
Acto: Automatic End-to-End Testing for Operation
Correctness of Cloud System Management
Jiawei Tyler Gu

University of Illinois

Urbana-Champaign, IL, USA

jiaweig3@illinois.edu

Xudong Sun

University of Illinois

Urbana-Champaign, IL, USA

xudongs3@illinois.edu

Wentao Zhang

University of Illinois

Urbana-Champaign, IL, USA

wentaoz5@illinois.edu

Yuxuan Jiang

University of Illinois

Urbana-Champaign, IL, USA

yuxuanj9@illinois.edu

Chen Wang

IBM Research

Yorktown Heights, NY, USA

Chen.Wang1@ibm.com

Mandana Vaziri

IBM Research

Yorktown Heights, NY, USA

mvaziri@us.ibm.com

Owolabi Legunsen

Cornell University

Ithaca, NY, USA

legunsen@cornell.edu

Tianyin Xu

University of Illinois

Urbana-Champaign, IL, USA

tyxu@illinois.edu

Abstract
Cloud systems are increasingly being managed by opera-

tion programs termed operators, which automate tedious,

human-based operations. Operators of modern management

platforms like Kubernetes, Twine, and ECS implement declar-

ative interfaces based on the state-reconciliation principle. An
operation declares a desired system state and the operator

automatically reconciles the system to that declared state.

Operator correctness is critical, given the impacts on sys-

tem operations—bugs in operator code put systems in un-

desired or error states, with severe consequences. However,

validating operator correctness is challenging due to the

enormous system-state space and complex operation inter-

face. A correct operator must not only satisfy correctness

properties of its own code, but it must also maintain man-

aged systems in desired states. Unfortunately, end-to-end

testing of operators significantly falls short.

We present Acto, the first automatic end-to-end testing

technique for cloud system operators. Acto uses a state-

centric approach to test an operator together with a managed

system. Acto continuously instructs an operator to reconcile

a system to different states and checks if the system success-

fully reaches those desired states. Acto models operations as
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state transitions and systematically realizes state-transition

sequences to exercise supported operations in different sce-

narios. Acto’s oracles automatically check whether a sys-

tem’s state is as desired. To date, Acto has helped find 56

serious new bugs (42 were confirmed and 30 have been fixed)

in eleven Kubernetes operators with few false alarms.
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1 Introduction
Cloud systems are growing in scale and demand beyondwhat

human-based operation can reliably, continuously, and effi-

ciently manage. Modern cloud systems are increasingly be-

ingmanaged by operation programs, termed operators [2, 47],
that automate labor-intensive operations. Operators of cloud

management platforms like Kubernetes [39], Twine [83], and

ECS [67] implement declarative interfaces based on state rec-
onciliation. An operation declares the desired system state

and the operator automatically reconciles the system from

its current state to the declared state. This “cloud-native” op-

erator pattern simplifies operations and improves efficiency.

The cloud-native operator pattern has led to a thriving

ecosystem of high-quality, reusable operator code [55, 56, 61,
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Figure 1. A safety bug in ZooKeeperOp, a ZooKeeper
operator, detected by our tool, Acto [30]. The bug mani-

fests when the operator first scales down and then scales up

ZooKeeper. Newly created pods fall into crash loops.

75, 78], many of which are used in production [49, 50, 77, 85,

89]. Taking Kubernetes as an example: most cloud systems

today have operators to manage them atop the Kubernetes

platform. These operators automate important management

tasks like software upgrades, configuration updates, and au-

toscaling. Even for the same cloud system, multiple different

operators are developed by commercial vendors and open-

source communities, to support different operation practices

and deployment environments.

The rapid development and deployment of operators make

their quality assurance a pressing need—operation correctness
is critical to system reliability [51, 70]. A buggy operator

can impair correctly implemented systems in production.

Compared with human operator mistakes—major causes

of system failures [38, 51, 68–70]—bugs in operators have

more magnified impacts due to the nature of automation and

widespread software reuse. In fact, buggy operators caused

many recent production incidents [41, 42, 52, 59, 60, 65, 86].

Figure 1 shows a safety bug that our technique detects in a

Kubernetes operator for managing ZooKeeper. When scaling

down a ZooKeeper cluster, the operator only removes the

pods, but not the data volumes attached to those pods. If the

operator later scales up the ZooKeeper cluster, newly cre-

ated pods will try to reuse old volumes. Due to membership

inconsistencies between new pods and old volumes, the new

ZooKeeper nodes fail to start. As a result, the ZooKeeper

cluster cannot scale up and is thus vulnerable to overloads.

Figure 2 shows a liveness bug that our technique detects

in an operator for managing TiDB. To update the affinity

rule of a TiDB pod [1], the operator must stop the pod and

reassign it with a new affinity rule. But, if the new affinity

rule is not satisfiable, the pod cannot be reassigned. In this

case, the buggy operator waits forever for the assignment

to complete. To make matters worse, the operator cannot be

restored by resetting the affinity rule, because the operator

does not carry out new operations before the ongoing one

completes, to avoid race conditions.

These two bugs are among a myriad of operator bugs that

affect operation correctness. Compared with the manage-

ment platform (e.g., Kubernetes) and the managed system
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Figure 2. A liveness bug in TiDBOp, a TiDB operator,
detected by Acto [32]. If a declared affinity rule cannot

be satisfied, TiDBOp enters an infinite waiting loop and the

pod will never be assigned. TiDBOp cannot be recovered by

rolling back with a satisfiable affinity rule.

(e.g., ZooKeeper and TiDB), operator code is often much

less tested. For example, we find that existing operators rely

mostly on unit tests which cannot check operation correct-

ness end to end, i.e., if an operator reconciles the managed

system to desired states. Some operators include a few end-

to-end (e2e) tests but only cover small parts of the enormous

system state space and the complex operations exposed by

declarative interfaces (see §3).

We seek a practical testing technique that can test cloud

system operators end to end and can be readily applied to

any types of operators for managing different systems. Un-

fortunately, existing automated test generation techniques

like fuzzing [66] or symbolic execution [40] cannot effec-

tively test operators end to end, since they neither model

the semantics of operations nor reason about system states.

In particular, operator bugs do not commonly manifest as

crashes but they drive systems into undesired states (§6.1).

Technique. This paper presents Acto, the first automatic

technique and tool for end-to-end testing of cloud system

operators. Acto automatically generates end-to-end tests to

check three operation correctness requirements: the operator

(1) always reconciles the managed system to desired states,

(2) performs managed system recovery from undesired or

error states by rolling back to a previous good state, and

(3) should be resilient to misoperations (i.e., operation errors)

by preventing them from driving the system into error states.

Acto is state centric. It models an operation as a pair of

current system state and a declaration of the desired state. A

correct operation enables a state transition from the current

state to a new state that satisfies the declaration. Within this

state-transition model, bugs in operators manifest as (1) un-

desired transitions in which the new state implicitly violates

the declaration, or (2) failure to recover from error states. In

addition to bugs, vulnerable code in operators would allow

misoperations to cause transitions into explicit error states.

To systematically explore state transitions under different

scenarios, Acto generates state declarations that cover all

system properties exposed by the operation interface (e.g.,

https://github.com/pravega/zookeeper-operator
https://github.com/pingcap/tidb-operator
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replicas and affinity in Figures 1 and 2). To make gener-

ated state declarations semantically meaningful, Acto auto-

matically infers the semantics of properties and predicates.

Acto ensures that generated declarations are syntactically

valid and that they can exercise operators in diverse ways.

To validate operation correctness under different system

states, Acto executes the e2e tests in a test campaign, where

the operator is continuously tested under a sequence of op-

erations. Each operation reconciles the system to a new state

from which the subsequent operation starts. Acto’s test cam-

paigns leverage the level-triggering principle [57]: a correct

operator must reconcile the system to the desired state re-

gardless of the start state and must recover from error states.

Acto’s oracles check for errors that (1) manifest in explicit

forms, such as unexpected exceptions and panic signals, and

(2) only manifest implicitly as mismatches between the rec-

onciled system state and the declared desired state. To detect

implicit mismatches after state reconciliation, Acto checks

for consistency in state views of the operator and the underly-

ing management platform (e.g., Kubernetes); inconsistencies

indicate bugs. Acto also employs a differential oracle atop

state objects from different state transitions to the same end

states, taking advantage of the interpretability and unifor-

mity of state objects in modern management platforms.

Key results. We implemented Acto for Kubernetes opera-

tors. It works in two modes: a blackbox mode (Acto-■) that
only requires the operator’s interface specification (custom

resource definition of Kubernetes operators) and a whitebox

mode (Acto-□) that additionally takes the operator’s source

code for semantic inference and predicate analysis.

We evaluated Acto on eleven popular Kubernetes opera-

tors of various kinds. Acto found 56 new operator bugs in

total, among which 42 have been confirmed and 30 have

been fixed. Acto also found six bugs in Kubernetes and in the

Go runtime that affected multiple operators (all have been

confirmed or fixed). The detected bugs lead to severe safety

and liveness issues, affecting not only the operators, but also

the reliability and security of the managed systems. Lastly,

Acto finds many vulnerabilities to misoperations. Acto tests

all these operators within eight hours (a nightly run) on a

cluster of eight machines; five of eleven operators only need

one machine. Acto has few false positives: Acto-□ reports

no false alarm and Acto-■ has a 0.19% false alarm rate.

Contributions. This paper makes four main contributions:

• We present the first fully automatic end-to-end testing

technique that checks operation correctness for cloud sys-

tem operators using a state-centric approach.

• We develop Acto, a practical tool that uses the proposed

technique to automatically test unmodified Kubernetes

operators and can detect many kinds of bugs.

• Acto has already helped improve the quality of eleven

popular Kubernetes operators by finding bugs that were

fixed by developers. Acto can be run nightly.
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Figure 3. Scaling up a ZooKeeper system (from 2 to 3
replicas) with a new desired-state declaration (CR).

• Acto is released as an open-source project and is hosted

at https://github.com/xlab-uiuc/acto, where the sosp-ae
branch includes detailed instructions on reproducing the

results in this paper.

2 Background
Operation programs (i.e., operators) for modern cloud man-

agement platforms like Kubernetes [39], Twine [83], and

ECS [67] follow a declarative, state-reconciliation design pat-

tern. An operation declares a desired system state and the

operator automatically reconciles the system to the declared

state. This design pattern simplifies system management op-

erations by removing the need to write ad hoc, imperative

scripts for different one-off tasks. The pattern also makes

system management declarative and intent driven. We give

a brief overview of the pattern, using Kubernetes [39] as a

representative example.

Declarative operation interface. In Kubernetes, operators
expose a declarative interface in the form of custom resources
(CRs) [3]. A CR defines a system resource and its properties

that can be modified to manage that resource. A state decla-

ration specifies property values in a CR. Figure 3 shows an

example of desired-state declarations for ZooKeeper; it spec-

ifies primitive properties like replicas and image, and com-

posite properties like persistence which has sub-properties.

A ZooKeeper operator reconciles a managed ZooKeeper clus-

ter to satisfy the declared state. Management operations are

expressed by changing one or more property values in a CR.

Kubernetes operators maintain CR definitions in the Ope-

nAPISchema format [13], which defines constraints on each

CR property (e.g., data type and data range). Operations that

change a CR are first validated against the specification by

the API servers, before being forwarded to the operator.

Operator design pattern. Kubernetes operators follow

the state-reconciliation pattern of modern cloud manage-

ment platforms and control planes, such as Kubernetes, Borg,

Omega, Twine, and ECS [39, 67, 76, 83, 87, 90]. An operator

continuously reconciles the managed system from its cur-

rent state to a newly declared desired state, if the current

state does not match the declared state. The management

https://github.com/xlab-uiuc/acto
https://github.com/xlab-uiuc/acto/tree/sosp-ae
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platforms maintain their current system states in a collec-

tion of state objects in strongly consistent datastores (e.g.,

etcd [7]). Every entity in the system, such as a pod, a volume,

and a stateful set (representing a stateful system), has a cor-

responding state object. State objects have uniform APIs and

consistent data schema, making them highly interpretable

and extensible [39].

Figure 3 shows how a ZooKeeper operator scales up a

managed ZooKeeper cluster. A user declares the desired

state of the ZooKeeper cluster by submitting a new CR that

changes the replicas property from 2 to 3 via the Kubernetes

client (kubectl). The operator processing the desired-state

declaration first confirms that the current number of replicas

in the ZooKeeper cluster is different from 3—only two pod

objects for replicas currently exist in etcd. To reconcile to the

desired state, the operator notifies Kubernetes to increase the

stateful-set count for replicas. To do so, Kubernetes creates a

new pod and a new volume. State reconciliation stops when

the desired state with three replicas is reached.

Operation correctness. We define three correctness re-

quirements for operations: the operator (1) always reconciles

the managed system to valid, reachable desired states, re-
gardless of its current or previous states; (2) can recover the

managed system from implicit or explicit error states by

rolling back to a previous good state; and (3) should prevent

misoperations from driving the managed system into error

states. Figure 1 violates the first requirement and Figure 2

violates the second requirement. In this paper, we treat root

causes of violations to the first two requirements bugs and
report them to developers. We refer to root causes of viola-

tions of the third requirement as misoperation vulnerabilities,
which are known to be serious issues [37, 38, 51, 68–70, 93].

We discuss systematic mitigations for misoperation vulnera-

bilities with developers.

Operation correctness is hard to achieve. Operator devel-

opers face the twin fundamental challenges of (1) anticipat-

ing relevant system states to explore in the enormous state

space, and (2) correctly reconciling the managed systems

from all the different start states.

3 Motivating Study
To understand the kinds of test cases (i.e., tests) that oper-

ator developers write and the limitations of their current

testing practices, we study 50 open-source Kubernetes oper-

ator projects from GitHub and their tests.

Finding 1. Most operators that we study rely on unit tests,
which cannot validate operation correctness. Only 34% of these
studied operators have a few end-to-end tests.
Checking if a managed system reaches desired states is

beyond the scope of unit tests, each of which checks amethod

in operator code. Such checks need end-to-end (e2e) tests [10]

to validate operation correctness of the managed systems.

Table 1. Properties covered by existing e2e tests and
characteristics of tests that triggermultiple operations.

Operator # Properties Tests with multiple operations
Tested Total % (#) # Ops (Avg)

KnativeOp 8 (2.15%) 372 14.29% (1/7) 6

PCN/MongoOp 70 (1.27%) 5495 38.71% (12/31) 2.58

RabbitMQOp 19 (1.43%) 1332 25.00% (2/8) 2.5

ZooKeeperOp 13 (1.47%) 886 75.00% (6/8) 2

Typically, an e2e test first causes an operator to carry out

an operation, for example, to deploy, scale, or reconfigure

the managed system. Then, the e2e test checks if the oper-

ation succeeded by means of assertions that compare the

reconciled managed system state with the expected state.

However, only 17 (34%) of 50 operators include e2e tests, and

those manually written e2e tests are few, with a median of

six e2e tests per operator.

We focus the rest of our study on the effectiveness of ex-

isting e2e tests, since we address operation correctness. We

study four operators from the 50 and their e2e tests: Kna-

tiveOp, PCN/MongoOp, RabbitMQOp, and ZooKeeperOp.

These operators are developed either by official teams of the

managed systems, or by companies that sell services built

around the managed systems. These four operators contain

7–31 e2e tests; PCN/MongoOp relies only on e2e tests (no

unit tests). Table 4 provides more data about these operators.

Finding 2. Existing e2e tests cover only 1.27–2.15% of sup-
ported properties exposed by the operation interface. Also, most
tested operations start from the default initial state.
Table 1 shows that existing e2e tests change very few

properties when testing operation correctness in these four

Kubernetes operators that we study. We find that some oper-

ators’ e2e tests do not check basic operations, e.g., backend

migration in RabbitMQOp. Also, few e2e tests check opera-

tions in multiple configurations, e.g., deploying ZooKeeper

with persistent and ephemeral storage. Acto efficiently helps

test more operations in multiple configurations.

Operators are long-running processes that continuously

monitor and reconcile managed systems from any state to the

desired states. So, operations should be tested from different
start states. Consider scaling: given a desired number of

replicas, triggering a scale-up or a scale-down procedure

depends on the current state. Table 1 (third column) shows

that the few e2e tests that check multiple operations only

check 2.97 operations on average, a small number compared

to how operators work in practice. Most tests trigger only

one operation from the default initial state.

Finding 3. State-based assertions in existing e2e tests cover
only 0.24–10.90% of managed systems’ state-object fields.
Given the enormous state space, developers likely find it

tedious to write assertions on many state-object fields. Ta-

ble 2 shows a breakdown of three kinds of assertions that

https://github.com/knative/operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/pravega/zookeeper-operator
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Table 2. Three types of assertions in existing e2e tests.

Operator # Assertions # State Objects
Env. State Behav. Total Asserted Total

KnativeOp 18 32 0 50 14 (0.93%) 1506

PCN/MongoOp 2 209 177 388 329 (10.90%) 3017

RabbitMQOp 26 19 29 74 12 (0.42%) 2852

ZooKeeperOp 62 54 0 116 7 (0.24%) 2934

we observe in existing e2e tests. These tests check (1) the en-
vironment (e.g., can operators request Kubernetes services?);

(2) system states—is the managed system reconciled to the

desired state?; and (3) managed system behavior. Assertions
on the environment check that operators run in compatible

settings; they do not validate operation correctness. State

and system-behavior assertions could validate operation cor-

rectness. But, in our study, these kinds of assertions either

only check a small part of the system state or only check the

availability of system services.

Finding 4. The few assertions on system behavior are basic
and mostly check service availability.
KnativeOp and ZooKeeperOp tests have no assertion on

system behavior. In PCN/MongoOp and RabbitMQOp, such

assertions only check that the managed system responds

to read/write requests from clients. We find a few asser-

tions on system-specific behavior: (1) 36 of 177 assertions in

PCN/MongoOp check backup availability; and (2) only one

of 77 RabbitMQOp assertions checks membership list size.

Implications. Our study shows that current manual testing

of operation correctness is significantly limited, even for

popular operators with many GitHub stars (see Table 4, §6).

Our results suggest that manually writing end-to-end (e2e)

tests is tedious and inadequate. So, automatic e2e testing

of operation correctness is desirable. We believe that such

automatic testing is viable and can be done effectively by

leveraging the declarative, state-reconciliation pattern of

modern cloud system operators.

4 Technique
Acto is a state-centric testing technique. It tests operation
correctness by performing end-to-end (e2e) testing of cloud-

native operators together with the managed systems. To do

so, Acto continuously generates new operations during a

test campaign. Then, Acto’s oracles check if the operator

always correctly reconciles the system from each current

state to the desired state, or raises an alarm otherwise.

Acto detects bugs when requirements of operation correct-

ness (§2) are violated. Such bugs include those that (1) cause

an operator not to reconcile the system to desired states,

(2) crash the operator or the system, and (3) prevent the

managed system from recovering from an error state. Acto

also detects vulnerabilities to misoperations that can drive

the systems into explicit error states.

Acto generates minimized e2e test code for every alarm

that it raises. These generated tests can help developers to

reliably reproduce a bug or a vulnerability, without rerun-

ning the entire test campaign. That is, generated e2e tests

only run operations that are necessary to set up the state for

reproducing a bug or a vulnerability. Developers can include

the generated e2e test in their regression test suite.

Acto is automatic—it tests unmodified operators and re-

quires no manual annotation, instrumentation, or assertion.

The test inputs that Acto automatically generates are oper-
ations, which drive the operator under test to reconcile the

managed system to declared desired states. Acto ensures that

generated operations are syntactically valid and represent

various scenarios by analyzing the constraints and seman-

tics of properties exposed by an operator’s interface. Acto

dynamically computes the desired state for triggering the

next operation based on the current state.

Acto’s test oracles check if the system state after an oper-

ation matches the desired state. Automatic test oracle gen-

eration is a hard problem in general. Acto’s test oracles are

enabled by a key opportunity in modern cloud management

platforms based on state reconciliation like Kubernetes: they

maintain the system states in uniform, interpretable state

objects that can be systematically queried and analyzed.

Usage. Acto works in two modes: a blackbox mode (Acto-

■) and a whitebox mode (Acto-□). Acto-■ takes two inputs:

1) a manifest for building and deploying the target operator,

and 2) the specification of state declaration provided by the

operator interface (e.g., the custom resource definition of

Kubernetes operators). Both inputs are abundant in mature

operator projects; they are widely used for operator devel-

opment and deployment. Finding these inputs is straight-

forward. Acto-□ requires an additional input: the operator’s

source code for static program analysis. Acto outputs test

failures, debugging information for root cause analysis, and

minimized test code that reproduces detected failures.

4.1 Operation Model
Acto models an operation as a pair, (𝑆𝑐 , 𝐷), where 𝑆𝑐 denotes
a current system state and𝐷 is a declaration of a valid desired

state. 𝐷 is constrained by the operation interface specifica-

tion (e.g., a CR definition in Kubernetes). If successful, an

operation triggers a state transition, 𝑆𝑐
𝐷−→ 𝑆𝐷 , where 𝑆𝐷

satisfies 𝐷 , i.e., 𝑆𝐷 |= 𝐷 . 𝐷 often only specifies a (small) part

of the system state. So, there are multiple possible system

states that can satisfy 𝐷 , and, in practice, only a small part

of 𝑆 needs to be examined to check if 𝑆𝐷 |= 𝐷 .

If an operation fails (e.g., due to bugs in operator code),

the system enters an error state, 𝑆𝑒 ̸ |= 𝐷 , i.e., 𝑆𝑒 does not

satisfy the desired state. When 𝑆𝑒 ̸ |= 𝐷 , the operator should

be able to rollback the state from 𝑆𝑒 with a state transition

𝑆𝑒
𝐷𝑖−1−−−→ 𝑆𝑐 , where 𝐷𝑖−1 is the desired-state declaration that

previously triggered a transition to 𝑆𝑐 .

https://github.com/knative/operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/pravega/zookeeper-operator
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Figure 4. State transitions of different test strategies.

The fundamental challenge in testing operators is the pro-

hibitive cost of testing all elements in the Cartesian product

of 𝑆 = 𝑆𝐶 ∪𝑆𝐸 and �̆� , where 𝑆𝐶 is the set of all possible valid

system states (𝑆𝑐 ∈ 𝑆𝐶 ), 𝑆𝐸 is the set of all possible error

states (𝑆𝑒 ∈ 𝑆𝐸 ), and �̆� is the set of all possible declarations

of desired state (𝐷 ∈ �̆�). There can be a large number of val-

ues for different properties that constitute the system state.

Exhaustive testing could be prohibitively expensive and any

practical testing approach can only exercise a part of the

state space, i.e., 𝑆 × �̆� .

4.2 Test Strategy
Acto systematically explores the state space using the fol-

lowing three test strategies (Figures 4a–c).

Single operation. Acto generates a declaration of a desired

state𝐷 , triggers an operation to reconcile the current system

state 𝑆𝑐 to the desired system state 𝑆𝐷 , and checks whether

𝑆𝐷 |= 𝐷 . The single operation is applied to the initial system

state 𝑆𝑐 = 𝑆0 (starting from a non-initial state requires more

operations). This simple single-operation strategy is similar

to the current testing practices discussed in §3; it is easy to

implement and reason about. The key challenge is how to

explore an effective and representative subset of �̆� .

Operation sequence. Acto extends single operations into

a test campaign, which consists of a sequence of opera-

tions. Test campaigns overcome the limitation of the single-

operation strategy, which must always start from the initial

state 𝑆𝑐 = 𝑆0. As discussed in §3, it is important to test

whether an operator can reconcile the system to desired

states from different, non-initial start states. Reaching an

end state from different start states increases the chance of

invoking different procedures in the operator code. In a test

campaign, earlier operations take the system to new states

which become the start states for subsequent operations.

Acto generates a test campaign by chaining the expected end

states {𝑆𝑖 } from the single-operation strategy, and generat-

ing a new 𝐷𝑖 after each successful reconciliation, as shown

in Figure 4b. The result is a sequence of state transitions,

𝑆0

𝐷1−−→ 𝑆1

𝐷2−−→ ...
𝐷𝑖−−→ 𝑆𝑖

𝐷𝑖+1−−−→ ...; Acto checks whether each

𝑆𝑖 |= 𝐷𝑖 , where i ≠ 0.

Error-state recovery. The operation-sequence strategy

does not test whether or not an operator correctly restores a

system from implicit or explicit error states. If the system is

in an error state 𝑆𝑒 , the operator is responsible for recovering

from 𝑆𝑒 by reconciling the system from 𝑆𝑒 back to the prior

healthy state 𝑆𝑖−1. The subsequent operations start from

𝑆𝑖−1, such as in the transition, 𝑆𝑖−1

𝐷𝑖+1−−−→ 𝑆𝑖+1, in Figure 4c.

Error states can be reached because of operator bugs that

reconcile the system to a state 𝑆𝑒 ̸ |= 𝐷 , or misoperations—

semantic errors in 𝐷 that escape syntactic validation against

the interface specification.

Acto combines these three test exploration strategies (Fig-

ures 4a–c) to realize the state transition sequences in one

test campaign, as shown in Figure 4d.

5 Design and Implementation
This section describes the main components of Acto and how

we implement them. These components embody Acto’s state-

centric testing technique (§4); they generate declarations of

desired system states, execute test campaigns, and check

reconciled states using automated test oracles.

5.1 Realizing State Transitions
During a test campaign (Figure 4d), Acto automatically gen-

erates a new state declaration 𝐷𝑖+1 based on the current

system state 𝑆𝑖 to realize a state transition, 𝑆𝑖
𝐷𝑖+1−−−→ 𝑆𝑖+1. Test

campaigns start from the initial state 𝑆0. Acto triggers state

transitions with the goals to: (1) cover all properties exposed

by the operation interface, and (2) exercise representative

operation scenarios based on property semantics.

Acto systematically exercises all the properties that are
defined in the operation interface. Each new 𝐷𝑖+1 changes
one property in the current state 𝑆𝑖 and any other properties

that are needed to satisfy predicates on property relation-

ships (§5.2.4). Specifically, Acto selects a previously untested

property and uses it to declare a new desired state. The end

state after one transition, becomes the start state for the

next transition (Figure 4b). All state declarations collectively

change every property at least once during a test campaign.

Acto tests different scenarios based on the semantics of the

changed properties. (Acto automatically infers these seman-

tics, §5.2.2). Table 3 gives a few such scenarios. For example,

Acto tests the scale-up-and-scale-down and the scale-down-

and-scale-up sequences if a property represents the number

of replicas. Acto also tests different pod assignments that

trigger the operator to re-configure or re-deploy managed

systems differently. This scenario-driven approach allows

Acto to focus on a small number of representative states,
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Table 3. Examples of built-in scenarios of Acto to gener-
ate new state declarations and trigger state transitions.
Scenarios are created based on property semantics inferred

by Acto and they can be extended or customized.

Property Scenarios

Replicas Scale up and then down; scale down and then up;

upscale over system resource limit.

Affinity Place all pods on one node; spread pods to different nodes;

set unsatisfiable affinity rules.

Storage Expand storage volumes; shrink storage volumes;

request more storage than is available in a cluster.

Access Switch between normal and privileged roles.

instead of the very large set of all possible property values.

We implement scenarios as plugins that can be extended or

customized; users of Acto can add more plugins.

In addition to valid operation scenarios, Acto also gener-

ates misoperations, each of which triggers a state transition

to an error state, 𝑆𝑒 . For example, Acto generates misopera-

tions that (1) scale the replicas beyond the total number of

available physical resources, and (2) set unsatisfiable affinity

rules (Table 3). Acto uses misoperations to check if an oper-

ator (1) is resilient to operation errors, and (2) can recover

from undesired or error states. Acto’s oracles (§5.3) check the

former (is the system in a state 𝑆𝑒?). Acto checks the latter

by rolling back 𝑆𝑒 to the most recent healthy state. Misopera-

tions that declare semantically erroneous states could escape

constraint validation (see §5.2.1). A correct operator should

not carry out an erroneous operation or at least should be

able to recover from operation failures.

5.2 Generating State Declarations
Acto generates desired-state declarations, 𝐷 ∈ �̆� , that are

syntactically valid (§5.2.1), resemble real-world scenarios

(§5.2.2, §5.2.3), and satisfy predicates on property relation-

ships (§5.2.4). Such desired states improve the effectiveness

and efficiency of Acto’s state space exploration. End-to-end

tests are expensive, so a 𝐷 that does not satisfy these con-

ditions has a low chance to find bugs. We next discuss how

Acto generates 𝐷 to satisfy these conditions.

5.2.1 Extracting Constraints. The operation interface

specification defines syntactic validity constraints on state

declarations. For example, Kubernetes’ OpenAPISchema spec-

ification defines constraints on all supported properties. Acto

uses these constraints to ensure that all property values in

declared desired states are syntactically valid. (Invalid decla-

rations would likely be directly rejected by the API servers

before reaching the operator.) For composite properties, Acto

uses composite constraints like required properties and also

derives constraints from the sub-properties. For primitive

properties, Acto uses constraints like the type, min/max val-

ues (for numeric types), length (for string type), regular-

expression patterns, etc.

// pkg/reconciliation/construct_statefulset.go
desiredSts := &appsv1.StatefulSet {
spec: &appsv1.StatefulSetSpec {

replicas: cr.spec.size
...

} ...
} ...
rc.Client.Update(rc.Ctx, desiredSts)

# Cassandra CRD
cassandraDataVolumeClaimSpec:
accessModes:
...

dataSource:
...

resource:
...

...
size: int
...

# K8s StatefulSetSpec
VolumeClaimTemplates:

accessModes:
...

dataSource:
...

resource:
...

...
replicas: int
...

Operator Interface Specification Kubernetes Core Resource

O
pe

ra
to

rC
od

e

replicas: cr.spec.size

Figure 5. Semantic analysis maps the properties in the
operation interface to the properties of a Kubernetes
core resource.

5.2.2 Inferring Property Semantics. To exercise differ-

ent scenarios (§5.1), Acto changes properties based on their

semantics. Acto infers the semantics of a property in the in-

terface specification by mapping it to a set of resource types

in the Kubernetes core APIs. Such mapping is feasible be-

cause many operations for property changes are eventually

delegated to Kubernetes core services.

Inferring semantics from property structure (Acto-■).
Acto exploits the insight that property structure is effective

for mapping to properties in the Kubernetes core resource

specification. Specifically, all Kubernetes core resource types

have unique structures. Figure 5 exemplifies how Acto in-

fers semantics from the property structure: CassOp has a

cassandraDataVolumeClaimSpec propertywith the same struc-

ture as the VolumeClaimTemplates property in Kubernetes’

StatefulSet resource. Therefore, Acto infers the semantics of

cassandraDataVolumeClaimSpec using a structural mapping.

Inferring semantics from source code (Acto-□). Acto-■
cannot use property structure to map primitive properties

(e.g., integer). Also, naming conventions can be ambiguous

or unreliable. For example, the integer size property in Fig-

ure 5 maps to replicas in Kubernetes’ StatefulSet. To map

primitive properties, Acto-□ analyzes operator code. The

idea is to track the data flow of the property value in the

operator code and analyze how the values are used. If a prop-

erty value is passed to a Kubernetes API or assigned to a

Kubernetes resource object, Acto-□ maps the property to a

Kubernetes object that stores its value, as shown in Figure 5.

Acto-□ implements a static taint analysis to track property

values. The initial taints are pointers and references to the

desired-state declaration (e.g., cr.spec in Figure 5) and the

taints are propagated via data-flow dependencies. The anal-

ysis is field sensitive—to track each primitive (sub-)property

in the declaration—, inter-procedural and context sensitive.
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5.2.3 Generating Property Values. To generate values
for properties with inferred semantics, Acto currently imple-

ments 57 property-specific generators based on Kubernetes

resource semantics. Most of these properties are composite.

The generators focus on high-level semantics to exercise

different scenarios (Table 3). Each generator creates property

values to realize a scenario. We find that most properties

exposed by operation interfaces (83% on average in our eval-

uated operators) can be mapped to Kubernetes resources.

Acto’s generators are invoked at runtime. Some generators

read environment and runtime information to inform value

generation (e.g., an unsatisfiable affinity rule).

For properties whose semantics Acto cannot infer, Acto

mutates current values based on their data types while satis-

fying syntactic constraints (§5.2.1). Acto only mutates primi-

tive sub-properties of composite properties. Acto’s mutation

ensures syntactic validity but does not guarantee semantic

meaningfulness. Mutated values that are not semantically

meaningful help check for vulnerabilities to misoperations.

Our manual inspection during Acto evaluation (§6) shows

that 80+% of mutations are semantically meaningful.

5.2.4 Satisfying Predicates. The values that Acto gener-

ates should satisfy predicates, in the form of property depen-

dencies, for changed property values to trigger state transi-

tions. For example, an operation that changes a backup policy

only triggers a state transition if backup is also turned on.

But, dependencies among properties are often not specified,

so Acto automatically infers them.

Inferring dependencies fromnaming convention (Acto-
■). Property names that are exposed by the operation in-

terface provide hints from which dependencies can be in-

ferred. In Kubernetes, dependencies can be identified by

feature toggles—each composite property has a Boolean sub-

property whose name contains “enabled”. For example, oper-

ations that change PCN/MongoOp’s backup policy must also

set Backup.Enabled to True. Acto-■ infers dependencies on

each property that uses this convention based on a breadth-

first search that iteratively collects feature toggles. We find

this simple heuristic to be effective—it captures 98.05% of

control dependencies that we find. Not all dependencies are

identifiable from feature toggles, but we only find a small

number of other subtle dependencies.

Inferring dependencies using control-flow analysis
(Acto-□). Acto-□ analyzes control-flow relationships among

program variables in operator code to detect dependencies

among property values that do not follow the “*enabled*”

naming convention. This analysis is similar to those used for

finding dependencies among program inputs [43, 93].

Property 𝑝2 depends on property 𝑝1, i.e., 𝑝1

dep←−−𝑝2, if 𝑝2

is only used when 𝑝1 satisfies a predicate. Acto-□ searches

for control dependencies, (𝑝1, 𝜑, 𝑐) dep←−−𝑝2, where 𝑐 is some

value and 𝜑 is a predicate, e.g., an arithmetic, logic, string, or

object comparison. Specifically, if a predicate 𝜑 dominates a

sink statement of property 𝑝2 and 𝜑 is not postdominated by
the sink, then there is a control-flow dependency between 𝜑

and 𝑝2, i.e., 𝑝2 is used only when 𝜑 is True. Sinks consume

property values, e.g., a call to an external API. Further, if

𝜑 is determined by comparing the value of 𝑝1 with 𝑐 , then

Acto-□ records a control dependency, (𝑝1, 𝜑, 𝑐) dep←−−𝑝2. If 𝑝2

has multiple sinks, Acto-□ reports a control dependency,

(𝑝1, 𝜑, 𝑐) dep←−−𝑝2, iff all sinks of 𝑝2 depend on (𝑝1, 𝜑, 𝑐).

5.3 Test Oracles
Acto’s oracles check whether the state to which the managed

system is reconciled matches the specified desired state. If

there is a match, Acto reports the operation as successful.

Otherwise, Acto signals an alarm that the user can inspect

to find bugs or vulnerabilities to misoperations.

The complexity of Acto’s oracles depends on whether

mismatches between reconciled and desired states manifest

explicitly or implicitly. Acto implements oracles to check for

state mismatches that manifest as explicit error states, such as
exceptions, error codes, and timeouts. These oracles 1) scan

an operator’s error log for unexpected exceptions, e.g., the

panic signal in Go; 2) check runtime status of the managed

system (recorded in state objects); and 3) check whether an

operation returns an error code or fails to complete on time.

Acto’s oracles that check for explicit errors are insufficient:

many operator bugs manifest as implicit-state mismatches
with no explicit symptoms. To find such bugs, Acto also im-

plements oracles to check if 𝑆𝑖 |= 𝐷𝑖 for each state transition

𝑆𝑖−1

𝐷𝑖−−→ 𝑆𝑖 . Checking 𝑆𝑖 |= 𝐷𝑖 is challenging. First, 𝑆𝑖 and 𝐷𝑖

are represented differently: 𝐷𝑖 is a specification [3] and 𝑆𝑖
is embodied in state objects [17]. Second, satisfiability (|=)
is domain-specific; its semantics may not be obvious. Acto

uses two types of oracles to detect implicit-state mismatch:

• Consistency oracle (§5.3.1). Acto checks whether 𝑆𝑖 |= 𝐷𝑖

from the operator and the management platform (e.g.,

Kubernetes) views. A buggy operator’s view may show

𝑆𝑖 |= 𝐷𝑖 while the management view shows 𝑆𝑖 ̸ |= 𝐷𝑖 . Such

view inconsistencies likely indicate the presence of bugs.

• Differential oracle (§5.3.2). This oracle leverages the level-
triggering principle [57] that operators should follow: the

same desired state should be reached from different start

states. So, for each transition pair, 𝑆𝑖−1

𝐷𝑖−−→ 𝑆𝑖 and 𝑆0

𝐷𝑖−−→ 𝑆 ′𝑖 ,
Acto checks whether 𝑆𝑖 and 𝑆 ′𝑖 match after state recon-

ciliation based on 𝐷𝑖 . This differential oracle also checks

whether the operator can recover from an error state, 𝑆𝑒 , by

checking whether the system state after a rollbackmatches

𝑆𝑖−1, the preceding state before the error.

In addition to the automated built-in oracles, Acto also has an

interface to allow users to add custom oracles, e.g., domain-

specific oracles to check managed systems.

5.3.1 Consistency Oracle. Some bugs occur if an opera-

tor stops reconciliation because the system is in state 𝑆𝑖 |= 𝐷
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...
PodDisruptionBudget:
spec:
redis-follower: 
(pdb) null

...

	𝑆!"#
...
PodDisruptionBudget:
spec:
redis-follower: 
(pdb) null

...

	𝑆!

# Redis CR:
redisFollower:
pdb:
minAvailable: 2

...

𝐷!

The views of the pdb
property are inconsistent

Figure 6. An OCK/RedisOp bug detected by Acto’s con-
sistency oracle [25]. The PodDisruptionBudget state object
has a null pdb, inconsistent with the pdb declared in 𝐷𝑖 .

in the operator’s view, but 𝑆𝑖 ̸ |= 𝐷 in the management plat-

form’s view. To detect such bugs, Acto additionally checks

whether the management platform’s view matches 𝐷 , based

on the platform’s description of the reconciled state. In Ku-

bernetes, the platform’s view is encoded in spec sections of

state objects, which are jointly maintained by all running

controllers and operators.

For each transition 𝑆𝑖−1

𝐷𝑖−−→ 𝑆𝑖 , Acto attempts to match

each property 𝑝 (specified in 𝐷𝑖 ) to the corresponding spec

fields in the state objects. If a match is found, it indicates that

the management platform agrees with the operator. Other-

wise, Acto raises an alarm.

Figure 6 shows a bug detected by the consistency oracle.

OCK/RedisOp should reconcile the system to a declared state

with a pdb property for Redis followers (to ensure that repli-

cas are available during managed disruptions [16]). But, the

property in 𝐷𝑖 is not consistent with Kubernetes’ view of Re-

dis followers, in which there is no pdb. The root cause is that

OCK/RedisOp was missing code to support pdb for followers,

risking the Redis availability during transient disruptions.

Such bugs are common due to the operation interface com-

plexity, especially as software evolves [36].

Acto uses property structure analysis (§5.2.2) to infer corre-

spondences between fields in the spec section of state objects

and a declared property. A declared property could match

fields in multiple state objects, but not every matched field is

relevant to the property. For example, PodDisruptionBudget

objects that are not used by Redis followers could also define

pdb. Acto uses the insight that state object changes occur in

small increments, because Acto changes a few properties at a

time. So, Acto only matches a specified property to changed
fields. Acto raises an alarm if a matched field’s value is dif-

ferent from the declared property’s value, or if a property

change does not cause any change to matched field values.

5.3.2 Differential Oracle. The differential oracle does not
check against 𝐷𝑖 ; it checks that an operator 1) reconciles to

the matching desired states from different states 𝑆𝑖−1 and

𝑆0, and 2) recovers from (implicit or explicit) error state 𝑆𝑒

to state 𝑆𝑖−1. Acto rolls back to 𝑆𝑖−1 to continue exploration

from a known good state.

...
ContourPod: ...

...
ContourPod: ...

𝐷!

	𝑆!"#
	𝑆!

...
(no ContourPod)

...
(no ContourPod)

	𝑆$
𝑆!%

ContourPod exists 
in 𝑆! but not in 𝑆!%

# Knative CR
ingress:
contour:
enabled: false

...

Figure 7. A KnativeOp bug that is detected by Acto’s dif-
ferential oracle [22]. Contour continues to manage ingress

after an operation explicitly disables it.

Figure 7 shows a bug detected by the differential oracle.

There, the Boolean KnativeOp property contour.enabled en-

ables or disables Contour, an ingress controller. But, a Kna-

tiveOp bug makes it impossible to disable Contour after it

is enabled. The consistency oracle does not detect this bug:

it is hard to automatically map the Boolean property to the

existence of a Contour pod. The differential oracle detects

the bug because a Contour pod appears in 𝑆𝑖 , but not in 𝑆 ′𝑖 .
Comparison with a second transition that starts from ini-

tial state 𝑆0 results from Acto’s exploration strategy (Fig-

ure 4d). Our choice of 𝑆0 is justified by the fact that 𝑆0 is

always a good state and it is used frequently in manually

written e2e tests (§3). Conceptually, Acto can compare with

a second transition that starts from any good state.

Note that reporting alarms for any difference in the state

objects of 𝑆𝑖 and 𝑆 ′𝑖 would be brittle and lead to false posi-

tives, because execution-specific values like timestamps, IP

addresses, and ports may change nondeterministically. Acto

excludes execution-specific fields when comparing state ob-

jects. Acto automatically labels those fields by (1) running

the transition 𝑆0

𝐷1−−→ 𝑆1 multiple times as a calibration and

labeling fields with values varying across runs, and (2) run-

ning 𝑆0

𝐷𝑖−−→ 𝑆𝑖 multiple times, iff the differential oracle fires

an alarm on 𝑆𝑖 , to ensure relevant fields are deterministic.

5.4 Reproduction and Debugging
Acto generates minimized e2e test code for every alarm that

it raises. When a test fails (the system is in an error state 𝑆𝑒 ),

Acto records failure information (e.g., a dump of the error

state, log messages, and system status). Then, Acto rolls back

to a valid state 𝑆𝑖−1 and continues the test campaign.

To generate test code, Acto minimizes the operation se-

quence that reached 𝑆𝑒 to only two operations, (𝑆0, 𝐷𝑖−1)
and (𝑆𝑖−1, 𝐷𝑖 ). Here, (𝑆0, 𝐷𝑖−1) reconciles the system state to

𝑆𝑖−1. Acto outputs the minimized sequence as an executable

function that developers can include in their regression test

suite after fixing the bug. In our experience, the recorded

failure information suffices to effectively locate root causes

of test failures. Since the minimized test code reliably repro-

duces the bug, interactive debuggers [4, 6] can also be used.

Acto users can suppress alarms by writing annotations.

https://github.com/OT-CONTAINER-KIT/redis-operator
https://github.com/knative/operator
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5.5 Implementation
We implement Acto for Kubernetes operators. Acto-■ has

12,100 lines of Python code. Roughly 9,000 of those lines

implement generic test logic (e.g., input generation, test exe-

cution, and oracles). Kubernetes-specific semantic inference

and value generation take ∼2K lines. If new Kubernetes re-

sources are introduced in the future, we will need to extend

Acto to add new value generators for the associated proper-

ties (§5.2.3). The remaining lines of Acto-■ code implement

utilities: environment setup, state analysis, etc. Acto-□ is

built on top of Acto-■ using an additional 5,700 lines of Go

code for program analysis. We currently support operators

written in Go, the most popular language among operators.

Acto runs tests on virtualized Kubernetes clusters. It supports

three backends, Kind [9], Minikube [12], and K3d [8].

Static analysis in Acto-□. We use ssa [15] which pro-

vides intra-procedural static single-assignment (SSA) rep-

resentation. We use pointer [14] for alias analysis, which

implements the Andersen-style point-to analysis [33].

State convergence. Acto applies test oracles only after

the system state converges. Convergence time ranges from

one second to 10 minutes, so setting a fixed timer would be

unreliable. Acto uses a reset timer to check for convergence—

it resets the timer when it observes a system event, until no

event occurs and the timer times out. We conservatively set

the timer to three times the system restart time.

Test parallelization. To speed up testing, Acto partitions

operation sequences, [(𝑆0, 𝐷1), (𝑆1, 𝐷2), ..., (𝑆𝑥 , 𝐷𝑥+1)], into
multiple tests and runs them in parallel. To run three parti-

tions of this sequence in parallel, Acto creates three tests cor-

responding to 1) 𝑆0

𝐷1−−→ 𝑆1

𝐷2−−→, ...,
𝐷𝑖−−→ 𝑆𝑖 , 2) 𝑆0

𝐷𝑖−−→ 𝑆𝑖
𝐷𝑖+1−−−→

, ...,
𝐷𝑛−−→ 𝑆𝑛 , and 3) 𝑆0

𝐷𝑛−−→ 𝑆𝑛
𝐷𝑛+1−−−→, ...,

𝐷𝑥−−→ 𝑆𝑥 . If 𝑆𝑖 is an error

state, it is “rolled back” based on 𝐷𝑖−1. Acto can run multiple

test partitions on one machine, each in a virtualized Kuber-

netes cluster with a separate namespace. This approach saves

time as test runs wait for convergence. Acto keeps container

file systems in memory to reduce the image loading time.

6 Evaluation
Acto’s premise is that fully automatic end-to-end correctness

testing for unmodified operators is viable and effective. We

answer three research questions: (1) Can Acto effectively

find new bugs in real-world operators? (2) How efficient is

Acto? (3) Are Acto’s signaled alarms trustworthy?

We apply Acto to eleven popular open-source Kubernetes

operators which manage nine cloud systems (Table 4). All

evaluated operators are developed by the official teams of the

managed systems, or by companies that sell services built

around the managed systems. Test suites in the evaluated

operators have similar characteristics as those in §3.

Our main evaluation results are summarized as follows:

• Acto finds 56 new bugs in eleven operators; 42 bugs in the

operators have been confirmed; 30 have been fixed. Acto

Table 4. The Kubernetes operators that we evaluate.

Operator System Dev. # Stars LOC # E2E Tests

CassOp Cassandra K8ssandra 148 23.1K 48

CockroachOp CockroachDB Official 238 17.4K 21

KnativeOp Knative Official 157 16.3K 7

OCK/RedisOp Redis OCK 531 2.5K 0

OFC/MongoOp MongoDB Official 977 17.1K 62

PCN/MongoOp MongoDB Percona 268 15.0K 31

RabbitMQOp RabbitMQ Official 669 14.7K 8

SAH/RedisOp Redis Spotahome 1303 10.5K 1

TiDBOp TiDB Official 1130 132.8K 131

XtraDBOp XtraDB Percona 448 15.5K 37

ZooKeeperOp ZooKeeper Pravega 332 5.5K 8

also finds six bugs in Kubernetes and in the Go runtime

that affect multiple operators; all were confirmed or fixed.

• Acto’s test campaigns take less than eight hours per oper-

ator on a cluster of eight machines (a nightly run). Five of

eleven operators only need one machine.

• Acto generates few false positives: Acto-□ reports no false

alarms and Acto-■ has a very low false alarm rate: 0.19%.

6.1 Finding New Bugs and Vulnerabilities
Acto finds previously unknown bugs in all evaluated opera-

tors, 56 bugs in total (Table 5). We reported all these bugs.

So far, 42 were confirmed and 30 have been fixed. No bug

report was rejected. Acto-□ found all 56 bugs. Acto-■missed

one bug, due to not being able to infer the semantics of a

primitive property that is needed to generate a scenario.

Acto generates e2e tests to reproduce all 56 bugs that it

detects; developers can add these e2e tests to their regression

test suite (§5.4). In fact, for six bug fixes, developers added

regression tests that perform the same state transition gen-

erated by Acto. Our experience tells that the generated e2e

tests are invaluable for debugging and validating bug fixes.

Many bugs detected by Acto have severe consequences:

managed-system failures, reliability issues, and security is-

sues (Table 6). Estimating the likelihood of encountering

each bug “in the field” is hard—the data for such estimation

is not publicly available. However, a bug detected by Acto

was also encountered by a real user after we reported it [19].

Also, some previously reported bugs are similar to those that

Acto detects (e.g., [20]). Note that the evaluated operators are

popular open-source projects (GitHub “#Stars” in Table 4),

suggesting that operator correctness is hard to achieve.

Acto also finds six bugs in Kubernetes and in the Go run-

time that affect multiple operators. These bugs cause wrong

or imprecise quantity conversions [26], incompatibility be-

tween declarations and API-server validation [18], crashes

due to Go’s generated shared object [21], etc. All these six

bugs were confirmed or fixed after we reported them.

Acto also detects 630 misoperation vulnerabilities (§6.1.2).

Each vulnerability corresponds to a unique misoperation

that drives the managed system into an error state.

https://github.com/k8ssandra/cass-operator
https://github.com/cockroachdb/cockroach-operator
https://github.com/knative/operator
https://github.com/OT-CONTAINER-KIT/redis-operator
https://github.com/mongodb/mongodb-kubernetes-operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/spotahome/redis-operator
https://github.com/pingcap/tidb-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/pravega/zookeeper-operator


Acto: Automatic End-to-End Testing for Operation Correctness of Cloud System Management SOSP ’23, October 23–26, 2023, Koblenz, Germany

Table 5. New bugs detected by Acto-□ (Acto-■) in the
evaluated operators. Acto also detected six new bugs in

Kubernetes and Go runtime that affect multiple operators.

Operator Undesired Error State Recovery TotalState System Operator Failure

CassOp 2 0 0 2 4

CockroachOp 3 0 2 0 5

KnativeOp 1 0 2 0 3

OCK/RedisOp 4 0 3 1 8

OFC/MongoOp 3 1 2 2 8

PCN/MongoOp 4 0 0 1 5

RabbitMQOp 3 0 0 0 3

SAH/RedisOp 2 1 0 1 4

TiDBOp 2 1 0 1 4

XtraDBOp 4 0 1 1 6

ZooKeeperOp 4 1 (0) 0 1 6 (5)

Total 32 4 (3) 10 10 56 (55)

6.1.1 Bugs Detected by Acto. Acto detects bugs that vi-

olate the first two operation correctness requirements: (1)

driving managed systems into undesired or error states, or

(2) failing to recover from error states.

Undesired state. Acto found 32 bugs, where an operator

does not reach the desired state, but neither the operator

nor the managed system reports errors explicitly. The conse-

quences of these bugs are latent and hard to observe (e.g., se-

curity vulnerabilities). These bugs have different root causes

in code, but a common theme is that the operator stops rec-

onciliation before the desired state is reached. We showed

two such bugs in Figures 6 and 7. These bugs show the impor-

tance of modeling operations as state transitions and testing

different state transitions to the same declared states (§4.1).

Error state. Acto found 14 bugs that result in runtime errors

or crashes of the managed system or the operator. Among

these, four bugs caused runtime errors in the managed sys-

tems (such as the one in Figure 1). In another example [31],

when testing TiDBOp, Acto generates a valid operation that

turns on binlog to replicate data using the TiDB binlog. How-

ever, TiDB binlog requires a pump cluster to record and sort

binlogs, which is not set up by TiDBOp. So, TiDBOp restarts

TiDB nodes to load the new configuration, but the replicas

crash because of the missing pump cluster.

Acto also found ten bugs that caused operator failure.

For example, CockroachOp crashed due to an “index-out-

of-range” error when parsing a valid state declaration gen-

erated by Acto [27]. The crash brought down the webhook

service [5] that the operator uses to validate declarations. Af-

ter restart, CockroachOp crashed again due to the offending

declaration and it got stuck in a crash-then-restart loop.

Recovery failure. Acto detected ten bugs that lead to seri-

ous liveness issues (e.g., permanent operator failures) that

can neither be addressed by restarting the operator nor by

issuing new operations (such as the one in Figure 2). Acto

Table 6. Consequences of the 56 detected bugs in Ta-
ble 5. One bug can have multiple consequences.

Consequence Example # Bugs

System failure MongoDB is down and cannot recover [23] 5

Reliability issue Redis is not protected by disruption budget [25] 15

Security issue CockroachDB uses outdated secrets [29] 2

Resource issue Redis runs with no resource guarantee [24] 9

Operation outage CockroachOp crashes and cannot recover [27] 18

Misconfiguration Ingress controller cannot be disabled [22] 15

detected these bugs by testing rollback operations with the

differential oracle. Our investigation reveals a common cod-

ing practice: operators perform new operations only after

the system is in a stable state. This practice is a double-edged

sword: it prevents bugs caused by racing operations and

reduces risks during upgrade, but it makes failure recovery

difficult, because it also blocks rollback operations if the

system is in an error state.

6.1.2 Misoperation Vulnerabilities Detected by Acto.
Acto-□ detects 630 misoperation vulnerabilities that violate

the third operation correctness requirement (Acto-■ detects

616 of these 630). Each vulnerability corresponds to a unique

property. Acto detects these vulnerabilities by generating de-

clared states with unsatisfiable affinity rules, misconfigured

security contexts, unavailable resources, etc. (Table 3). All
these vulnerabilities can lead to severe consequences includ-

ing entire system failure, partial service failures, and relia-

bility issues. In practice, the triggering misoperations could

result from human mistakes or wrong policies. These results

show that operator developers do not anticipate and defend

well against misoperations, which are frequently reported

as major causes of system failures [37, 38, 51, 68–70, 93].

We actively discuss with developers on potential mitiga-

tion (e.g., by more rigorous early checks). In practice, some of

these vulnerabilities are difficult to prevent. The reason lies

in the challenges of encoding sufficient domain knowledge in

operators to check the semantics of requested operations. For

example, it is hard to replicate Kubernetes core scheduler’s

complex logic [82]. Checking some misoperations requires

knowledge of managed systems. State rollback can be an ef-

fective mitigation strategy, but it does not always work—over

35% of 630 misoperation vulnerabilities cannot be mitigated

by rollbacks due to the recovery-failure bugs in §6.1.1.

6.1.3 Effectiveness of Different Oracles. Acto’s consis-
tency and differential oracles catch 43 of the 56 bugs (Table 7).

The consistency oracle detects 23 bugs by matching and com-

paring properties in state declarations to the spec sections

in state objects (§5.3.1). The differential oracle catches ten

more bugs that are triggered during normal state transitions.

It also catches all ten recovery-failure bugs during rollback

state transitions. The regular error checks detect 14 bugs

https://github.com/k8ssandra/cass-operator
https://github.com/cockroachdb/cockroach-operator
https://github.com/knative/operator
https://github.com/OT-CONTAINER-KIT/redis-operator
https://github.com/mongodb/mongodb-kubernetes-operator
https://github.com/percona/percona-server-mongodb-operator
https://github.com/rabbitmq/cluster-operator
https://github.com/spotahome/redis-operator
https://github.com/pingcap/tidb-operator
https://github.com/percona/percona-xtradb-cluster-operator
https://github.com/pravega/zookeeper-operator
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Table 7. Breakdown of the number of bugs detected by
the oracles. Same bug can be detected by multiple oracles.

Test Oracle # Bugs (Percentage)

Consistency oracle 23 (41.07%)

Differential oracle for normal state transition 25 (44.64%)

Differential oracle for rollback state transition 10 (17.86%)

Regular error check (e.g., exception, error code) 14 (25.00%)

by checking process status of the operator and runtime sta-

tus of the managed system (recorded in the state objects).

Compared with state-based assertions in existing tests that

only cover 0.24%–10.9% of state-object fields (Table 2), Acto’s

oracles systematically check all related fields. For example,

the differential oracle compares all state-object fields that

are deterministic (71.4%–80.5% of all fields across evaluated

operators) through different transitions to the same end state.

6.1.4 Coverage. Acto achieves 100% property coverage

for every operator—Acto generates at least one operation

for each property (§5.1). Acto’s effectiveness over manually-

written tests (§3) comes from its ability to cover more prop-

erties and their values, and more transitions from different

states (including error states). In 38 of 56 detected bugs, the

related property is uncovered by existing tests. Relevant prop-

erties for the other 18 bugs are covered, but these bugs elude

existing tests because a revealing transition is not exercised.

For example, in CassOp, existing tests check that labels [11]

are correctly added to pods, but Acto detects a bug [28] that

can only be triggered when pod labels are deleted.

6.1.5 Bug Fixes. We reported all 56 bugs that Acto finds to

the developers of the respective operators; 42 have been con-

firmed and 30 of those have been fixed. Developers typically

fix these reported bugs by improving reconciliation logic for

the bug-triggering transitions generated by Acto, and adding

validation logic before reconciling on each state declaration

to prevent error conditions. Fixing bugs in failure-recovery

logic usually requires more effort, because it needs domain

knowledge to differentiate permanent error states from tran-

sient unstable states. For example, the bug in Figure 2 has

been confirmed, but the developers cannot easily fix it be-

cause the operator cannot reliably detect liveness violations—

the pod migration will never succeed in the future—by ob-

serving the current state.

6.1.6 Tradeoffs between Acto-■ and Acto-□. We ex-

pect Acto-□ to be more beneficial than Acto-■ for operators

that heavily use primitive-typed properties or do not follow

naming conventions for property dependencies. In the eval-

uated operators, most properties have composite type with

clear structure features and they follow naming conventions.

Hence, the benefit of Acto-□ over Acto-■ is small in our eval-

uation. Note that Acto-□ is language specific—it currently

only supports operators written in Go. Acto-■ is language

Table 8. Acto-□ test campaign time per operator.

Operator Testing Time (Machine Hours) # Ops # WorkersGeneration Execution Total

CassOp 0.02 10.39 10.41 568 16

CockroachOp 0.02 6.08 6.10 371 16

KnativeOp 0.04 6.25 6.29 774 16

OCK/RedisOp 0.02 9.72 9.75 597 16

OFC/MongoOp 0.01 5.73 5.74 434 16

PCN/MongoOp 0.04 26.55 26.58 1749 12

RabbitMQOp 0.03 4.69 4.72 394 16

SAH/RedisOp 0.02 7.92 7.94 718 16

TiDBOp 0.03 16.08 16.11 824 12

XtraDBOp 0.03 57.48 57.51 1950 8

ZooKeeperOp 0.02 8.54 8.55 740 16

agnostic and can apply to operators written in languages

other than Go, and proprietary, close-sourced operators.

6.2 Test Efficiency
Table 8 shows machine hours Acto-□’s test campaigns take

per operator and the number of operations in each test cam-

paign (“#Ops”). The longest campaign (XtraDBOp) had 1,950

operations. Acto stops generating operations when a cam-

paign covers all properties and corresponding scenarios.

All experiments are run on Cloudlab [48] Clemson c6420

machines with 2 Intel Xeon Gold 6142 CPUs (16 cores) and

376 GB of memory, with Ubuntu 20.04 LTS. Campaign times

vary from 4.72 to 57.51 hours across operators. Using eight

machines, test campaigns for all operators finish in less than

eight hours. So, Acto-□ can be run nightly.

Acto’s efficiency comes from test parallelization (§5.5). By

default, Acto spawns 16 parallel workers to run tests on each

machine. But, parallelism can be reduced if the operator or

the managed system requires more resources (e.g., memory).

Semantic analysis for composite properties (§5.2.2) drasti-

cally reduces the number of operations in test campaigns and

allows Acto to focus on high-level semantics of composite

properties to exercise representative scenarios, rather than

mutating fine-grained primitive (sub-)properties.

Acto-■ takes 8.47% less time on average than Acto-□ be-

cause it generates, on average, 48 fewer test operations per

operator than Acto-□. The reason is that Acto-■ cannot in-

fer semantics for a few primitive properties and thus cannot

generate operations for several scenarios; it only mutates

current values within the constraints of a property (§5.2.3).

6.3 False Positives
Acto’s alarms have a low false positive rate. Acto-□ reports

no false alarm. Every test failure during the test campaigns

points to either a bug in the operator code or a misoperation

vulnerability. In total, Acto-□ reports 2243 test failures: 738

test failures are caused by the 56 bugs in the operator and six

bugs in Kubernetes and Go runtime, and 1505 test failures are

caused by 630 misoperation vulnerabilities. Fixing one bug

https://github.com/k8ssandra/cass-operator
https://github.com/cockroachdb/cockroach-operator
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or vulnerability may resolve multiple test failures. We are

automating alarm clustering based on fault localization [72,

88], but it is now beyond the scope of testing.

Acto-■ reports four false alarms in total. It reports 2071

test failures in total; among them, 653 test failures are caused

by 55 bugs in operators and six bugs in Kubernetes or Go;

1414 test failures are caused by 616 misoperation vulnera-

bilities. Therefore, the overall false positive rate of Acto-■
is 0.19%, or 4 out of 2071 alarms. All four false alarms are

caused by unsatisfied predicates when Acto-■ changes prop-

erties. As discussed in §5.2.4, Acto-■ is unable to infer de-

pendencies that do not follow the naming convention. For

example, in ZooKeeperOp, the property, ephemeral, depends

on a predicate: another property, storageType, must also be

set to “ephemeral”. Hence, Acto-■ fails to satisfy the predi-

cate when changing the ephemeral property, but it expects a

state change and raises a false alarm. These dependencies are

captured by Acto-□ through control-flow analysis (§5.2.4).

6.4 Implications and Discussion
We reflect on our experience on finding root causes of de-

tected bugs and vulnerabilities, and discuss implications.

Operation coverage. It is nontrivial to validate operators

under the declarative model. A key challenge is to reach de-

sired states from many different start states (including error

states). We observe that operators invoke different impera-

tive procedures, based on how a declared state differs from

the current state. However, it can be tedious and error-prone

to cover all such conditions. In fact, most bugs that Acto

finds do not manifest when performing operations from the

initial state 𝑆0. Operations from the initial state are likely

already validated by developers manually or by writing tests.

Modeling and testing diverse state transitions are critical to

validating operation correctness (§4.1). Declarative program-

ming [82] may make operator testing less error-prone.

As for testing, Acto uses property coverage to drive state

transitions in the test campaigns (§5.1). The rationale is to

achieve high coverage of desired states, as state transitions

are triggered by changing property values via the operation

interface. Traditional coverage metrics like code coverage

are insufficient because they are not concerned with system

states: tests that are adequate for the code in one state may

not be adequate in a different state. Code coverage may not

help test all properties either, e.g., an operator that is missing

code to handle transition-triggering property changes could

have high code coverage. Acto can find bugs due to missing

code if the end state does not match the desired state.

Reducing risks. Operations can pose new reliability risks to

managed systems—what happens if an operation fails during

execution? An operation can span a series of procedures. For

example, we observe that existing Kubernetes operators com-

monly implement reconfiguration operations in two stages:

(1) stopping the current running node (with the old configura-

tion); then (2) starting a new node (with new configuration).

In such implementations, failure in either stage is risky. First,

such a failure could leave the operator in intermediate states

which are nontrivial to recover from [80, 81]. Acto’s results

show that recovery failures are common (§6.1.1). Second, in

such implementations, the first step can open a small win-

dow of downtime (e.g., due to stopping the current node).

That downtime would be magnified if a new node fails to

start. So, it is safer to turn down the old node after the new
node starts successfully. But, in practice, this safe start order

can be hard to implement, due to the semantic requirements

of the managed system and version incompatibility of the

changes [64, 96]. For example, a ZooKeeper cluster cannot

have two leaders at the same time, to avoid a split brain. So, a

reconfiguration operation must first stop the old leader node

before starting the new one to avoid a split brain. System

support for speculative execution or emulation can help.

Closing the knowledge gaps. Operations must also re-

spect the constraints of the managed system. Otherwise, an

operation can harm the managed system. The TiDBOp bug

described in §6.1.1 is one example. Also, many vulnerabilities

to misoperations that Acto detects are rooted in the essential

cross-system interaction challenge [84]—it is hard for an

operator to comprehensively check a requested operation’s

semantic validity if the semantics are not defined inside the

operator code but in the managed system or the underlying

management framework (e.g., Kubernetes). One potential

solution is to replicate the validity checks of the relevant com-

ponents in the operator. (Prior work showed the promise

of automatically extracting configuration checks [92].) In

essence, the knowledge gap lies in the fact that operator de-

velopers may not be the managed-system developers, or they

may not be aware of subtle, complex constraints. Since oper-

ation correctness should be a first-class concern in reliable

system design, a rigorous interface between the operator

and the managed systems is needed to close these gaps.

7 Limitations and Future Work
Acto is a first step towards thorough validation of operation

correctness for modern cloud systems. Like any testing tech-

nique, Acto is incomplete and it can miss bugs. Acto does

not cover all possible system states and transitions; doing

so is prohibitively expensive. For example, Acto generates

property values to cover a few representative scenarios. This

design aims to balance efficiency and coverage—it covers

each property at least once and it exercises diverse scenarios

based on the semantics of operations. The results are promis-

ing, but there is plenty of room for future work to improve

Acto’s state-space exploration and its efficiency.

Acto has other soundness and completeness issues. First,

the predicate analysis of Acto-■ is incomplete, resulting in

false alarms; Acto-□’s control-flow analysis only captures
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predicates that manifest as control-flow dependencies (we

did not observe any other kind). Moreover, Acto’s automated

oracles do not incorporate domain knowledge about man-

aged systems and they rely only on state objects managed

by the platform. Hence, the current oracles may not capture

complex and subtle failure states that are not reflected in state

objects, such as loss of writes, linearizability violations, and

gray or partial failures [34, 54, 58, 63]. We design Acto as an

extensible and “push-button” testing utility for unmodified

operators, while also enabling users to add domain-specific

oracles that have stronger managed-system observability.

The state-centric testing principle that Acto leverages may

apply to generic distributed systems, to capture issues re-

lated to operation assumptions. The challenges would be

to automatically validate system states and to synthesize

state transitions for arbitrary systems. Systems with clearly-

defined protocols or models may be more amenable.

Some types of bugs can only be triggered by external faults

like node failures and network delays [44, 80]; a reliable op-

erator must tolerate common faults. Acto does not target

those fault-tolerance bugs. Our prior work, Sieve [80], de-

tects those bugs by injecting faults and checking operator

safety and liveness. We plan to integrate Sieve with Acto:

(1) Sieve’s inputs are end-to-end tests; Acto could be used

to systematically generate these tests to make fault injec-

tion more comprehensive, and (2) Sieve can generate diverse

error states for Acto to test operator recovery. The key chal-

lenge is to efficiently navigate the combination of the input

operation space and the fault space (each space is very large).

Lastly, Acto currently focuses on testing individual opera-

tors. But, a system may be managed by multiple operators

in practice. So, operation correctness could be violated by

conflicting operations from different operators. We plan to

extend Acto to test interdependent operators together. A key

challenge will be to address a larger state space and to reason

about state transitions in interleaving operation schedules.

8 Related Work
Prior work identified operation errors as major causes of

production failures [35, 37, 38, 51, 53, 68–71]; they result

mostly from human mistakes. As human-based operations

are increasingly being replaced by automated operation pro-

grams, the correctness of those programs is critical. Acto is a

first step towards automatic testing of operation correctness.

We believe that Acto’s ideas can apply beyond Kuber-

netes to other cloud platforms like Twine [83], ECS [67],

and Borg [90]. These platforms also adopt declarative, state-

reconciliation patterns for operators or controllers, as a result

of many design iterations [39] and discussions [46, 74].

DCM [82] uses declarative programming to synthesize

cluster managers based on constraint solving; the idea can

potentially be extended for custom operators. However, most

operators are currently written in imperative code.

Acto is complementary to prior work on software deploy-

ment [45, 62, 73, 91, 96] and configuration [64, 79, 92–95].

Acto checks programs that perform those operations rather

than the correctness of code or configuration changes.

Acto can potentially be enhanced with ideas from sym-

bolic execution [40] and fuzzing [66]. But, naïve application

of these techniques is unlikely to yield benefits. For example,

without reasoning about state transition, techniques only

guided by code coverage will be insufficient (§6.4).

Sieve [80] is a closely related testing technique. It finds

bugs in Kubernetes controllers that are triggered by exter-

nal faults like node failures, network delays, etc. Operators

are custom controllers for managing systems atop the Ku-

bernetes platform. Acto is fundamentally different from, but

complementary to Sieve. In essence, Sieve is a fault injector

that checks fault tolerance, while Acto is an end-to-end test

generator that checks functional correctness. Sieve cannot

find the bugs Acto detects, because it assumes that the op-

erator works correctly without faults. Sieve detects bugs by

comparing operator executions with and without injected

faults. Sieve does not report errors in any fault-free refer-

ence execution. More importantly, Sieve takes test workloads

as input—those test workloads are currently written manu-

ally, but it is challenging and costly for developers to write

comprehensive test workloads (see §3). Acto automatically

generates test workloads (i.e., “test campaigns” in Acto’s

terminology). Conversely, Acto cannot directly detect bugs

that Sieve finds, because Acto does not inject external faults.

We discuss potential Acto and Sieve integration in §7.

9 Concluding Remarks
With the rapidly growing practice of automating operations

and deploying operators in production, operator correctness

has become a critical component of cloud system reliability.

This paper presents Acto, an automatic technique for testing

cloud-native operators end to end with the managed systems.

We show that Acto’s state-centric approach enables effective

and practical end-to-end testing that is readily applicable to

existing operators and complements the significant inade-

quacy of manually written tests. Our goal now is to make

Acto a common utility in developing and testing operators,

towards correct automation of cloud system operations.
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