting some types of misuses.

The threat posed by security vulnerabilities in today’s
world is serious enough to warrant research on comple-
mentary approaches for crypto API misuse detection. So,
in this paper, we study the use of runtime verification (RV)
as an alternative for detecting crypto API misuses. We also
compare RV’s accuracy with those of state-of-the-art static
and dynamic analyzers.

• A. Torres, P. Costa, L. Amaral, J. Pastro, R. Bonifácio,
and E. D. Canedo are with the Computer Science Depart-
ment, University of Brasília, Brasília, Brazil. E-mail: {adri-
ano.torres,teixeira.pedro,luis.amaral,jonata.pastro}@aluno.unb.br and
{rbonifacio,ednacanedo}@unb.br.

• M. d’Amorim is with the Department of Computer Science, North Car-
olina State University, Raleigh, USA, and the Informatics Center, Federal
University of Pernambuco, Recife, Brazil.
E-mail: mdamori@ncsu.edu.

• O. Legunsen is with the Department of Computer Science, Cornell
University, Ithaca, USA.
E-mail: legunsen@cornell.edu.

• E. Bodden is with the Paderborn University and the Fraunhofer Institute
for Mechatronic Systems Design, Paderborn, Germany.
E-mail: eric.bodden@uni-paderborn.de.
1A block cipher requires a mode of operation to encrypt plain text

of arbitrary length.

The inputs to RV are formal specifications, the code to
be checked, and input data on which to run the code. An
RV tool instruments the specifications into the code so that
related program events are signaled at runtime and checked
against the specifications. RV then outputs violations if a
program execution violates any specifications. The RV tool
that we use in this paper is based on JavaMOP [10].

As with any dynamic analysis, RV offers two main
advantages over static analysis tools for crypto API misuse
detection. First, it may be feasible to use RV to find crypto
APIs misuses during testing. RV is effective and efficient for
amplifying the bug-finding capability of existing software
tests [11], [12], [13], [14], [15]. Second, RV can complement
static analysis—which has good coverage but often over-
approximates the program behavior, leading to false alarms [16].
Instead, a bug-free RV tool with perfect specifications gen-
erates no false positives, but it may have poor coverage.

The benefits of using RV for crypto API misuse detection
must be balanced with the costs of writing formal speci-
fications and of the runtime overhead that RV incurs. We
amortize formal specification costs by writing specifications
for widely-used crypto APIs. So, a crypto API specification
can be checked without modification on all clients of that
API. We also measure the runtime overheads of using RV
to check one version of each program, but, in practice,
techniques exist that can be used to significantly speed up
RV during software evolution [11], [12].

Evaluating the accuracy of RV is particularly challeng-
ing because manually writing specifications is notoriously
difficult [17], [18], [19]. In particular, translating crypto
recommendations, informally available in crypto standards,
Common Vulnerabilities and Exposures (CVEs), and Com-
mon Weakness Enumerations (CWEs), for a specific crypto
API and RV implementation requires a thorough validation
process. Moreover, although specification miners exist [20],
they are often imprecise [21] and can infer API misuses as

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 2

specifications [22]. Unfortunately, our research also reveals
that existing datasets of crypto API uses and misuses in the
literature [23] contain test cases that fail to execute—and
thus, without fixes, are inadequate to conduct experiments
using dynamic analysis—and mislabel many pieces of se-
cure code as vulnerable. These problems in existing datasets
may have led to inflated performance numbers of some
static analyzers in prior work.

To obtain RV specifications, we use 22 CrySL rules [6],
[22] that were validated by independent security experts.
We manually translate these CrySL rules into 22 JavaMOP
specifications. JavaMOP is a natural choice for our inves-
tigation, because it is flexible to model the specifications
supported by existing crypto static analyzers. For example,
all 22 specifications that we write define a combination of
constraints on object state, parameters, and method-call order.

We were unable to check ordering constraints using
CryLogger [9], a recently proposed dynamic analysis for
detecting crypto API misuses. CryLogger relies on API
code instrumentation, instead of client code instrumenta-
tion, yielding crypto API warnings that are hard to use
in empirical assessments. Also, unlike our JavaMOP-based
approach, CryLogger cannot check ordering constraints on
method calls. This latter limitation makes CryLogger unable
to detect some crypto API misuses, e.g., the missing crypto-
graphic step in CWE 325 [24].

To obtain ground truth for comparison, we adapt five
publicly available Java benchmarks [23], [25], [26], [27]
from the literature and security organizations such as the
US National Security Agency (NSA) and the Open Web
Application Security Project (OWASP). These benchmarks
were originally curated to compare static crypto API misuse
detectors. Altogether, these benchmarks contain 801 test
cases, more than 350K lines of code (LOC), and they are
a mix of small Java programs (14–52 LOC) and open-source
programs (between 6,788 and 164,335 LOC). Some programs
involve tricky and complex uses and misuses of crypto APIs,
and we manually inspect and (re)label all the crypto API
uses and misuses in the benchmarks.

We compare the Precision, Recall, and F1 score of our
RV-based approach (RVSec) with those of state-of-the-art
analyzers—CogniCrypt, CryptoGuard, and CryLogger—on
these benchmarks. We also evaluate the runtime overhead
of RVSec and the impact of code coverage on its accuracy. To
compare RVSec with CryLogger, we extend the CryLogger
implementation to log the stack traces whenever client code
makes calls to methods in a crypto library. We perform
quantitative and qualitative comparison of both dynamic
approaches—RVSec and CryLogger.

Overall, RVSec achieves an average F1 measure of 95%,
compared with 83%, 78%, and 86% for CogniCrypt, Cryp-
toGuard, and CryLogger, respectively (see §4, Table 3). On
a larger benchmark, RVSec overhead varies between 8.64%
and 56.86% (see §6.1, Table 7). Note that we did not apply
recent optimizations that speed up RV during software
evolution [11], [12], [28].

Our qualitative analysis shows that RV and static analyz-
ers are complementary. We found crypto API misuses that
only RVSec detected. Also, some crypto API misuses were
detected by static analyzers but not RVSec.

We make the following contributions:

1 public String apply(String pwd, Key key) throws Exception {
2 byte[] input = Base64.getDecoder().decode(pwd);
3 Cipher cipher = Cipher.getInstance("DESede");
4 cipher.init(Cipher.DECRYPT_MODE, key);
5 byte[] output = cipher.doFinal(input);
6 return new String(output, UTF_8);
7 }

Fig. 1. Example trivial crypto API misuse from Apache Meecrowave [23].

(a) An in-depth study that compares RVSec with state-of-
the-art tools for detecting crypto API misuses (Cog-
niCrypt, CryptoGuard, and CryLogger). We discuss
strengths and weaknesses of these tools with respect to
their crypto API misuse detection capabilities.

(b) We find that static and dynamic analyses are comple-
mentary for crypto API misuse identification. Specifi-
cally, we discuss situations where RVSec identified mis-
uses that static analyzers miss (and vice-versa).

(c) A set of JavaMOP specifications for checking correct
usage of the JCA crypto API in Java and Android
programs. Our JavaMOP prototypes and dataset are
available online: https://github.com/PAMunb/rvsec

(d) Findings that led to fixes in CogniCrypt and revisions
to ground truth datasets that are used in the literature
on crypto API misuse detection. We also make available
an experimental package2 for comparing static and dy-
namic tools for crypto API misuse detection.

2 EXAMPLE

This section illustrates the problem of crypto API misuses
and discusses how static and dynamic analyses detect them.
An example crypto API misuse. Figure 1 shows a crypto
API misuse from the Apache project, Meecrowave [23]. The
code snippet encrypts data using the Cipher class from the
Java Cryptography Architecture (JCA) API [29]. To do so, a
Cipher is initialized with the DESede algorithm, which imple-
ments the weaker Triple DES Encryption algorithm [30] that
should no longer be used in production [2], [31].

To correctly use a Cipher, developers should (1) use
a secure cryptographic configuration to obtain a Cipher

instance (Line 3); (2) initialize the Cipher object using a
key that is consistent with the Cipher algorithm being used
(Line 4); and (3) use a specified order of method calls (lines
3-5). Departure from these conditions on Cipher can result
in security vulnerabilities [29], [32], [33].
Static detection of crypto API misuses. Simple static anal-
yses (or even grep) can detect the crypto API misuse on
line 3 in Figure 1 because it passes a hard-coded string as
the parameter to getInstance. In practice, however, checking
crypto API usages can be non-trivial. For example, one must
check whether the order of method calls is valid and that
certain values do not propagate to sensitive locations.

To make it easier to detect crypto API misues, static
analyses were recently proposed, e.g., CogniCrypt [22] and
CryptoGuard [7]. Unfortunately, even these advanced static
analysis tools can fail, producing false positives or false
negatives as a result. For instance, in the code snippet in

2https://github.com/PAMunb/RVSec-replication-package.git

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 3

class MDHelper {

String algorithm;

MDHelper withSHA384(){
this.algorithm="SHA-384";
return this;

}

MDHelper withMD5(){
this.algorithm="MD5";
return this;

}

byte[] digest(String input) throws Exception {
MessageDigest md = MessageDigest.getInstance(algorithm);
md.update(input.getBytes());
return md.digest();
}

static MDHelper instance() {...}
...
}

class Main {
/* ... */
public static void main(String args[]) {
byte hash = MDHelper.instance().withSHA384().digest(str);
/* ... */

}
}

Fig. 2. Example MessageDigest usage. It is only safe to call digest() after
configuring the helper class by calling withSHA384().

Figure 2, CryptoGuard raises a “Found broken hash func-
tion” warning in method withMD5(). However, this warn-
ing is a false positive; main() does not call this withMD5()

method that configures the MDHelper instance using the non-
recommended MD5 hash algorithm. CogniCrypt does not
raise any alarm, though, even if MDHelper is used with a call
to MDHelper.instance().withMD5().digest(str) (not shown
in Figure 2). That is, CogniCrypt produces a false negative.

Dynamic detection of crypto API misuses. We investigate
runtime verification (RV) as a dynamic-analysis alternative
for detecting crypto API misuses and compares the resulting
approach, RVSec, with state-of-the-art crypto API misuse
detectors: CogniCrypt, CryptoGuard, and CryLogger.

An RV tool uses formal specifications to instrument the
code. Then, at runtime, it synthesizes monitors that check
sequences of runtime events, like method calls or field
accesses, against the specification. Monitors are typically
automata and the event sequences are called traces. We use
JavaMOP [10], [17], [34] as the RV tool in this paper; it was
used to find hundreds of bugs during unit testing of many
open-source projects [13], [14], [15].

Figure 3 shows an RV specification in the JavaMOP
syntax; we wrote it based on the CrySL specification for
the JCA Cipher class. (CrySL is CogniCrypt’s specification
language [6], [22]). Figure 3 shows the three main parts
of JavaMOP specifications: event definitions (lines 6 to 13),
property (line 15), and handlers (line 17). An event definition
specifies what event should be signaled at runtime and
where the event should be instrumented. For example,
lines 6 to 7 specify that calls to Cipher.getInstance(String)

whose arguments are valid encryption/decryption algo-

rithms (condition on line 7) should be signaled. The in-
strumentation point should be after (line 6) any call to the
Cipher.getInstance(String) method.

Properties are logical formulas over events; they describe
when a trace violates or matches the specification. The
Extended Regular Expression (ERE) on line 15, Figure 3,
defines the property; it matches traces where events g1

or g2 occur exactly once, followed by one or more init

events, and exactly one doFinal event. We use EREs to write
most JavaMOP specifications; CrySL specs also use the ERE
formalism. But, JavaMOP can monitor properties written in
other formalisms, like Context Free Grammar (CFG), Finite
State Machine (FSM), or Linear Temporal Logic (LTL). In
a few CrySL specifications that involved many events, we
used the FSM formalism for ease of understanding.

Handlers allow specifying arbitrary Java code that ex-
ecutes when a trace violates or matches the property. For
example, the @fail handler on line 17 indicates that when a
trace does not match the ERE, an error should be reported
and the monitor should be re-initialized. JavaMOP speci-
fications are parametric [35], [36]. So, one monitor will be
synthesized for every unique set of specification parameters.
Since Cipher is the only specification parameter (line 1,
Figure 3), JavaMOP synthesizes one monitor per instance
of the Cipher class during execution.

Although RVSec and the two static analyzers correctly
detect the crypto API misuse in the code of Figure 1, RVSec
has better precision and recall when analyzing the code
in Figure 2. We also compare RVSec with CryLogger, a
dynamic analysis for detecting crypto API misuses.

3 STUDY SETTINGS

We study the strengths and weaknesses of RVSec for de-
tecting crypto API misuses. In particular, we quantitatively
compare the accuracy of RVSec and state-of-the-art tools
based on static and dynamic analyses (CogniCrypt, Cryp-
toGuard, and CryLogger), and qualitatively assess the main
reasons for inaccuracy. Our goal is to investigate whether
RVSec is more beneficial than existing tools for detecting
misuses of crypto APIs and to characterize reasons why
RVSec and the other tools generate false positives or miss
to detect crypto API misuses.

We modified CryLogger to enable our experiments and
fair comparison. CryLogger has two main components: an
implementation of JCA classes that logs API usage informa-
tion, and a Python module that processes the log files and
outputs crypto API misuses. We modified both components.
First, we changed the implementation of the JCA classes to
also log the JVM stack trace at the crypto API call sites.
Second, we changed the Python module to also output client
methods from which calls to crypto APIs originate.

3.1 Benchmarks

Table 1 shows the five benchmarks that we evaluate:
(a) MASCBench contains 30 small Java programs contain-

ing crypto API misuses [25]. These programs are curated
from open-source Android apps and Apache Qpid Bro-
kerj [37] and minimized to only the crypto API misuses.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 4

1 public CipherSpec(Cipher c) {
2 private Cipher ciph;
3 private ExecutionContext ctx = ExecutionContext.instance();
4 private ErrorHandler eh = ErrorHandler.instance();
5 // event definitions
6 event g1 after(String algMode) returning(Cipher c):
7 call(public static Cipher Cipher.getInstance(String)) && args(algMode) && condition(isValid(algMode)) { ciph = c; }
8 event g2 after(String algMode, String p) returning(Cipher c):
9 call(public static Cipher Cipher.getInstance(String, String)) && args(algMode, p) && condition(isValid(algMode)) { ciph = c; }
10 event init before(int mode, Key key, Cipher c): call(public void Cipher.init(int, Key,..)) && args(mode, key, ..) &&
11 target(c) && condition(ctx.validate(Property.GENERATED_KEY, key)){ }
12 event doFinal after(Cipher c) returning(byte[] ciphText): call(public byte[] Cipher.doFinal(..)) && target(c)
13 { ctx.setProperty(Property.ENCRYPTED, ciphText); }
14 // properties
15 ere: (g1 | g2) init+ doFinal
16 // handlers
17 @fail { eh.reportError(); __RESET; } }

Fig. 3. Example of a JavaMOP specification for the JCA Cipher class

TABLE 1
Benchmarks in our study.

Benchmark Used In TCs SLOC Misuses

MASCBench [25] 30 0.5K 28
SmallCryptoAPIBench [23], [39], [40] 187 3.7K 130
OWASPBench [41], [42], [43] 482 47.5K 259
JulietBench [44], [45] 102 6.8K 102
ApacheCryptoAPIBench [23], [39], [40] - 303.3K 74

TABLE 2
Details of the ApacheCryptoAPIBench, highlighted in Table 1.

Project Module Revision TCs SLOC Misuses

Artemis artemis-commons 5ab187b 110 11,737 15
Dir. Server apacheds-kerberos-codec 155bd94 376 42,185 19
ManifoldCF mcf-core 9573dc4 5 21,281 3
DeltaSpike deltaspike-core-impl d95abe8 155 13,515 2
Meecrowave meecrowave-core 3780f1c 19 6,788 3
Spark spark-core_2.11 9ff1d96 2,045 164,335 27
Tika tika-core 6f33bae 222 23,207 0
Wicket wicket-util dbd86d9 237 20,220 5

(b) SmallCryptoAPIBench contains 187 test cases for legal
and illegal usages of crypto APIs. We obtain SmallCryp-
toAPIBench by removing 16 non-JCA test cases from the
Afrose et al. [23] benchmark.

(c) OWASPBench contains 482 test cases related to crypto
APIs. The test suite is curated by OWASP (https://
owasp.org) [26]. We use the tests that are related to JCA
and cover the common crypto API misuses CWE-327
(use of a broken or risky cryptographic algorithm) and
CWE-328 (reversible one-way hash).

(d) JulietBench contains 102 test cases curated by the US
National Security Agency (NSA) [27], [38]. The break-
down of tests per CWE is: 17 CWE-325 (Missing Cryp-
tographic Step), 34 CWE-327, and 51 CWE-328.

(e) ApacheCryptoAPIBench contains crypto API misuses
from Apache projects [23] involving eight Apache
projects with varying test coverage. Those projects have
3169 test cases, but some are not related to JCA. Table 2
shows more details about ApacheCryptoAPIBench. Cry-
Logger times out on three ApacheCryptoAPIBench
projects: Artemis, Spark, and Tika.

3.2 Procedure and Metrics

To evaluate accuracy, we compute Precision, Recall, and F1

score, metrics typically used in related work [23], [40]:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2× Precision × Recall

Precision + Recall
(3)

Besides accuracy, we evaluate RVSec’s overhead using only
the open-source projects in ApacheCryptoAPIBench, which
allow for realistic assessment. To measure RVSec overhead,
we run ApacheCryptoAPIBench projects’ tests ten times
with and without RV, and average the execution times.
TRV and TBase are average times to run test cases with
and without RV, respectively. RV overhead corresponds to
the percentage time increase of TRV over TBase , com-
puted as 100×(TRV −TBase)/TBase . Lastly, we measure
statement, branch, and method coverage in ApacheCryp-
toAPIBench using JaCoCo [46], to investigate how coverage
impacts RVSec’s accuracy and overhead.

3.3 RV of the JCA Crypto API using JavaMOP

We write JavaMOP JCA specifications, such as the one in
Figure 3 (explained in §2), to check for crypto API misuses.
To do so, we start from an existing set of CrySL JCA
specifications for three main reasons. First, these CrySL
specifications were validated by crypto experts. Second, the
CrySL and JavaMOP specification languages are similar.
Third, the CogniCrypt development team provide a test
suite (with 31 test classes and over 200 test methods) that
allow us to more easily validate our JavaMOP specifications.

We create a custom infrastructure for performing RV
during unit testing, so we could reuse the CogniCrypt test
suite almost as-is. We make a few fixes to the CogniCrypt
test suite, relating to incorrect configuration of keys, cipher
algorithms, and operation modes (e.g., decrypt or encrypt)
that cause runtime exceptions.

The CrySL repository [47] contains rules for 47 JCA
classes [22]. But, previous studies show that a subset of
12 JCA classes (including MessageDigest, Cipher, Signature,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 5

TABLE 3
Accuracy Results. Note: This table does not present the CryLogger

accuracy results for the ApacheCryptoAPIBench—essentially because
the CryLogger experiment finished only for five (out of eight)

ApacheCryptoAPIBench projects.

TP FP FN Precision Recall F1

MASCBench
RVSec 28 0 0 1.00 1.00 1.00
CogniCrypt 23 0 5 1.00 0.82 0.90
CryptoGuard 19 0 9 1.00 0.67 0.80
CryLogger 20 0 8 1.00 0.71 0.83

SmallCryptoAPIBench
RVSec 122 6 8 0.95 0.93 0.94
CogniCrypt 106 24 24 0.81 0.81 0.81
CryptoGuard 114 18 17 0.86 0.87 0.86
CryLogger 98 13 32 0.88 0.75 0.81

OWASPBench
RVSec 259 1 0 0.99 1.00 0.99
CogniCrypt 259 201 0 0.56 1.00 0.72
CryptoGuard 219 27 40 0.89 0.84 0.86
CryLogger 317 53 0 0.82 1.00 0.92

JulietBench
RVSec 100 0 2 1.00 0.98 0.99
CogniCrypt 102 60 0 0.62 1.00 0.77
CryptoGuard 85 0 17 1.00 0.83 0.90
CryLogger 86 7 16 0.92 0.84 0.88

ApacheCryptoAPIBench
RVSec 39 1 12 0.97 0.76 0.85
CogniCrypt 48 10 3 0.82 0.94 0.88
CryptoGuard 20 14 31 0.58 0.39 0.47

Average
RVSec 0.98 0.93 0.95

CogniCrypt 0.76 0.91 0.83
CryptoGuard 0.87 0.72 0.78

CryLogger 0.90 0.82 0.86

and KeyGenerator) is more frequently used and yields most
crypto API misuses [22], [48]. So, we start writing JavaMOP
specifications for these 12 classes and end up with ten more
JavaMOP specifications for classes that they depend on. In
total, we write 22 JavaMOP specifications used in our study.

4 ACCURACY OF THE EVALUATED TECHNIQUES

We present quantitative results from comparing the accu-
racy of RVSec with those of other crypto API misuse de-
tectors: CogniCrypt, CryptoGuard, and CryLogger. Table 3
shows the result of each tool on the five benchmarks.

MASCBench
For MASCBench, all four tools have 100% Precision; the “0s”
in the “FP” rows indicate that no tool reports a false positive.
RVSec also does not miss any crypto API misuse (so, a Recall
of 100%), while CogniCrypt, CryptoGuard, and CryLogger
miss five, nine, and eight misuses, respectively.

The false negatives in CogniCrypt and CryptoGuard are
due to limitations in the static analyses that they imple-
ment. For instance, if a call to keyGenerator.getInstance()

returns the unsafe crypto schema, “AES” (mapped to
the schema “AES/ECB/PKCS5Padding”), CogniCrypt and
CryptoGuard fail to identify the crypto API misuse in
Cipher.getInstance(keyGenerator.getInstance());.

False negatives in CryLogger occur because the tool fails
to detect when an initialization vector parameter specifi-
cation is initialized using a constant byte array (for four
CryLogger false negatives, see an example in Figure 4).

Three other CryLogger false negatives are due to test cases
that incorrectly seed secure random values (see an example
in Figure 5). We provide more details in §5.

1 public class BaseStaticIV {
2 public static void main(String[] args) {
3 byte[] bytes = "Hello".getBytes();
4 IvParameterSpec ivSpec = new IvParameterSpec(bytes);
5 System.out.println(new String(ivSpec.getIV()));
6 System.out.println(new String(bytes));
7 }
8 }

Fig. 4. Example misuse due to wrongly instantiating the class
IvParameterSpec using a constant byte array.

1 public class SecureRand03 {
2 public static void main(String[] args) throws Exception {
3 byte[] seedBytes = "Seed".getBytes(StandardCharsets.UTF_8);
4
5 //"The SecureRandom instance is seeded with the
6 // specified seed bytes." --> unsafe
7
8 SecureRandom rand1 = new SecureRandom(seedBytes);
9 SecureRandom rand2 = new SecureRandom(seedBytes);

10
11 System.out.println(rand1.nextInt()==rand2.nextInt());
12 }
13 }

Fig. 5. Example misuse due to incorrect seeding of random values.

SmallCryptoAPIBench

RVSec does not achieve maximum accuracy (i.e., F1=1.0) in
this benchmark, but it achieves higher accuracy than the
other tools. Seven (of eight) misuses that RVSec misses are
related to usage of hard-coded passwords for loading key
stores (e.g., lines 3 and 6 in Figure 6). Failure to handle hard-
coded strings is a limitation of RVSec—it is hard to check at
runtime whether a variable has been initialized to a hard-
coded string constant.

1 public class PredictableKeyStorePasswordABICase1 {
2 public static void main(String args[]) throws Exception {
3 String key = "password";
4 KeyStore ks = KeyStore.getInstance("JKS");
5 URL cacerts = new File("testInput-ks").toURI().toURL();
6 ks.load(cacerts.openStream(), key.toCharArray());
7 }
8 }

Fig. 6. Example misuse due to a hard-coded password that RVSec
misses, but CogniCrypt and CryptoGuard detect.

The CryLogger false positives in the SmallCryp-
toAPIBench are due to overly strong constraints. For ex-
ample, CryLogger signals warnings even for safe Cipher

crypto-schemes (a ALGORITHM/MODE/PADDING string
such as AES/CBC/PKCS5Padding.). Further, CryLogger gener-
ated the highest number of false negatives in SmallCryp-
toAPIBench, mainly because it does not identify the use
of predictable seeds and credentials in strings. We provide
more examples, and further analyze the false positives and
false negatives from all tools in §5.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 6

OWASPBench

OWASPBench is the evaluated benchmark with the highest
number of test cases that involve API misuses (Table 1).
RVSec again achieves the highest accuracy (F1 score =
0.99) in OWASPBench, compared to the other tools. RVSec,
CogniCrypt, and CryLogger did not miss any crypto API
misuse. But, CogniCrypt reports 201 false positives on this
benchmark, severely affecting its Precision (56%). We ob-
serve that test classes in OWASPBench often contain a con-
trol flow path that does not execute all sequences of method
calls that CogniCrypt expects (according to the CrySL rules).
CogniCrypt reports a false positive warning for all 201
cases. Differently, CryptoGuard reports 27 false positives,
all related to loading a crypto schema from a configuration
file. Figure 7 shows an illustrative code snippet.

1 String alg = "";
2 java.util.Properties ps = new java.util.Properties();
3 ps.load(...getResourceAsStream("benchmark.properties"));
4 alg = ps.getProperty("cryptoAlg2", "AES/ECB/PKCS5Padding");
5 javax.crypto.Cipher c = javax.crypto.Cipher.getInstance(alg);

Fig. 7. OWASPBench code where CryptoGuard reports a false positive.

At runtime, the call to getProperty() in Figure 7 re-
trieves the valid crypto schema AES/GCM/NoPadding, but
CryptoGuard wrongly approximates that a different value,
AES/ECB/PKCS5Padding, is assigned. Similarly, CryptoGuard
assumes valid algorithms that appear as alternatives to
invalid ones in a configuration file, leading CryptoGuard to
miss 40 crypto misuses. For instance, CryptoGuard detects
from the statement ps.getProperty("hashAlg1", "SHA512")

that the secure algorithm SHA512 is in use. But, OWASPBench
uses a configuration file to assign an unsafe hashing algo-
rithm, MD5, to the string "hashAlg1" as shown in Figure 8.
We observe that configuration file usage is a major source of
CryptoGuard imprecision, causing many false positives and
false negatives in OWASPBench.

cryptoAlg1=DES/ECB/PKCS5Padding
cryptoAlg2=AES/GCM/NoPadding
hashAlg1=MD5
hashAlg2=SHA-256
testCases.per.folder=80
testsuite-version=1.2

Fig. 8. A configuration file that OWASPBench uses at runtime.

CryLogger yields no false negative in OWASPBench
(recall of 100%), but it generates 53 false positives. Our
manual analysis reveals that these false positives are also
caused by overly strong constraints on the CryLogger rules
that raise unnecessary warnings in safe crypto schemes.

JulietBench

RVSec achieves higher F1 score than static tools on Juliet-
Bench. For Recall, RVSec misses two misuses, CryptoGuard
misses 17 misuses, CryLogger misses 16, and CogniCrypt
does not miss any. Our manual analysis shows that both
crypto API misuses that RVSec misses are due to non-
determinism in the choice of the hashing algorithm used;
one is secure and the other is not. Our experiments execute

the secure choice and missed the misuse. Research on deal-
ing with test non-determinism (or flakiness) is receiving a lot
of attention [49], [50], [51], [52]. Such flaky-test mitigation
techniques should be investigated in the future to reduce
the impact of non-deterministic runs on RVSec. CryLogger
suffers from the same limitation, and five CryLogger false
positives are due to non-deterministic choices that lead the
program examples to execute an insecure path labeled as
secure in the benchmark ground truth.

The 17 misuses that CryptoGuard misses relate to CWE-
325 (missing required cryptographic step). CryptoGuard has
no support for detecting misuses that are due to an invalid
or incomplete method-call sequence. Similarly, all 16 Cry-
Logger false negatives are due to incomplete method-call
sequences. Finally, RVSec and CryptoGuard do not report
any false positive, even though CogniCrypt reports 60; all of
them related to CWE-327 (use broken crypto). The reason for
false positives is that CogniCrypt does not consider secure
the code idiom below, which instantiates a byte array using
getEncoded() from the SecretKey class:

SecretKey secretKey = keyGenerator.generateKey();
byte[] key = secretKey.getEncoded();
SecretKeySpec secretKeySpec = new SecretKeySpec(key, "AES");

All false positives that CogniCrypt reports for JulietBench
are due to this idiom.

ApacheCryptoAPIBench
Unfortunately, the provided ground truth in ApacheCryp-
toAPIBench was missing essential information that we need
to compute Precision and Recall. For example, many true
positives in the original ApacheCryptoAPIBench ground
truth do not specify the Java class in which the related
crypto API misuse occurs. We also found and shared with
the authors of ApacheCryptoAPIBench cases where the
labels assigned to warnings in the ground truth dataset were
incorrect. They agreed with almost all our observations and
changed their benchmark.

Despite these issues with the original ground truth, the
ApacheCryptoAPIBench benchmark can still be a valuable
source of data on how RVSec compares with other tools on
real open-source projects on which the static detectors were
previously evaluated. So, we manually inspect all warn-
ings generated by RVSec, CogniCrypt, and CryptoGuard
on ApacheCryptoAPIBench to generate our ground truth.
We count all unique warnings from a class/method. This
decision is needed because the tools may generate different
numbers of warnings for a unique misuse.

We obtain 192 unique warnings from ApacheCryp-
toAPIBench. Of these, we remove (a) 44 warnings from
third-party libraries, and (b) 14 RVSec warnings from test
classes (for fair comparison with CogniCrypt and Crypto-
Guard, which do not analyze test classes). Our final dataset
of 134 warnings is summarized in Table 4.

Creating our own ground truth may introduce threats to
validity, but doing so allows us to avoid inconsistencies that
we found in the original ApacheCryptoAPIBench’s ground
truth. We do not use CryLogger’s outputs to build our
ApacheCryptoAPIBench ground truth for two reasons. First,
the CryLogger finished for only five of eight ApacheCryp-
toAPIBench projects. Second, CryLogger generates thou-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 7

TABLE 4
Summary of warnings techniques report on ApacheCryptoAPIBench.

Tool Full Data Set Curated Data Set

RVSec 64 40
CogniCrypt 72 58
CryptoGuard 56 36

sands of warnings for ApacheCryptoAPIBench, many of
which are in standard Java classes, not in the application.
It is not feasible to manually validate all these warnings.

Table 3 shows the Precision, Recall, and F1 score based
on the ground truth dataset that we curate for ApacheCryp-
toAPIBench. RVSec has the highest Precision, but Cog-
niCrypt has a higher F1 score. CryLogger has the highest
number of false negatives (34) because of the projects on
which it times out. Also, the eight false positives that Cry-
Logger reports is somewhat high. There would be more false
positives if CryLogger finished executing all projects. We do
not summarize these results in Table 3, to avoid confusion.

1 void parse(InputStream stream, ContentHandler handler,
2 Metadata metadata, ParseContext context) ... {
3 cipher = Cipher.getInstance(transformation);
4 Key key = context.get(Key.class);
5 AlgoParams p = context.get(AlgoParams.class);
6 SecureRandom random = context.get(SecureRandom.class);
7
8 if (p != null && random != null) {
9 cipher.init(Cipher.DECRYPT_MODE, key, p, random);

10 } else if (p != null) {
11 cipher.init(Cipher.DECRYPT_MODE, key, p);
12 } else { cipher.init(Cipher.DECRYPT_MODE, key); }
13 super.parse(
14 new CipherInputStream(stream, cipher),
15 handler, metadata, context);
16 }

Fig. 9. Code snippet from the Tika project. In this case, a Cipher is being
just prepared to future usage.

CryptoGuard finds only 58% of ApacheCryptoAPIBench
misuses because it implements fewer rules than Cog-
niCrypt. RVSec misses 12 of 48 misuses that CogniCrypt
detects. We find that these false negatives are due to lack of
(a) test cases to reveal the misuses, and (b) RV specifications
for infrequently used JCA classes (e.g., SecretKeyFactory

and TrustManagerFactory). Future work should write speci-
fications for these classes.

RVSec reports one false positive, while CogniCrypt,
CryptoGuard, and CryLogger report 10, 14 and 13, re-
spectively. Thirteen false positives from CryptoGuard result
from a rule that approximates usages of java.util.Random

to be insecure. But, java.util.Random is often used in non-
cryptographic contexts. We manually find no usage of the
java.util.Random class in the ApacheCryptoAPIBench that
is vulnerable. We confirm these cases with ApacheCryp-
toAPIBench authors [23], and mark them as false positives.

If these java.util.Random usages were true positives,
CryptoGuard Precision on ApacheCryptoAPIBench would
be 0.95. We keep these warnings in our dataset because
previous research wrongly labeled them as true positives,
causing misleading results to be published [23], [40]. These

safe usages of java.util.Random are also the main source of
CryLogger false positives in ApacheCryptoAPIBench.

The 10 false positives that CogniCrypt reports involve
tricky situations. For example, in Tika, code that prepares
a Cipher may not explicitly call methods like update() or
doFinal(), as in Figure 9. CogniCrypt reports a misuse, but
we find that developers expect API clients to make those
missing calls at runtime. We label these as false positives.

Summary: RVSec is more accurate (F̄1=0.95),
compared to CryLogger (F̄1=0.85), CogniCrypt
(F̄1=0.83), and CryptoGuard (F̄1=0.78).

5 QUALITATIVE ANALYSIS OF INACCURACY

We discuss causes of inaccuracy (i.e., false positives and
false negatives) for RVSec (§5.1), CogniCrypt and Crypto-
Guard (§5.2), and CryLogger (§5.3). Table 5 summarizes the
accuracy of these tools with respect to CWEs.

5.1 Sources of Inaccuracy: RVSec
RVSec achieves high accuracy, as expected for a dynamic
analysis. The rare false positives (8 of 556 warnings, Ta-
ble 3) are due to an overly constrained specification that
expects ten thousand or more iterations for Password-Based
Encryption, but the SmallCryptoAPIBench labels the usage
of one thousand or more iterations as secure (CWE-1391).
Overall, ten of RVSec’s 22 false negatives (Table 3, column
“FN”), are due to lack of test inputs to exercise the crypto
API misuses in ApacheCryptoAPIBench. The other twelve
false negatives are due to inherent limitations of dynamic
analysis. For example, RVSec fails to detect use of string
constants to initialize crypto primitives.

5.1.1 Impact of Test Coverage
Low-quality test suites can lead to false negatives with
RV, whereas over-approximation can lead to false pos-
itives with static analysis. The handcrafted benchmarks
(MASCBench, SmallCryptoAPIBench, OWASPBench, and
JulietBench) have test suites that execute code with and
without crypto API misuses. That is, every crypto API usage
is tested, so there is full coverage of code that (mis)uses JCA.

Since the high-coverage test suites in the handcrafted
benchmarks likely led to RVSec’s high accuracy, we further
investigate the impact of lack of test inputs in ApacheCryp-
toAPIBench’s open-source projects. To do so, we measure
the number of test cases (TCs), average instruction coverage
(IC), average branch coverage (BC), and average method
coverage (MC). The last three are coverage criteria that we
measure using JaCoCo. JaCoCo exports coverage measure-
ments for each class, from which we compute IC, BC, and
MC. The results are presented in Table 6.

We find that the test suites in ApacheCryptoAPIBench
have an average of 44.72% instruction coverage (IC). We
do not augment these test suites, so we expected RVSec
to find much fewer warnings than CogniCrypt and Cryp-
toGuard. But, RVSec misses only 12 of 51 crypto API
misuses in ApacheCryptoAPIBench, despite of the level
of coverage. The main reason for RVSec’s 0.76 recall on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 8

TABLE 5
Accuracy (F1 score) of the tools with respect to CWEs (Common Weakness Enumeration).

CWE RVSec CogniCrypt CryptoGuard CryLogger

321 - Use of Hard-coded Cryptographic Key 0.86 0.94 0.22 0.00
325 - Missing Cryptographic Step 1.00 0.15 0.00 0.10
327 - Use of a Broken or Risky Cryptographic Algorithm 0.99 0.90 0.91 0.90
328 - Use of Weak Hash 0.99 0.97 0.88 0.94
337 - Predictable Seed in Pseudo-Random Number Generator 1.00 0.00 0.85 0.00
338 - Use of Cryptographically Weak Pseudo-Random Number Generator 1.00 1.00 0.47 0.67
341 - Predictable from Observable State 0.93 0.94 0.89 0.00
798 - Use of Hard-coded Credentials 0.84 0.84 0.88 0.90
916 - Use of Password Hash With Insufficient Computational Effort 0.84 0.84 0.67 0.93
1204 - Generation of Weak Initialization Vector (IV) 0.97 1.00 0.90 0.65
1240 - Use of a Cryptographic Primitive with a Risky Implementation 0.75 0.89 0.00 0.00
1391 - Use of Weak Credentials 0.77 0.86 0.75 0.77

TABLE 6
Summary of the test suite metrics.

Apache Module TCs IC BC MC

Dir. Server 376 73.79 44.7 71.19
Artemis 110 29.41 31.24 35.46
ManifoldCF 5 8.29 6.56 9.27
Meecrowave 19 65.01 46.36 56.56
DeltaSpike 155 69.86 61.23 84.1
Spark 2,045 23.25 17.03 22.13
Tika 222 48.63 49.92 50.28
Wicket 237 39.55 37.63 40.98

ApacheCryptoAPIBench—despite the 44.72% instruction
coverage—is that crypto API usage is often confined to few
classes that are covered by tests. We find lower RVSec recall
in projects where some crypto API usages are not covered by
tests. For example, RVSec missed all 3 API misuses in project
ManifoldCF (Table 2). That project has no tests that cover
methods with those crypto API misuses.

Impact of Test Coverage on RVSec accuracy: RVSec
achieves 0.76 recall on ApacheCryptoAPIBench de-
spite having only 44.72% instruction coverage, on
average, because crypto API usage is often con-
fined to a few covered classes.

5.1.2 Inherent Limitation of RVSec
Seven (of eight) RVSec’s false negatives in SmallCryp-
toAPIBench are due to usage of hard-coded passwords
for loading key stores. According to CWE-798, hard-coded
passwords can be a threat because “hard-coded credentials
typically create a significant hole that allows an attacker to
bypass the authentication that has been configured by the software
administrator” [53]. It is very difficult to write a specification
that allows RVSec to check at runtime if the string being
used as a password was hard-coded at initialization (see
Lines 6 and 8 in Figure 10). The recommended best practice
is to retrieve passwords from external and protected files or
databases [53]. This inherent limitation is one case in which
static analyzers like CogniCrypt and CryptoGuard can be
used in a complementary manner with RVSec.

Main reason for RVSec’s false negatives: It is hard to
write RV specifications to check if a variable was
initialized to a hard-coded string constant.

1 public class PredictableKeyStorePassword {
2 public void go() throws Exception {
3 String type = "JKS";
4 KeyStore ks = KeyStore.getInstance(type);
5 cacerts = new File("input-ks").toURI().toURL();
6 String defaultKey = "password";
7 /* error: defaultKey is hard-coded */
8 ks.load(cacerts.openStream(), defaultKey.toCharArray());
9 }

10 }

Fig. 10. An example false negative from RVSec

5.2 Sources of Inaccuracy: Static Analyzers
Figure 11 shows a crypto API misuse that neither Cog-
niCrypt nor CryptoGuard detect, but which RVSec and
CryLogger detect. There, Cipher is instantiated by calling the
getAlgorithm method of class KeyGenerator, which returns
the string, “AES”—keygen is instantiated to the output of
KeyGenerator.getInstance(“AES”). But, instantiating Cipher

c in this way is similar to calling Cipher.getInstance(“AES”),
which specifies just the cipher algorithm, and not its oper-
ation mode or padding. The vulnerability occurs because
the default mode and padding configuration for AES is
ECB/PKCS5Padding, which may result in disclosing of sensi-
tive information [31].

Creating a Cipher as in Figure 11 is insecure,
but CogniCrypt and CryptoGuard do not detect this
crypto API misuse (CWE-327). But, if one passes
“AES” string to Cipher.getInstance() instead of calling
KeyGenerator.getAlgorithm(), both tools detect the misuse.
To address such false negatives, CogniCrypt and Crypto-
Guard should be enriched with field-sensitive data flow
analysis or by explicitly modeling this API call manually.

CogniCrypt and CryptoGuard also miss crypto API
misuses if multiple method calls are used to initialize a
Cipher object. Figure 12 shows an example. There, the test
case initializes Cipher c using the insecure "DES" algorithm
(CWE-327). CryptoGuard does not report any issue with the
test case in Figure 12. CogniCrypt also misses the first error
in this test case (Line 13), but it correctly detects the second
one (Line 19). Extending CryptoGuard and CogniCrypt with
more advanced inter-procedural data flow analyses may
reduce these false negatives in both tools. For instance,
FlowDroid is able to detect source-sink flows using different
method calls and string manipulations [54].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 9

public class CipherExample09 {
public static void main(String[] args) {
try{
KeyGenerator keygen = KeyGenerator.getInstance("AES");
SecretKey key = keygen.generateKey();
/* error */
Cipher c = Cipher.getInstance(keygen.getAlgorithm());
/* possible patch:

* Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

*/
c.init(Cipher.ENCRYPT_MODE, key);
c.doFinal("something".getBytes());

} catch(Exception e){ e.printStackTrace(); }
}

}

Fig. 11. Program in MASCBench that yields false negatives in Cog-
niCrypt and CryptoGuard

1 public class Ex05 {
2 private String cName = "AES/GCM/NoPadding";
3 privatet String name = "";
4 public Ex05 a(){ cName = "AES/GCM/NoPadding"; return this; }
5
6 public Ex05 b(){ cName = "DES"; return this; }
7
8 public String getCipherName(){ return cName; }
9

10 public static void main(String[] args) throws Exception {
11 name = new Ex05().a().b().getCipherName();
12 /* error: DES is not secure */
13 Cipher c = Cipher.getInstance(name);
14 runCipher(c);
15 }
16
17 public static void runCipher(Cipher c) throws Exception {
18 /* error: DES is not secure */
19 Key key = KeyGenerator.getInstance("DES").generateKey();
20 c.init(Cipher.ENCRYPT_MODE, key);
21 byte[] cipherText = c.doFinal("password".getBytes());
22 }
23 }

Fig. 12. Example of CryptoGuard false negative for MASCBench

CogniCrypt and CryptoGuard report false positives
for path-sensitive programs in SmallCryptoAPIBench. Fig-
ure 13 shows an example. There, choice is initialized to the
constant value 2, so the condition on line 6 is always true
and the secure SHA-256 algorithm is always used on line 7,
as expected. But the over-approximation that CogniCrypt
and CryptoGuard employ make them flag lines 8 and 9 of
Figure 13 as places where the md instance of MessageDigest

may be using an insecure implementation (CWE-328). It is
questionable whether code similar to the one in Figure 13
appears in real-world projects.

CogniCrypt reports 201 false positives in OWASPBench.
We manually analyze 20 of these false positives, selected
randomly. In all cases that we analyze, there is a path in the
code that does not satisfy the expected sequence of events
that CrySL rules specify for the Cipher or MessageDigest

classes (CWE-325). The code in Figure 14 illustrates the
situation, for which CogniCrypt reports warnings like:

1 public class BrokenHashABPSCase1 {
2 public static void main (String [] args) throws Exception {
3 String name = "abcdef";
4 int choice = 2;
5 MessageDigest md = MessageDigest.getInstance("SHA1");
6 if(choice>1)
7 md = MessageDigest.getInstance("SHA-256");
8 md.update(name.getBytes());
9 System.out.println(md.digest());

10 }
11 }

Fig. 13. Path sensitive example that leads to false positives in both
CogniCrypt and CryptoGuard

.
IncompleteOperationError: violating CrySL rule
for java.security.MessageDigest. Operation on ob-
ject of type java.security.MessageDigest object
not completed. Expected call to digest or update.

Removing the if statement on line 2 in Figure 14 will
eliminate this CogniCrypt warning. In this case, the re-
sulting path calls update() and digest() in MessageDigest,
which matches the expected sequence of method calls in
the CrySL rule for MessageDigest. CryptoGuard also per-
forms poorly in detecting CWE-325 misuses (missing cryp-
tographic step). The main reason is that there is no CryLog-
ger rule for detecting this crypto API misuse.

1 MessageDigest md = MessageDigest.getInstance("sha-384");
2 if(condition()) { return; }
3 md.update(SECRET.getBytes());
4 byte[] hash = md.digest();

Fig. 14. OWASPBench code where CogniCrypt reports false positives

CryptoGuard reports 27 false positives and 40 false neg-
atives in OWASPBench. All these mis-classifications are re-
lated to wrong assumptions that CryptoGuard makes when
an invalid algorithm identifier can flow to the instantiation
of a JCA crypto primitive (e.g., a Cipher or a MessageDigest).
We also isolate these problems in small test cases (see
listings in Figure 15 and Figure 16). So, assuming we setup
a configuration file with the following content:

cipher01=AES/GCM/NoPadding

cipher02=AES/ECB/PKCS5Padding

Since CryptoGuard does not account for configuration files
(a challenge for static analysis in general), it wrongly labels
the code in Figure 15 as a crypto API misuse (according to
the OWASPBench ground truth). For the same reason, Cryp-
toGuard wrongly classifies the code in Figure 16 as secure—
the call to ps.getProperty() returns AES/ECB/PKCS5Padding,
which is not recommended (CWE-327). CogniCrypt does
not assume anything when the crypto algorithm definitions
come from configuration files, so it does not raise any warn-
ing about Cipher instantiations in Figure 15 and Figure 16.

Method calls with string manipulation, path and
field sensitivity, and configuration file usage are
the main causes of inaccuracy for static analyzers,
CogniCrypt and CryptoGuard.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 10

Properties ps = new Properties();
ps.load(new FileReader(FILE_NAME));
String alg = ps.getProperty("cipher01", "AES/ECB/PKCS5Padding");
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
SecretKey key = keyGenerator.generateKey();
Cipher c = Cipher.getInstance(alg);
c.init(Cipher.ENCRYPT_MODE, key);
byte[] result = c.doFinal(SECRET.getBytes());

Fig. 15. Scenario for which CryptoGuard wrongly assumes that the
unsafe algorithm configuration AES/ECB/PKCS5Padding flows to the call
to the Cipher.getInstance method. This is an example of CryptoGuard
false positive.

Properties ps = new Properties();
ps.load(new FileReader(FILE_NAME));
String alg = ps.getProperty("cipher01", "AES/GCM/NoPadding");
KeyGenerator keyGenerator = KeyGenerator.getInstance("AES");
SecretKey key = keyGenerator.generateKey();
Cipher c = Cipher.getInstance(alg);
c.init(Cipher.ENCRYPT_MODE, key);
byte[] result = c.doFinal(SECRET.getBytes());

Fig. 16. Scenario for which CryptoGuard wrongly assumes that the
safe algorithm configuration AES/GCM/NoPadding flows to the call to the
Cipher.getInstance method. This is an example of CryptoGuard false
negative.

5.3 Sources of Inaccuracy: CryLogger

CryLogger generates 53 false positives for OWASPBench.
Our manual analysis shows that most of these
CryLogger false positives are due to rules that raise
warnings when using safe crypto schemes, such as
“RSA/ECB/OAEPWithSHA-512AndMGF1Padding” and
“AES/CBC/PKCS5PADDING”. Other CryLogger false
positives are due to non-deterministic test cases in
JulietBench (similar to what we observed with RVSec).

CryLogger’s false negatives in JulietBench are due to
incomplete usage of a cryptographic primitive (CWE-325).
Figure 17 shows an example. There, a call to digest() is
made without a call to update() of MessageDigest. CryLog-
ger rules do not address this kind of vulnerability—missing
cryptographic step (CWE-325) [24]. CryLogger also does
not identify incorrect initialization of seeds from constant
byte arrays, and usage of strings to store credentials (CWE-
321, CWE-337, CWE-1391). These are the main causes of
CryLogger false negatives in SmallCryptoAPIBench.

CryLogger times out on three ApacheCryptoAPIBench
projects, leading to 32 false negatives. There are two reasons
for these timeouts. First, CryLogger’s analysis of Artemis
runs out of memory after five minutes, and the operating
system kills the process. Second, CryLogger’s analysis of
Spark and Wicket simply did not finish in 24 hours. So, it
seems that CryLogger does not scale well to large projects.
Also, printing stack traces during CryLogger analysis pro-
duces huge log files. But, printing the stack traces is neces-
sary for us to compare CryLogger with other tools.

6 DISCUSSION

We discuss RVSec overhead on ApacheCryptoAPIBench’s
test cases (§ 6.1), lessons learned and future work (§ 6.2),
and threats to validity (§ 6.3).

public void bad() throws Throwable
{
if (PRIVATE_STATIC_FINAL_FIVE == 5)
{
MessageDigest md = MessageDigest.getInstance("SHA-512");
/*

FLAW: Missing call to MessageDigest.update().
This will result in the hash being of no data

*/
IO.writeLine(IO.toHex(md.digest()));

}
}

Fig. 17. JulietBench code where CryLogger misses a vulnerability.

6.1 RV Overhead

Comparing a dynamic analysis approach like Runtime Ver-
ification with static analyses requires discussing RV over-
head for crypto API misuse detection. Also, using RV to
simultaneously monitor many specifications like we do is
more costly than monitoring a specification [17], [55], [56].

Table 7 shows the runtime (in seconds) of tests in
ApacheCryptoAPIBench without (“TBase (s)” column) and
with (“TRV (s)” column) RV. That table also shows RVSec’s
overhead (“Overhead (%)” column). RVSec’s overhead on
these projects ranges from 8.64% (ManifoldCF) to 56.86%
(Wicket), with an average of 25.90% and median of 18.32%.

TABLE 7
RVSec overhead results for ApacheCryptoAPIBench and average

running time of the static analyzers

Project TRV (s) TBase (s) Overhead (%)

Dir. Server 21.30 15.00 42.00
Artemis 39.80 35.90 10.86
ManifoldCF 23.90 22.00 8.64
DeltaSpike 47.10 39.80 18.34
Meecrowave 48.40 34.40 40.70
Spark 1,319.70 1,115.40 18.32
Tika 28.00 25.10 11.55
Wicket 24.00 15.30 56.86

These RVSec overheads may be acceptable, but they will
likely grow if more tests are added to improve coverage.
Also, we only measure RVSec overhead on one version
of each project because our focus is on comparing RV
with other approaches for detecting crypto API misuses.
However, recent evolution-aware techniques were proposed
that reduce RV overhead by up to 10x (average: 5x) when
running RV across several versions of a project, e.g., during
continuous integration or regression testing [11], [12]. So,
using evolution-aware RV to detect crypto API misuses as
software evolves could have even lower runtime overheads.

6.2 Lessons Learned and Future Work

Complementary Nature of Dynamic and Static Analy-
ses. Our analysis reveals blind spots for RVSec and the
static analyzers, CogniCrypt and CryptoGuard. For exam-
ple, RVSec could be complemented with static analysis to
check whether a string is hard coded at initialization. Also,
static analyzers could benefit from RVSec to reduce false
negatives when analyzing sequences of method calls or
string manipulation. Lastly, RVSec can help static analyzers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 11

1 - byte[] bytes = "abcde".getBytes();
2 + byte[] bytes = "abcde-----------".getBytes();

Fig. 18. A fix needed to correctly configure initialization vectors on the
SmallCryptoAPIBench.

1 - cacerts = new URL("https://www.google.com");
2 + cacerts = new File("testInput-ks").toURI().toURL();

Fig. 19. A fix needed to correctly explore key stores in the SmallCryp-
toAPIBench.

to reduce false positives in the presence of configuration
files, e.g., by using the recently proposed configuration
testing framework, CTests [57].
A recommendation for better usage of RV in crypto API
misuse detection. During our research, we identified a
design recommendations for dynamic analyses that detect
crypto API misuses: they should also instrument crypto API
clients, instead of only instrumenting the API as CryLogger
does [9]. Instrumenting client code
(a) allows dynamic analysis to report relevant information

about crypto API misuses (such as location of the mis-
use). Such information is essential to help developers
understand and fix misuses. We partially fix this Cry-
Logger limitation by changing some of its components
to enrich the log files with stack trace information, but
doing so increases the log files’ size.

(b) using a JavaMOP-like specification language also makes
it easy to consider only misuses that appear in the
system under test, or to ignore misuses that happen in
specified classes (e.g., Java standard library classes). Our
experience in using CryLogger shows that it does not
allow such flexibility. Our CryLogger extension does not
provide this second benefit, but we manually filter out
CryLogger warnings from Java standard library classes.

Issues with Existing Benchmarks. Several test cases in
SmallCryptoAPIBench (curated for evaluating static anal-
yses) trigger runtime exceptions. We fix such tests to make
them useful for dynamic analyses. For example, in ten tests,
we increase the size of byte arrays that are used to configure
the initialization vectors of ciphers (Figure 18). This fix is
necessary because initialization vectors require at least 128
bits (16 bytes). SmallCryptoAPIBench also refers to invalid
key stores using a URL. We also fix this problem in nine tests
(as shown in Figure 19). Several ApacheCryptoAPIBench
classes needed fix, though, fortunately, these classes have
no use of the JCA library. Our fixes are necessary to build
the projects and run their tests. We share all these fixes in
our replication package. Setting up OWASPBench and Juli-
etBench went smoother for us than the other benchmarks.

6.3 Threats to Validity
We only study the correct usage rules for JCA. So, our
results may not generalize to misuse detection in non-JCA
crypto APIs. Future work can evaluate the use of JavaMOP
specifications for detecting misuses of other crypto APIs as
well. Also, other researchers used RV to find misuses and
bugs in non-JCA and non-crypto APIs [13], [14], [15].

Our choice of benchmarks may pose an additional threat
to validity. However, the five benchmarks in this paper
contain a wide variety of JCA usage scenarios. To the best
of our knowledge, this is the first study that combines
benchmarks curated by researchers (MASCBench, Small-
CryptoAPIBench, and MASCBench) and by independent or-
ganizations (OWASPBench and JulietBench) for comparing
dynamic and static crypto API misuse detectors.

Other than ApacheCryptoAPIBench, the benchmarks
were designed for comparing static detectors of crypto API
misuses. We re-use these benchmarks almost as-is, but we
fix several bugs to allow us to execute the programs, which
is necessary for RVSec and CryLogger. These benchmarks
help to study the limits of crypto API misuse detectors,
but some examples may be fictitious and rare in real-
world systems. Indeed, the OWASPBench documentation
acknowledges that:

The tests are derived from coding patterns observed in
real applications, but the majority of them are consid-
erably simpler than real applications Although the
tests are based on real code, it is possible that some tests
may have coding patterns that do not occur frequently
in real code.

So, these benchmarks help us study the strengths and weak-
nesses of RVSec, CogniCrypt, CryptoGuard, and CryLogger,
but we do not claim that these results would generalize to
real systems, except possibly for ApacheCryptoAPIBench.

We revise the ground truth for ApacheCryptoAPIBench,
after careful manual analysis of RVSec, CogniCrypt, and
CryptoGuard warnings. Doing so may add threats to valid-
ity, but it improves the benchmark and allows for fairer com-
parison of RVSec, CogniCrypt, CryptoGuard, and CryLog-
ger. We contacted the authors of ApacheCryptoAPIBench,
and they agree on the most critical changes (e.g., our recom-
mendation to treat uses of java.util.Random as secure).

Although many violations (from RVSec, CogniCrypt,
CryptoGuard, and CryLogger) are associated with critical
CVE/CWE warnings, we do not yet investigate developers’
perceptions of these warnings. Doing so in an in-depth
way requires many careful considerations (e.g., adherence to
user agreement policies [58] and open-source vulnerability
disclosure policies [59]). So, we leave the important work of
user validation for future work.

Finally, we re-implemented two core components of
CryLogger. Our new implementation is necessary because
CryLogger only reports which crypto API rules a system
execution violates. Figure 20 shows a snippet of the outcome
of the original CryLogger for the MASCBench. It is not
feasible to compute accuracy metrics using the information
present in Figure 20. So, our new CryLogger implemen-
tation records all crypto API violations together with the
program stack trace when violations happen (see Figure 21),
allowing us to track client code that misuse crypto APIs.

A downside of our new CryLogger implementation is
that it generates large log files, which may have led to
timeouts in three ApacheCryptoAPIBench projects. Note
that the original version of CryLogger also times out on
Spark. So, even the original CryLogger version has scala-
bility issues. We could not obtain a replication package for
prior CryLogger evaluation.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 12

rule_R01: VIOLATED
rule_R02: VIOLATED
rule_R03: RESPECTED
rule_R04: RESPECTED
rule_R05: RESPECTED
rule_R06: RESPECTED
rule_R07: RESPECTED
rule_R08: RESPECTED
rule_R09: VIOLATED
rule_R10: RESPECTED
...

Fig. 20. Snippet of the outcome of the original CryLogger for
MASCBench

Violation 01 : rule_R01 : [MessageDigest] algorithm: md5 ::
[java.lang.Thread.getStackTrace,
java.security.CRYLogger.insertStackTrace,
java.security.CRYLogger.write,
java.security.MessageDigest.digest,
com.minimals.md.differentCase.MD04.main,
...]
...

Fig. 21. Snippet of the outcome of our CryLogger implementation for
MASCBench

7 RELATED WORK

We discuss work that is most related to ours, including
research on crypto API misuses and on combining static and
dynamic analysis to identify security vulnerabilities.

7.1 Static Crypto API Misuse Detection

Several static analyses [60] were proposed to assist devel-
opers in early detection of vulnerabilities due to crypto
API misuses [8], [60], [61], [62], [63], [64]. CogniCrypt [22]
and CryptoGuard [7] are two prominent examples of such
static analyzers in the literature. CogniCrypt uses rules
written in a domain-specific language called CrySL to check
crypto API usages. CryptoGuard uses optimized slicing-
based algorithms to find crypto API misuses. We use the
CrySL rules as a basis for developing RVSec specifications
because (1) the rules were validated with security experts,
(2) the authors provide an extensive test suite that allows us
to develop our specifications in a test-driven manner, and
(3) the rules are defined as EREs over method call sequences
and JavaMOP has native support for ERE as a specification
language. We find that RVSec produces fewer false positives
and false negatives than static analyses. So, RVSec can
complement static analyses during software development.

7.2 Dynamic Crypto API Misuse Detection

Dynamic techniques exist for detecting crypto bugs in spe-
cific domains. SMV-Hunter [65] and AndroSSL [66] detect
SSL/TLS misuses, but they only work for Android. Simi-
larly, iCryptoTracer [67] detects misuses of crypto functions
in iOS. K-Hunt [68] finds insecure crypto keys in binaries,
so it is not a development-time aid. Unlike these techniques,
RV is general and it can be used at development time and
across domains—RV was applied to Android [69], [70], [71],
cyber-physical systems [72], [73], operating systems [74],

[75], and even hardware development [76]. But, RV’s gen-
erality comes at the cost of writing specifications.

Closer to our study, CryLogger [9] uses 26 rules to detect
crypto API misuses. It monitors usage of crypto APIs and
logs values of relevant parameters in a file. Then, CryLogger
analyzes the logs offline to find violated rules. Differently
from CryLogger, RVSec (1) can check inter-class relation-
ships among crypto APIs, (2) monitor the entire life cycle
of the instances involved in crypto API usages (and not just
values that they use), and (3) pinpoint code locations where
RVSec violations occur. RVSec instruments the client code
of the APIs, so it generates useful reports for debugging
detected crypto API misuses by pinpointing the location of
the misuse. Such pinpointing allows for a fair comparison
of dynamic and static crypto API misuse detectors. On
the other hand, CryLogger only reports that a crypto API
misuse was detected, so it was necessary for us to change
CryLogger’s implementation for use in our study.

7.3 Use of Static and Dynamic Analysis to Detect Other
Types of Vulnerabilities

Combining static and dynamic analysis to identify vul-
nerability has been explored before. In particular, several
research works explore the possible benefits of integrating
both program analysis approaches to identify system vul-
nerability via anomaly detection.

For instance, Xu et al. [77] propose a probabilistic rea-
soning framework that models the program’s behavior and
context as a joint probability distribution. This distribution
captures the dependencies between the program’s events
and the contextual factors, enabling more accurate anomaly
detection. Differently, Shu et al. [78] designed a method for
modeling the behavior of a program over a long period and
detecting attacks on the program based on the model. The
method uses a graph-based representation of the program’s
behavior, whose nodes are program states and the edges are
transitions between states. The graph is then analyzed to
identify behavior patterns that indicate possible attacks.

Furthermore, Cheng et al. [79] also propose an approach
for detecting anomalies in cyber-physical systems (CPS), us-
ing event-aware program analysis techniques. The approach
first defines a set of events that are expected to occur in
a CPS, and then analyzes the program code to identify
program states associated with these events. At runtime, the
system is monitored for the occurrence of these events, and
if they do not occur as expected, it is deemed as an anomaly
and flagged for further investigation.

Ahrendt et al. [80] present a different technique to ensure
the correctness of software by combining static and runtime
verification to check data and control properties of the
system. They propose a formalism that models software
systems and properties to be verified, allowing for the
expression of data and control-related aspects. The frame-
work defines a set of rules that guide the combination of
static and runtime techniques, ensuring consistency and
coherence in the verification process. Static verification is
used to prove that the system satisfies some invariants
and preconditions, while runtime verification is used to
monitor the system’s behavior and detect any violations
of post-conditions and temporal properties. The paper also

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 13

introduces a framework and tools to support the proposed
approach and allow the unified specification, verification,
and monitoring of software systems. Their research aims to
monitor systems in production, but our goal with RVSec is
to identify crypto API misuses during testing. Future work
can explore techniques to fix crypto API misuses at runtime.

Handrick et al. [81] present an in-depth analysis on
the combination of static and dynamic analysis to detect
Android malware—using the Android Mining Sandbox Ap-
proach [16], [82]. The authors provide evidence that static
and dynamic analysis complement each other, improving
the overall accuracy of Android malware detection. Our
work differs from Handrick et al.’s: we target crypto API
misuses, a specific and pressing source of software vulner-
ability. But, the related work presented in this section may
hint at possible directions for integrating static and dynamic
analysis tools for detecting crypto API misuses.

8 CONCLUSIONS AND FUTURE WORK

We evaluate the use of RV for detecting crypto API misuses.
To do so, we implement RVSec after translating CrySL
rules [6], [22] into JavaMOP specifications [10]. Then we
use RVSec to identify misuses of the JCA API. We compare
RVSec’s accuracy with those of state-of-the-art tools Cog-
niCrypt [6], [22], [83], CryptoGuard [7], and CryLogger [9]
on five benchmarks (three from the literature and two from
independent organizations).

The results show that, on average, the accuracy (F1

score) of RVSec (0.95) is higher than the accuracy of Cog-
niCrypt (0.83), CryptoGuard (0.78), and CryLogger (0.86).
We analyze the strengths and weaknesses of RVSec, Cog-
niCrypt, CryptoGuard, and CryLogger and provide evi-
dence that static and dynamic analyses can be comple-
mentary for identifying crypto API misuses. We also fix
CogniCrypt, improving its precision, and benchmarks that
are commonly used to evaluate crypto API misuse detectors.

In the future, we plan to run RVSec in Android apps.
Additional engineering effort is required to run JavaMOP
on Android. We also plan to explore model-based test gen-
eration of JavaMOP specifications to augment the ability of
existing test suites to catch bugs.

REFERENCES

[1] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “Jumping through
hoops: Why do Java developers struggle with cryptography
APIs?” in ICSE, 2016, p. 935–946.

[2] E. Barker and A. Roginsky, “Transitioning the use of
cryptographic algorithms and key lengths,” 2019. [Online].
Available: https://doi.org/10.6028/NIST.SP.800-131Ar2

[3] “Cryptographic mechanisms: Recommendations and key
lengths,” German Federal Office for Information Security,
Tech. Rep. BSI TR-02102-1, 2022.

[4] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic APIs,”
in S&P, 2017, pp. 154–171.

[5] F. Fischer, K. Böttinger, H. Xiao, C. Stransky, Y. Acar, M. Backes,
and S. Fahl, “Stack Overflow considered harmful? the impact of
copy&paste on Android application security,” in S&P, 2017, pp.
121–136.

[6] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL: An
Extensible Approach to Validating the Correct Usage of Crypto-
graphic APIs,” in ECOOP, 2018, pp. 1–27.

[7] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “CryptoGuard: High precision
detection of cryptographic vulnerabilities in massive-sized Java
projects,” in CCS, 2019, p. 2455–2472.

[8] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empir-
ical study of cryptographic misuse in Android applications,” in
CCS, 2013, p. 73–84.

[9] L. Piccolboni, G. D. Guglielmo, L. P. Carloni, and S. Sethumadha-
van, “CryLogger: Detecting crypto misuses dynamically,” in S&P,
2021, pp. 1972–1989.

[10] D. Jin, P. O. Meredith, C. Lee, and G. Roşu, “JavaMOP: Efficient
parametric runtime monitoring framework,” in ICSE, 2012, pp.
1427–1430.

[11] O. Legunsen, Y. Zhang, M. Hadzi-Tanovic, G. Roşu, and D. Mari-
nov, “Techniques for evolution-aware runtime verification,” in
ICST, 2019, pp. 300–311.

[12] O. Legunsen, D. Marinov, and G. Roşu, “Evolution-aware
monitoring-oriented programming,” in ICSE-NIER, 2015, pp. 615–
618.

[13] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How
good are the specs? A study of the bug-finding effectiveness of
existing Java API specifications,” in ASE, 2016, pp. 602–613.

[14] O. Legunsen, N. A. Awar, X. Xu, W. U. Hassan, G. Roşu, and
D. Marinov, “How effective are existing Java API specifications
for finding bugs during runtime verification?” ASEJ, vol. 26, no. 4,
pp. 795–837, 2019.

[15] B. Miranda, I. Lima, O. Legunsen, and M. d’Amorim, “Prioritizing
runtime verification violations,” in ICST, 2020, pp. 297–308.

[16] K. Jamrozik, P. von Styp-Rekowsky, and A. Zeller, “Mining sand-
boxes,” in ICSE, 2016, pp. 37–48.

[17] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Şerbănuţă, and
G. Roşu, “RV-Monitor: Efficient Parametric Runtime Verification
with Simultaneous Properties,” in RV, 2014, pp. 285–300.

[18] C. Lee, D. Jin, P. O. Meredith, and G. Roşu, “Towards categorizing
and formalizing the JDK API,” Computer Science Dept., UIUC,
Tech. Rep., 2012.

[19] L. Teixeira, B. Miranda, H. Rebêlo, and M. d’Amorim, “Demys-
tifying the challenges of formally specifying API properties for
runtime verification,” in ICST, 2021, pp. 82–93.

[20] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and
T. Ratchford, “Automated API property inference techniques,”
TSE, vol. 39, no. 5, pp. 613–637, 2013.

[21] M. Gabel and Z. Su, “Testing mined specifications,” in FSE, 2012,
pp. 1–11.

[22] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “CrySL:
An extensible approach to validating the correct usage of crypto-
graphic APIs,” TSE, vol. 47, no. 11, pp. 2382–2400, 2021.

[23] S. Afrose, Y. Xiao, S. Rahaman, B. Miller, and D. D. Yao, “Evalua-
tion of static vulnerability detection tools with Java cryptographic
API benchmarks,” TSE, pp. 485–497, 2022.

[24] “Missing cryptographic step,” Available from MITRE, CWE-
ID CWE-325. [Online]. Available: https://cwe.mitre.org/data/
definitions/325.html

[25] A. S. Ami, N. Cooper, K. Kafle, K. Moran, D. Poshyvanyk, and
A. Nadkarni, “Why crypto-detectors fail: A systematic evaluation
of cryptographic misuse detection techniques,” in S&P, 2022, pp.
614–631.

[26] OWASP, “Owasp benchmark,” 2022. [Online]. Available: https:
//owasp.org/www-project-benchmark

[27] NSA, “Juliet benchmark,” 2012. [Online]. Available: http:
//samate.nist.gov/SRD/testsuite.php

[28] A. Yorihiro, P. Jiang, V. Marqués, B. Carleton, and O. Legunsen,
“eMOP: A Maven plugin for evolution-aware runtime verifica-
tion,” in RV, 2023, pp. to–appear.

[29] D. Hook, Beginning Cryptography with Java, 1st ed., GBR, 2005.
[30] N. Ferguson, B. Schneier, and T. Kohno, Cryptography Engineering:

Design Principles and Practical Applications, 2010.
[31] “Use of a broken or risky cryptographic algorithm,” Available

from MITRE, CWE-ID CWE-327. [Online]. Available: https:
//cwe.mitre.org/data/definitions/327.html

[32] S. E. Java Platform, “Java Cryptography Architecture (JCA)
Reference Guide,” 2022. [Online]. Available: https://docs.oracle.
com/en/java/javase/11/security/index.html

[33] S. Krüger, “CogniCrypt – The Secure Integration of Cryptographic
Software,” Ph.D. dissertation, Universität Paderborn, 2020.
[Online]. Available: https://www.bodden.de/pubs/phdKrueger.
pdf

[34] “JavaMOP,” https://github.com/runtimeverification/javamop.
[35] F. Chen and G. Roşu, “Parametric trace slicing and monitoring,”

in TACAS, 2009, pp. 246–261.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, AUGUST XXXX 14

[36] F. Chen, P. O. Meredith, D. Jin, and G. Roşu, “Efficient formalism-
independent monitoring of parametric properties,” in ASE, 2009,
pp. 383–394.

[37] “Apache qpid brokerj,” 2022. [Online]. Available: https://qpid.
apache.org/components/broker-j/index.html

[38] NSA, “Juliet test suite for Java (user guide),” Center for Assured
Software, National Security Agency, Tech. Rep., 2012.

[39] S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A com-
prehensive benchmark on Java cryptographic API misuses,” in
SecDev, 2019, pp. 49–61.

[40] Y. Zhang, Y. Xiao, M. M. A. Kabir, D. D. Yao, and N. Meng,
“Example-based vulnerability detection and repair in Java code,”
in ICPC, 2022, p. 190–201.

[41] P. Ferrara, E. Burato, and F. Spoto, “Security analysis of the
OWASP benchmark with julia,” in ITASEC, 2017, pp. 242–247.

[42] B. Mburano and W. Si, “Evaluation of web vulnerability scanners
based on OWASP benchmark,” in ICSEng, 2018, pp. 1–6.

[43] Y. Zhang, M. M. A. Kabir, Y. Xiao, D. D. Yao, and N. Meng,
“Automatic detection of Java cryptographic API misuses: Are we
there yet?” TSE, pp. 288–303, 2022.

[44] D. Beyer, “Software Verification: 10th Comparative Evaluation
(SV-COMP 2021),” in TACAS, 2021, pp. 401–422.

[45] J. Herter, D. Kästner, C. Mallon, and R. Wilhelm, “Benchmarking
static code analyzers,” Reliability Engineering & System Safety, vol.
188, pp. 336–346, 2019.

[46] “JaCoCo Code Coverage,” 2022. [Online]. Available: https:
//www.eclemma.org/jacoco/

[47] “CrySL repository,” 2022. [Online]. Available: https://github.
com/CROSSINGTUD/Crypto-API-Rules/

[48] M. Hazhirpasand, M. Ghafari, and O. Nierstrasz, “Java cryptogra-
phy uses in the wild,” in ESEM, 2020, pp. 1–6.

[49] A. Shi, A. Gyori, O. Legunsen, and D. Marinov, “Detecting as-
sumptions on deterministic implementations of non-deterministic
specifications,” in ICST, 2016, pp. 80–90.

[50] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Mari-
nov, “DeFlaker: Automatically detecting flaky tests,” in ICSE, 2018,
pp. 433–444.

[51] D. Silva, L. Teixeira, and M. d’Amorim, “Shake it! Detecting flaky
tests caused by concurrency with Shaker,” in ICSME, 2020, pp.
301–311.

[52] G. Pinto, B. Miranda, S. Dissanayake, M. d’Amorim, C. Treude,
and A. Bertolino, “What is the vocabulary of flaky tests?” in MSR,
2020, p. 492–502.

[53] “Use of hard-coded credentials,” Available from MITRE, CWE-
ID CWE-798. [Online]. Available: https://cwe.mitre.org/data/
definitions/798.html

[54] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, and P. D. McDaniel, “FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
Android apps,” in PLDI, 2014, pp. 259–269.

[55] D. Jin, P. O. Meredith, and G. Roşu, “Scalable parametric runtime
monitoring,” UIUC, Tech. Rep., 2012.

[56] P. Meredith and G. Roşu, “Efficient parametric runtime verification
with deterministic string rewriting,” in ASE, 2013, pp. 70–80.

[57] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
configuration changes in context to prevent production failures,”
in OSDI, 2020, pp. 735–751.

[58] “ACM publications policy on research involv-
ing human participants and subjects,” 2002. [On-
line]. Available: https://www.acm.org/publications/policies/
research-involving-human-participants-and-subjects

[59] B. Carlson, K. Leach, D. Marinov, M. Nagappan, and A. Prakash,
“Open source vulnerability notification,” in OSS, 2019, pp. 12–23.

[60] L. Sampaio and A. Garcia, “Exploring context-sensitive data flow
analysis for early vulnerability detection,” JSS, vol. 113, pp. 337–
361, 2016.

[61] P. Arteau, “Findsecbugs,” Available online. [Online]. Available:
https://find-sec-bugs.github.io/

[62] RigsIT, “Xanitizer,” Available online. [Online]. Available: https:
//www.rigs-it.net

[63] SonarSource, “Sonarqube,” Available online. [Online]. Available:
https://www.sonarqube.org/

[64] NCCGroup, “Visualcodegrepper,” Available online. [Online].
Available: https://github.com/nccgroup/VCG

[65] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “SMV-
HUNTER: Large scale, automated detection of SSL/TLS man-in-
the-middle vulnerabilities in Android apps,” in NDSS, 2014, pp.
1–14.

[66] F. Gagnon, M.-A. Ferland, M.-A. Fortier, S. Desloges, J. Ouellet,
and C. Boileau, “AndroSSL: A platform to test Android applica-
tions connection security,” in FPS, 2015, pp. 294–302.

[67] Y. Li, Y. Zhang, J. Li, and D. Gu, “ICryptoTracer: Dynamic analysis
on misuse of cryptography functions in IOS applications,” in NSS,
2015, pp. 349–362.

[68] J. Li, Z. Lin, J. Caballero, Y. Zhang, and D. Gu, “K-hunt: Pinpoint-
ing insecure cryptographic keys from execution traces,” in CCS,
2018, pp. 412–425.

[69] Y. Falcone, S. Currea, and M. Jaber, “Runtime verification and
enforcement for Android applications with RV-Droid,” in RV,
2012, pp. 88–95.

[70] A. Bauer, J.-C. Küster, and G. Vegliach, “Runtime verification
meets android security,” in NASA Formal Methods, 2012, pp. 174–
180.

[71] P. Daian, Y. Falcone, P. Meredith, T. F. Şerbănuţă, S. Shiriashi,
A. Iwai, and G. Roşu, “RV-Android: Efficient parametric Android
runtime verification, a brief tutorial,” in RV, 2015, pp. 342–357.

[72] X. Zheng, C. Julien, R. Podorozhny, F. Cassez, and T. Rakotoariv-
elo, “Efficient and scalable runtime monitoring for cyber–physical
system,” IEEE Systems Journal, vol. 12, no. 2, pp. 1667–1678, 2016.

[73] X. Zheng, C. Julien, R. Podorozhny, and F. Cassez, “BraceAsser-
tion: Runtime verification of cyber-physical systems,” in MASS,
2015, pp. 298–306.

[74] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan,
and G. Roşu, “ROSRV: Runtime verification for robots,” in RV,
2014, pp. 247–254.

[75] D. B. d. Oliveira, T. Cucinotta, and R. S. d. Oliveira, “Efficient
formal verification for the Linux kernel,” in SEFM, 2019, pp. 315–
332.

[76] D. Solet, J.-L. Béchennec, M. Briday, S. Faucou, and S. Pillement,
“Hardware runtime verification of embedded software in SoPC,”
in SIES, 2016, pp. 1–6.

[77] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of
self: Probabilistic reasoning of program behaviors for anomaly
detection with context sensitivity,” in DSN, 2016, pp. 467–478.

[78] X. Shu, D. Yao, N. Ramakrishnan, and T. Jaeger, “Long-span
program behavior modeling and attack detection,” TOPS, vol. 20,
no. 4, pp. 1–28, 2017.

[79] L. Cheng, K. Tian, D. D. Yao, L. Sha, and R. A. Beyah, “Checking
is believing: Event-aware program anomaly detection in cyber-
physical systems,” TDSC, vol. 18, no. 2, pp. 825–842, 2019.

[80] W. Ahrendt, J. M. Chimento, G. J. Pace, and G. Schneider, “Ver-
ifying data-and control-oriented properties combining static and
runtime verification: theory and tools,” FMSD, vol. 51, pp. 200–
265, 2017.

[81] F. H. da Costa, I. Medeiros, T. Menezes, J. V. da Silva, I. L. da Silva,
R. Bonifácio, K. Narasimhan, and M. Ribeiro, “Exploring the use
of static and dynamic analysis to improve the performance of the
mining sandbox approach for Android malware identification,”
JSS, vol. 183, p. 111092, 2022.

[82] L. Bao, T. B. Le, and D. Lo, “Mining sandboxes: Are we there yet?”
in SANER, 2018, pp. 445–455.

[83] S. Krüger, S. Nadi, M. Reif, K. Ali, M. Mezini, E. Bodden,
F. Göpfert, F. Günther, C. Weinert, D. Demmler, and R. Kamath,
“CogniCrypt: supporting developers in using cryptography,” in
ASE, 2017, pp. 931–936.

