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Machine learning and statistical methods, such as unsupervised semantic models,

make massive cultural heritage collections more explorable and analyzable. These

models capture many underlying patterns of raw textual and visual materials, but

neither model creators nor model users fully understand which specific patterns are

learned by a given model nor under what conditions a particular pattern becomes

more learnable. In this dissertation I address two core questions (i) what do models

actually learn? and (ii) how can we direct what they learn? Instead of proposing

new models, I focus on expanding the affordances, as well as our understanding,

of existing ones that are used by scholars in the humanities and social sciences. In

the first part of this dissertation, I study what models learn by way of expanding

the ways in which they can be used. In the second part, I investigate how existing

models can be directed away from known, uninteresting structures via corpus- and

representation-level interventions. Throughout this work, I show how machine

learning and statistical methods provide an opportunity to view collections from

alien, defamiliarized perspectives that can call into question the boundaries of

established categories. Likewise, I show how the uses of computational methods

within humanities and social science scholarship can test, challenge, and expand

the affordances of these methods. Ultimately, this dissertation highlights some of

the many ways in which machine learning and the humanities help one another.

v



B I O G R A P H I C A L S K E T C H

Laure Thompson was born and raised in Renton, Washington. She attended the

University of Washington where she discovered that computer science is full of

interesting puzzles and that studying the ancient Mediterranean world is an interest

worth cultivating. In the process of learning all the things, she graduated in 2013

with a B.S., cum laude, in Electrical Engineering and a B.S., cum laude, in Computer

Science with minors in Classical Studies and Mathematics. Laure began her Ph.D.

in Computer Science at Cornell University in Fall 2013. After several years studying

theoretical programming languages and security, she found her research niche in

the areas of natural language processing and machine learning with David Mimno

as her advisor. Through this switch she found a way to productively combine

her interests in computer science, classics, archaeology, and the humanities more

broadly. She completed a minor in classical archaeology under the supervision of

Caitlín Eilís Barrett; a minor that became unexpectedly relevant to this dissertation.

In Fall 2020, Laure joined the College of Information and Computer Sciences at the

University of Massachusetts Amherst as an Assistant Professor. And now, despite

the challenges of a global pandemic, has finally written a dissertation.

vi



A C K N O W L E D G M E N T S

This Ph.D. has been a long, winding, and unexpected, but rewarding journey.

Although the end looks far from what I had imagined some seven years ago, I am

grateful for where it has taken me. None of this would have been possible without

the many people who have supported me along the way. Apologies in advanced

for all those unmentioned but not unappreciated.

First, I want to thank my advisor, David Mimno, for taking a chance on a

fourth year Ph.D. student with no background in natural language processing or

machine learning but a common interest in the Graeco-Roman world. Thank you

for introducing me to the field of digital humanities and helping me navigate its

intersections with computing. I am grateful for both your unending support and

patience with my many projects that spanned across numerous domains and long

lengths of time. I feel incredibly lucky to have you as my advisor and mentor.

Next, I would like to thank the other members of my committee: David Bamman,

Caitlín Eilís Barrett, and Dexter Kozen. Thank you for your support and feedback

that have greatly improved this dissertation. Thank you also to Dexter and Caitlín

for tolerating the many changes that my academic plans underwent. Dexter, while

this dissertation has little to do with programming languages, I hope you nonethe-

less enjoyed being on this committee. Caitlín, thank you for agreeing to be my

minor advisor in classical archaeology long before my doctoral work had anything

to do with classical archaeology. David, I hope you enjoyed being on a Cornell

Ph.D. committee even though you were never able to join in person.

vii



Additionally, I want to thank my many friends at Cornell and beyond that have

supported me through my Ph.D. I especially want to thank Anna Gommerstadt

and Anna Waymack. Without your friendships, I could never have completed this

Ph.D. I also want to specifically thank my lab mates Maria Antoniak, Jack Hessel,

Moontae Lee, Xanda Schofield, Melanie Walsh, and Greg Yauney. While I have

only co-authored papers with a few of you, I have appreciated our many insightful

discussions, some about research and some not.

Finally, I would like to thank my parents, David and Mary Thompson, for their

unending love and support. Thank you for cheering me on through all of these

years and only asking me occasionally “When are you going to graduate?” Who

knew that my joking answer of 2020 would be the right one.

My Ph.D. work has been supported in part by the National Science Foundation

through a Graduate Research Fellowship (DGE-1144153) and two grants (#1526155

and #1652536); and through resources provided by the HathiTrust Digital Library

and the HathiTrust Research Center.

viii



C O N T E N T S

1 introduction 1

2 background 7

2.1 Using Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Text-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Image-Based Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

I what do models actually learn?

3 topic modeling with context embedding clusters 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Data and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 continents or archipelagos? 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Data: Part of Speech from Multi-lingual Parallel Texts . . . . . . . . . 43

4.3 Proof of Concept: Visualizing POS . . . . . . . . . . . . . . . . . . . . 47

4.4 Quantifying POS Formations . . . . . . . . . . . . . . . . . . . . . . . 48

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Effects of Algorithm and Language . . . . . . . . . . . . . . . 50

4.5.2 Effects of Parameter Settings . . . . . . . . . . . . . . . . . . . 52

4.5.3 Effects of Data Modifications . . . . . . . . . . . . . . . . . . . 57

ix



x contents

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 computational cut-ups 63

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Creating and Reading Computational Cut-Ups . . . . . . . . . . . . . 65

5.3 Proof of Concept: Seeing Music . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Distinguishing Dada . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

II how can we direct what models learn?

6 authorless topic models 85

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Collections and Models . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Evaluating Topic-Author Correlation . . . . . . . . . . . . . . . . . . . 89

6.5 Contextual Probabilistic Subsampling . . . . . . . . . . . . . . . . . . 95

6.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 setting the stage for magical gems 109

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 What is magic? . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.2 What are magical gems? . . . . . . . . . . . . . . . . . . . . . . 115

7.2.3 Past and future analyses of magical gems . . . . . . . . . . . . 124

7.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.1 Images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.2 Metadata. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3.3 Computational Cut-Ups. . . . . . . . . . . . . . . . . . . . . . . 130



contents xi

7.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.1 What structures are captured initially? . . . . . . . . . . . . . 133

7.4.2 Removing unwanted structure . . . . . . . . . . . . . . . . . . 140

7.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8 a symbiotic future for machine learning & the humanities 151

bibliography 155



L I S T O F F I G U R E S

Figure 3.1 Contextual embedding clusters produce mean internal and

external coherence scores comparable to LDA (dashed line).

BERT clusters (blue) have high mean external coherence,

better than LDA for large numbers of topics. BERT clusters

contain more unique words, while RoBERTa (red) and GPT-2

(green) L[−1] clusters tend to repeat similar clusters. BERT

clusters have the highest word concentrations. . . . . . . . . 30

Figure 3.2 Distinct words per cluster for LDA, BERT L[−1], GPT-2

L[−2], and RoBERTa L[−1] for K = 500. Although the av-

erage BERT cluster covers fewer word types, RoBERTa has

more clusters with very few (< 20) word types. . . . . . . . 30

Figure 3.3 Mean internal and external coherence for reduced features

for BERT and GPT-2. Features reduced with PCA tend to

have higher coherence than SRP. . . . . . . . . . . . . . . . . 34

Figure 3.4 BERT and GPT-2 produce coherent topics for less familiar

(w.r.t. pretraining) collections. BERT consistently produces

more unique clusters. LDA external coherence drops for

K = 500. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.1 Hypothetical visualizations of continental (left) and archipelagic

(right) representations. . . . . . . . . . . . . . . . . . . . . . . 42

Figure 4.2 Distributions of open- and closed-class POS tags after rare

words have been removed but before any other treatment. . 44

xii



list of figures xiii

Figure 4.3 t-SNE projections of open-class words for each algorithm

and language. POS clusters differently across language and

embedding algorithm. For all languages, GloVe forms the

most distinct POS formations and CBOW forms the most con-

centrated ones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 4.4 Mean scores for nearest centroid and nearest neighbor clas-

sification. Overall, CBOW has the highest scores for nearest

centroid and GloVe has the highest for nearest neighbor. . . 51

Figure 4.5 Increasing the number of training iterations from 15 to

100 has no significant effect on Nearest Neighbor accuracy

scores, but SGNS and especially GloVe benefit from more

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 4.6 Window size versus classifier score. GloVe scores increase

with window size while CBOW and SGNS scores decrease. . . . 54

Figure 4.7 Window size versus classifier score including algorithms

with altered window weighting or subword information.

Hyperbolic weighting tends to improve scores, while linear

weighting worsens them. For SGNS, using subword informa-

tion results in similar increases to using hyperbolic window

weighting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 4.8 Change in classifier scores versus subsampling of closed-

class tokens. Removing 50% or more closed-class tokens

harms scores for all models and languages. . . . . . . . . . . 58

Figure 4.9 Change in GloVe classifier scores versus removing one or

all-but-one closed class. Determiners and adpositions have

the largest individual influence on scores, while numerals

have the least. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



xiv list of figures

Figure 5.1 CNN input images for ten randomly sampled pages. . . . . 66

Figure 5.2 Histograms of prediction confidence for pages containing

music (left) and pages without music (right). The classifier

is more confident labeling pages as “Not-Music” no matter

what the actual page type is. . . . . . . . . . . . . . . . . . . 68

Figure 5.3 Ten pages most confidently, and correctly, classified as “Mu-

sic.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.4 Ten pages most confidently misclassified as “Music.” . . . . 69

Figure 5.5 Ten music-containing pages most confidently misclassified

as “Not-Music.” . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.6 This medieval folio is confidently misclassified as “Not-Music.” 71

Figure 5.7 Ten non-music pages most confidently classified as “Not-

Music.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.8 Ten grayscale pages correctly and most confidently classified

as “Not-Music.” . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.9 Histograms of prediction confidence for Dada (left) and not-

Dada (right) pages. The classifier is more confident labeling

pages as “Not Dada” no matter what the actual page type is. 74

Figure 5.10 Ten Dada pages most confidently classified as “Dada.” . . . 75

Figure 5.11 Top 150 not-Dada pages most confidently misclassified as

“Dada.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.12 Ten Dada pages most confidently misclassified as “Not-Dada.” 76

Figure 5.13 Top 150 not-Dada pages most confidently classified as “Not-

Dada.” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



list of figures xv

Figure 6.1 Author entropy, minus major author divergence, and bal-

anced author divergence for topics in topic models trained

on Sci-Fi. Dashed lines indicate medians. Increasing the

number of topics in a model does not reduce the proportion

of author-specific topics. . . . . . . . . . . . . . . . . . . . . . 93

Figure 6.2 Reasonable threshold values t flag both rare words (left) and

common words being used in author-specific ways (right).

Each point represents the relative frequency of a term (x-

axis) for an author (y-axis) in Sci-Fi. . . . . . . . . . . . . . . 96

Figure 6.3 Increasing the threshold t for contextual probabilistic (CP)

subsampling results in more topics with high dispersion

over authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 6.4 Contextual probabilistic subsampling improves mean topic

coherence for Sci-Fi despite the removal of frequent words.

Coherence degrades under context curation for Courts. . . 100

Figure 6.5 Proportional loss of removed word types and tokens. Con-

textual probabilistic subsampling does substantially less

damage than contextual curation. . . . . . . . . . . . . . . . . 101

Figure 6.6 Proportion of Sci-Fi tokens removed across part-of-speech

groups. Contextual methods remove tokens from all groups. 102

Figure 6.7 Topic Stability and Entropy for Sci-Fi (K = 250) and Courts

(K = 50). AF-5 has little effect. Many of the low-entropy

topics avoided by CP-05 are highly unstable. . . . . . . . . . 103



xvi list of figures

Figure 7.1 Example Chnoubis (CBd-2350) and Anguipede (CBd-1367)

iconographies. Each gemstone face is presented in two

forms—an image of the gem and an alternative represen-

tation (impression and cast)–to more clearly present the

iconographies. Sources: (a), (b) courtesy of the Getty’s Open

Content Program; (c) © American Numismatic Society; (d)

from Bonner [1950, Pl. VIII]. . . . . . . . . . . . . . . . . . . . 119

Figure 7.2 Example representations of Chnoubis signs both with the

figure Chnoubis (a) and without (b). Sources: (a) Gem Im-

pressions Collection, Cornell University Library, (b) courtesy

of the Getty’s Open Content Program. . . . . . . . . . . . . . 119

Figure 7.3 A diagram for identifying magical gems from other forms

of talismans [adapted from Nagy, 2012, p. 90] . . . . . . . . 123

Figure 7.4 Two dimensional UMAP projections of computational cut-

ups. Drawings are well-separated from photographs and

simulacra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Figure 7.5 The computational cut-ups of gems cluster by medium,

shape, color, and background. Each row represents the top

15 images of a cluster produced by the spherical k-means

algorithm with k = 25. . . . . . . . . . . . . . . . . . . . . . . 135

Figure 7.6 Four most confident true positive (top) and true negative

(bottom) classifications for image-level Anguipede (left) and

Chnoubis (right) labels. Multiple mediums are represented

within these predictions. . . . . . . . . . . . . . . . . . . . . . 139



list of figures xvii

Figure 7.7 Four most confident false negative (top) and false positive

(bottom) classifications for image-level Anguipede (left) and

Chnoubis (right) labels. The false positives are less inter-

pretable than the false negatives. . . . . . . . . . . . . . . . . 139

Figure 7.8 The most similar SVD dimensions for RGB cut-ups and

medium labels. The Drawing and Photograph labels have

high similarity with the first two dimensions, while the

Simulacrum label does not have high similarity with any

specific dimension. . . . . . . . . . . . . . . . . . . . . . . . . 141

Figure 7.9 Two dimensional UMAP projections of computational cut-

ups with first two SVD components removed. Drawings are

not as well-separated but remain fairly distinct from photos

and casts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Figure 7.10 Four most confident true positive (top) and true negatives

(bottom) classifications for image-level Anguipede (left) and

Chnoubis (right) labels using INLP transformed cut-ups as

input (i = 50). . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 7.11 Four most confident false negatives (top) and false positives

(bottom) classifications for image-level Anguipede (left) and

Chnoubis (right) labels using INLP transformed cut-ups as

input (i = 50). . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Figure 7.12 Two dimensional UMAP projections of transformed color

cut-ups using INLP with i ∈ {10, 25, 50}. While medium-

specific clusters are still present after 50 iterations of INLP,

these clusters are more diffuse and more overlapping. . . . . 147



Figure 7.13 Three medium cross-cutting clusters identified by spheri-

cal k-means for INLP-transformed computational cut-ups

(i = 25). INLP enables the formation of a small number of

cross-cutting clusters within the embedding space of com-

putational cut-ups. . . . . . . . . . . . . . . . . . . . . . . . . 147

L I S T O F TA B L E S

Table 3.1 Automatically selected examples of polysemy in contextual

embedding clusters. Clusters containing “land” or “metal”

as top words from BERT L[−1], GPT-2 L[−2], and LDA with

with K = 500. All models capture multiple senses of the

noun “metal”, but BERT and GPT-2 are better than LDA at

capturing the syntactic variation of “land” as a verb and noun. 22

Table 3.2 Corpus statistics for number of documents, types, and to-

kens. Document and type counts are listed in thousands (K);

token counts are listed in millions (M). . . . . . . . . . . . . 24

Table 3.3 Contextualized embedding clusters are more syntactically

aware than LDA. Topics ranked by the entropy of POS

distribution of the top 20 words K = 500. . . . . . . . . . . . 32

xviii



list of tables xix

Table 3.4 Unlike vocabulary-level clusters, token-level clusters are

grounded in specific documents and can be used to analyze

collections. Here we show the most prominent BERT topics

(K = 500) for the four product categories in Reviews. This

analysis is purely post hoc, neither BERT nor its clustering

have access to product labels. . . . . . . . . . . . . . . . . . . 38

Table 3.5 The ten BERT topics (K = 500) from Reviews with the most

uniform distribution over product categories. . . . . . . . . . 38

Table 3.6 Grounded topics allow us to analyze trends in the organi-

zation of a corpus using a BERT topic model with K = 500.

Here we measure the prevalence of topics from 1980 to 2019

in US Supreme Court opinions by counting token assign-

ments. Topics related to unions and natural resources are more

prevalent earlier in the collection, while topics related to

firearms and intellectual property have become more prominent. 39

Table 4.1 Key parts of speech considered in this work. . . . . . . . . . 43

Table 4.2 Summary statistics for the seven languages under consider-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 5.1 Periodical-level Dada-like proportions for all pages. . . . . . 78

Table 5.2 Periodical-level Dada-like proportions for “illustrated” pages. 80

Table 6.1 Corpus statistics for the number of authors, documents, and

word types, as well as average document length. Document

and word type counts are listed in thousands (K). . . . . . . 88



xx list of tables

Table 6.2 Topics from a 250-topic model trained on Sci-Fi and their

corresponding measures of author entropy, minus major

author, and balanced authors. Underlined values indicate

poor quality scores and bolded terms indicate word types

with low author diversity within the topic. . . . . . . . . . . 94

Table 7.1 Working labels and their definitions. The top six labels rep-

resent wanted structure, while the bottom three represent

unwanted structure. . . . . . . . . . . . . . . . . . . . . . . . . 128

Table 7.2 Label statistics for the number and proportion of positively

labeled images and gems. Magical Names has the largest

positive label class in terms of images, while Photograph

has the largest in terms of gems. . . . . . . . . . . . . . . . . 129

Table 7.3 Mean and standard deviation of balanced accuracy scores

for the initial computational cut-ups. Object medium is eas-

ily predicted from computational cut-ups, while “magical”

characteristics are more difficult to identify. . . . . . . . . . . 139

Table 7.4 Mean and standard deviation of balanced accuracy scores

for modified cut-ups with the first two SVD dimensions

removed. Bold values indicate statistically significant drops

in performance. Removing these two dimensions has made

it harder to identify drawings and photographs of gems, but

not other structure. . . . . . . . . . . . . . . . . . . . . . . . . 142



list of tables xxi

Table 7.5 Mean and standard deviation of balanced accuracy scores

for transformed color cut-ups using Iterative Null-space

Projection (INLP) with i ∈ {10, 25, 50, 100} iterations. Bold

values indicate statistically significant drops in performance.

INLP effectively removes medium-related structure without

harming the other structures of interest. . . . . . . . . . . . . 146





1
I N T R O D U C T I O N

The rise of digitization and the ubiquity of the World Wide Web have brought

many exciting changes to humanistic scholarship. More texts and artifacts are

available to scholars and the wider public than ever before. Digital collections,

such as the HathiTrust Digital Library1 and the Campbell Bonner Magical Gems

Database,2 not only allow broader access to materials, but also enable new ways of

viewing and comparing objects and texts that may never coexist in physical space.

Additionally, “born” digital materials, such as fanfiction [Milli and Bamman, 2016;

Porter, 2018], online book reviews [Boot, 2017; Bourrier and Thelwall, 2020], and

social media posts [Antoniak et al., 2019; Walsh, 2018], provide scholars with new

ways to study a wide range of social and cultural phenomena that are less visible

in extant, non-digital mediums.

But access is only part of the potential. These digital collections provide the

opportunity to study materials at massive scales. These scales allow scholars to

ask new questions about collection-level characteristics: How well does the well-

studied canon differ from the wider set of materials? Are established concepts

and categories clearly seen at these larger scales? How might these properties

change over time or other contextual boundaries represented within these larger

collections? These new lines of inquiry provide the opportunity to shift focus from

the small, well-studied canon to the broader range of materials that have been

less-studied or more commonly well-studied individually but not comparatively.

1https://www.hathitrust.org/
2http://classics.mfab.hu/talismans/

1

https://www.hathitrust.org/
http://classics.mfab.hu/talismans/


2 introduction

However, many of these digital catalogues are used much like their physical

predecessors. Scholars use these sources to more easily gather the materials they

would like to closely study; at which point, their research proceeds as it otherwise

would with physical texts or objects sans the physical-material experiences that are

not captured by digital reproduction. Fundamentally, the number of objects being

studied is limited by time—there are only so many hours in the day—rather than

the availability of materials. This is not the fault of scholars, but rather evidence of

the lack of available methods to work with these collections at scale.

To fill this gap, scholars in the digital humanities and social sciences have adopted

computational methods from statistics, machine learning, and natural language

processing. These methods organize large collections into lower dimensional vector

spaces such that the collections can be more easily manipulated and explored. These

representations encode a document or artifact as a vector—a list of k numbers—that

corresponds to a single point within a k-dimensional space. The distance between

two vectors reflects the similarity of their corresponding documents or artifacts,

but this similarity is dependent on what aspects of an item—features—that the

particular model is capturing. With the right model, it is possible for scholars to

operationalize their questions at scale.

But these computational methods were not designed with these scholars or

their collections in mind. This fact does not prevent these methods from being

useful tools to humanists and social scientists, but it adds additional complexities

and barriers to their adoption and usability. There are benefits and perils in being

removed from the original development of a method. While it is difficult to be aware

of all the conditions necessary for a model to run successfully, there is a freedom

from the assumptions of what a model can be used for. Tools can have many uses

and naturally some are far removed from their original intended purpose. In this

case, scholars, as users, are testing the affordances of models and fortunately (or
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unfortunately) testing model limitations as well as the assumptions imposed by

model creators.

However, even experts do not fully understand what underlying patterns these

representations learn nor which patterns they are most likely to learn. This makes

it difficult to know when these methods are applicable to a particular research

question or corpora. If we knew which structures are learnable, it would be

easier to know when a model is useful. Moreover, models are capable of learning

many different structures, but not every structure is useful for a given line of

scholarly inquiry. While it might be useful to organize texts by author, learning

this structure is seldom useful when already known and can be problematic if it is

mischaracterized as a cross-cutting pattern. Therefore it is not only important to

identify what structures learn, but ways of directly influencing what models learn.

In this dissertation, I focus on better understanding what models learn and how

we can directly influence what they learn. Instead of proposing new models, I

instead focus on how we might expand the affordances, as well as our under-

standing, of existing models. By focusing on established models—ones already

being used by scholars in the humanities and social sciences—I am intentionally

prioritizing accessibility and usability. My goal is to improve current working

practices by providing methods that can be easily adopted with minimal disruption

to existing processes. To that end, I focus on methods that are simple, intuitive, and

transparent that are compatible, but independent from the existing models in use.

This dissertation is organized into two core parts focusing respectively on the

following questions:

1. What do models actually learn?

2. How can we direct what they learn?
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Within each part, I cover both textual and visual material collections and corre-

spondingly text- and image-based models. Each part is organized such that the

chapters related to textual collections and models precede chapters related to visual

collections and image-based models. Before diving into these core themes, I first

build the necessary context in Chapter 2. I frame the general problem setting used

throughout this dissertation and provide an overview of the various text- and

image-based models that will be used within later chapters.

In Part I, I examine what models learn by focusing on new ways of using existing

models. These new affordances expand our understanding of what these estab-

lished models can and will learn. Chapter 3 shows how token-based contextual

vector representations can be used to form clusters similar to the topics of topic

models. Chapter 4 introduces new methods for studying how linguistic properties

are spatially captured by type-level word embeddings. These general purpose

methods can be used both for studying language and model-level variation. Switch-

ing to the visual domain, Chapter 5 proposes a methodological framework for

adapting machine learning into a working tool for scholars of visual material. Fea-

tures extracted from pretrained neural image models are used to computationally

explore what makes the art movement Dada Dada.

In Part II, I explore how we might direct what models learn by examining corpus-

level and representation-level interventions. These interventions focus on directing

models away from known, unwanted structures rather than dictating what a model

should learn a priori. After all, it is often easier to identify what we already know—

and we find uninteresting—rather than the unknown structures that are possible

to learn. These chapters rely heavily on humanities collections and the needs of

these collections. The complexities and idiosyncrasies of humanities collections

tend to “break” established models, or more accurately their (implicit) assumptions.

Chapter 6 identifies and addresses the problem of topic models learning authorial
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signals rather than cross-cutting themes. This issue is not restricted to humanities

collections, such as science fiction novels, since the resulting topics for many text

collections heavily correlate with known contexts (e.g. author, region, date). Rather,

this issue tends to surface more often and problematically for digital humanists.

Chapter 7 addresses similar issues for the image domain. It seeks to improve

the framework proposed in Chapter 5 such that the image model representations

(i.e. vectors) and our study of these representations do not depend on unwanted

structure. This work focuses on producing more useful vectors spaces for studying

magical gems, an art historic category of engraved gemstones from the Graeco-

Roman world, that are not dominated by the medium (photograph, impression,

drawing) of each image.

Finally, in Chapter 8, I reflect on how the humanities and machine learning

truly help one another. While the argument that machine learning can help the

humanities might be seen as an easy one, since such methods are already being used

by scholars as research and pedagogical tools, this dissertation aims to highlight

the untapped potential which can further enable scholars to study collections more

easily and from new, alien perspectives. On the other hand, the converse is less

apparent but just as strong. The many chapters in this dissertation demonstrate

how humanities collections test and expand what machine learning models are

capable of. I describe future directions of this dissertation and how these directions

help pave a path to a (continued) symbiotic future for machine learning and the

humanities.





2
B A C K G R O U N D

Before we can begin to ask what models learn, we need a common frame of

reference for what I mean by “models” and how we will use them. For the purposes

of this work, we will consider a model to be a process that projects a collection

of texts or images into an embedding space: a k-dimensional vector space. Such

embeddings can be explicit output of a model, or implicitly extracted from a trained

model’s internal structure (e.g. penultimate layer of a neural network). We require

that the distances within embedding spaces—typically Euclidean or directional

(i.e. cosine distance)—reflect the similarity between the represented objects. The

aspects of similarity preserved by an embedding space vary by model and are the

learned structures of interest; the structures we want to identify and direct. While

some models (e.g. topic models) have interpretable dimensions, many do not.

Generally, we will treat models as fixed processes, effectively black boxes. Our

attention is not directed at the model itself, but rather its resulting embedding

space. After all, we are interested in understanding existing models rather than

building new ones. Like many users, we will use well-supported, off-the-shelf

models and direct our attention to the input and output of such models.

2.1 using vector spaces

Machine learning methods provide an opportunity to organize and study collec-

tions at scale, but also to view familiar collections from unfamiliar perspectives. In

7
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this section, I will outline two general use cases of machine learning for humanities

collections and scholarship.

exploration. By design, vector spaces provide more efficient organization of

large collections that rely solely on the input corpora and not additional metadata.

These organizations make exploration explicitly spatial. This allows for item-level

exploration wherein the most similar (and dissimilar) items can be quantitatively

identified by their respective vector distances. But we can also lift exploration

to collection-wide viewings by studying how items collectively cluster within

the space. We can quantitatively identify distinct groupings using established

algorithms such as k-means and agglomerative clustering.

We can also visualize our entire collection in two- or three-dimensional projec-

tions by applying dimensionality reduction methods, such as t-SNE [Maaten and

Hinton, 2008] and UMAP [McInnes et al., 2018], to a collection’s corresponding

set of vectors. These reduced representations provide a simplified but viewable

map of a collection. Note that in these visualizations relative but not absolute

distances matter. Points that distinctively cluster within such a plot are indicative

of prominent learned structures within the underlying embedding space. However,

these indications are more intuitive than exact. It is worth comparing the clusters

evident in these much lower dimensional projections with the item-level groupings

identified by clustering algorithms applied to the original embedding.

With these exploratory processes, relationships between unconnected objects can

be made visible. Many of these connections will be simplistic and naive, after all

the underlying model is unaware of the broader contexts and histories of each item

in the collection; however, this does not inherently reduce their value. Unlikely

comparisons can lead to new scholastic insights. Obvious and simplistic patterns
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can be markers of more complex and interesting phenomena. Embeddings are a

tool to aid in scholarship, not to replace scholarship.

re-examining categories . While vector spaces are useful tools for organiz-

ing unlabelled data, they are also valuable for studying labelled data. Embeddings

provide the opportunity to view established categories from alien, defamiliarized

perspectives. From these decontextualized vantage points, we can recharacterize

categories through their presence (and absence) within data-driven organizations.

We can study categories by augmenting our exploration process with added

categorical labels. By coloring, or otherwise distinctively marking, each point

in our two- and three-dimensional visualizations, we can see which categories

are well-delineated and which are not. That is, which categories (if any) are

prominently captured by the underlying model, and which groupings may be

indistinguishable from one another. To support and expand the intuitions provided

by these projections, we can compare the relative overlap between established

categories and the groupings identified by clustering algorithms.

However, these exploratory tactics will only give us a partial understanding of

how well these embedding spaces capture categories. Categories can be captured

by an embedding but not necessarily dominate its geometric organization. Instead,

we will use classifiers as a test for whether an embedding space can be used to

identify a category. In natural language processing, this process is known as a

probing task [Conneau et al., 2018].

But fundamentally we’re not interested in accurately replicating a category, but

rather examining and deconstructing one. Instead of solely focusing on a classifier’s

accuracy, we are instead interested in characterizing its successes and failures. Since

many classifiers come with corresponding confidence scores, we can reexamine a

known category from the items most correctly and incorrectly associated with a
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particular label type. Perhaps paradoxically, we are testing a category’s definitions

by directly using its predefined labelings. What makes our process critical of a

categorization is that we are not relying on the category’s original selection process,

but building a new characterization from a classifier’s most confident predictions.

This method will be used and described in greater detail in Chapters 5 and 7.

2.2 text-based models

Intuitively it is very easy to convert texts into numerical representations. Docu-

ments can be decomposed into salient components such as phrases, words, and

morphemes. All textual models fundamentally rely on this discretization. The three

model types I focus on within this dissertation—topic models, word embeddings,

and contextual word embeddings—also rely on the core tenet of distributional

semantics: “You shall know a word by the company it keeps” [Firth, 1957]. Namely,

words cooccurring in similar contexts share similar meaning.

topic models . A statistical topic model [Deerwester et al., 1990; Blei et al.,

2003] produces a k-dimensional vector space for both documents and words. Its

dimensions–called topics—explicitly represent word distributions and because of

this are largely interpretable unlike the dimensions of other models we will examine.

Topics are typically summarized and interpreted by their top most probable words.

For example, a topic with top words music song sing singing sang play played songs

played heard tune represents a musical discourse, while a topic with top words

computer machine data system work program new information machines human computers

represents a discourse on computer science.
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Just as topics are word distributions, documents are topic distributions. From the

model’s perspective, each word occurrence in a document is generated by sampling

a topic t from the document’s topic distribution and then sampling a word from t’s

word distribution. Since documents are explicitly characterized in terms of topics,

we can also summarize topics by the documents they most frequently occur in.

Topic models are an established tool within the digital humanities in part because

of well-supported implementations. A popular one is MALLET [McCallum, 2002],

a Java-based package, that also has a well-supported R wrapper. Topic models have

been used to study how topical discourses of a collection have changed over time.

For example, Nelson [2010] studies how slavery, particularly fugitive slave ads, are

reflected in the American Civil War-era articles of the Richmond Daily Dispatch and

Barron et al. [2018] study the individuals, institutions, and ideologies of the French

Revolution through parliamentary transcripts. Topic modeling has also been used

to study whole fields of through their publications [Mimno, 2012; Sandy et al.,

2019]. They have also been to recover documents for and about African American

women that were otherwise lost or erased from the catalogue [Brown et al., 2019],

to study the figurative language of poetry [Rhody, 2012] and to study small corpora

of novels from a defamiliarized perspective free from established theories of the

novel [Buurma, 2015].

Topic modeling is also amenable to non-textual data. For example, Mimno

[2011] applies topic models to household archaeological data. Rooms in Pompeian

households replace documents and object types are used in lieu of words. Schmidt

[2012] applies topic models to the geodata of digitized ship log books. In this case,

a ship’s log is a document, geographic locations are words, and resulting topics

can be visualized cartographically.
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word embeddings . As bag-of-word models, topic models ignore word order.

They associate words by document boundaries alone. In contrast word embeddings

trained with the GloVe [Pennington et al., 2014] and word2vec [Mikolov et al.,

2013b; Mikolov et al., 2013a] algorithms use much smaller contexts. They use a

sliding window with a fixed word length that produces contexts specific to each

word occurrence in a document. As the name suggests, word embeddings encode

words into a k-dimensional vector space. They do not inherently encode documents,

although extensions exist such as the paragraph vector [Le and Mikolov, 2014].

In producing a k-dimensional vector space, these algorithms build two sets of

vectors corresponding to words and their contexts. There is a one-to-one mapping

between word and context vectors. While both of these algorithms construct context

vectors, only GloVe uses them for the resulting word embedding. GloVe averages

word vectors with their corresponding context vectors, while word2vec discards

the context vectors entirely.

word2vec actually spans two separate models: skip-gram with negative sampling

(SGNS) and continuous bag of words (CBOW). Both models construct their word and

context vectors in an iterative, predictive fashion. For each window, both models

rely on the center word’s word vector w and the context vectors ci of all other

words in the window. CBOW uses the context vectors ci to predict w, while SGNS

uses w to predict the context vectors ci. In both cases, w and ci are pushed closer

together. In SGNS, the word vector w is further trained through the use of negative

sampling. In this technique a small set of context vectors cneg are randomly selected

and used as negative examples for the prediction task. As a result, w and cneg are

pushed further apart.

In natural language processing and machine learning, the primary use of word

embeddings is as input for downstream tasks. Through the use of word embeddings

as input features have improved performance on many natural language processing
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tasks including dependency parsing [Chen and Manning, 2014], named entity

recognition [Turian et al., 2010; Chiu and Nichols, 2016], and part-of-speech tagging

[Al-Rfou’ et al., 2013; Owoputi et al., 2013]. In contrast, scholars in the humanities

and social sciences have studied the word embedding spaces directly. By examining

how word vectors relate to one another within a word embedding trained on a

specific collection, scholars have studied abstract concepts in eighteenth century

literature Heuser [2016] and characterizations in popular nineteenth century novels

[Grayson et al., 2016]. Word embeddings have also been compared to study change

in discourse over time [Lange and Futselaar, 2018] and by author [Kerr, 2017].

contextual word embeddings . A limitation of word embeddings is that

each word type is represented by a single, static vector even though words can

have multiple meanings such as crane representing a bird or a type of construction

equipment and bow representing the front part of a ship or type of knot. Recently,

deep learning models such as ELMo [Peters et al., 2018], BERT [Devlin et al., 2019],

RoBERTa [Liu et al., 2019], and GPT-2 [Radford et al., 2019] have begun to fill this

gap. These models are pretrained on extremely large quantities of (English) texts

and can be used to generate token-level word vectors that are context-sensitive.

ELMo uses a bidirectional Long Short-Term Memory (LSTM) [Hochreiter and

Schmidhuber, 1997] based architecture such that its two learning objectives are (1)

predict a word w in sentence s using the series of words that precede w in s and (2)

predict w using the series of words that follow w in s. GPT-2, BERT, and RoBERTa

all have Transformer [Vaswani et al., 2017] based architectures, but use different

learning objectives. GPT-2 predicts a word given the entire series of words that

precede it. BERT has two learning objectives: (1) mask a small potion of words

(15%) and predict them using the resulting masked text and (2) given two sentence



14 background

A and B, predict whether B is the sentence that follows A. RoBERTa is an adaption

of BERT that only uses BERT’s masking objective.

While these models have different architectures and learning objectives, they pro-

duce token-level representations that are transferable to new texts and tasks. Using

context word embeddings as drop-in replacements for static word embeddings

has yielded performance boosts for a wide range of natural language processing

tasks. Contextual word embeddings have not been fully adopted by humanists both

because of their relative nascency and the data and computing costs of training

these models from scratch [Assael et al., 2019]. That being said, Sims et al. [2019]

use contextual word embeddings as model input for detecting events in literature

and Bamman et al. [2020] uses contextual word embeddings as model input for

coreference resolution in English literature.

2.3 image-based models .

Unlike text, images are more difficult to encode into lower-dimensional vector

spaces. Pixels do not capture the same information as words. Luckily, the com-

putational features learned by convolutional neural networks (CNNs) provide a

promising direction.

A CNN is an image-processing tool often used in object detection. An image

is passed through multiple layers that detect different patterns. The earlier layers

detect more primitive forms such as lines and edges, while later layers identify

more sophisticated patterns such as faces and books [Zeiler and Fergus, 2014;

Mahendran and Vedaldi, 2015; Yosinski et al., 2015]. The final “top” layer produces

predictions of likely objects within the image such as toasters, timber wolves,

teapots, and trilobites [Deng et al., 2009].1 The layers directly preceding the final

1http://image-net.org/challenges/LSVRC/2010/browse-synsets

http://image-net.org/challenges/LSVRC/2010/browse-synsets
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layer capture visual features which are both high-level and usable by other image

analysis tools [Razavian et al., 2014]. So, we can project an image collection into an

embedding space using an off-the-shelf (pretrained) CNN; each image is converted

into a vector by feeding the image as input to the CNN and extracting the vector

from the penultimate layer (or other non-final layers).

With this general method for vectorizing images, scholars of visual materials are

now able to apply quantitative methods that before were limited to text collections

and numerical data sets. The Yale Digital Humanities has used extracted features

for visualizing and exploring the Meserve-Kunhardt Collection, a collection of over

27,000 nineteenth century photographs.2 Arnold et al. [2019] use extracted CNN

features to study the visual style of two network era sitcoms, Bewitched and I Dream

of Jeannie, while Rodriguez et al. [2020] use them for studying style and authorship

in historical artwork. These extracted image vectors have also been used to identify

images on social media related to the sales of human remains [Huffer and Graham,

2018], and to identify the style of damaged statuary to aid in restoration efforts

[Wang et al., 2017].

2See https://dhlab.yale.edu/neural-neighbors.

https://dhlab.yale.edu/neural-neighbors
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3
T O P I C M O D E L I N G W I T H C O N T E X T E M B E D D I N G C L U S T E R S

This chapter is based on joint work with David Mimno.

3.1 introduction

Contextualized word representations such as those produced by BERT [Devlin et al.,

2019] have revolutionized natural language processing for a number of structured

prediction problems. Recent work has shown that these contextualized representa-

tions can support type-level semantic clusters [Sia et al., 2020]. In this work we show

that token-level clustering provides contextualized semantic information equivalent

to that recovered by statistical topic models [Blei et al., 2003]. From the perspective

of contextualized word representations, this result suggests new directions for se-

mantic analysis using both existing models and new architectures more specifically

suited for such analysis. From the perspective of topic modeling, this result implies

that transfer learning through contextualized word representations can fill gaps in

probabilistic modeling (especially for short documents and small collections) but

also suggests new approaches for latent semantic analysis that are more closely

tied to mainstream transformer architectures.

Topic modeling is often associated with probabilistic generative models in the

machine learning literature, but from the perspective of most actual applications the

core benefit of such models is that they provide an interpretable latent space that

is grounded in the text of a specific collection. Standard topic modeling algorithms

19
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operate by estimating the assignment of individual tokens to topics, either through

a Gibbs sampling state or through parameters of variational distributions. These

token-level assignments can then provide disambiguation of tokens based on

context, a broad overview of the themes of a corpus, and visualizations of the

location of those themes within the corpus [Boyd-Graber et al., 2017].

A related but distinct objective is vocabulary clustering. These methods operate at

the level of distinct word types, but have no inherent connection to words in context

[e.g. Brown et al., 1992; Arora et al., 2013; Lancichinetti et al., 2015]. Recently, there

has also been considerable interest in continuous type-level embeddings such as

GloVe [Pennington et al., 2014] and word2vec [Mikolov et al., 2013a; Mikolov et al.,

2013b], which can be clustered to form interpretable semantic groups. Although it

has not been widely used, the original word2vec distribution includes code for k-

means clustering of vectors. Sia et al. [2020] extends this behavior to contextualized

embeddings, but does not take advantage of the contextual, token-based nature of

such embeddings.

In this work, we demonstrate a new property of contextualized word represen-

tations: if you run a simple k-means algorithm on token-level embeddings, the

resulting word clusters share similar properties to the output of an LDA model.

Traditional topic modeling can be viewed as token clustering. Indeed, a clustering

of tokens based on BERT vectors is functionally indistinguishable from a Gibbs

sampling state for LDA, which assigns each token to exactly one topic. For topic

modeling, clustering is based on local context (the current topic disposition of words

in the same document) and on global information (the current topic disposition of

other words of the same type). We find that contextualized representations offer

similar local and global information, but at a richer and more representationally

powerful level.
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We argue that pretrained contextualized embeddings provide a simple, reliable

method for users to build fine-grained, semantically rich representations of text

collections, even with limited local training data. While for this study we restrict

our attention to English text, we see no reason contextualized models trained on

non-English data [e.g. Martin et al., 2020; Nguyen and Tuan Nguyen, 2020] would

not have the same properties. It is important to note, however, that we make no

claim that clustering contextualized word representations is the optimal approach

in all or even many situations. Rather, our goal is to demonstrate the capabilities

of contextualized embeddings for token-level semantic clustering and to offer an

additional useful application in cases where models like BERT are already in use.

3.2 related work

We selected three contextualized language models based on their general perfor-

mance and ease of accessibility to practitioners: BERT [Devlin et al., 2019], GPT-2

[Radford et al., 2019], and RoBERTa [Liu et al., 2019]. All three use similar Trans-

former [Vaswani et al., 2017] based architectures, but their objective functions vary

in significant ways. These models are known to encode substantial information

about lexical semantics [Petroni et al., 2019; Vulić et al., 2020].

Clustering of vocabulary-level embeddings has been shown to produce semanti-

cally related word clusters [Sia et al., 2020]. But such embeddings cannot easily

account for polysemy or take advantage of local context to disambiguate word

senses since each word type is modeled as a single vector. Since these embeddings

are not grounded in specific documents, we cannot directly use them to track the

presence of thematic clusters in a particular collection. In addition, Sia et al. [2020]

find that reweighting their type-level clustering by corpus frequencies is helpful.
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Term Model Top Words

land

LDA

sea coast Beach Point coastal land Long Bay m sand beach tide
Norfolk shore Ocean Coast areas dunes coastline
land acres County ha facilities State location property acre cost
lot site parking settlers Department Valley

BERT

arrived arrival landing landed arriving arrive returning settled
departed land leaving sailed arrives assembled
land property rights estate acres lands territory estates proper-
ties farm farmland Land fields acre territories soil

GPT-2

arrived landed arriving landfall arrive arrives arrival landing
land departed ashore embarked Back sail
land sea ice forest rock mountain ground sand surface beach
ocean soil hill lake snow sediment dunes

metal

LDA

metals metal potassium sodium + lithium compounds electron
ions hydrogen chemical atomic – ion gas atoms
metal folk bands music genre band debut Metal heavy musi-
cians lyrics instruments acts groups traditional

BERT

metals elements metal electron element atomic periodic elec-
trons chemical atoms ions atom compounds ion
rock dance pop metal Rock folk jazz punk comedy Dance heavy
funk alternative soul street club electronic

GPT-2

rock pop hop dance metal folk hip punk jazz B soul funk
alternative rap heavy disco electronic reggae gospel
plutonium hydrogen carbon sodium potassium metal lithium
uranium oxygen diamond radioactive acid

Table 3.1: Automatically selected examples of polysemy in contextual embedding clusters.
Clusters containing “land” or “metal” as top words from BERT L[−1], GPT-2
L[−2], and LDA with with K = 500. All models capture multiple senses of
the noun “metal”, but BERT and GPT-2 are better than LDA at capturing the
syntactic variation of “land” as a verb and noun.

In contrast, such frequencies are “automatically” accounted for when we operate

on the token level. Similarly, clusterings of sentence-level embeddings have been

shown to produce semantically related document clusters [Aharoni and Goldberg,

2020]. But such models cannot represent topic mixtures or provide an interpretable

word-based representation without additional mapping from clusters to documents

to words. It is widely known that token-level representations of single word types

provide contextual disambiguation. For example, Reif et al. [2019] show an example
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distinguishing uses of die between the German article, a verb for “perish” and a

game piece. We explore this property on the level of whole collections, looking at

all word types simultaneously.

There are a number of models that solve the topic model objective directly using

contemporary neural network methods [e.g. Srivastava and Sutton, 2016; Miao

et al., 2017; Dieng et al., 2020]. There are also a number of neural models that

incorporate topic models to improve performance on a variety of tasks [e.g. Chen

et al., 2016; Narayan et al., 2018; Wang et al., 2018; Peinelt et al., 2020]. Additionally,

BERT has been used for word sense disambiguation [Wiedemann et al., 2019]. In

contrast, our goal is not to create hybrid or special-purpose models but to show

that simple contextualized embedding clusters support token-level topic analysis

in themselves with no significant additional modeling. Since our goal is simply to

demonstrate this property and not to declare overall “winners”, we focus on LDA

in empirical comparisons because it is the most widely used and straightforward,

highlighting the similarities and differences between contextualized embedding

clusters and topics.

3.3 data and methods

We use three real-world corpora of varying size, content, and document length:

Wikipedia articles (Wikipedia), Supreme Court of the United States legal opinions

(Scotus), and Amazon product reviews (Reviews). We select Wikipedia for its

affinity with the training data of the pretrained models. Because its texts are similar

to ones the models have already seen, Wikipedia is a “best-case” scenario for our

clustering algorithms. If a clustering method performs poorly on Wikipedia, we

expect the method to perform poorly in general. In contrast, we select Scotus and
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Reviews for their content variability. Legal opinions tend to be long and contain

many technical legal terms, while user-generated product reviews tend to be short

and highly variable in content and vocabulary.

wikipedia . In this collection, documents are Wikipedia articles (excluding

headings). We randomly selected 1,000 articles extracted from the raw/character-

level training split of Wikitext-103 [Merity et al., 2017]. We largely use the existing

tokenization, but recombine internal splits on dot and comma characters but not

hyphens so that “Amazon @.@ com” becomes “Amazon.com”, “1 @,@ 000” becomes

“1,000”, and “best @-@ selling” becomes “best - selling”.

scotus . In this collection, documents are legal opinions from the Supreme

Court of the United States filed from 1980 through 2019.1 These documents can be

very long, but have a regular structure.

reviews . In this collection, documents are Amazon product reviews. For four

product categories (Books, Electronics, Movies and TV, CDs and Vinyl), we select

25,000 reviews from category-level dense subsets of Amazon product reviews [He

and McAuley, 2016; McAuley et al., 2015].

Corpus Docs Types Tokens

Wikipedia 1.0K 22K 1.2M
Scotus 5.3K 58K 10.8M
Reviews 100K 52K 9.4M

Table 3.2: Corpus statistics for number of documents, types, and tokens. Document and
type counts are listed in thousands (K); token counts are listed in millions (M).

1https://www.courtlistener.com/

https://www.courtlistener.com/
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data preparation. For Scotus and Reviews, we tokenize documents us-

ing the spaCy NLP toolkit.2 Tokens are case-sensitive non-whitespace character

sequences. For consistency across models, we also delete all control, format, private-

use, and surrogate Unicode codepoints since they are internally removed by BERT’s

tokenizer. We extract contextualized word representations from BERT (cased ver-

sion), GPT-2, and RoBERTa using pretrained models available through the hug-

gingface transformers library [Wolf et al., 2019]. All methods break low-frequency

words into multiple subword tokens: BERT uses WordPiece [Wu et al., 2016], while

GPT-2 and RoBERTa use a byte-level variant of byte pair encoding (BPE) [Sennrich

et al., 2016]. For example, the word disillusioned is represented by four subtokens

“di -si -llus -ioned” in BERT and by two subtokens “disillusion -ed” in GPT-2

and RoBERTa. One key difference between these tokenizers is that byte-level BPE

can encode all inputs, while WordPiece replaces all Unicode codepoints it has

not seen in pretraining with the special token UNK. For simplicity, rather than

using a sentence splitter we divide documents into the maximum length subtoken

blocks. To make vocabularies comparable across models with different subword

tokenization schemes, we reconstitute the original word tokens by averaging the

vectors for subword units [Bommasani et al., 2020].

clustering . We cluster tokens using spherical k-means [Dhillon and Modha,

2001] with spkm++ initialization [Endo and Miyamoto, 2015] because of its sim-

plicity and high-performance, and cosine similarities are commonly used in other

embedding contexts. Although we extract contextualized features for all tokens,

prior to clustering we remove frequent words occurring in more than 25% of

documents and rare words occurring in fewer than five documents. Each clustering

is run for 1000 iterations or until convergence, whichever comes first. For LDA, we

2https://spacy.io/

https://spacy.io/
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train models using Mallet [McCallum, 2002] with hyperparameter optimization

occurring every 20 intervals after the first 50. For each embedding model, we cluster

the token vectors extracted from the final layer L[−1], the penultimate layer L[−2],

and the antepenultimate layer L[−3]. Vulić et al. [2020] suggest combining multiple

layers, but no combination we tried provided additional benefit for this specific

task. We consider more than the final hidden layer of each model because of the

variability in anisotropy across layers [Ethayarajh, 2019]. In a space where any two

words have near perfect cosine similarity, clustering will only capture the general

word distribution of the corpus. Since Ethayarajh [2019] has shown GPT-2’s final

layer to be extremely anisotropic, we do not expect to produce viable topics in this

case. For each test case, we build ten models each of size K ∈ {50, 100, 500}.

3.4 evaluation metrics

We evaluate the quality of “topics” produced by clustering contextualized word

representations with several quantitative measures. For all models we use hard

topic assignments, so each word token has a word type wi and topic assignment z.

Note that we use “topic” and “cluster” interchangeably.

word entropy. As a proxy for topic specificity, we measure a topic’s word

diversity using the conditional entropy of word types given a topic.

H(w | k) = −∑
i

Pr(wi | z) log Pr(wi | z)

Topics composed of tokens from a small set of types will have low entropy (min-

imum 0), while topics more evenly spread out across the whole vocabulary will

have high entropy (maximum log of vocabulary size; approx. 10 for Wikipedia).
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There is no best fit between quality and specificity, but extreme entropy scores

indicate bad topics. Topics with extremely low entropy are overly specialized, while

those with extremely high entropy are overly general.

coherence . We measure the semantic quality of a topic using two word-

cooccurrence-based coherence metrics. These coherence metrics measure whether a

topic’s words actually occur together. Internal coherence uses word cooccurrences

from the working collection, while external coherence relies on word cooccurrences

from a held-out external collection. The former measures fit to a dataset, while the

latter measures generalization. For internal coherence we use Mimno et al. [2011]’s

topic coherence metric,

∑
i

∑
j<1

log
D(wi, wj) + ε

D(wi)
,

where D refers to the number of documents that contain a word or word-pair. For

external coherence we use Newman et al. [2010]’s topic coherence metric,

∑
i

∑
j<1

log
Pr(wi, wj) + ε

Pr(wi)Pr(wj)
,

where probabilities are estimated from the number of 25-word sliding windows

that contain a word or word-pair in an external corpus. We use the New York Times

Annotated Corpus [Sandhaus, 2008] as our external collection with documents

corresponding to articles (headline, article text, and corrected text) tokenized

with spaCy. For both metrics, we use the top 20 words of each topic and set the

smoothing factor ε to 10−12 to reduce penalties for non-cooccurring words [Stevens

et al., 2012]. We ignore words that do not appear in the external corpus and do not

consider topics that have fewer than 10 attested words. These “skipped” topics are

often an indicator of model failure. Higher scores are better.
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exclusivity. A topic model can attain high coherence by repeating a single

high-quality topic multiple times. To balance this effect, we measure topic diversity

using Bischof and Airoldi [2012]’s word-level exclusivity metric to quantify how

exclusive a word w is to a specific topic z,

Pr(wi | z)
∑z′ Pr(wi | z′)

A word prevalent in many topics will have a low exclusivity score near 0, while a

word occurring in few topics will have a score near 1. We lift this measure to topics

by computing the average exclusivity of each topic’s top 20 words. While higher

scores are not inherently better, low scores are indicative of topics with high levels

of overlap.

3.5 results

We evaluate whether contextualized word representation clusters can group to-

gether related words, distinguishing distinct uses of the same word based on local

context. Compared to bag-of-words LDA, we expect contextualized embedding

clusters to encode more syntactic information. As we are not doing any kind of

fine-tuning, we expect performance to be best on text similar to the pretraining

data. We also expect contextualized embedding clusters to be useful in describing

differences between partitions of a working collection.

bert produces meaningful topic models . BERT cluster models con-

sistently form semantically meaningful topics, with the final layer performing

marginally better for larger K. Figure 3.1 shows that BERT clusterings have the

highest external coherence, matching LDA for K ∈ {50, 100} and beating LDA for
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K = 500. For internal coherence, the opposite is true, with BERT on par with LDA

for smaller K, while LDA “fits” better for K = 500. This distinction suggests that

at very fine-grained topics, LDA may be overfitting to noise. BERT has relatively

low word entropy, indicating more focused topics on average. Figure 3.2 shows the

number of word types per cluster. BERT clusters are on average smaller than LDA

topics (counted from an unsmoothed sampling state), but very few BERT clusters

fall below our 10-valid-words threshold for coherence scoring. BERT clusters are

not only semantically meaningful, but also unique. Figure 3.1 shows that BERT

clusters have exclusivity scores as high if not higher than LDA topics on average.

Since there is little difference between layers, we will only consider BERT L[-1] for

the remainder of this work.

gpt-2 can produce meaningful topic models . As expected, the final

layer clusterings of GPT-2 form bad topics. These clusters tend to be homogeneous

(low word entropy) and similar to each other (low exclusivity). They also highlight

the differences between our two coherence scores. Since these clusters tend to

repeatedly echo the background distribution of Wikipedia, they perform relatively

well for internal coherence, but poorly for external coherence. Since the final

layer of GPT-2 has such high anisotropy, we cannot expect vector directionalities

to encode semantically meaningful information. In contrast, the penultimate and

antepenultimate layer clusterings perform much better. We see a large improvement

in external coherence surpassing LDA for K = 500. Topic word entropy and

exclusivity are also improved.

For K = 500, GPT-2 L[-3] has surprisingly low mean internal coherence—the

worst scores in Figure 3.1 by a significant margin. The number of topics below the

10-valid-words threshold is similar to BERT, so this result is comparable. We posit

that this layer is relying more on transferred knowledge from the pretrained GPT-2
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Figure 3.1: Contextual embedding clusters produce mean internal and external coherence
scores comparable to LDA (dashed line). BERT clusters (blue) have high mean
external coherence, better than LDA for large numbers of topics. BERT clusters
contain more unique words, while RoBERTa (red) and GPT-2 (green) L[−1]
clusters tend to repeat similar clusters. BERT clusters have the highest word
concentrations.

Figure 3.2: Distinct words per cluster for LDA, BERT L[−1], GPT-2 L[−2], and RoBERTa
L[−1] for K = 500. Although the average BERT cluster covers fewer word types,
RoBERTa has more clusters with very few (< 20) word types.
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model than the working collection. Because of this less explained behavior, we will

only consider GPT-2 L[-2] going forward.

roberta clusters are noticeably worse . Given BERT’s success and

GPT-2’s partial success, we were surprised to find that RoBERTa cluster models

were consistently of poor quality, with very low exclusivity scores and high word

entropies. Although RoBERTa scores fairly well in coherence, this is not indicative

of collectively high quality topics because of the correspondingly low exclusivity

scores. As shown in Figure 3.1, RoBERTa has the highest average number of distinct

words per cluster, but also many of clusters that contain very few distinct words.

For K = 500, 25–50 clusters are skipped on average for different layer choices. For

example, one topic consists entirely of the words game, games, Game, another just

ago, and one simply the £ symbol. The remaining tokens are thus limited to a

smaller number of more general topics that are closer to the corpus distribution.

While it is commonly accepted that RoBERTa outperforms BERT for a variety of

natural language understanding tasks [Wang et al., 2019], we find the opposite to be

true for semantic clustering. There are a number of differences between BERT and

RoBERTa, but our experimental results do not mark a clear cause. The tokenization

method is a very unlikely source since GPT-2 uses the same scheme.

contextualized embedding clusters capture polysemy. A limita-

tion of many methods that rely on vocabulary-level embeddings is that they cannot

explicitly account for polysemy and contextual differences in meaning. In con-

trast, token-based topic models are able to distinguish differences in meaning

between contexts. There has already been evidence that token-level contextualized

embeddings are able to distinguish contextual meanings for specific examples
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Model Perc. Entr. Top Words (noun verb adj other)

LDA

5% 0.69 Valley Death valley Creek California mining °
25% 0.97 army forces soldiers campaign troops captured
50% 1.11 society News Week Good Spirit Fruit says Doug
75% 1.28 Washington Delaware ceremony Grand Capitol
95% 1.53 critics reviews review positive mixed list

BERT

5% 0.00 1997 1996 1995 1937 1895 1935 96 1896 1795 97 09

25% 0.61 Jewish Israel Jews Ottoman Arab Muslim Israeli
50% 0.86 captured defeated attacked capture attack siege
75% 1.09 hop dance hip B R Dance Hip Z Hop rapper Jay
95% 1.48 separate combined co joint shared divided common

GPT-2

5% 0.00 2004 2003 2015 2000 2014 1998 2001 2013 2002 1997

25% 0.42 Atlantic Pacific Gulf Mediterranean Caribbean
50% 0.73 knew finds discovers learned reveals discovered
75% 1.02 Olympic League FA Summer Premier Division
95% 1.42 positive mixed critical negative garnered favorable

Table 3.3: Contextualized embedding clusters are more syntactically aware than LDA.
Topics ranked by the entropy of POS distribution of the top 20 words K = 500.

[Wiedemann et al., 2019; Reif et al., 2019], but can they also do this for entire

collections?

Instead of manually selecting terms we expect to be polysemous, we choose

terms that occur as top words for clusters with dissimilar word distributions (high

Jensen-Shannon divergence). While dissimilarity is not indicative of polysemy—

different topics can use a term in the same way—it narrows our focus to words

that are more likely to be polysemous. Table 3.1 show topics for two such terms

“land” and “metal”. All models distinguish metal the material from metal the genre,

but BERT and GPT-2 are also distinguish land the noun from land the verb.

contextualized embedding clusters are more syntactically consis-

tent than lda topics . Contextualized word representations are known to

represent a large amount of syntactic information that is not available to traditional
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bag-of-words topic models [Goldberg, 2019]. We therefore expect that token-level

clusterings of contextualized word representations will have more homogeneity of

syntactic form, and indeed we find that they do.

As a simple proxy for syntactic similarity, we find the most likely part of speech

(POS) for the top words of each cluster. We use this method because it is easy

to implement; inaccuracies should be consistent across models. To measure the

homogeneity of POS within each topic, we count the distribution of POS tags for

the top 20 words of a cluster and calculate the entropy of that distribution. If all 20

words are the same POS, this value will be 0, while if POS tags are more diffuse

it will be larger. We find that BERT and GPT-2 clusters have consistently lower

entropy. In Table 3.3, we see that the 25th percentile for LDA topics has entropy

0.97, higher than the median entropy for both BERT and GPT-2. We find that these

results are consistent across model sizes. Although contextualized embedding

clusters are more homogeneous in POS, LDA may appear more so because it is

dominated by nouns. For LDA, nouns and proper nouns account for 43.7% and

33.4% respectively of all the words in the top 20 for all topics, while verbs make up

8.5% and adjectives 6.7%. These proportions are 39.0%, 25.3%, 14.9%, and 8.1% for

BERT and 37.0%, 23.4%, 16.9%, and 9.5% for GPT-2.

compression improves efficiency while maintaining quality. We

have established that we can effectively learn topic models by clustering token-level

contextualized embeddings, and we have shown that there are advantages to clus-

tering at the token rather than vocabulary level. But for token-level clustering to be

more than a curiosity we need to address computational complexity. Vocabularies

are typically on the order of tens of thousands of words, while collections often

contain millions of words. Even storing full 768-dimensional vectors for millions

of tokens, much less clustering them, can be beyond the capability of many po-
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Figure 3.3: Mean internal and external coherence for reduced features for BERT and GPT-2.
Features reduced with PCA tend to have higher coherence than SRP.

tential users’ computing resources. Therefore, we investigate the effects of feature

dimensionality reduction to reduce the memory footprint of our method.

The hidden layers of deep learning models are known to learn representations

with dimensionalities much lower than the number of neurons [Raghu et al., 2017].

We apply two methods for dimensionality reduction: principal component analysis

(PCA) and sparse random projection (SRP) [Li et al., 2006; Achlioptas, 2001].3

We find that reducing our token vectors to as few as 100 dimensions can have

little negative effect. Figure 3.3 shows that reduced PCA features produce improved

internal coherence and little significant change in external coherence, but reduced

SRP features are worse in both metrics, especially for BERT. We note that more

clusters pass the 10-valid-words threshold for reduced PCA and SRP features.

Instead of skipping 10 BERT clusters and 7 GPT-2 clusters on average, no clusters

are skipped for PCA reduced features and only 1 for 100-dimensional SRP features.

For 300-dimensional SRP features there is only a significant drop for GPT-2 with 3

skipped on average. This decrease in skipped topics indicates that overly specific

3All implementations from [Pedregosa et al., 2011].
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topics are being replaced with less specific ones. We hypothesize that dimension-

ality reduction is smoothing away “spikes” in the embeddings space that cause

the algorithm to identify small clusters. Finally, larger dimensionality reductions

decrease concentration and exclusivity, making clusters more general.

PCA is significantly better than SRP, especially for more aggressive dimension-

ality reductions. We find that mean-centering SRP features does not significantly

improve results. An advantage of SRP, however, is that the projection matrix can

be generated offline and immediately applied to embedding vectors as soon as

they are generated. To overcome the memory limitations of PCA, we use a batch

approximation, incremental PCA [Ross et al., 2008]. Using 100 dimensions and

scikit-learn’s default batch size of five times the number of features (3840), we find

no significant difference in results between PCA and incremental PCA. For the

remainder of experiments we use 100-dimensional vectors which correspond to the

top 100 components produced by incremental PCA.

pretrained embeddings are effective for different collections .

While BERT and GPT-2 cluster models produce useful topics for Wikipedia, will

this hold for collections less similar to the training data of these pretrained models?

Does it work well for collections of much shorter and much longer texts than

Wikipedia articles? We find that both BERT and GPT-2 produce semantically

meaningful topics for Scotus and Reviews, but BERT continues to outperform

GPT-2. As with Wikipedia, we find that contextualized embedding clusters have

the largest advantage over LDA for large K. Figure 3.4 shows that for K = 500 BERT

and GPT-2 clusters have significantly higher external coherence scores on average

than LDA topics for Scotus and very similar scores for Reviews. For smaller

K, LDA has the highest external coherence scores followed by BERT. Internal

coherence is more difficult to interpret because of the variability in exclusivity.
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Figure 3.4: BERT and GPT-2 produce coherent topics for less familiar (w.r.t. pretraining)
collections. BERT consistently produces more unique clusters. LDA external
coherence drops for K = 500.

With K = 500, BERT clusters have substantially worse internal coherence scores.

In contrast, GPT-2 clusters tend to experience a smaller drop in scores, but this

can be partially explained by their much lower average exclusivity. We find that

BERT consistently produces the most unique topics for Scotus and Reviews. BERT

consistently has significantly higher mean exclusivity scores for both Scotus and

Reviews, while GPT-2 tends to have scores as good as LDA for K ∈ {50, 100}, but

significantly lower for K = 500.
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contextualized embedding clusters support collection analysis .

Token-level clusterings of contextualized word representations support sophisti-

cated corpus analysis with little additional complexity. In practice, topic models

are often used as a way to “map” a specific collection, for example by identifying

key documents or measuring the prevalence of topics over time [Boyd-Graber et al.,

2017]. A key disadvantage therefore of vocabulary-level semantic clustering is that

it is not grounded in specific documents in a collection. Token-level clustering, in

contrast, supports a wide range of analysis techniques for researchers interested in

using a topic model as a means for studying a specific collection. We provide two

case studies that both use additional metadata to organize token-level clusterings

post hoc.

Given a partition of the working collection, we can count tokens assigned to each

topic within a given partition to estimate locally prominent topics. Table 3.4 shows

the three most prominent topics for the four product categories in Reviews from a

BERT cluster model with K = 500. Many of these topics are clearly interpretable

as aspects of a particular product (e.g. full albums, individual songs, descriptions of

songs). Two topics contain mostly prepositions. While we could have added these

words to a stoplist before clustering, these less obviously interpretable clusters

can nevertheless represent distinct discourses, such as descriptions of action in

Movies (into, up, over, through, ...) or descriptions of physical objects in Electronics

(use, up, than, off, ...). We can also find the topics that are least associated with any

one product category by calculating the entropy of their distribution of tokens

across categories. These are shown in Table 3.5, and appear to represent subtle

variations of subjective experiences: overkill, possibilities, reasons, and time periods.

We emphasize that this analysis requires no additional modeling, simply counting.

For partitions that have a natural order, such as years, we can create time series

in the same post hoc manner. Thus, we can use a BERT clustering of Scotus
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books
book books author novel novels work Book fiction by authors
read reading copy Read reads Reading readable reader reread
problem children problems course power lives mystery

electronics
use up than off used back over using there about work need
screen quality sound device power battery unit system software
setup remote battery mode card set range input signal support

movies
movie movies films flick theater Movie flicks game cinema film
into up over through between off down than about around
film movie picture screen documentary films Film cinema

cds
album albums record release Album LP releases records effort
songs tracks hits tunes singles material stuff Songs ballads cuts
lyrics guitar vocals voice bass singing solo vocal sound work

Table 3.4: Unlike vocabulary-level clusters, token-level clusters are grounded in specific
documents and can be used to analyze collections. Here we show the most
prominent BERT topics (K = 500) for the four product categories in Reviews.
This analysis is purely post hoc, neither BERT nor its clustering have access to
product labels.

than beyond Than twice upon much except besides half times less unlike nor

day days Day morning today date daily Days month 19 basis night period

can Can able possible manage could knows lets capable allows can’t easily s

when When once time whenever Once soon everytime upon during Whenever

too enough Too overly taste beyond tired sufficiently plenty somehow Enough

because since due Because Since considering cause meaning given thanks

went took got happened came started did turned ended fell used kept left

would ’d Would might d normally I’d imagine otherwise happily woulda

up off Up ready upload ups along end forth uploading used down away

instead rather either matter Instead opposed other depending based choice

Table 3.5: The ten BERT topics (K = 500) from Reviews with the most uniform distribution
over product categories.
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1980–2019 Top Words

union employment labor bargaining Labor workers job strike

gas coal oil natural mining mineral fuel mine fishing hunting

compensation wages pension wage salary welfare compensate

discrimination prejudice unfair bias harassment segregation

medical health care hospital physician patient Medical

market competition competitive markets compete demand

election vote voting electoral ballot voter elected votes elect

violence firearm gun violent weapon firearms armed weapons

patent copyright Copyright Patent patents trademark invention

Table 3.6: Grounded topics allow us to analyze trends in the organization of a corpus using
a BERT topic model with K = 500. Here we measure the prevalence of topics
from 1980 to 2019 in US Supreme Court opinions by counting token assignments.
Topics related to unions and natural resources are more prevalent earlier in the
collection, while topics related to firearms and intellectual property have become
more prominent.

to examine the changes in subject of the cases brought before the US Supreme

Court. Table 3.6 shows time series for nine manually selected topics from a BERT

clustering of Scotus with K = 500, ordered by the means of their distributions

over years. We find that topics related to labor and collective bargaining, oil and gas

exploration, and compensation have decreased in intensity since the 1980s, while

those related to medical care and elections have remained relatively stable. It appears

that competitive markets was a less common subject in the middle years, but has

returned to prominence. Meanwhile, discrimination has remained a prominent topic

throughout the period, but with higher intensities in the 1980s. Additionally, topics

related to gun violence and patents and copyright appear to be increasing in intensity.

3.6 conclusion

We have presented a simple, reliable method for extracting mixed-membership

models from pretrained contextualized word representations. This result is of inter-
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est in several ways. First, it provides insight into the affordances of contextualized

representations. For example, our result suggests a way to rationalize seemingly ad

hoc methods such as averaging token vectors to build a representation of a sentence.

Second, it suggests directions for further analysis and development of contextual-

ized representation models and algorithms. The significant differences we observe

in superficially similar systems such as BERT and RoBERTa require explanations

that could expand our theoretical understanding of what these models are doing.

Why, for example, is RoBERTa more prone to very small, specific clusters, while

BERT is not? Furthermore, if models like BERT are producing output similar to

topic model algorithms, this connection may suggest new directions for simpler

and more efficient language model algorithms, as well as more representationally

powerful topic model algorithms. Third, there may be substantial practical benefits

for researchers analyzing collections. Although running BERT on a large-scale

corpus may for now be substantially more computationally inefficient than run-

ning highly-tuned LDA algorithms, passing a collection through such a system

is likely to become an increasingly common analysis step. If such practices could

be combined with online clustering algorithms that would not require storing

large numbers of dense token-level vectors, data analysts who are already using

BERT-based workflows could easily extract high-quality topic model output with

essentially no additional work.
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C O N T I N E N T S O R A R C H I P E L A G O S ? M E A S U R I N G T H E

L I N G U I S T I C G E O M E T R I E S O F W O R D E M B E D D I N G S

This chapter is based on joint work with Maria Antoniak and David Mimno.

4.1 introduction

One of the most important recent developments in natural language processing

is the surprising power of continuous representations. Low-dimensional vector

embeddings trained with simple algorithms can predict linguistically meaningful

properties of language [Turian et al., 2010; Chen and Manning, 2014]. In this work

we consider how such restricted models represent these complex properties. Are

embeddings able to support complex down-stream tasks because they provide

suitably rich inputs that later models can combine in complex ways, or because

their geometry is primarily organized around these properties?

As a test case we focus on a specific linguistic phenomenon, part of speech (POS).

We select POS because it is well-studied phenomena and computational tools exist

for identifying POS with relatively high accuracy in many languages. We also

focus on a specific family of algorithms, lexical word embedding models such as

word2vec [Mikolov et al., 2013a; Mikolov et al., 2013b] and GloVe [Pennington et al.,

2014]. We select these algorithms not because they are state-of-the-art, but because

they are powerful enough to represent linguistic features [Cotterell and Schütze,

41
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Figure 4.1: Hypothetical visualizations of continental (left) and archipelagic (right) repre-
sentations.

2015] yet simple enough that we can efficiently train tens of thousands of models

on specific collections in multiple languages.

POS can be defined by syntactic and morphological distributions [Schachter

and Shopen, 2007] and good embedding spaces place words occurring in similar

contexts close together, so we expect these models encode POS information. But

in vector spaces with tens or hundreds of dimensions there may be many ways to

encode such patterns. Are parts of speech nicely captured in single low-dimensional

subspaces (“continents”) or are they encoded more locally in small, dispersed

clusters (“archipelagos”)? Figure 4.1 shows hypothetical visualizations of these two

possibilities.

In this work we use a variety of techniques to probe the geometry of parts of

speech within embedding spaces. We measure how these geometric properties

vary by algorithm and language. Finally, we address how parameter settings and

the calibrated removal of specific word classes from the training text affect these

geometric representations.

This work is distinct from popular probing tasks that determine, for example,

whether a specific neural network is capable of representing a linguistic pattern;

the fact that word embeddings represent POS is not controversial. Rather, we seek

to determine at a detailed, numerical level how embeddings represent POS infor-
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mation, and whether we can modify algorithmic parameters or input collections in

a way that changes these POS representations.

4.2 data : part of speech from multi-lingual parallel texts

One attractive feature of POS as a linguistic phenomenon is that there exists a

small number of common tags that, while not universal, have been argued to exist

across large numbers of languages [Petrov et al., 2012]. These tags can be split into

two groups. Open classes represent “content” words such as nouns and verbs and

frequently incorporate new terms. Closed classes represent “function” words such

as determiners and conjunctions and rarely if ever add new terms [Schachter and

Shopen, 2007]. We focus on open classes as they dominate the vocabulary of the

languages under inspection. We use closed-class words as a treatment variable

and measure the effect of their presence or absence on the geometry of open-class

words.

Prior work uses embeddings to predict word-level POS, providing extrinsic

evidence that word embeddings contain syntactic and semantic information [Al-

Rfou’ et al., 2013; Owoputi et al., 2013; Schnabel and Schütze, 2014; Lin et al., 2015].

However, our goal is not to build a superior POS tagger but to measure the spatial

encoding of POS.

Open Classes Closed Classes

Adjective (ADJ) Adposition (ADP)
Adverb (ADV) Conjunction (CONJ)
Noun (NOUN) Determiner (DET)
Proper Noun (PROPN) Numeral (NUM)
Verb (VERB) Pronoun (PRON)

Table 4.1: Key parts of speech considered in this work.
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We want to compare the geometry of POS over multiple languages. In order

to make meaningful comparisons we must factor out semantic differences in the

training texts and use the same POS tagging method for all texts. So, we use

translated parallel text from European Parliament proceedings from April 1996

through November 2011 taken from the Europarl dataset [Koehn, 2005] tagged

using the spaCy toolkit.1 The tagger uses averaged perceptron [Collins, 2002] with

Brown cluster features [Koo et al., 2008]. This tagging method does not rely on

continuous embeddings.

The combination of Europarl corpora and spaCy pre-trained POS taggers provide

us with tagged parallel text over seven languages: German (de), Dutch (nl), English

(en), French (fr), Italian (it), Portuguese (pt), and Spanish (es). We use this specific

order as a rough proxy for language similarity. The Dutch POS tagger in spaCy

deals poorly with proper nouns, but we include it as an additional comparison with

that warning. Although we are not able to make conclusions about non-Western-

European languages, we can still demonstrate that our findings are not restricted

to one language. For each language, we segment sentences using spaCy, remove

sentences with fewer than five tokens, and perform word-level tokenization and

POS tagging. Finally, we reduce our working vocabulary to words occurring at

least 20 times; the resulting POS distributions are shown in Figure 4.2.

Figure 4.2: Distributions of open- and closed-class POS tags after rare words have been
removed but before any other treatment.

1https://spacy.io/

https://spacy.io/
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POS ambiguity is a serious challenge for non-contextual embeddings (“I lead

the charge” vs. “I charge the lead-acid battery”). We record ambiguity for word

w over POS tag p with a probability distribution Pr(p | w) from the POS tag

frequencies in each language corpus. We consider both open- and closed-class POS

types in the Universal Dependencies universal POS tag set as well as an “X” tag

which can indicate code-switching and foreign words. We collapse coordinating

and subordinating conjunctions into a single tag. From these, we filter to those POS

types that occur across all of our languages; these tags are listed in Table 4.1. For

each word type in a corpus, we de-noise its observed POS distribution by removing

POS that make up less than 2% of its observed distribution.

Lang. # Sents. Avg. Sent. Leng. # Types POS Entropy

de 2,210,003 21.1 45,551 .09 ± .20

nl 2,474,902 21.7 32,602 .19 ± .28

en 2,234,816 24.6 23,620 .16 ± .24

fr 2,296,291 25.8 31,976 .29 ± .33

it 2,211,793 23.1 38,610 .25 ± .34

pt 2,272,752 23.7 34,969 .26 ± .32

es 2,107,208 26.2 36,129 .21 ± .30

Table 4.2: Summary statistics for the seven languages under consideration.
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Figure 4.3: t-SNE projections of open-class words for each algorithm and language. POS
clusters differently across language and embedding algorithm. For all lan-
guages, GloVe forms the most distinct POS formations and CBOW forms the most
concentrated ones.
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4.3 proof of concept : visualizing pos

For an initial intuition, we examine two-dimensional t-SNE projections [Maaten

and Hinton, 2008] for each language and embedding algorithm. t-SNE projections

are a simplification of the actual linguistic geometries and should be approached

with caution [Wattenberg et al., 2016], but should be comparable relatively if

not in absolute terms. We focus on three algorithms: global vectors for word

representations (GloVe), skip-gram with negative sampling (SGNS), and continuous

bag of words (CBOW). We use the GloVe implementation provided by Pennington

et al. [2014]. For SGNS and CBOW, we use the implementations provided by the

fastText library [Bojanowski et al., 2017] with subword learning turned off. For

all algorithms we fix the number of training iterations to 15 and use a window size

of 5, a vector size of 100, and 5 negative samples for CBOW and SGNS. For all other

unspecified model parameters, we use the respective implementation defaults. We

`2-normalize all vectors. Figure 4.3 shows projections for the three algorithms as

well as a baseline of 100-dimensional Gaussian noise. Each point represents a word

and its color represents that word’s most probable POS. For ease of comparison,

the projections have been rotated so that the mean vector of verbs (orange) points

up and to the left.

pos organization varies by algorithm . Across all languages, GloVe

appears to have the most distinct POS formations. While CBOW’s are slightly less

distinct, they are more concentrated than GloVe’s. In contrast, SGNS’s POS clustering

shows strong local clustering but lacks the global structure of GloVe and CBOW. So,

CBOW has the most continent-like formations, but there is not a one-to-one map-

ping between clusters and POS classes. GloVe’s formations look more continental
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than archipelagic given the size of its clusters. Meanwhile, SGNS seems to be an

archipelago of sorts but its POS “islands” lack clear separation.

pos organization varies by language . Languages from the same lan-

guage family tend to have similar POS formations. Germanic language (de, nl, en)

projections are dominated by noun clusters, whereas Romance language (fr, it, pt,

es) projections are dominated by verb clusters, perhaps due to more flexible noun

compounding in Germanic languages and richer verbal morphology in Romance

languages. We also see that Romance languages tend to be more archipelagic than

Germanic languages. All languages have a prominent cluster of proper nouns

(except Dutch, which we believe is due to errors in tagging). Given that each

language-specific corpus contains the same content, this might indicate that proper

nouns are content-dependent rather than language-dependent.

4.4 quantifying pos formations

While t-SNE projections can give us an intuition into how POS is organized within

an embedding, we must confirm our observations through quantitative measure-

ments of continental and archipelagic characteristics. Quantitative measurements

of the geometries of word embedding spaces have been tangentially explored

in work that seeks to align separately trained embeddings, but these works are

primarily concerned with translation rather than intrinsic syntactic properties of

the embedded space [Lample et al., 2018; Hartmann et al., 2018; Kementchedjhieva

et al., 2018]. Inspired by probing tasks used for understanding the properties of

sentence embeddings [Conneau et al., 2018], we propose to measure the clustering

tendencies of POS classes through classification tasks that rely on local and global
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structure. The difference is that we already know that these embeddings encode

POS information; we instead want to characterize how POS classes are represented

within the space of these embeddings.

To evaluate the POS predictions of a classifier we define predc(w) as the predicted

POS for classifier c on word type w. In order to account for POS ambiguity we

define a weighted prediction accuracy for classifier c and POS class p as

Accc(p) =
∑w 1(predc(w) = p) · Pr(p | w)

∑w Pr(p | w)
,

where 1(x) is the indicator function. We produce an overall classifier score by

averaging the POS-level accuracy scores. In practice, the maximum value for this

metric is determined by the level of ambiguity in the language. We therefore define

a reference upper bound UB, which samples a POS prediction for word w by

sampling from the actual smoothed POS distribution Pr(p | w).

global structure : nearest centroid. If an embedding space is primar-

ily organized around POS (the “continents” hypothesis), then it should be sufficient

to represent each POS as a single centroid, and predict POS for any point in the

embedding space by finding the nearest of these centroids. We construct a centroid

for each POS using the word types exclusively from that class.

local structure : nearest neighbors . If an embedding space is primar-

ily organized around some factor other than POS, and consists of large numbers of

locally-consistent clumps (the “archipelagos” hypothesis), then we would expect

that a word should share the POS of its near neighbors, and that this local infor-

mation should be much more informative than single class-level centroids. Prior

work has used the variation of nearest neighbors of open-class words to study the
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similarities between spaces learned via different training algorithms [Pierrejean

and Tanguy, 2018]. We use k nearest neighbors classification to measure the local

POS clustering with k = 5. If nearest neighbor accuracy is substantially higher

than centroid accuracy, we treat that as evidence for a lack of global structure. In

contrast, if they are similar we treat this as further evidence for the “continent”

hypothesis.

4.5 results

We use 10-fold cross validation for each trained embedding, maintaining the test

splits across each trained instance. All significance tests involve a t-test paired by

split/run numbers. As we are making a large number of comparisons, we describe

a difference as “significant” if p < 1× 10−7. We will limit many figures to German,

English, and Portuguese for space reasons; results are typically comparable within

language families.

4.5.1 Effects of Algorithm and Language

We confirm that language and embedding algorithm affect the spatial organi-

zation of POS classes. As seen in Figure 4.4, we find that all three algorithms

perform significantly better than random noise for both nearest centroid and near-

est neighbor classification. For nearest centroid, CBOW produces significantly higher

accuracy scores than GloVe and SGNS across all languages. For all languages except

French, SGNS produces significantly higher accuracy scores than GloVe. For nearest

neighbors, SGNS produces significantly lower accuracy scores than GloVe and CBOW

across all languages. We find that GloVe tends to score higher than CBOW, but only
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significantly for Dutch, English, French, Portuguese, and Spanish. These results

agree with what we observed in the t-SNE plots: all three embedding algorithms

have clear archipelagic POS formations, with varying degrees of continental form.

CBOW is the most continental and surprisingly GloVe is the least but contains some

continent-like forms.

It is possible that centroid-based classification is influenced by the overall geom-

etry of the embedding space, which is known to vary by algorithm. [Mimno and

Thompson, 2017] find, for example, that SGNS vectors cluster in a cone due to nega-

tive sampling. Chandrahas et al. [2018] find that different knowledge graph (KG)

embedding methods result in different geometric properties (conicity and vector

spread). We therefore measure the distance from the centroid of all `2-normalized

vectors in an embedding to the centroid of each POS. Adverbs and proper nouns

have the largest centroid distance for all models and languages. Centroid distance

is largest for GloVe, indicating that its POS centroids are widely separated, so

any reduction in performance of centroid-based classification is due to variability

around the centroids, not by the closeness of centroids.
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Figure 4.4: Mean scores for nearest centroid and nearest neighbor classification. Overall,
CBOW has the highest scores for nearest centroid and GloVe has the highest for
nearest neighbor.
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Figure 4.5: Increasing the number of training iterations from 15 to 100 has no significant
effect on Nearest Neighbor accuracy scores, but SGNS and especially GloVe
benefit from more training.

4.5.2 Effects of Parameter Settings

In this section we consider the factors that affect how each algorithm encodes POS

information, holding the collection fixed.

training time . All of the algorithms that we consider are in some way

stochastic, making small steps in the direction of a gradient. It is possible that

any variation we observe is simply a factor of the convergence properties of

the stochastic algorithms. To determine whether POS formations improve with

additional training time we increase the number of training iterations to 100.2

In Figure 4.5, we observe that increasing the number of training iterations

affects our classification tasks in different ways. For nearest neighbors, changes

are either not significant or are inconsistent across languages. For nearest centroid,

GloVe scores significantly improve for all languages, to the point where they are

comparable to CBOW. SGNS scores experience a small but significant increase for all

languages except Dutch. In contrast, CBOW scores see no consistent change across

2Iteration numbers are not necessarily comparable, but they provide a rough estimate of compu-
tation.
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languages: German and Dutch scores worsen, Portuguese scores increase, and

the remaining four languages experience no significant difference. These results

indicate that additional training predominantly affects global organization of POS

rather than local neighborhoods. In the case of GloVe (and possibly SGNS), POS

“islands” are shifting within the embedding space such that they are closer to other

same-class “islands” during the additional training iterations.

window size . All of the embedding algorithms we consider are driven by the

cooccurrence of words within a sliding window. Any information we learn about

words is therefore sourced from these contexts. It is therefore natural to ask how

the size and weighting of context windows affects the properties of the resulting

embeddings.

Changing window size and construction is known to impact embedding quality

[Levy et al., 2015; Levy and Goldberg, 2014]. In fact, different algorithms explicitly

prefer different window sizes. SGNS and CBOW use a default window size of 5, while

GloVe uses a default of 15. Moreover, window size affects how well embeddings

encode POS information [Bansal et al., 2014; Lin et al., 2015]. But again, we want to

understand how window size alters the geometric encodings of POS.

As expected, changes in window size significantly affect POS formations at both

the local and global level. As seen in Figure 4.6, GloVe classifier scores increase with

window size, while CBOW and SGNS scores decrease. For both classifiers, the highest

overall accuracy scores for all languages correspond to SGNS and CBOW embeddings

trained with a window size of 1. As window size increases, SGNS scores plummet

and are surpassed by the rising GloVe scores. While CBOW scores also decrease as

window size increases, they do so at a slower rate than SGNS. GloVe scores initially

increase as window size increases, but hardly change once window size exceeds

5 or 10. For nearest centroid scores, CBOW is never surpassed by GloVe. In fact, for
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a window size of 100, CBOW accuracy scores are significantly larger than GloVe for

all languages except French and Italian. In contrast, for nearest neighbor, GloVe

surpasses CBOW for all languages beyond window size 5 or 10.

These results support the hypothesis that syntactic information is mostly cap-

tured locally: neighboring words (at least for the languages we examine) are all

you need to learn open-class POS. More importantly, we find that smaller window

sizes make word2vec-style algorithms (e.g. SGNS and CBOW) more continent-like.

This echoes Bansal et al. [2014] and Lin et al. [2015]’s finding that continuous

skip-gram (i.e. SGNS without negative sampling) embeddings are most useful for

POS prediction for small context windows. Surprisingly, we find that GloVe’s POS

formations become more defined and global as window size increase towards 10.
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Figure 4.6: Window size versus classifier score. GloVe scores increase with window size
while CBOW and SGNS scores decrease.
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window weighting . The relative weighting of words within the sliding

context window is subtly different across algorithms. word2vec-style algorithms

weight each word token within the context window equally, but sample an effective

context window size for each word token uniformly from 1 to the maximum

window size. As a result, if the maximum window size is five, in expectation a

word that is one word position away from the query word will be sampled five times

more often than the word five positions away, corresponding to a linear weighting

proportional to distance. In contrast, the standard GloVe implementation weights

neighboring words using a hyperbolic weighting, such that a word t positions

away from the query word will have weight proportional to 1/t. This difference

means that even with large window sizes GloVe still puts substantial weight on

nearby words. Lison and Kutuzov [2017] find that sublinear weighting has no

consistent effect on word similarity, but might changes in window weighting affect

the learning of syntactic information?

In order to compare the effect of window weightings, we modify the reference

implementations of both families of algorithms to use the weighting scheme of the

other. For GloVe we implement a linear window weighting, while for word2vec-

style algorithms we modify fastText to sample window sizes with probability

proportional to the inverse of the token distance to emulate a hyperbolic weighting,

in expectation.

Overall, hyperbolic weighting tends to improve accuracy scores across languages

and algorithms, while linear weighting worsens them. As seen in Figure 4.7, we

see that hyperbolic weighting significantly improves accuracy scores for SGNS for

window sizes 5 and higher. But, these scores still decrease as window size increases.

CBOW exhibits a similar but much smaller behavior: hyperbolic weighting either

causes at most a slight improvement. In contrast, linear weighting significantly
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decreases GloVe’s scores once a window size of 5 is reached. At this point, linear

weighted GloVe’s scores decrease at a similar rate to standard SGNS.
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Figure 4.7: Window size versus classifier score including algorithms with altered window
weighting or subword information. Hyperbolic weighting tends to improve
scores, while linear weighting worsens them. For SGNS, using subword informa-
tion results in similar increases to using hyperbolic window weighting.

subword information. Morphology often indicates POS information that

can be used in machine learning [Pinter et al., 2019]. Adding character n-grams as

features using the fastText algorithm [Bojanowski et al., 2017] scores significantly

higher than SGNS for all languages and a large majority of window sizes. As seen in

Figure 4.7, fastText scores tend to decrease at a similar rate as SGNS scores and are
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often quite similar to the scores of SGNS with hyperbolic weighting. Additionally,

fastText produces the most continental POS formations for a window size of 1.

4.5.3 Effects of Data Modifications

We have shown that modifying algorithm parameters affects the encoding of POS,

but what about modifications to the input texts? The difficulty of aligning the

embeddings of language pairs has been shown to be dependent not only on the

training algorithms but also on qualities of the training corpora Hartmann et al.

[2018]. Word frequency, the presence or absence of specific documents, document

length, and corpus size can result in surprising instabilities of cosine similarities

[Hellrich and Hahn, 2016; Tian et al., 2016; Antoniak and Mimno, 2018; Wendlandt

et al., 2018]. Prior work [Tang et al., 2016; Lison and Kutuzov, 2017] has shown that

removing function words worsens syntactic learning while improving semantic

learning.

In this section we selectively remove tokens from closed classes and measure

the difference between the resulting embeddings of open classes. As a baseline

modification we randomly shuffle the tokens in each sentence. We expect this treat-

ment to have a more destructive effect on POS classification than any subsampling

treatment that preserves word order. We examine three types of corpus-based

interventions. In the first, we remove in expectation 50%, 75%, 90%, and 100% of

tokens tagged as a closed-class POS. In the second, we remove all tokens from each

closed class, one class at a time. In the third, we remove all closed-class tokens

except for one class, one class at a time.
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Figure 4.8: Change in classifier scores versus subsampling of closed-class tokens. Removing
50% or more closed-class tokens harms scores for all models and languages.

removing closed-class pos harms open-class pos formations . For

all algorithms, the removal of 50% or more of closed-class tokens harms nearest

centroid and nearest neighbor scores. As we would expect, more harm is caused

by larger deletions. In Figure 4.8, we find that all models experience significant

decreases in score, but GloVe’s change is significantly larger. Unlike GloVe, these

algorithms already remove significant numbers of frequent words, which tend to

be closed-class. The fastText implementation discards a token of word type w

at the rate 1− (
√

λ + λ), where λ is the ratio between a user-specified threshold

(default 0.0001) and the overall frequency of w.3 This process is vital for good

performance: without it both nearest centroid and nearest neighbor scores are

3This formula differs from the one presented in Mikolov et al. [2013b], but matches the one used
in current word2vecimplementations.
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similar to random noise. But it also removes close to 75% of tokens for all closed

classes in all languages, with the exception of numbers.

Examining POS-level scores (omitted due to space limitations), we find that

adjective, noun, and verb formations are most affected by our interventions. Proper

nouns tend to be the least affected (except for German) with their local and global

structure experiencing the least harm. Adverbs tend to maintain their global form,

but their local structure deteriorates. In Romance languages, the local clustering of

adverbs is especially affected.

the influence of closed-class pos varies . We measure the importance

of a closed-class POS type in two ways. By removing all of the class’s tokens, we can

measure how unique this POS is with respect to the other closed class POS types.

In contrast, by removing all closed-class POS except this class, we can measure

the individual influence of this class on open-class POS formations. We expect

the first type of intervention to have less of an effect than the second; the second

removes dramatically more tokens. Due to the interference between fastText

downsampling and our modifications, we focus only on the results of GloVe.

In Figure 4.9, we see that numerals are redundant with the other closed-class

POS, but that their presence does provide a very small improvement over the

absence of all closed-class tokens. Determiners and adpositions have the largest

influence on open POS formations, the removal of either significantly worsens

global and local clustering. Pronouns and conjunctions have much smaller impact

and tend to influence global formations over local ones.

Examining POS-level scores, we find that the effect of these interventions varies by

language. As we might expect, the presence of determiners affects noun formation.

For French, the removal of determiners has a uniquely large effect on the local

and global structure of nouns. But for English and Portuguese, adpositions have
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Figure 4.9: Change in GloVe classifier scores versus removing one or all-but-one closed
class. Determiners and adpositions have the largest individual influence on
scores, while numerals have the least.

a stronger effect on the global noun formations than determiners, but both have

equally strong influence on local noun formation. A more systematic analysis of

the effects of closed-class POS on embeddings is beyond the scope of this work,

but could provide a fascinating tool for comparative linguistics.

4.6 conclusion

In this paper we introduce general methods for measuring the geometric structure

of word vector features. These methods enable us to investigate the geometries

of POS within word embeddings. While we find that no algorithm is entirely a

continent or an archipelago, CBOW best satisfies the “continent” hypothesis while

GloVe and SGNS best satisfy the “archipelago” hypothesis.
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We confirm that window size and weighting greatly impact open-class POS

formations. GloVe’s hyperbolic window weighting is crucial for encoding POS

information: linear weighting significantly reduces local and global POS structure

particularly for larger window sizes. For SGNS, using hyperbolic weighting improves

POS clustering, similar to using subword information.

Finally, we find that closed-class POS tokens affect open-class POS formations

in complex and language-specific ways. Deleting large quantities of closed-class

tokens especially harms adjective, noun, and verb clustering. High frequency

downsampling dampens but does not eliminate this effect. Additionally, removing

specific closed classes has varying effects on open-class POS formations, varying by

language. Our methods provide a framework for capturing the interactions of POS

types within embeddings across languages. We hope that this method may not

only provide information about how embeddings encode linguistic information,

but also serve as a tool for measuring and comparing the properties of natural

languages.





5
C O M P U TAT I O N A L C U T- U P S : T H E I N F L U E N C E O F D A D A

This chapter is based on joint work with David Mimno.

To Make A Dadaist Poem:

Take a newspaper.

Take a pair of scissors.

Choose an article from the newspaper about the same length as you want your

poem.

Cut out the article.

Then carefully cut out each word of the article and put them in a bag.

Shake gently.

Then take out each word, one after another.

Copy them conscientiously in the order drawn.

The poem will be like you.

And look! You are an infinitely original writer with a charming sensibility,

yet beyond the understand of the vulgar.

— Tristan Tzara [1963]

63
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5.1 introduction

Can a work of art that has been deformed beyond recognition nevertheless be

recognizable? The idea of a cut-up poem is distinctively Dada in its playful reduc-

tiveness and, simultaneously, shockingly relevant. Today the cut-up is a foundation

of modern textual analysis in the form of the “bag of word” assumption. Search en-

gines, spam filters, and social media recommenders all rely on the assumption that

the information carried by the words themselves is sufficient, and that the order in

which words appear is irrelevant and burdensome. The bag-of-words assumption

reduces the need for intelligence. All that is required is conscientiousness, which

computers have in limitless quantities.

In this work we study a deformative “reading” of Dada, not using scissors but a

modern computational image-processing method known as a convolutional neural

network (CNN). We assure the reader that CNNs are both charming and quite

beyond the understanding of the vulgar. CNNs operate by passing images through

multiple layers of pattern detectors. The output of a given layer becomes the input

of the next layer. For example, the output of the first layer might identify the

presence of lines or edges at different angles, while the output of the second layer

might identify the presence of pairs of lines that form angles. At the top layer, the

output might identify specific things—dog breeds, dishwashers, doormats.1

Instead of physical newspapers, we cut up digitized avant-garde periodicals

from Princeton’s Blue Mountain Project.2 Our initial corpus contains more than

2,500 issues from thirty-six different journals—over 60,000 pages in total. We

deform page-level images into computational cut-ups using a CNN. We then use

1See http://image-net.org/challenges/LSVRC/2014/browse-synsets for a sample list of object
classes used in object detection and image classification tasks.

2The transcripts contain human-generated metadata which describe the editorial content within
a periodical and their corresponding page locations. See http://bluemountain.princeton.edu.

http://image-net.org/challenges/LSVRC/2014/browse-synsets
http://bluemountain.princeton.edu
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statistical classification to determine which visual features are captured by these

cut-ups. Finally, we “read” these computational cut-ups to determine whether such

reductive analyses are sufficient to separate Dada from other modernist movements.

Our goal is not necessarily to get the “right” answer, but rather to use computation

to provide an alien, defamiliarized perspective that can call into question the

boundaries between categories.

5.2 creating and reading computational cut-ups

A computational cut-up is a mathematical representation of an object: a list of

numbers that collectively preserve information about the original object. Each value

in this list corresponds to a computational feature. In a text model, a feature might

correspond to the number of occurrences of a particular word in a document, but

image features are more abstract and less apparent. Accordingly, we do not choose

these features by hand—we ask a CNN.

CNNs are powerful tools for analyzing images. Although the output of the final

layer of a CNN will identify the categories of the object that it was trained to

recognize, the output of the next-to-last layer has been shown to produce powerful,

high-level visual features. These features are generic enough that they can be used

by other image analysis systems [Razavian et al., 2014]. By using these features as

our computational cut-ups, we will in essence be asking what CNNs “see” when

they look at Dada and more broadly the avant-garde.

Generating a computational cut-up involves two steps. We first shrink the input

image to a small 224-by-224 pixel square so that it can be fed as input to our CNN.

Fine-grained details are lost through this deformation, but major elements such as

layout, headers, and illustrations are generally preserved. As seen in Figure 5.1, the
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Figure 5.1: CNN input images for ten randomly sampled pages.

images fed to the CNN remain recognizable but are similar to viewing the page

from the far side of a room.

Having created a shrunken version of the original page, we pass it to our CNN

as input and extract a computational cut-up from the CNN’s internal features.3

These features are not readily interpretable to the human eye, but they correspond

to high-level concepts such as human faces, flowers, and fields of grass.4 For each

feature, we extract a number representing the feature’s measured presence within

an image—a large value indicates the feature is strongly detected, while a value

near zero indicates its absence. As a result, our computational cut-ups are lists of

2,048 numbers.

We evaluate the information encoded within the computational cut-ups by how

well they perform on a series of binary classification tasks (e.g. Dada or not-Dada).

We measure the degree to which a classifier can distinguish cut-ups with label A

from cut-ups with label B. For each computational cut-up c with label A or B, we

train a Naïve Bayes classifier on all other cut-ups with labels A and B and use it to

predict the label for cut-up c [Broadwell et al., 2017]. The classifier consists of the

3We use the ResNet50 model pretrained on ImageNet, which is available through Keras.
4See http://yosinski.com/deepvis#toolbox for more information on visualizing neural net-

work features.

http://yosinski.com/deepvis#toolbox
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mean and variance of each of the 2,048 CNN features, for each label. If the feature

values of c look more similar to the typical feature values of label A, we predict

A, and vice versa. The accuracy of these predictions will indicate how well the

cut-ups differentiate the two label classes.

In addition to the simple question of whether a classifier is guessing correctly,

we are also interested in how confidently the system makes its predictions. We

therefore also measure classifier confidence for each prediction. By examining the

corresponding page images for the best and worst predictions for each label, we

can better understand the visual features being associated with each label.

5.3 proof of concept : seeing music

Before testing whether a CNN can recognize Dada, we verify that it is capable of

performing a simpler task: identifying music within periodicals. It is fairly easy for

a person to tell the difference between pages of musical scores and pages containing

text and images, but how well will our CNN fare? If our computational cut-ups do

not distinguish between musical scores and paintings, it would be hard to trust

their capability to distinguish Dada from Cubism.

Detecting music within our corpus is a relevant task, not only because music is

an avant-garde art form, but because the Blue Mountain corpus has a substantial

number of music journals. The five periodicals La Chronique musicale, Dalibor, Le

Mercure (S.I.M.), Niederrheinische Musik-Zeitung, and La Revue musicale are repre-

sented in the corpus by 1,405 issues and 27,791 pages. It is safe to assume that

the majority of pages containing music will come from these five journals. Using

the TEI-encoded transcriptions for each periodical issue, we identify 3,450 pages
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containing music.5 Only ninety-one of these pages come from the thirty-one other

periodicals.

We find that computational cut-ups are useful for recognizing pages containing

music. The classifier makes mistakes that a human might not, but in ways that

provide intuition about what it “sees.” The classifier correctly labels 67% of the

3,450 pages with music as “Music” and 96% of the 55,007 pages without music

“Not-Music.” For each prediction, we can measure our classifier’s confidence in

terms of how much more likely it thinks a page should be labeled as “Music”

rather than “Not-Music.” Confidence scores with large magnitudes indicate a more

confident classification, while a score’s sign indicates its assigned label type. So, a

large, positive confidence score indicates that the classifier is very confident that

a page be labeled “Music.” In Figure 5.2 we see that our classifier tends to be

more confident when it labels a page as “Not-Music,” even when it is wrong. This

difference suggests that the cut-ups may better describe features associated with

non-music page elements than music page elements.

Figure 5.2: Histograms of prediction confidence for pages containing music (left) and
pages without music (right). The classifier is more confident labeling pages as
“Not-Music” no matter what the actual page type is.

5We consider content marked as “Music” to represent musical content within a page. See https:
//github.com/cwulfman/bluemountain-transcriptions. Our research used transcripts accessed in
May 2017.

https://github.com/cwulfman/bluemountain-transcriptions
https://github.com/cwulfman/bluemountain-transcriptions
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To understand where the classifier goes wrong we compare the pages that are

most confidently classified and misclassified for each label. In Figures 5.3 and

5.4, we see that pages of sheet music are most confidently recognized as “Music”

and tables are most confidently misclassified as “Music.” These images share two

prominent features: prominent horizontal lines and rectangular blank spaces. Given

that the actual musical notes are poorly preserved in the deformed CNN inputs, it

is reasonable that these are not the dominant visual features associated with pages

containing music.

Figure 5.3: Ten pages most confidently, and correctly, classified as “Music.”

Figure 5.4: Ten pages most confidently misclassified as “Music.”
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Figure 5.5: Ten music-containing pages most confidently misclassified as “Not-Music.”

Turning to the “Not-Music” label, we find color and pictures are the dominant

visual features associated with pages without music. In Figure 5.5, we see that the

top ten pages most confidently misclassified as “Not-Music” all contain pictures.

Moreover, these pictures take up as much space within the page if not more than

the musical elements. Many of these pages also include text.

Perhaps the most interesting of these confident “Not-Music” misclassifications

is the bottom-right page in Figure 5.5, a scaled down image of a medieval folio.

The rescaled CNN input image hardly looks like music, and, in a way, it is not.

But looking at the original image in Figure 5.6, we see it does contain music, even

though it looks nothing like modern musical notation. Additionally, the music is

being seen through another medium: a picture, which could be misleading the

classifier to the “Not-Music” label.

An effective, but potentially misleading feature learned by the classifier is that

saturated color indicates no music. While sheet music is generally white, page

coloring can vary due to paper and scanning quality. We want to verify that the

non-color features perform well without the color cue, and see if the presence of

pictures within a page remains the dominant “Not-Music” feature.
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Figure 5.6: This medieval folio is confidently misclassified as “Not-Music.”
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We found that removing color from CNN inputs had little effect on classification

performance: 66% of pages with music and 97% of pages without music were

correctly labeled. Additionally, the most confidently classified and misclassified

images remained largely the same for each scenario except for correctly classified

pages without music. This is what we had hoped to observe. It indicates that the

classifier relies on features other than color. By removing color we also confirmed

that the presence of pictures is an important feature for pages without music. As

seen in Figure 5.8, pages containing pictures—both illustrations and photographs—

are considered the least musical.

Figure 5.7: Ten non-music pages most confidently classified as “Not-Music.”

Figure 5.8: Ten grayscale pages correctly and most confidently classified as “Not-Music.”
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Through this exercise, we have shown that computational cut-ups are able to

encode visual features that are useful for recognizing pages containing music.

Pages with music tend to have regular horizontal lines and rectangular white space,

while pages without music tend to contain pictures and be in color. These patterns

are fairly primitive, but there is power in this simplicity that echoes the power of

word counts to capture abstract textual concepts. Having established our analysis

process, we begin our search for what makes Dada Dada.

5.4 distinguishing dada

For our reading of Dada we begin with the question of whether we can distinguish

“Dada” from “Not-Dada.” We define labels at the periodical level: for the purposes

of this study, Dada, 291, Proverbe, and Le coeur à barbe are “Dada” and all other

periodicals are “Not-Dada.” We acknowledge that this is a particularly coarse-

grained perspective. A number of periodicals may feature works of Dada artists in

specific issues, and these four periodicals might not always feature Dada artists,

but these mistakes should have little effect on our classifier given the volume of

actual “Not-Dada” material.

We exclude the five music journals from our analysis. Their sheer volume in the

Blue Mountain Project would likely drown out the visual features that we are most

interested in finding. Moreover, we would like to avoid learning the naïve feature

that Dada does not contain sheet music, and hopefully uncover more interesting

distinctive features. After this exclusion, we have 32,642 pages labeled “Not-Dada”

and 182 pages labeled “Dada.”

We find that computational cut-ups are not perfect at distinguishing “Dada”

from “Not-Dada,” but they are better than random. The classifier correctly labels
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63% of the Dada pages and 86% of the not-Dada pages. In Figure 5.9, we see that

the classifier is, as with music, more confident about its “Not-Dada” predictions.

We speculate that other avant-garde movements may have visual signals that are

easier to identify than Dada.

Figure 5.9: Histograms of prediction confidence for Dada (left) and not-Dada (right) pages.
The classifier is more confident labeling pages as “Not Dada” no matter what
the actual page type is.

What then does the classifier “see”? When examining the classifier’s most confi-

dent successes and mistakes in Figures 5.10–5.13, we find that the low-level features

associated with Dada are high contrast, prominent edges, and the color red. In

comparison, graded texture and photographs are considered not-Dada. From these

low-level features, we see that abstract human forms are generally associated with

Dada, while more realistic forms are not.

Given the prominence of red in “Dada” labeled pages, we were concerned that

our results were overly dependent on this simple variable, and not able to generalize

to shape or texture. We therefore reran the same analysis on grayscale images to

measure the overall effect of color. The classifier’s accuracy worsens for both label

groups with resulting accuracies of 56% for “Dada” and 84% for “Not-Dada.” Since

this degradation is relatively small, we conclude that color is an important feature

for distinguishing Dada, but not the only feature. We find that contrast, edge

sharpness, and texture all remain prominent features for classification in grayscale.
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It is perhaps unsurprising that color would play a role in distinguishing period-

ical groups, since page color is influenced by both content and printing method.

If a journal has a distinctive page coloring, then it can easily be distinguished

from other periodicals by this color alone. This feature can both cause pages with

ambiguous content to be correctly identified and pages with otherwise highly

similar content to be easily distinguished because of differences in color palette.

We find that our classifier is most confident when labeling pages containing

images, and least effective for text-only pages. This result suggests that the classifier

is less certain about how text-only pages relate to Dada. Although the CNN does

not appear to be able to distinguish between journals based on pages of text, we

should not conclude that there are not typographic or layout features that could

distinguish them, since these features may simply not be preserved in downscaled

pages. We will keep this concept in mind as we analyze our results at the periodical

series level.

With these intuitions about which features appear Dadaesque according to

the CNN’s deformative viewing, we can measure Dada at the level of an entire

periodical series. Which periodicals “fool” the classifier, and therefore question

Figure 5.10: Ten Dada pages most confidently classified as “Dada.”
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Figure 5.11: Top 150 not-Dada pages most confidently misclassified as “Dada.”

Figure 5.12: Ten Dada pages most confidently misclassified as “Not-Dada.”
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Figure 5.13: Top 150 not-Dada pages most confidently classified as “Not-Dada.”

the (somewhat arbitrary) boundaries that we have constructed? We measure a

periodical’s closeness to Dada by the proportion of its pages classified as “Dada.”

As seen in Table 5.1, we find that the journals Le coeur à barbe, Dada, 291, and

L’élan are the most Dadaesque journals with over half of each periodical’s pages

classified as “Dada” for both color and grayscale images. Notably, L’élan is not a

Dada periodical; it is a cubist war journal. In fact, we find a number of cubism and

cubism-influenced journals among the most Dada-like not Dada, namely Klingen,

Der Sturm, and SIC. We find this to be a positive result given cubism’s influence on

Dada, particularly Dada art.

We were surprised to find that the two Dada-related journals Secession and

Nord-Sud, as well as the Surrealist journal Surréalisme were found to be not Dada-

like. While Nord-Sud’s Dada proportion improves with grayscaling, it is still far

below fifty percent. Examining these journals, we find that they are predominantly
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composed of text. Given our suspicions that our classifier has difficulty correctly

Periodical Total
Pages

% Dada
(Color)

% Dada
(Grayscale)

Le coeur à barbe 8 100.00 75.00

Dada 110 70.91 60.91

291 42 59.52 57.14

Proverbe 22 18.18 18.18

L’élan 129 58.91 56.59

Klingen 727 26.55 31.09

Veshch Gegenstand Objet 64 25.00 29.69

Der Sturm 4649 22.54 24.71

La cité 4766 18.90 21.74

SIC 458 16.16 19.43

Ver sacrum 1928 16.08 21.27

Umělecký měsíčník 933 15.01 18.44

Bruno’s Weekly 1219 14.68 15.42

Volné směry 1797 14.47 17.25

Zeit-Echo 756 12.70 17.06

New Numbers 222 11.71 10.36

Poesia 1603 9.61 10.61

Action 911 9.55 14.16

Broom 1751 9.42 10.34

Sturm-Bühne 32 9.38 21.88

Entretiens politiques & littéraires 2764 9.37 8.54

Ultra 156 7.69 11.54

The Mask 3980 7.66 9.92

Nord-Sud 246 7.32 14.63

The Glebe 940 7.02 9.68

Surréalisme 16 6.25 6.25

Secession 217 5.07 5.53

Nowa sztuka 76 3.95 10.53

The Signature 96 3.13 9.38

Pan 2136 3.09 8.19

East & West 70 1.43 0.00

Table 5.1: Periodical-level Dada-like proportions for all pages.
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classifying text-only content, we narrow our measurements to pages containing

images.

We identify pages containing images using the periodical TEI transcripts sim-

ilar to our identification of pages containing music. If a page contains content

marked as an illustration, then we consider it an “illustrated page.”6 We note that

these annotations make different judgments on what content constitutes illustrated

content and, as a result, smaller, more decorative illustrations are included in-

consistently. Nevertheless, this labeling is sufficient to allow us to demonstrate

patterns; future work could specifically analyze the images within journals. We

find around one-third of the pages are illustrated, with a very uneven distribution

across periodicals.

As we narrow our focus to “illustrated” pages, the Dada-like page proportions

increase across journals as shown in Table 5.2. Encouragingly, the Dada-like journals

found in the overall page set remain Dada-like. Now, Surréalisme, Secession, and

Nord-Sud have much higher Dada percentages, although these three journals are

represented by very few pages. Moreover, the more illustrated journals Der Sturm

and SIC have a high Dada page proportion.

5.5 conclusion

A deformative technique such as the cut-up poem seeks meaning in the visible

features of language, while playfully ignoring the original concepts and intentions

of the text. By “reading” data art with Convolutional Neural Networks (CNNs),

we can take the same approach, isolating ourselves from concepts and intentions,

and accessing only visual features. The CNN can only describe and distinguish,

6We consider content marked as “Illustration” or “ComplexIllustration” to represent images
within a page.
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not define. We find that CNNs indeed enable a deformative viewing of modernist

journals. This in itself is not surprising: a tool that analyzes images analyzed images.

Periodical “Illustrated”
Pages

% Dada
(Color)

% Dada
(Grayscale)

Le coeur à barbe 1 100.00 100.00

Dada 61 85.25 85.25

291 31 74.19 67.74

Proverbe 3 33.33 33.33

Surréalisme 1 100.00 100.00

Secession 7 100.00 85.71

Der Sturm 1034 74.76 79.40

SIC 83 71.08 78.31

L’élan 87 66.67 73.56

Broom 238 52.94 60.92

Nord-Sud 4 50.00 100.00

Poesia 136 47.06 46.32

Bruno’s Weekly 317 45.11 44.79

Ultra 23 39.13 56.52

Zeit-Echo 213 38.97 47.89

Klingen 464 36.85 44.83

La cité 1784 32.23 40.30

Veshch Gegenstand Objet 23 30.43 34.78

Umělecký měsíčník 395 27.85 34.49

Action 222 25.23 40.99

Ver sacrum 1415 16.11 22.83

The Mask 1500 14.20 17.73

Volné směry 1286 12.60 18.04

Pan 1041 5.76 15.37

East & West 1 0.00 0.00

Entretiens politiques & littéraires 1 0.00 0.00

Nowa sztuka 1 0.00 0.00

The Glebe 0 N/A N/A
New Numbers 0 N/A N/A
The Signature 0 N/A N/A
Sturm-Bühne 0 N/A N/A

Table 5.2: Periodical-level Dada-like proportions for “illustrated” pages.
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What is critical from a scholarly perspective is whether this deformative reading

provides a perspective that is both distinct from and complementary to human

reading. Can a tool designed for identifying dogs be repurposed for exploring the

avant-garde? Can it see Dada among the rest?

From the perspective of a computational cut-up of Dada journal pages, we find

that pages of Dada journals can be distinguished from pages of non-Dada journals

with a degree of accuracy that exceeds random chance. This suggests that there

is substance behind the name of Dada. The internal state of neural networks is

notoriously inscrutable, but by sorting pages by predicted Dada-ness, we can start

to infer how the machine “sees” Dada both from its successes and its mistakes.

Dada is characterized (not defined) by red hues, sharp and prominent edges, and

high contrast. These features are simplistic but can be combined to form more

complex structures such as schematic-like figures and abstract human forms. The

pages that the CNN thinks really ought to be Dada show the porous boundaries of

the category: cubism thus appears to be measurably the closest movement to Dada

at the level of simple visual features.

This characterization of Dada is both alien and familiar. It is produced by an alien

gaze, by a machine trained to identify image content ranging from specific dog

breeds to microwaves and guillotines. From this machine-view, we gain abstract,

but at times unfamiliar, features that nonetheless reflect human concepts. In the

case of Dada, the CNN directs our attention to the presence of abstract forms

and schematic drawings, and strongly away from photography and more realistic

representations of the body. Is this a machine’s way of separating art from anti-art?

A potential shortcoming or strength of this machine reading is its illiteracy. The

CNN was not trained to read human language; moreover downscaling images

makes text largely illegible if not invisible. This prevents the CNN from cheating

by associating Dada with the name of the movement or artists associated with
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it. Instead, it must find visual cues that are significant to Dada journals alone. In

all likelihood, this causes the CNN to fixate on particular artists and their styles.

Clearly, it will take art at face value and not read into the intent of the artist.

However, this deconstruction of art echoes the effects of Dada itself.

As with all scholarship, but particularly data-driven scholarship, our analysis

is limited by the scope of the collection. This reading primarily focused on the

pictures contained within a page, and on the journals present. The former is a

shortcoming of the CNN, while the latter is of the data itself. The CNN is unlikely

to associate the poems of Tristan Tzara or the readymades of Marcel Duchamp as

Dada because its attention is focused away from texts and photographs. Similarly,

it cannot associate other avant-garde art with Dada that it never sees. Despite

these shortcomings, we come upon an interesting and believable finding. From

the perspective of the CNN and this collection, Dada is most similar to cubism.

Unfortunately, potential connections to surrealism could not be observed because

the surrealist journals we included had no pictures.

The idea of viewing art with computers necessarily implies a reductive and

even ludic perspective. The choice of Dada as a testbed for this approach is quite

deliberate, and one we hope fits with the spirit of the movement. The characteristics

of Dada learned by the CNN may simply be artifacts of printing choices, and almost

certainly “miss the point” at a conceptual level. But they also force us to recognize

the visible, structural characteristics of Dada art, and more importantly, point us to

the potential connections and influences of the movement outside Dada proper. The

CNN-based classifier is like Dada, but has its own sensibility. Perhaps in explaining

its successes and puzzling over its mistakes we may ourselves become infinitely

original.
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6
AU T H O R L E S S T O P I C M O D E L S : B I A S I N G M O D E L S AWAY

F R O M K N O W N S T R U C T U R E

This chapter is based on joint work with David Mimno.

6.1 introduction

Unsupervised semantic models are a popular and useful method for inferring

low-dimensional representations of large text collections. Examples of such models

include latent semantic analysis [Deerwester et al., 1990] and word embeddings

[Bengio et al., 2003], but for this work we will focus on statistical topic models

[Hofmann, 1999; Blei et al., 2003], which are used to infer word distributions that

correspond to recognizable themes. In practice, collections are often constructed

by combining documents from multiple sources, which may have distinctive style

and vocabulary. This heterogeneity of sources leads to a serious but rarely studied

problem: the strongest, most prominent patterns in a collection may simply repeat

the known structure of the corpus. Instead of finding informative, cross-cutting

themes, models simply repeat the distinctive vocabulary of the individual sources.

The model in this case is “correct” in that it has detected the strongest dimensions

of variation, but it tells us nothing we did not already know.

As a motivating example, we focus on models trained on novels, where it is

known that inferred topics are often simply names of characters and settings

[Jockers, 2013]. The words Harry, Ron, and Hermione look to the algorithm like the

85
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basis of an ideal topic because they occur very frequently together but not in other

contexts. But this topic only tells us which books within a larger corpus are part

of the Harry Potter series; themes like friendship, adolescence, and magic remain

hidden. This phenomenon is not limited to fiction: we also include a case study of

opinions from US state supreme courts. Unlike examples from fiction, Maine and

Utah both exist in the same universe, but exhibit specific regional term use.

We begin by demonstrating that the problem of overly source-specific topics is

both substantial and measurable. We present three metrics that provide related but

distinct views of source specificity. These metrics are orthogonal to existing metrics

of topic semantic quality: uselessly source-specific topics are often still highly

coherent and meaningful. These metrics are also inversely related to commonly-

used document classification evaluations. Learning 20 newsgroup-specific topics

from 20 Newsgroups may be informative as an evaluation, but in practice users

are rarely unaware of such structure.

Finally, we present a simple but effective method for reducing the prevalence of

source-specific topics. This method relies on probabilistically subsampling words

that correlate with known source metadata, and is related to subsampling methods

that have been highly effective in word embeddings [Mikolov et al., 2013b; Levy

et al., 2015]. The best of the proposed methods substantially reduces source-specific

topics, increases topic differentiation without increasing model complexity, and

improves topic stability.

6.2 related work

The common assumption of prior work on metadata-aware topic modeling has been

that metadata provides valuable hints that can be used to improve topics. Several
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methods use document metadata to influence document-level topic distributions.

The author-topic model [Rosen-Zvi et al., 2004], relational topic model [Chang

and Blei, 2009], and labeled LDA [Ramage et al., 2009] extend LDA by directly

incorporating a particular type of metadata (e.g. author information, document

links, user-generated tags) into the model. Others, like factorial LDA [Paul and

Dredze, 2012], Dirichlet-multinomial regression topic models [Mimno and McCal-

lum, 2008], and structural topic models [Roberts et al., 2014] incorporate more

general categories of metadata. All of these aim to increase dependence between

topics and metadata. In contrast, our goal is to make topics independent of specified

metadata.

Other research makes topic-word distributions sensitive to document-level meta-

data. The special words with background model [Chemudugunta et al., 2006]

incorporates document-specific word distributions into LDA, while cross-collection

LDA [Paul, 2009] incorporates collection level word distributions. The topic-aspect

model [Paul and Girju, 2010] extends LDA to include a mixture of aspects of

documents such that aspects affect all topics similarly. Although these models may

be able to sequester author-specific words, there is no reason to expect that those

words will not also drag along general, cross-cutting words.

In this paper we focus on ways to explicitly identify words that bias topics

towards a specific metadata tag and modify the input corpus for an algorithm to

reduce their effect. Researchers have often dismissed this sort of data curation as

unprincipled and heuristic “preprocessing.” More recent work [Denny and Spirling,

2017; Boyd-Graber et al., 2014] emphasizes that meta-algorithms for data preparation

can greatly affect the intrinsic model quality and human interpretability of topic

models.



88 authorless topic models

Corpus Authors Docs Types Avg Len

Sci-Fi 245 327K 132K 153

Courts 50 52K 89K 1039

Table 6.1: Corpus statistics for the number of authors, documents, and word types, as
well as average document length. Document and word type counts are listed in
thousands (K).

6.3 collections and models

We collected two real-world corpora that combine text from multiple distinct

sources: science fiction novels and U.S. state supreme court opinions.1

science fiction (sci-fi). We selected 1206 science fiction novels by 245

authors based on award nominations and curated book lists hosted on Worlds

Without End.2 We consider each author as a source, and treat collaborations as

distinct sources. We augmented the corpus with other established authors to

increase the diversity of author gender and ethnicity. The novels span from the

early 1800s to the present day. Most of these works are currently protected by

copyright, so rather than full text we obtained page-level word frequency statistics

from the HathiTrust Research Center’s Extracted Features Dataset [Capitanu et al.,

2016]. This data indicates, for example, that page 227 of Dune contains one instance

of the word storm as a noun. Following previous work [Jockers, 2013] we divide

volume-length works into page-level segments, omitting headers and footers.

u.s . state supreme courts (courts). Each U.S. state has a supreme court

that decides appeals for decisions made by lower state courts. In this collection

each document is a court opinion, written by the court after the completion of a

1Code and data is available at https://github.com/laurejt/authorless-tms.
2https://www.worldswithoutend.com/lists.asp

https://github.com/laurejt/authorless-tms
https://www.worldswithoutend.com/lists.asp
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case, summarizes the case and judgment. We treat each state court as a source,

expecting that courts use geographically specific language (e.g. Colorado, Denver,

Colo., Boulder) that is not relevant to the legal content of opinions. We examine

court opinions for all 50 state supreme courts for cases filed from 2012 through

2016.3

data preparation. We apply the same initial treatment to both corpora.

Tokens are three or more letter characters with possible internal punctuation

(excluding em- and en-dashes). Words are lower-cased. To deal with globally

frequent terms, we remove words used by more than 25% of documents in a

corpus. To reduce the computational burden of a large vocabulary, we remove

words occurring in fewer than five documents. We remove all documents with

fewer than 20 tokens. This process removes 706 pages and 9192 court opinions

from our starting science fiction and state courts corpora.

We train LDA models using Mallet [McCallum, 2002] with hyperparameter

optimization occurring every 20 intervals after the first 50. We set the number

of topics to be on the same order as the number of sources, so for Sci-Fi we use

K ∈ [125, 250, 375] and for Courts we use K ∈ [25, 50, 75].

6.4 evaluating topic-author correlation

We introduce three ways to measure the source-specificity of topics. For concrete-

ness we will use the terms “source” and “author” interchangeably, but a document’s

source could be any categorical variable. We want to identify topics that are used

by relatively few authors, and more specifically topics whose “meaning” is unduly

influenced by the contributions of relatively few authors.

3https://www.courtlistener.com

https://www.courtlistener.com
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Given a collection of D documents written by A authors such that each document

d is written by a single author a, we train an LDA topic model with K topics. Then

for each word token i in document d we have both a word type wid and a posterior

distribution over its token-level topic assignment zdi. For clarity of presentation

we can assume a single topic assignment for each token and view the corpus as a

data table with three columns: word type w, topic z, and author a. By summing

over rows of this table we can define marginal count variables for authors N(a)

and topics N(k) as well as joint count variables for the count of a word in a topic

N(w, k), a topic in an author N(k, a), and a word in a topic in an author N(w, k, a).

A maximum likelihood estimate of the probability of word w given topic k is

P(w | k) = N(w,k)
N(k) .4

We note that these statistics must be defined at the token level. As in Mimno and

Blei [2011] we are looking for violations of the assumption that Pr(w | k) = Pr(w |

d, k). Gibbs sampling algorithms typically preserve token-level information in the

form of sampling states, but EM-based algorithms often preserve only document-

topic distributions θd and topic-word distributions φk. We can estimate the posterior

distribution over topic assignments for each token in document d with word type

w as Pr(z | d, k) ∝ ∑k φk(w)θd(k), and generate sparse representations by sampling

from this distribution.

author entropy. We begin by measuring a topic’s author diversity—how

evenly its tokens are spread across authors—using the conditional entropy of

authors given a topic (Eq. 6.1). Topics whose tokens are largely concentrated within

a few authors will have low entropy, while topics more evenly spread across many

authors will have high entropy. With asymmetric hyperparameter optimization we

4We do not use Dirichlet smoothing for the purposes of this work for simplicity and to make
more reliable comparisons across varying vocabulary sizes. Results using smoothing are similar.
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find that the most frequent topics (large αk) have high author entropy, but topics

with high author entropy can have a wide range of frequencies: topics can be both

rare and well-distributed.

H(A | k) = ∑
a

Pr(a | k) log2 Pr(a | k) = ∑
a

N(a, k)
N(k)

log2
N(a, k)
N(k)

(6.1)

While author entropy provides a general sense of author diversity, it does not

take into account the expression of topics by authors. Content-based evaluation is

especially important because many collections are not well balanced across authors.

The fact that a topic is not balanced across authors does not necessarily imply that

it is problematic. A novel about the voyages of a ship captain may contain a large

proportion of words about sea travel and ships, while a novel that contains one

minor character who is a ship captain may contain a small proportion of the same

language, used in the same way. We therefore need to be able to distinguish two

cases: first, a topic that is consistent across authors but that is used at different rates

by different authors, and second, a topic that is not only used at different rates but

has different contents across authors. In the first case we can accurately use a topic

to “stand for” a particular concept of interest, while in the second case we would

get a false impression of the contents of documents, because the expression of the

topic in the minority authors differs from the topic as a whole.

To differentiate expected author imbalance from pathological cases, we calculate

Jensen-Shannon divergence between a topic’s word distribution as estimated from

the full collection Pr(w|k) and two distributions that have been transformed to

reduce the influence of the most prominent authors. If the topic has low author

correlation then there will be little divergence between the original distribution and

its transformation. This method mimics a technique for identifying “junk” topics

by AlSumait et al. [2009].
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minus major author . The first transformed distribution M (Eq. 6.2) recal-

culates the probability of words based on all documents except those written by the

majority author. If a topic is consistent across authors then the presence or absence

of its largest author contribution (labeled amajor) should have little effect on the

topic’s word distribution. The larger the resulting divergence, the more influence

the major author has over the topic. Unlike author entropy, this technique does not

inherently favor balanced distributions of authors; a very author-imbalanced (low

entropy) topic can still have a low minus major author divergence if the dominating

author’s contribution agrees with the remaining topic tokens.

Pr(w | Mk) = Pr(w | ¬amajor, k) =
N(w, k)− N(w, amajor, k)

N(k)− N(amajor, k)
(6.2)

balanced authors . The second transformed distribution B (Eq. 6.3) treats

the contribution of each author equally, no matter how many words in that topic

the author produces. The minus-major metric is most sensitive to the case where a

single author dominates a topic, but does not handle the case where a small group

of authors dominates. Using the balanced transformation we measure the similarity

of each author contribution. The larger the resulting divergence between the

original and transformed word distributions, the larger the variance in contributing

author token usage.

Pr(w | Bk) ∝ ∑
a

Pr(w | k, a) = ∑
a

N(w, k, a)
N(k, a)

(6.3)

We check the validity of our metrics by evaluating topic models trained on Sci-Fi

for a wide range of topic sizes (125–1000). As seen in Figure 6.1, all three measures

produce bimodal distributions for all topic sizes, combining highly author-specific

topics and more general cross-cutting ones. The proportion of cross-cutting topics
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Figure 6.1: Author entropy, minus major author divergence, and balanced author diver-
gence for topics in topic models trained on Sci-Fi. Dashed lines indicate medians.
Increasing the number of topics in a model does not reduce the proportion of
author-specific topics.

remains fairly constant across topic sizes: for all of these models, over 50% of

topics fall in the source-specific range. We emphasize that source-specific topics

are not necessarily “bad”. If the structure of the corpus were not known, these

topics would provide a highly useful and coherent insight into that structure. But

if, as is typical, the structure is known, more than half of the statistical capacity of

these models is wasted learning distributions that simply reiterate known structure,

regardless of the number of topics.

While all three measurements produce similarly shaped distributions, they do

not always agree in detail. Table 6.2 shows example topics that provide intuition for

these differences. At the extremes, Topic A is a general, cross-cutting topic while

Topic G is dramatically author-specific. While all three metrics score well for Topics

A and B, in Topic B the word paul seems out of place, but it is common enough

in several authors that its word-level author entropy is not low. Topics E and G



94 authorless topic models

Topic Entropy Minus
Major Balanced Top Words

A 6.79 0.00067 0.017
school professor work university years research
science students student college

B 6.67 0.0047 0.032
doctor paul hospital nurse patient medical pa-
tients doctors room ward bed drugs

C 5.44 0.043 0.17
jack emma malenfant trip janet michael ing wire-
man leonard nemoto sally jeannine

D 5.31 0.027 0.13
sand pirx mars desert roger dust rock bass dunes
crater martian jeffries kirov dune

E 3.42 0.080 0.16
robot robots andrew human cully susan calvin
brain being powell donovan law

F 2.32 0.067 0.083
old night yes cried town last men rocket god
years hands house upon stood wind boy

G 0.28 0.35 0.32
f’lar lessa weyr robinton hold dragon f’nor lord
dragons benden rider bronze harper

Table 6.2: Topics from a 250-topic model trained on Sci-Fi and their corresponding mea-
sures of author entropy, minus major author, and balanced authors. Underlined
values indicate poor quality scores and bolded terms indicate word types with
low author diversity within the topic.

both score poorly in all three metrics, and both are highly specific to single authors

(Isaac Asimov and Anne McCaffrey). But while G is clearly and exclusively names

and settings, E contains the common terms robot, robots, and human, and could be

confused for a general topic on artificial intelligence.

The metrics are also enlightening when they disagree. Topic C has high author

entropy, but only because it mixes highly author-specific words from several

different authors. Since each author’s contribution differs from the others it scores

poorly on the two content-based metrics. Topic D is partially about Mars, but also

contains author-specific character names from stories set on Mars. No single author

dominates, but the contributions of each author look different. Topic F is so highly

correlated with Ray Bradbury that its entropy is low and it looks different when

his contribution is removed, but its words are sufficiently general that Bradbury’s

use of the topic is close to the other authors’ (minimal) use.
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6.5 contextual probabilistic subsampling

In this section we present interventions that predict the effect of words and contexts,

and modify an input corpus to reduce the number of overly author-specific topics

in resulting models. We hypothesize that this problem is due to burstiness [Doyle

and Elkan, n.d.]: words that are globally rare, but locally frequent. Dampening

the author-specificity of individual word types may reduce their connection to

document sources. We therefore evaluate context-specific subsampling prior to

modeling, with parameters based on tail probabilities of word-specific parametric

models.

In selecting this particular approach we follow three design principles that we

believe maximize use in actual practice. First, we want interventions to be minimal

and have the least possible disruption to current work processes. We therefore

choose to focus on meta-algorithms for data preparation that are compatible with

but independent from existing, widely implemented inference algorithms. Second,

we want any user-specified parameter choices to be simple and intuitive. Although

we find that entropy is a useful diagnostic metric, information theoretic metrics

such as mutual information are difficult for non-experts to interpret correctly, and

critical values can differ widely across collections and dimensionalities. Third,

we want both the choice of interventions and the effects of interventions to be

transparent to users. We initially considered methods such as adversarially trained

autoencoders, but we find that directly subsampling words is much faster, simpler,

and easier to explain.

identifying author specific terms . The simplest way to find author-

specific terms is to find terms unique to an author. The Sci-Fi collection contains an
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Figure 6.2: Reasonable threshold values t flag both rare words (left) and common words
being used in author-specific ways (right). Each point represents the relative
frequency of a term (x-axis) for an author (y-axis) in Sci-Fi.

unusual number of author-specific coinages, but words used by many authors can

still be highly correlated with a particular author. We therefore estimate parametric

distributions for each term and compare author-specific term proportions to this

distribution. For each word type w, we calculate the sample mean x̄w and variance

s2
w and construct a gamma distribution Γw with shape k = x̄2

w/s2
w and rate θ =

s2
w/x̄w. Similar to a significance test, given a user-specified probability threshold t

we can define a critical term proportion value under Γw

Pr[Γw ≤ f ∗w] ≤ 1− t. (6.4)

A word w is thus considered too specific to an author a if a’s usage is too unlikely

to occur according to Γw. Specifically, this occurs when the frequency fw,a is larger

than the cutoff frequency f ∗w defined in Eq. 3. This method satisfies our design

goals of simplicity and transparency: the threshold is intuitive and can be adjusted

to change how aggressively words are flagged for curation.
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Figure 6.2 shows two character names and nouns from Frank Herbert’s Dune,

where one name and noun are rare and the others are frequent. We see that the

rare words atreides and sandworm are significant to Frank Herbert for t = 0.01: there

is essentially no “normal” level of use of these words in other authors. Herbert also

uses the more common terms paul and desert more than expected, but to a lesser

extreme.

determining stop rates . How we choose to dampen author-specific words

is as important as how we detect them. If we globally removed these words using a

traditional stoplist, we would lose a substantial portion of the vocabulary. A more

sophisticated approach is to construct a stoplist for each author. In this case, words

are only removed from contexts in which they are statistically overrepresented. For

rare terms, where there is no middle ground between significant use and no use at

all, this contextual treatment is effectively the same as a traditional stoplist. But for

a word with more widespread use, that word would disappear only from contexts

with abnormally high usage.

While this technique avoids erasing the majority of a collection’s vocabulary, it

leads to a paradoxical situation where a word that is thematically central to a work

occurs less frequently in that work than in other works. Entirely removing desert

from Frank Herbert or robot from Isaac Asimov would reduce the model’s ability

to identify relevant themes.

To find a middle ground, we use probabilistic subsampling to reduce outlier

author use to something more in line with the collection’s overall usage. We use

the same threshold t to set subsampling rates. For a word type w and author a the

probability of stopping a token of type w in a is

Pr(Stop w in a) = 1− f ∗w/ fw,a. (6.5)
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The threshold t specifies when an author’s use of a word is too extreme for our

model Γw. If we reduce these outlier frequencies to their corresponding cutoff

frequencies f ∗w, they will be set to the largest below-threshold frequency dictated

by Γw. We construct our subsampling rates such that in expectation new author

frequencies will equal their corresponding threshold frequency from the original

distribution.5

6.6 results

Unless otherwise noted, we refer to models with a topic size of 250 for Sci-Fi and

50 for Courts, and set the hyperparameter t of context-based methods to 0.05.

We refer to a treatment with no intervention beyond standard stopword removal

as None. We compare these models to three classes of curation methods, each

with varying parameters. AF-[n] removes all terms that are used by at most n

authors. C-[t] removes any term from author a’s context whose frequency fw,a

exceeds significance threshold t with respect to distribution Γw. CP-[t] subsamples

terms according to Eq. 6.5. We train 10 runs with random initializations for each

parameter setting.

subsampling reduces topic-metadata correlation. We begin by

measuring how well the curation techniques reduce the formation of author-

correlated topics. We find that removing words with low author frequency has

little effect, while contextual methods greatly reduce the formation of “bad” topics

according to all three measures. As expected, the value of the threshold t affects

performance of the context-based methods. In Figure 6.3, we see that lowest values

of t are ineffective; t = 0.001 is hardly distinguishable from None and t = 0.005 is

5Iteratively reevaluating Γw leads to an unstable “race to the bottom.”
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Figure 6.3: Increasing the threshold t for contextual probabilistic (CP) subsampling results
in more topics with high dispersion over authors.

on par with low author frequency stoplists. We observe that settings of t ≥ 0.05

perform very well, and choose this value as a default in our public code release.

Subsampling before inference does more than change the appearance of topics,

it changes the content of the inferred topics. To test whether subsampling after

inference has the same effect we construct ten additional models by post hoc

stopping the 250-topic trained models for NONE-treated Sci-Fi to match token-for-

token the CP-05 curated versions. We find that post-hoc removal has little effect on

topic-metadata correlation; over twenty percent of topics are dominated by a single

author with the worst having 96.4% of tokens contributed by one author.

semantic quality is preserved. We define author-specificity as a property

orthogonal to model quality: there is nothing fundamentally wrong with a topic

full of character names outside the context of specific user needs. But ideally in

reducing the prevalence of overly author-specific topics we would replace them

with equally meaningful ones. We measure semantic quality of topics using Mimno

et al. [2011]’s topic coherence metric as reported by Mallet. This metric measures
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Figure 6.4: Contextual probabilistic subsampling improves mean topic coherence for Sci-Fi

despite the removal of frequent words. Coherence degrades under context
curation for Courts.

the tendency for the most probable (top) words of a topic to cooccur. A topic k

with m top words wk,1, . . . , wk,m has topic coherence

∑
i

∑
j<i

log
D(wi, wj) + β

D(wi)
, (6.6)

where D represents the number of documents containing a word or word pair and

β is the LDA hyperparameter for topic-word smoothing. Large negative values

indicate that the top words of a topic seldom cooccur, while values close to zero

indicate that the top words frequently coccur.

We find that despite substantial changes in topic content, corpus modification

has no consistent effect on the semantic quality of topics. In Figure 6.4, we find that

all curation methods except CP-001 have significantly higher mean topic coherence

than None for Sci-Fi. Contextual methods with t ≥ 0.05 have the highest coherence.

For Courts, topic coherence is maintained across treatments, except for the most

aggressive interventions C-05 and C-1.
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Figure 6.5: Proportional loss of removed word types and tokens. Contextual probabilistic
subsampling does substantially less damage than contextual curation.

corpus damage is reduced. All things being equal, we want to modify

the input collection minimally, both in terms of vocabulary and actual document

content. Figure 6.5 confirms that contextual curation has the highest type and token

loss across corpora, because it completely removes all instances of a word type in

a context. This may partially explain the dramatic loss of model quality for these

specific treatments.

Contextual probabilistic subsampling removes more tokens than author fre-

quency cut-offs, but better preserves the vocabulary. For thresholds t ≤ 0.01,

contextual probabilistic subsampling removes fewer word types than any of the

author frequency cut-off methods. However, there is less agreement across corpora

for t ≥ 0.05. For Sci-Fi, these methods remove more types than AF-5, while the

reverse is true for Courts. This discrepancy might arise from differences in the

relative size of collection sources—some authors write more than others, some

courts issue more opinions—and vocabulary use.

subsampling affects more than names . Character names are the most

prominent motivating example for this work, so it is reasonable to ask whether

named-entity tagging or even a simple part-of-speech (POS) filter would be suf-
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Figure 6.6: Proportion of Sci-Fi tokens removed across part-of-speech groups. Contextual
methods remove tokens from all groups.

ficient. To check whether we are just removing proper nouns, we compare the

frequency of four general POS categories: common nouns, proper nouns, verbs,

and adjectives. These make up 37%, 10%, 27%, 13% of all tokens respectively in

Sci-Fi. Figure 6.6 shows the proportion of tokens removed from each category for

each curation method. Unsurprisingly, proper nouns make up a large proportion

in all cases, but contextual methods also remove substantial numbers of tokens

across all word groups.

subsampling increases stability and specificity. We find that re-

moving author-specific terms using contextual probabilistic subsampling greatly

mitigates the formation of author-correlated topics, but what do these models

learn instead? Are they augmenting the set of uncorrelated topics found within the

untreated models, or are they perhaps identifying entirely new structure? More

importantly, what are the characteristics of the newly formed or persisting author-

correlated topics? To answer these questions, we perform pairwise comparisons of

topic-word distributions from different models using Jensen-Shannon divergence

to find the most likely of topic correspondences. By linking these topics together,

we can gain a sense of which topics persist across treatments, which are refined or
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split, and which are lost entirely. We focus on Sci-Fi since it has larger models, but

we will highlight similar analysis for Courts.

Before making any inter-treatment comparisons, we examine topic stability

internally within each treatment. We define stability as the average similarity

between a topic and its nearest equivalent from each of the nine other trained

models for a treatment. More formally, the stability of topic ki from the ith instance

of a model is

Stability(ki) = 1− 1
9 ∑

j 6=i
min

k j
JSD(P(w | ki), P(w | k j)) (6.7)

where JSD is Jensen-Shannon divergence. A topic stability close to one implies

that a topic persists across runs, while a value close to zero implies that a topic is

ephemeral—observed once and unlikely to be seen again across random initializa-

tions.

Figure 6.7: Topic Stability and Entropy for Sci-Fi (K = 250) and Courts (K = 50). AF-5
has little effect. Many of the low-entropy topics avoided by CP-05 are highly
unstable.

High stability does not imply author-specificity. In Figure 6.7, we see that the

most stable topics tend to have either maximal or minimal author entropy, while
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the most unstable topics have middling values. The unstable topics tend to capture

a mixture of disjoint structures as we saw in topics C and D from Table 6.2.

This also occurs (but to a lesser extent) in Courts with topics containing many

distinct regional terms (S1: s.w oklahoma tenn kan ind n.e indiana app tennessee o.s) or

containing a mixture of a general and state-specific concept (S2: school wyo miss

wyoming mississippi ann education students hill student). Thus, the most stable topics

are the most apparent by being very context specific or most cross-cutting.

Now that we have evaluated the stability of topics under the baseline NONE

treatment, we can use minimum divergence to align those topics with topics trained

under the CP-05 subsampling treatment. Unstable NONE topics are generally very

distant from their nearest CP-05 counterparts. Of our example topics in Table 6.2, C

and D are the most unstable at 0.39 and 0.42 respectively. Topic C diverges heavily

(0.87) from its closest CP-05 match, while aspects of D are echoed in its nearest

match sand desert rock mountains mountain dust land surface plain water (0.53). Courts

topic S2 is also more distantly associated (0.63) with an education/administration

topic: board school commission administrative agency plan department board’s education

regulations. Over 95% of NONE topics with high stability and high author entropy

are linked to a CP-05 topic with divergence less than 0.5. Topic A has a close

match (professor university college student students research school science work years)

at 0.23. A appears to have become more specific in CP-05 by splitting into two

additional topics that echo other aspects, namely teaching children (0.54) and

scientific research (0.55).

The case of stable, low entropy NONE topics is harder to interpret. While half

of these topics are far from their CP-05 match, 16% have divergences of less than

0.4. Topic G matches well to lord hold between master queen star enough turns high

good (0.3) which is both very stable and CP-05’s lowest author entropy topic (64.1%
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from Anne McCaffrey).6 While these topics have not been prevented entirely, they

have been largely mitigated.

The topics in CP-05 that are the most dissimilar from topics within NONE

demonstrate that this treatment adds differentiation. We find that overall 50%

of CP-05 topics have a large divergence with the NONE topics. Some of these

divergent topics consist of names, but these groupings might indicate regional or

temporal naming patterns. In other cases, we encounter new and interesting topics

such as an authentic robots topic (machine robot machines robots human mechanical

metal brain men built), which matches to both a general computer topic and example

topic E (Asimov). We also find a new topic on magic and witchcraft (magic ghost

demon evil witch demons power spell magician ghosts) whose closest match is a general

religion topic god gods religion world religious ancient temple people faith these. In fact,

the term witch never appears as a top-20 term for any topic within the 250-topic

NONE models. These topics may appear for NONE when we increase the topic

size to 1000 topics, but at the cost of a much larger model and with no guarantee

against intruding character names.

subsampling produces cross-cutting topics . While our topics score

well quantitatively, how humanly interpretable and useful are the resulting topics?

Are they actually cross-cutting in nature? We address these questions by more

closely examining topics generated by the CP-05 subsampling treatment. We can

explore the collection by sorting authors and individual novels within topics.

The highest frequency topics from the NONE treatment are largely preserved by

CP-05. These topics by their nature are very cross-cutting and filled with frequent,

general words. Despite this extreme generality they can provide a way to analyze

6The topic is composed of common words used in specific ways: a hold is a fortified settlement,
dragons teleport by going between.
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passages representing high-level discourse concepts such as inquiry (why asked ask

answer question want questions should does because) and the description of events and

time (during such most these course because happened effect period result).

The mid-frequency topics are more concretely thematic in nature. We find a

topic describing empire, politics, and history (empire world power people war new

government history political under) which is associated with Doris Lessing’s Canopus

in Argos series, Isaac Asimov’s Foundation series, and Kim Stanley Robinsons’s

The Years of Rice and Salt. In line with the science fiction genre, these novels focus

on expansive future and alternative histories. We also find a topic on language

(language words english speak word understand spoke speech languages talk). The most

prominent authors in the topic—Robert A. Heinlein, Robert Silverberg, and Poul

Anderson—are among the five most prolific authors in Sci-Fi, which suggests

the generality of the topic. Notably the most prominent volumes are by none

of these authors: Babel-17 by Samuel R. Delany, Native Tongue by Suzette Haden

Elgin, and Changing Planes by Ursula K. Le Guin. All three include the social and

political language as a major plot point. These three works are fundamentally tied

confirming that this topic embodies a cross-cutting linguistic theme.

Looking more closely at the lower frequency robots topic (machine robot machines

robots human mechanical metal brain men built), we find that it is both topically

cohesive and cross-cutting. The five most-represented authors all have works

heavily related to artificial intelligence: Isaac Asimov, Robert Silverberg, Stanisław

Lem, Clifford D. Simak, and Philip K. Dick. The most-represented volumes tell

a similar story with Men and machines by Robert Silverberg, The complete robot by

Isaac Asimov, and The Humanoids by Jack Williamson holding the top three ranks.

Reassuringly, there are well-represented novels by less-represented authors such as

The Starchild Trilogy by Fredrick Pohl and Jack Williamson. The low frequency of

this topic is surprising given the presence in the collection of robot-related novels,
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especially works by Isaac Asimov. This discrepancy revealed that an Asimov-

specific topic (human being law might must such without may robot beings) has persisted.

Many authors receive a non-negligible token representation, but Asimov’s token

count is still a factor of ten larger than the second most prominent author (Robert

A. Heinlein).

6.7 conclusion

We present a formal definition of the problem of overly source-specific topics, three

evaluation metrics to measure the degree of source-specificity, and a simple text

curation meta-algorithm that dramatically reduces the number of source-specific

topics. This approach has immediate practical application for the many collec-

tions that combine multiple distinct sources, but it also has important theoretical

implications.

We view this work as a preliminary step towards predictive theories of latent

semantics, beyond purely descriptive models. Despite ample practical evidence that

interventions such as stoplist curation can have significant effects, most previous

work has focused on algorithms for identifying a single “optimal” low-dimensional

semantic representation. Our results indicate that there are potentially many in-

terventions in text collections that each have distinct but predictable effects on

the results of algorithms. Just as biologists use multiple stains to view different

aspects of microorganisms using the same microscope, users of text mining algo-

rithms should be able to choose multiple distinct text treatments, each with its own

predictable effects, to meet distinct user needs.





7
S E T T I N G T H E S TA G E F O R M A G I C A L G E M S : C O N S T R U C T I N G

U S E F U L C O M P U TAT I O N A L C U T- U P S .

7.1 introduction

With recent advancements in computer vision, massive collections of visual material

are not only accessible but also computationally analyzable. But how well do

these methods extend to studying material artifacts that are inherently three

dimensional in nature? In Chapter 5, I introduced a framework for studying avant-

garde periodicals using computational cut-ups—extracted features from pretrained

convolutional neural networks (CNNs)—but these materials are inherently two-

dimensional. How much might perspective and framing matter given that the

underlying models are trained on ImageNet [Deng et al., 2009], a large collection

of images gathered from the internet? ImageNet model representations are known

to be useful for a wide range of tasks [Razavian et al., 2014], but not all [Kornblith

et al., 2019]. In this chapter I will focus on building useful image representations

for studying “magical gems”—a modern category of engraved gemstones from the

Roman Imperial period (chiefly 1st c. BCE through 4th c. CE).

“Magical gems” are small, physical objects that are primarily museal in nature.

Very few of these objects have known ancient contexts, but tend to have long

post-antique ones. Since the Renaissance they have been collected by European

elites who acquired them from art markets and surface finds, but they have

also survived through reuse such as their incorporation into medieval relics and

109
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post-antique jewelry. Because very few (less than 1%) of these objects come from

documented archaeological contexts, they have primarily been studied through

their iconography and inscriptions. Their categorization has derived from their

deviation from typical Graeco-Roman images and texts rather than a known,

unified ancient use. In fact, from the small set of known contexts, these objects

seem more varied than homogeneous; these engraved gems have been found

in sites from across the Roman empire—from Thetford (England) to Rome to

Pergamon (Turkey)—and their contexts suggest differing uses some mundane,

others ritualistic [Barrett, forthcoming].

Because of their long presence in museums and private collections, magical gems

have been copied and disseminated through many mediums including drawings

and photographs, as well as plasters casts and impressions. Unsurprisingly, the

majority of these representations prioritize preserving iconography and inscrip-

tions over materiality. Black and white photographs provide higher contrast to

better highlight fine etchings, but no longer preserve gemstone color; similarly,

impressions can improve the legibility of inscriptions but erase the gem’s material

form (e.g. color, banding, translucency) entirely. While any digital representation of

any these mediums has flaws, collectively they provide a more complete rendering

of the original, physical object. By building a vector space that productively links

similar objects across mediums, we might reexamine the category of magical gems

through an alien lens, one that has no awareness of what imagery and text is

“standard” versus “strange.” Such a method would not only be useful for studying

this niche group of objects, but also for studying the broader range of artifacts in

archives and museums. Moreover, these methods provide the potential to explore

relations of objects across medium types (e.g. paintings, sculptures, jewelry).

Unfortunately, and perhaps unsurprisingly, extracted neural features are far

from a panacea. At the best of times, it is difficult to interpret what exactly
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these representations are capturing. For example, if we revisit the “Not-Dada”

classification results seen in Figures 5.12 and 5.13, a large number of these pages

are misaligned such that page edges are visible. Without further analysis it is

difficult to tell whether this is problematic or coincidental. If page-level alignment

is being captured and utilized by our classifiers, then we have a problem reminiscent

to that described in Chapter 6. Page misalignment can indicate concepts we would

like to ignore about the physical volumes and periodicals. They might indicate

the relative size of the volumes via the difficulty of scanning fully flattened pages.

Even worse, they might simply indicate who scanned which volumes. So, we need

a method that can eliminate or at the very least dampen the encoding of specific

information within our computational cut-ups.

Given the nature of our computational cut-ups, the methods of Chapter 6 are not

immediately applicable. The dimensions of these vectors are neither directly inter-

pretable nor generated from content that can be easily subdivided into meaningful

components. So, instead of focusing on modifying the original images, I will focus

on interventions applied to the extracted feature space directly. In other words, we

want to remove or at the very least heavily dampen the presence of some known

learned structure from an existing embedding so that our subsequent uses of this

space (e.g. classification, clustering) do not depend on this unwanted structure.

This problem is closely related to the notions of model bias and fairness. Through

the course of this chapter I will apply methods from the model (de)bias and fairness

literature in order to produce useful computational cut-ups for studying magical

gems.



112 setting the stage for magical gems

7.2 background

In this section I will provide a brief overview of the varying definitions of magical

gems as a category and summarize past statistical analyses of said category.

7.2.1 What is magic?

Before going further, it is worth unpacking the meaning of the term “magical.”1

Magic has long been defined with respect to and in opposition of religion. Within

this framing, magic is unlike religion because it focuses on the individual, positions

practitioners as having power over the supernatural, and is generally anti-social

with selfish goals in conflict with those of society. However, these conceptions

of magic and religion reflect modern, etic, viewpoints rather than ancient, emic,

ones.2. In early definitions, magic is considered a “bastard sister of science” [Frazer,

1911–1915] that falsely claims that through proper knowledge and precise action

individuals can achieve power over their environment. The perspective that magic is

false derives from a modern and particularly Protestant perspective. In opposition

to this narrative, Tambiah [1990] influentially argued that magical acts, and ritual

acts more broadly, are performative and effective but are dependent on their

audience and the social framework from which this audience operates. Now,

scholars tend to view magic and religion as etic concepts that while modern in

conception provide a useful framework to operate within. After all, as H. S. Versnel

[1991b] aptly said “you cannot talk about magic without using the term magic.”

That being said, the ancient Greek and Roman concepts of mageia and magia (re-

spectively) are not entirely incomparable with modern conceptions of magic. These

1See Collins [2008, Ch. 1] for an overview of the history of magic within anthropology.
2On definitions of magic see Versnel [1991b]; on definitions of religion see Smith [1998]



7.2 background 113

emic terms covered a wide range of practices including love charms, binding spells,

controlling the weather, and raising the dead. In both cases, they were typically

marked as abnormal, problematic, and even dangerous. In Rome, many harmful

magical practices were illegal. Nonetheless, many of these practices especially bind-

ing curses (in the form of curse tablets) were very common throughout the Roman

empire. Still, healing and protective practices were not generally conceptualized in

this way since they were not meant to cause harm but rather prevent or remedy it.

Generally, these “positive” magical acts were not banned or criminalized and were

often used by the very same people who might condemn other forms of magic.

Moreover, given that emic definitions of magic focused on stigma and illegitimacy,

the term was most often applied to criticize and delegitimize others; one’s own

practices would rarely be considered magical.

In any case, the working etic definitions of magic consistently include two

categories of object: the Graeco-Egyptian magical papyri (both Papyri Graecae

Magicae and Papyri Demoticae Magicae; see Betz, 1992) and curse tablets (katedesmoi,

defixiones; see Gager, 1992). The former is a modern collection of extant papyri

from Graeco-Roman Egypt that contain spells, rituals, and hymns. The latter are

thin, inscribed tablets, predominantly made of lead, that were typically folded,

often pierced with nails, and usually deposited under ground (or water). Unlike

the magical papyri, curse tablets have been recovered from depositions throughout

the Graeco-Roman world. Despite these geographical differences, the texts of

these “magical” artifacts have much in common. They both use similar formulaic

language, magical names (voces magicae and logoi), and magical signs (characteres).

Additionally, these object groups both invoke a level of secrecy; curse tablets are

literally buried and a number of magical papyri explicitly instruct keeping the

described ritual or text itself secret.
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While the magical function of both the Graeco-Egyptian magical papyri and

curse tablets may seem readily apparent, both categorizations have their limitations.

In the case of the magical papyri it is worth considering who wrote these texts. Since

these papyri are written in a mixture of Greek, Demotic, and Coptic, they require

authors with literacy in both Greek, the common language of Graeco-Roman Egypt,

and the Egyptian scripts of Demotic and Coptic. This has led to the growing

argument that these texts were written by Egyptian priests who often served as

local ritual specialists [Frankfurter, 1997]. This emphasizes the potential disconnect

between emic and etic conceptions of magic, since in the case of the magical papyri

there might be little to no difference between “magical” and “religious” function.

Curse tablets are much more numerous, widespread geographically, and varied

in form than the magical papyri. Perhaps unsurprisingly, this diversity results in

subcategories that vary across the “magic”-“religion” spectrum. Some subgenres

such as those to bind opponents in theatrical and athletic competitions (see Gager,

1992, p. 42–77) or legal opposition (see Gager, 1992, p. 116–150) easily fall under

etic definitions of magic; their purposes are individualistic and harmful. However,

there are also groups whose connections with magic are much more tenuous. For

example, curse tablets that invoke pleas of justice and revenge (see Versnel, 1991a

and Gager, 1992, p. 175–199) more closely resemble prayers than curses. In fact,

Versnel [1991a] refers to this group of tablets as “judicial prayers” and rejects their

categorization as defixiones entirely. Their inscriptions depict supplications to deities

to redress some wrong on the behalf of the invoker. These pleas do not fit the

typical magical narrative because the power dynamics between the practitioner and

the supernatural is inverted. These pleas typically explain why the targets need to

be punished and might provide a transactional incentive. For example, in the case

of stolen property, the stolen goods are customarily dedicated to the god being

invoked. Suffice it to say that magic as a category is both modern and subjective.
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While it is useful as a broad definition, it does not establish ancient conception or

function and its labelled instances should be (re)examined.

7.2.2 What are magical gems?

An engraved gemstone is considered a “magical gem” based on its iconography

and inscriptions. A gem is “magical” if its engravings contain “magical names

(voces magicae and logoi), magical signs (characteres), and non-standard iconographic

types (e.g. Chnoubis or the Anguipede scheme)” [Nagy, 2011, p. 88]. While these

artifacts only need to possess one of the above features to qualify for category

membership, they also tend to have the following two physical features: “(i) they

are generally engraved on both sides, rather than one; (ii) they are usually inscribed

with Greek text that is not in retrograde (that is, the gemstone was not used as a

signet ring to seal documents)” [Faraone, 2018, p. 16].

This art historic categorization of these artifacts stems from early modern collect-

ing practices. Since the beginning of their modern collecting histories, gemstones

have been organized by their iconography. By the 17th century, the defining char-

acteristics of magical gems developed because of their clear divergence from the

classical Greek canon. This alien quality was attributed initially to the heretical,

“un-classical” Gnostic tradition [Nagy, 2012]; at this time, they were known as

“Gnostic gems.” This distinction from classical Greek iconography led scholars to

spurn these gemstones as ugly and lesser quality compared with their non-Gnostic,

non-magical counterparts. For these scholars, magical gems depicted the sharp

cultural decline occurring in the Graeco-Roman world which therefore made them

unworthy of study [Gordon, 2011]. Johann Joachim Winckelmann [1764, p. 59–60]

explicitly dismissed magical gems as unworthy of inclusion in the study of ancient
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(i.e. classical Greek) art: “sind nicht würdig, in Absicht der Kunst, in Betrachtung

gezogen zu werden.”

The modern aesthetic of Winkelmann’s time which preferred classical statuary

to be a bare white rather than painted [Potts, 2000], also preferred to separate

these lesser gemstones from their classical counterparts. Adolf Furtwängler [1900]

excluded magical gems from his study of ancient gems and even had the majority of

these objects removed from the Berlin Museum’s Antiquarium to the Ägyptisches

Museum [Gordon, 2011]. Similarly, the magical gems of the British Museum were

moved to medieval antiquities departments [Gordon, 2008]. In fact, until the mid-

1970s, the British Museum’s collection of magical gems was spread over more than

four different departments [Gordon, 2002].

The current definition of magical gems as “engraved stone[s] used in a magical

manner” [Nagy, 2012, p. 89] formed in the 20th century. In 1914, Armand Delatte

[1914, p. 21–22] rejected magical gems’ association with Gnosticism for Graeco-

Egyptian magic:

En réalité, ce monuments n’ont aucun rapport spécial avec le Gnos-

ticisme: ce sont simplement des amulettes qu’on doit attribuer a

l’époque d’efflorescence des doctrines et des pratiques de la magie

gréco-égyptienne (du 1er au IV s. ap. J. C.).

In reality, these monuments have no special relationship with Gnosti-

cism: they are simply amulets that must be attributed to the blooming

period of doctrines and practices of Graeco-Egyptian magic (1st to 4th

c. CE).

Delatte’s connection to Graeco-Egyptian magic derived from the icongraphic and

textual similarities shared by these gemstones and the Graeco-Egyptian magical

papyri as well as surviving curse tablets. This position was developed further in
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Campbell Bonner [1950]’s catalogue of magical amulets, chiefly Graeco-Egyptian,

and Delatte and Derchain [1964]’s catalogue of magical Graeco-Eygptian gems.

In these works, visual representations of gems are photographs of casts which

erased many aspects of their materiality but made their engravings more visible.

While the category of magical gems underwent changes in name and interpretation,

its defining characteristics did not fundamentally change. However, this newly

formed connection with magical papyri and curse tablets did shape scholarly

opinions of magical gems. Many have assumed that these gemstones must have

been predominantly produced in Alexandria [Gordon, 2011] and that as magical

objects they must have been owned by the poor and uneducated [Nagy, 2014].

However, recent work on magical gems has brought into question the “magical”

function of these objects. Unlike the magical papyri, these engraved gemstones are

not primarily textual. Likewise, unlike curse tablets, magical gems seldom have

known proveniences—excavational findspots—that could point to their “magical”

function.3 Moreover, as material objects belonging to the broader category of

engraved gemstones, it is worth considering how much their textual/iconographic

features—versus other physical/material ones—reflect form rather than function.

A number of scholars, such as Árpád M. Nagy and Christopher Faraone, stress the

modern bias inherent in the term of “magical” by considering it interchangeable

with the adjectives “ugly” [Nagy, 2011, p. 75], “nonsense,” and “weird” [Faraone,

2018, p. 5]. Clearly, this viewpoint is bolstered by strangeness being a key reason

for the gemstones’ initial separation from their classical brethren, but how much

do they actually have in common with other objects within the Graeco-Roman

“magical” genre?

3See Barrett [forthcoming] for a study of the few magical gems with known archaeological
contexts.
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Of the three iconographic features of magical gems, only the first two fully align

with the magical papyri and curse tablets. While magical names and signs are

prevalent among both magical gems and other magical media, the “non-standard

iconographic types” are not nearly as consistent. The magical papyri contain

fifteen recipes involving gems and rings all of which can be matched with at

least one surviving gem [Nagy, 2015, p. 218].4 However, the quintessential images

of Chnoubis and the Anguipede (see Figure 7.1) are almost entirely absent (see

Nagy, 2015 and Vitellozzi, 2018). Moreover, texts on magical and medicinal amulets

suggest that even normal, “canonical” imagery can have protective properties. For

example, engraved representations of Poseidon might prevent ship wrecks [Bonner,

1950, p. 14] or cure eye diseases [Nagy, 2012, p. 85], while representations of the

twins Apollo and Artemis could help ensure a safe childbirth [Nagy, 2012, p. 85].

Furthermore, these texts also emphasize the importance of a gem’s material for

its function and power (see Mastrocinque. Some even suggest that the material

rather than the iconography gives an amulet its magical or healing power. For

example, Galen (De simpl. 10.19) argues that the healing properties of green jasper

amulets is due to their material rather than their engravings of a radiate serpent

(i.e. Chnoubis). All of this supports the view that “magical” for magical gems has

more to do with being “ugly” and “weird” than etic magical functions.

While the figure of Chnoubis—a radiated or haloed lion-headed snake—is

seldom seen outside of magical gems, it is attested in ancient medical texts as an

image of healing, especially for the stomach [Dasen and Nagy, 2012]. For example,

the following passage from the lapidary of Socrates and Dionysius could easily

describe the scheme we see in Figures 7.1a and 7.1b:

Engrave on it, then, a serpent coil with the upper part of a lion and rays.

If worn this stone completely prevents pain in the stomach; rather you
4See Vitellozzi [2018] for a recent comparison of magical texts and magical gems.
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(a) Chnoubis (b) Chnoubis (c) Anguipede (d) Anguipede

Figure 7.1: Example Chnoubis (CBd-2350) and Anguipede (CBd-1367) iconographies. Each
gemstone face is presented in two forms—an image of the gem and an al-
ternative representation (impression and cast)–to more clearly present the
iconographies. Sources: (a), (b) courtesy of the Getty’s Open Content Program;
(c) © American Numismatic Society; (d) from Bonner [1950, Pl. VIII].

will easily digest however many foods you make use of. Let the wearer

not set this aside. [trans. Faraone, 2011, p. 51]

In several cases, this healing function is further supported by the gems themselves

through the additional inscriptions they bear. These inscriptions can be both

detailed (e.g. “Keep Proclos’s stomach healthy” CBd-2943) and simple (e.g. “Digest,

digest!” CBd-1041).5

(a) CBd-210 (b) CBd-2366

Figure 7.2: Example representations of Chnoubis signs both with the figure Chnoubis (a)
and without (b). Sources: (a) Gem Impressions Collection, Cornell University
Library, (b) courtesy of the Getty’s Open Content Program.

5See Dasen and Nagy [2012] for the full range of inscriptions (Appendix 8), as well as a discussion
of the broader range of textual evidence on the Chnoubis of magical gems.
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The figure of Chnoubis is typically accompanied by an inscription of the name

Chnoubis as well as a specific magical sign—a series of S’s, usually three, crossed

through by a horizontal line (e.g. Figure 7.2)—known as the “Chnoubis sign.” The

name always co-occurs with the figure or sign of Chnoubis, while the sign can

occur without either. In fact, there is textual evidence that the sign had its own

healing value (see Dasen and Nagy, 2012). Unlike the visual motif, both the name

and sign of Chnoubis can be loosely connected with the magical papyri. While the

name is not directly seen in other magical mediums, possible spelling variations

such as Chnouph and Chnoub are present in the magical papyri (see Shandruk, 2016

esp. Table 8). Similarly, the Chnoubis sign has been connected with a recipe from

the magical papyri (PGM IV. 12267-1264; see Betz, 1992 and Dasen and Nagy, 2012)

that mentions a phylactery (i.e. amulet) engraved with a similar magical symbol as

part of a ritual to drive out daimons (i.e. spirits). The symbol is a single crossed S,

which while visually similar, does not itself appear on magical gems (see Shandruk,

2016, §2.4).

If we accept the notion that the figure of Chnoubis has a healing function, this

does not inherently imply a magical one. Recalling the definitions of magic dis-

cussed in §7.2.2, a healing function is far from a dangerous one and not inherently

in opposition to society or religion. We can only reach a “magical” position from

a modern perspective wherein we connect the use of Chnoubis gems with other

“superstitious” rituals such as charms or amulets that are often operating within

religious contexts (e.g. representations of saints).

Unlike the image of Chnoubis, it is more difficult to ascribe an ancient function

to the Anguipede figure. The rooster-headed, snake-legged figure with an armored

human torso typically holding a shield in its left hand and a whip in its right is

not described in ancient texts. The typical motif does not appear in the surviving

magical papyri and curse tablets, although there is a possible variant figure in



7.2 background 121

each.6 Despite this lack of antique history, the figure has an established post-antique

one. The motif is referenced in medieval and Renaissance lapidaries—treatises on

the properties of stones—where it could be used both as an amulet for warriors

and protection against poisons and hemorrhages (see Nagy, 2014). Additionally,

(antique) Anguipede gems underwent less magical post-antique reuse as jewelry,

seals, and even as part of a medieval reliquary. There is also some evidence of more

“normal” (i.e. non-magical) ancient usage of Anguipede gems as seals; of the tens of

thousands of preserved sealings from a civic archives building in Zeugma (Turkey),

two depict the Anguipede motif (CBd-1753, 1754; see Barrett, forthcoming).

Given the lack of supporting textual sources and appearances in other magical

mediums, scholars have focused instead on the inscriptions that most often accom-

pany the Anguipede figure. It is heavily associated with two magical names: Iao,

which is often inscribed within the Anguipede’s shield, and Abraxas (sometimes

Abrasax). These religious names, Jewish and Gnostic respectively, are frequently

invoked in the magical papyri and curse tablets. The association between these

names and Anguipede gems is so pronounced that the Anguipede figure has often

been referred to as Abrasax or Iao Abrasax [Bonner, 1950, p. 123]. The problem with

this association is that it is not exclusive. Walter Shandruk [2016] points out that

Abraxas is more correlated with Iao than the Anguipede motif itself. However, this

could be accounted for by Nagy [2019]’s theory that the Anguipede represents an

iconographic representation of the name of the God of Israel. That being said, this

does not explain why such a popular figure in magical gems is not seen elsewhere.

It is clearly a strange figure, not belonging to the classical Greek canon, but it is far

from evident that it served a wholly “magical” function.

6A human-headed anguipede occurs on a lead scroll from Corinth [Wiseman, 2016]. A rooster
headed, human bodied figure without the eponymous snake legs is depicted within a love spell in
the magical papyri (PGM XXVI. 69-101).
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Even if the “non-standard iconographic types” belong to the Graeco-Roman

magical repertoire, it is not clear that the primary ancient uses of magical gems

align with “magical” practices. Magical gems, unlike curse tablets and the magical

papyri, have evidence of more mundane and visible uses as seals and jewelry. While

there is limited evidence of magical gems used as seals, at least in some cases the

non-canonical imagery of these objects could be used as an individual’s signature

(e.g. CBd-1753, 1754; see Barrett, forthcoming). In much larger supply, are magical

gems with evidence of ancient settings in rings and pendants. Some surviving

gems have remained in their ancient metal mounts (e.g. CBd-14, 617, 1021), while

many others bear shell-like chip marks which may indicate that these gemstones

were forcibly removed from their original ancient mountings (e.g. CBd-387, 1132,

1554) [Nagy, 2015]. These magical gems, like antique gems more broadly, served a

social purpose: they were worn as jewelry and held the capacity to serve as markers

of wealth and status (see Barrett, forthcoming). The visibility of these gems as seals

and jewelry conflicts with the general view of magic as private and secretive. While

it is possible that some gems may have been used in a more secretive way, such

as by having the stranger, magical faces hidden from view, the material evidence

cannot uphold this notion for the entire category.

It is worth noting that the use of magical gems as jewelry does not remove the

possibility that these stones granted power to their wearer, just that their power

is not necessarily derived from the same “magical” sources as the magical papyri

and curse tablets. However, we must consider, as with any visible imagery, the

possibility that aesthetics might play a larger role than magical or religious beliefs.

Some wearers might select these iconographies and materials for their “magical”

properties, but others might choose them for their beauty or social implications. At

the very least, we must consider the value of medium from which many of these

stones were made and what the social statements that these materials alone provide.
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After all, the material values of these gemstones have played no small role in their

continual circulation, both in terms of post-antique collecting and post-antique

reuse (see Nagy, 2014). Moreover, these objects were circulated throughout the

Graeco-Roman world and while they might bear a ritual or magical function in

one context, they might serve an entirely different purpose for people in another

(see Barrett, forthcoming).

In summary, magical gems have been categorized because of their weirdness,

not their etic or emic magicalness. This becomes even more apparent if we consider

Nagy [2012, p. 90]’s diagram for categorizing talismans, jewelry used in magical

manners, in Figure 7.3. Magical gems only cover gemstones deviating from classical

imagery. This should come as no surprise given that the 17th century category has

hardly changed in definition, only in interpretation. So, we should treat “magical

gems” as little more than a name and keep in mind its functional meaning is about

as helpful as the categorization between bugs and insects: “many bugs are insects,

while some insects are bugs” [Nagy, 2012, p. 89].

Figure 7.3: A diagram for identifying magical gems from other forms of talismans [adapted
from Nagy, 2012, p. 90]
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7.2.3 Past and future analyses of magical gems

In recent years, there have been extensive efforts to fully catalog the set of extant

magical gems residing in public and private collections (e.g. Mastrocinque, 2003–7

and Michel, 2004). With thousands of gemstones categorized as magical, the use

of statistical analysis has become more inviting [Nagy, 2011]. These studies have

aimed to quantitatively characterize various properties of magical gems: color

and material [Mastrocinque, 2011], decorations and magical signs [Dzwiza, 2019],

Anguipede iconography [Nagy, 2019], and the general cooccurrence of attributes

[Shandruk, 2016]. While these studies all critique some aspect of magical gems as

a category, they all rely on preexisting categorizations and limit their studies to

magical gems themselves.

To my knowledge, Shandruk’s study of magical gems is the first to use a compu-

tational approach. He uses network analysis to better understand how different

gem attributes—namely, “material, color, iconography, and inscription” [Shandruk,

2016, p. 3]—relate to one another. Surprisingly, this network does not directly

contain magical gems. Instead, its nodes represent gem attributes that are linked by

their degree of cooccurrence across magical gems. Using cluster analysis, Shandruk

identifies well-connected groups of features. These feature sets provide a new,

empirically driven organization of magical gems that can be further subdivided by

analyzing the gems belonging to a specific attribute cluster. Unlike previous tax-

onomies of magical gems (i.e. Bonner, 1950 and Michel, 2004), Shandruk’s attribute

clusters are inherently more flexible allowing gems to belong to whichever clusters

their attributes dictate.

Computational cut-ups provide a new way to explore and question the bound-

aries of magical gems as a category removed from the wider canon of engraved
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gemstones. With an appropriate embedding space, we can observe how gems—both

magical and canonical—tend to cluster within this space. Do magical gems actually

form their own distinct subgroups? Or is there a more complex relationship, one

that might depend on how these objects were collocated and catalogued? Ideally,

such an analysis would use multiple sets of computational cut-ups that each em-

phasize and de-emphasize particular aspects such as color, iconography, and size.

These embeddings act as different perspectives with different prioritizations of

gem features; in some, the category of magical gems might be wholly recognizable,

while in others magical and non-magical gems are indistinguishable.

However, this proposal is not feasible without useful latent vector spaces. Off-

the-shelf extracted features will encode structures that we will often want to

remove such as representation medium (e.g. drawing, cast, photograph), levels

of preservation, and cataloging artifacts (e.g. catalogue numbers). This chapter

investigates how the computational cut-ups of magical gem representations can be

transformed into more useful forms. I leave the larger study of Graeco-Roman

engraved gemstones—both canonical and magical—to future work.

7.3 data

I use the Campbell Bonner Magical Gems Database (CBd) to build a working collec-

tion of gem-level images and metadata.7 CBd is an online database that intends to

make the entire collection of magical gems publicly available. It currently contains

over 3,200 entries of predominantly magical gems. Each entry is represented by a

series of structured text fields, a free-form textual description, and typically one or

more images of the object. The images represent a variety of mediums including

7http://cbd.mfab.hu/

http://cbd.mfab.hu/
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photographs—both color and monochrome—of the object, its cast, or its impression,

as well as drawings of the object.

Although CBd primarily contains magical gems, it contains a number of objects

that do not necessarily fit within this category. The database also covers gems with

similar, but not explicitly magical, iconography (e.g. certain Egyptian motifs); a

number of amulet gems included for their appearance in particular scholarly texts

or their restricted access; and a few votive gems that bear inscriptions describing

their function (e.g. CBd-8 [2017]: “Ophelimus offered it, after a dream that a divinity

had shown him”). But CBd also contains post-antique gems (e.g. CBd-3, 365) as

well as objects, both antique and post-antique, that are not gems.8 In general, dating

engraved gemstones is difficult and relies primarily on style. Moreover, newer gems

can copy or at least echo ancient ones even as they take on new meanings. This is

clearly the case for modern casts and impressions, but should also be considered

for antique gems as well; the present can always reflect the past.9 In any case,

this additional heterogeneity does not pose an issue for my task of building more

useful computational cut-ups. Useful vector representations should be able to

incorporate these objects since they are related to the category of magical gems if

not inherently part of said category. However, their differences should be taken

into consideration for any analysis that engages with these embedding spaces.

What objects should be included or excluded will depend greatly on the particular

question being operationalized. For simplicity, I will refer to the artifacts within

my working collection as “gems” going forward.

8CBd contains a small number of related non-gem objects such as an antique sheet of papyri
describing an amulet for fever that might have been worn as an amulet (CBd-9) and a post-antique
bronze statuette of an Anguipede (CBd-1022).

9See [Nagy, 2019] §4.3, 5.
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7.3.1 Images.

By including all CBd entries with images, the working collection contains a 3,202

gems. For these objects, CBd has a total of 10,629 images, but some of them

contain multiple views (e.g. images of the obverse and reverse) of a gem which

may also be included separately. Similarly, other images include multiple physical

representations (e.g. gem and its impression) in the same photograph. Without

intervention, the resulting embedding space will be dominated by whether or

not an image contains multiple views or representations. So, I split these images

such that the final ones contain only a single view or representation of a gem;

any resulting duplicates are discarded. This splitting process is semi-automated

and operates at the highest available image resolution. It results in 12,014 distinct

images. The median number of images per gemstone is two. At the extremes, 607

gems are represented by a single image while 61 are represented by more than ten.

While I did regularize the set of working images to contain a single view of a

gem, there is unsurprisingly more variability which I am not accounting for. In

particular, I do not control for the background of the image or maximally crop

each image. Image backgrounds vary widely: sometimes black or white, other

times multi-toned or textured. Additionally, images may only represent a detail

(e.g. close-up of a iconographic element or inscription) rather than a full view of a

gem. Moreover, these images come in a variety of dimensions which will result in

different degrees of deformations when preparing them as input for deep learning

image models.
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Label Criteria

Magical Names Are there any magical names inscribed on this
gem?

Characteres Are there any characteres inscribed on this gem?
Anguipede (rough) Is the Anguipede figure depicted on this gem?
Anguipede (clean) Is the Anguipede figure depicted within this

image?
Chnoubis (rough) Is Chnoubis depicted on this gem?
Chnoubis (clean) Is Chnoubis depicted within this image?

Drawing Is this image a drawing of a gem?
Photograph Is this image a photograph of a gem?
Simulacrum Is this image a photograph of a cast or impres-

sion of a gem?

Table 7.1: Working labels and their definitions. The top six labels represent wanted struc-
ture, while the bottom three represent unwanted structure.

7.3.2 Metadata.

I build two general groups of binary labels related to (i) the characteristics of

magical gems and (ii) the mediums depicted in each image. For the purposes of this

chapter, these label groups represent wanted and unwanted structure respectively,

with the ultimate goal being to identify transformations that remove the unwanted

structures from computational cut-ups with out compromising the encoding of

wanted structure. The first group is constructed using the wealth of structured

information provided by CBd. The database provides collection, iconographic, and

philological information about each gem. From this information, I build six labels

that correspond to the three criteria associated with magical gems: magical names,

signs, and iconography. For the second group, I build three binary labels by hand

relying primarily on visual inspection.
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Label # Images % Images # Gems % Gems

Magical Names 8576 71.4% 2096 65.5%
Characteres 3256 27.1% 787 24.6%
Anguipede (rough) 1559 13.0% 388 12.1%
Anguipede (clean) 829 6.9% 387 12.1%
Chnoubis (rough) 1326 11.0% 295 9.2%
Chnoubis (clean) 695 5.8% 292 9.1%

Drawing 2983 24.8% 869 27.1%
Photograph 8023 66.8% 2922 91.3%
Simulacrum 1008 8.4% 641 20.0%

Table 7.2: Label statistics for the number and proportion of positively labeled images and
gems. Magical Names has the largest positive label class in terms of images,
while Photograph has the largest in terms of gems.

magical names . The “Magical Names” binary label indicates whether or not

a gem is inscribed with a magical name. Magical Names labels are automatically

generated based on whether a gem’s CBd entry contains non-empty “Divine Names

& Voces” or “Logoi” fields. Note these labels are coarse-grained in nature since all

images of a gem will be the same, whether or not the inscription in question is

visible within the image.

magical signs . The “Characteres” binary label indicates whether or not a

gem is engraved with a magical sign (i.e. characteres). Unlike magical names, there

is no direct corresponding field within a gem’s CBd entry. Instead, there is an

invisible but searchable tag (i.e. Keyword: Characteres). Like “Magical Names”

labels, “Characteres” labels operate at the gem, rather than image, level.

magical iconography. I build four binary labels representing whether

the Anguipede or Chnoubis iconographies are engraved on a gem. For each

iconographic scheme, I construct two separate labels: one operating at the gem-

level (“rough”) and one at the image-level (“clean”). Like “Magical Signs” labels,
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“Anguipede (rough)” and “Chnoubis (rough)” labels are built automatically using

search-level tags. These tags collectively account for the variant types of each motif.

For my purposes, I include all variations of the Anguipede and Chnoubis figures

such as the lion-headed Anguipede and human-headed Chnoubis types. Then,

I manually refine these “rough” labels into “clean” labels such that the images

marked as having Anguipede or Chnoubis schemes do in fact depict these figures.

Note that images containing Anguipede or Chnoubis motifs that are overlooked

by “Anguipede (rough)” and “Chnoubis (rough)” are also missed by their refined

counterparts.

medium . In addition to labels representing magical characteristics, I also

construct three binary labels associated with the medium depicted in each image.

The “Drawing,” “Photograph,” and “Simulacrum” labels correspond respectively to

a drawing of a gem, a photograph of a gem,10 and a photograph of a “simulacrum”—

a physical, partial copy of a gem in the form of an impression or cast (both ancient

and modern). Mediums cannot simply be ignored, since no one medium represents

all gemstones. Moreover, these different mediums emphasize (and hide) different

details of an object. For example, a shared iconographic element might only be

recognized when comparing different mediums since color, lighting, and contrast

can have a huge effect. In order for computational cut-ups to be useful, they must

facilitate comparison across medium.

7.3.3 Computational Cut-Ups.

The construction of computational cut-ups follows the method outlined in Chapter

5. I create two sets of cut-ups; the first uses the original (color) images as input

10This includes photographs of non-gem objects (see note 8).
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(RGB), while the second uses grayscaled versions as input (GS). All images are

reduced to 224-by-224 pixel squares then passed as input to a ResNet-50 neural

network [He et al., 2016] pretrained on ImageNet available through Keras [Chollet

et al., 2015]. As a reminder, no textual information (e.g. transcriptions or textual

descriptions) is used in the creation of these computational cut-ups. While in-

scriptions can be visually prominent features and thus likely incorporated by the

underlying image model, the model is by no means literate.

7.4 analysis

My analysis of computational cut-ups for magical gems will be broken into two

key stages. First, I must establish what information is captured by the initial

computational cut-ups without any transformative intervention. I will measure

how well characteristics of magical gems and depicted mediums, as represented by

my working set of labels, are captured by the vector representations of the color

and grayscale cut-ups. I will confirm that these cut-ups encode both structures of

interest (i.e. characteristics of magical gems) and unwanted structure (i.e. medium).

Then, with this framework of wanted and unwanted structure in place, I will

investigate possible methods for transforming computational cut-ups into more

useful forms. I will study which transformative interventions meaningfully dampen

the encoding of unwanted structure without compromising the encoding of wanted

structure.

Before going any further, it is worth discussing which of the working labels we

should expect to be captured by computational cut-ups. Of all the labels, those

relating to medium should have the best chance of being encoded within the vector

spaces of computational cut-ups. Like music in Chapter 5, medium—especially
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drawings—can easily be identified by both human experts and non-experts alike.

Moreover, these categories can be identified using fairly simple and global features

such as color range and relative contrast. Since such features are captured in

the earliest layers of CNNs, we should expect computational cut-ups to encode

these features in a way that is easily detected by a simple classifier. Although

all mediums should be well-captured, I expect that the Drawing label will be

the easiest to predict. It is easy to distinguish drawings from photographs in

general, whereas distinguishing photographs of gems from photographs of casts

and impressions requires a bit more nuance.

When it comes to the characteristics of magical gems, I expect that the icono-

graphic features will be better captured than the textual ones. Although I believe

that both have the possibility of being encoded, the Anguipede and Chnoubis

iconographies are more visually coherent and dominant than the collective textual

inscriptions of magical names and signs. While there is variation within each of

the iconographic schemes, their visual diversity is smaller than the wide range

of magical names and signs that are included within the Magical Names and

Characteres labels. However, this reasoning does not account for the effects of

label quality. While gem-level labels are much easier to acquire, they provide a

much poorer description of the underlying visible characteristic than image-level

labels and make the classification task inherently harder. Instead of identifying

the presence (or absence) of a visible characteristic within an image, the task is

now one of identifying whether an image shows a gem that possesses such a

characteristic. Essentially, this means gem-level labels include many false positives

from the image-level point of view. Nonetheless, these gem-level labels might still

be predictable because of cooccurring characteristics. All of that being said, we

should expect the Anguipede (clean) and Chnoubis (clean) labels to be captured

by computational cut-ups but to a lesser degree than the three medium labels. In
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contrast, the gem-level versions of these labels—Anguipede (rough) and Chnoubis

(rough)—should have a much weaker encoding within the cut-ups. Similarly, the

Magical Names and Characteres labels should have the weakest and possibly

undetectable representation within the cut-ups.

7.4.1 What structures are captured initially?

I find that the depicted medium of an image is a dominant aspect of the computa-

tional cut-ups. We can see this prominence by visualizing the cut-ups’ latent vector

space using UMAP [McInnes et al., 2018] a dimensionality reduction method that

preserves the global structure of the input data. Figure 7.4 shows that for both sets

of cut-ups, images tend to cluster by medium type. Drawings are well separated

from the photographs of gems and simulacra. Although photographs of gems and

simulacra are intermixed, there appear to be some distinct groups.

Figure 7.4: Two dimensional UMAP projections of computational cut-ups. Drawings are
well-separated from photographs and simulacra.

In order to gain a better sense of which visual aspects are most prominent within

the computational cut-ups, I examine how individual cut-ups tend to cluster within

the overall embedding space using spherical k-means clustering, as was introduced

in Chapter 3. This algorithm identifies k clusters as defined by their center points
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(i.e. centroids) with a computational cut-up belonging to the cluster whose center

is nearest to its vector. Just as a topic can be represented by its top words, as

we saw in Chapters 3 and 6, a cluster can be represented by its top cut-ups, the

cut-ups closest to the cluster’s centroid. As seen in Figure 7.5, cut-ups do cluster

by medium but this is more likely a byproduct of their tendency to cluster by gem

color, material translucency, object shape, and background color. Notably, the final

cluster shown in Figure 7.5 has top cut-ups of both photographs and simulacra.

Rather than strictly representing photographs of gems or simulacra, it appears to

be representing photographs of more fragmentary objects. While it is clear that

the medium-related features dominate the representational space of computational

cut-ups, cut-ups also cluster by a gem’s engravings but this occurs more as a

secondary grouping for a particular set of medium-oriented features. For example,

of the drawings with white rather than off-white backgrounds there are separate

clusters for rectangular gem faces (cluster 6), circular gem faces covered in textual

inscriptions (cluster 3), circular gem faces that are predominantly unengraved

(cluster 9), and circular gem faces with iconographic engravings (clusters 7 and 14).

This kind of secondary clustering is more prominent for large numbers of clusters.

For 100 clusters, cut-ups continue to cluster by medium-related characteristics, but

also by engraving type.

This visualization of the computational cut-up embedding space also highlights

additional encoded structures that might hamper the effort to computationally

study magical gems. While image background is related to the depicted medium

of an image, it also speaks to the collecting histories of the objects themselves.

Photographs are typically taken within, if not by, the institution that houses the

depicted object. So while backgrounds are not strictly unique at the collection or

institution level, there will be detectable correlations. For example, all of the top

images for the 20th cluster in Figure 7.5 have the same flat gray background and
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Figure 7.5: The computational cut-ups of gems cluster by medium, shape, color, and
background. Each row represents the top 15 images of a cluster produced by
the spherical k-means algorithm with k = 25.
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are all housed within the Kunsthistorisches Museum in Vienna, Austria. Likewise,

the top images for clusters 15, 18, 19, and 21 all possess near-identical dark gray,

textured backgrounds and are housed within the British Museum. Similarly, while

object shape typically reflects a gem’s general shape (e.g. circular, rectangular),

it can also include a gem’s setting. There is a clear grouping of rings within

the 25-cluster setting and I observe multiple ring and pendant clusters for 100-

cluster setting. Suffice it to say that visually inspecting the clustering tendencies

of computational cut-ups provides additional insights into which visual aspects

are being captured and can call attention to more problematic structures without

needing labels.

To more directly determine how well a given label’s underlying structure is

captured by computational cut-ups, I use the method introduced in Chapter 5

albeit with slight modification. I split the images into five groups of similar size

such that all images of a gem are contained within the same group. Then, I obtain

predictions for each group by training a classifier, in this case a linear support

vector machine, on the images from the other four groups. By averaging the group-

level results, I can compute an overall score for each label. Instead of reporting

accuracy, I report balanced accuracy—the average proportion of correct predictions

across label classes—to account for the variation of class imbalance across labels.

So, a simple baseline classifier that always makes the same prediction will have a

balanced accuracy score of 50% for any binary label.

As expected, the classifier results indicate that image medium can easily be

predicted from computational cut-ups while “magical” characteristics are more

difficult to identify. Surprisingly, there is no significant difference in performance

between the original and grayscale cut-ups. Of the medium types, drawings are

the easiest to identify while simulacra are the most difficult. Looking at the overall

predictions, Drawing and Photograph label classes have very similar accuracy
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within 0.01 of each other, while Simulacrum’s class accuracies differ by about

0.1. This larger difference can be in part explained by Simulacrum’s larger class

imbalance; there are much fewer images of simulacra than drawings or photographs

of gems. However, the difficulty of identifying photographs of simulacra also

contributes to this difference. Distinguishing a gem cast or impression from an

actual gem can require a close attention to material details and additional contextual

knowledge.

Unsurprisingly, classification performance is much worse for the labels corre-

sponding to magical gem features and especially bad for gem-level labels. While

all of the gem-level labels have average balanced accuracy scores of over 50%, these

scores are less significant given that there tends to be a large difference between

class-level accuracies. As expected, the Magical Names and Characteres labels are

the least predictable. The difficulty of the task, especially with the added noise of

gem-level labels, is highlighted by the relatively poor performance of the classifiers

during training. These simple classifiers are expected to achieve high accuracy

during training, but of course at the cost of naively over-fitting to the training data.

However, these two textual labels only achieve balanced accuracies nearing 85%

during training which is far below the 97+% training scores of the other labels.

So, not only are the trained classifiers not learning discriminative features that

generalize to the test data, but they are unable to learn sufficiently discriminative

features during training. In contrast, classifiers for the gem-level Anguipede and

Chnoubis labels just perform poorly at test time. Promisingly, the image-level

labels for the iconographic features perform much better with balanced accuracy

scores above 70%. Examining the class-level accuracies directly, I find that negative

labels are much easier to predict than positive labels. For both labels and cut-ups,

negative class accuracy reaches 95%, while positive classes have accuracies between

50% and 60%. The Anguipede (clean) label has a positive class accuracy of 58% for
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both color and grayscale cut-ups, which is an encouraging sign that computational

cut-ups are encoding structures related to the Anguipede iconographic scheme.

The Chnoubis (clean) label has much weaker and more variable positive class

accuracy across cut-ups with 50% for the color cut-ups and 54% for the grayscale

ones. While this difference in performance is not significant, it does suggest that

there are other structures, such as color, that are negatively impacting classification,

especially given the higher observed variability across runs.

The most confident correct predictions (i.e. true positives and true negatives)

and incorrect predictions (i.e. false negatives and false positives) for the Angui-

pede (clean) and Chnoubis (clean) classifiers provide additional support that

computational cut-ups encode structures of these iconographic schemes that are

independent from medium-related ones. Promisingly, multiple mediums are rep-

resented within these top (mis)predictions as we can see in Figures 7.6 and 7.7.

In fact, the top two true positives for both labels are not photographs of gems

but instead drawings for the Anguipede figure and simulacra—in this case gem

impressions—for the Chnoubis figure. Many of the top true positives for the An-

guipede iconographic scheme are drawings and grayscale images which is a bit

unexpected given that the computational cut-ups are also encoding color. In con-

trast, the Chnoubis figure’s top true positives include more color photographs of

gems. Nonetheless, both capture potentially noteworthy characteristics associated

with each scheme. Many of the most confident true positives for the Anguipede

label correspond to gems with broken edges. This damage might indicate that

Anguipede engraved gems are made from more fragile material, are more likely

to be have been set within jewelry and subsequently removed, and in some cases

are intentionally broken (see Nagy, 2019, p. 186). For the Chnoubis label, the most

confident positive predictions are of light, semitransparent materials while the

most confident negative predictions are not. This suggests that Chnoubis figures
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Label RGB (%) GS (%)

Magical Names 59.78± 1.13 59.51± 1.69

Characteres 57.15± 1.63 56.52± 1.75

Anguipede (rough) 62.86± 1.44 63.42± 1.34

Anguipede (clean) 76.45± 1.47 76.76± 1.27

Chnoubis (rough) 64.73± 0.36 65.80± 2.49

Chnoubis (clean) 72.68± 1.18 74.59± 2.37

Drawing 99.80± 0.04 99.86± 0.06

Photograph 97.79± 0.32 97.41± 0.34

Simulacrum 92.99± 1.96 92.32± 1.82

Table 7.3: Mean and standard deviation of balanced accuracy scores for the initial compu-
tational cut-ups. Object medium is easily predicted from computational cut-ups,
while “magical” characteristics are more difficult to identify.

Figure 7.6: Four most confident true positive (top) and true negative (bottom) classifications
for image-level Anguipede (left) and Chnoubis (right) labels. Multiple mediums
are represented within these predictions.

Figure 7.7: Four most confident false negative (top) and false positive (bottom) classifica-
tions for image-level Anguipede (left) and Chnoubis (right) labels. The false
positives are less interpretable than the false negatives.
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tend to be engraved on light, semitransparent stone which matches past analysis

of Chnoubis gems [Mastrocinque, 2011] and emphasizes the importance of gem

material.

The top negative predictions for both labels show that gemstones in ring and

pendant settings are not associated with the iconographic schemes by the classifiers.

The classifiers also tend to overlook Anguipede and Chnoubis figures when they

are not the dominant, central element of the visible gem face as well as when

they vary from the more typical versions of the iconographic scheme. For correct

identification, the legs of the Anguipede figure need to be ess-shaped snakes that

collectively form a w-like shape as in the top true positives in Figure 7.6. Likewise,

the Chnoubis figure’s snake body must also possess ess-shaped curves if not full

loops. Funnily enough, this apparent discriminative aspect of the Chnoubis figure

makes the classifier more likely to mistake the Chnoubis sign as a Chnoubis figure

as can be seen in Figure 7.7. This particular trait of the Chnoubis classifiers helped

uncover mislabelings within the Chnoubis labels where images (and gems) with the

Chnoubis sign but not the Chnoubis figure were incorrectly labeled. However, while

the false negatives are generally interpretable, the false positives as a whole tend to

be more incomprehensible. While these classification issues are unlikely to go away

entirely with the dampening of medium-related structures, such transformations

could improve our ability to interpret a classifier’s predictions.

7.4.2 Removing unwanted structure

Given that gem medium is a dominant feature of both the color and grayscale cut-

ups, it might be highly correlated with the most significant dimensions identified

by singular value decomposition (SVD). If there are, it should be possible to
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dampen the presence of this structure by subtracting out these dimensions. This

is a simplified version of Bolukbasi et al. [2016]’s formative method for debiasing

word embeddings. I do not apply Bolukbasi et al. [2016]’s method directly because

it requires vector pairs in order to find a biased subspace.

To identify correlated SVD dimensions, I measure the cosine similarity between

the left singular vectors produced by SVD (i.e. SVD dimensions) and the binary

vectors representing each label with the ith element corresponding to the ith

image’s label (i.e. 0 for the negative class and 1 for the positive class). I find that the

top two SVD dimensions heavily correlate with the Photograph and Drawing labels

for both color and grayscale cut-ups with similarity scores above 0.8. In contrast,

the Simulacrum label does not correlated strongly with any particular dimension.

Figure 7.8: The most similar SVD dimensions for RGB cut-ups and medium labels. The
Drawing and Photograph labels have high similarity with the first two di-
mensions, while the Simulacrum label does not have high similarity with any
specific dimension.

Turning to the wanted, “magical” structures, I find that neither the Anguipede

nor Chnoubis image-level labels are highly correlated with the SVD dimensions.

Their highest similarities are with the first dimension but with scores below 0.27.

In contrast, the Magical Names label is very similar to the first SVD dimension

with similarities above 0.83 and the Characteres label also has some similarity with

this dimension with scores above 0.50. This relationship can be partially explained
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by how these labels overlap with the Photograph label: 71.8% of photographic

images of gems correspond to gems engraved with magical names, while only

27.6% correspond to gems inscribed with characteres, 6.7% depict the Anguipede

figure, and 5.6% depict the Chnoubis figure. Given that the Magical Names and

Characteres labels operate at the gem- rather than image-level and are not easily

visible to a linear classifier, I find it reasonable to go ahead and remove the first

and second SVD dimensions that heavily correlate with Photograph and Drawing

labels.

Label RGB (%) GS (%)

Magical Names 59.75± 1.33 59.57± 1.62

Characteres 57.23± 1.56 56.47± 1.68

Anguipede (clean) 75.71± 1.81 76.69± 1.11

Chnoubis (clean) 72.21± 2.45 74.50± 3.06

Drawing 38.43± 1.27 41.08± 1.72

Photograph 56.13± 1.58 56.36± 0.79

Simulacrum 92.82± 1.63 92.36± 1.56

Table 7.4: Mean and standard deviation of balanced accuracy scores for modified cut-ups
with the first two SVD dimensions removed. Bold values indicate statistically
significant drops in performance. Removing these two dimensions has made it
harder to identify drawings and photographs of gems, but not other structure.

Subtracting out the top two SVD dimensions from the computational cut-ups

significantly decreases classifier performance for Drawing and Photograph labels,

but has little effect on the performance of other labels. The Drawing classifiers

now perform worse than random and the Photograph classifiers perform no better

than the Characteres classifiers. It is somewhat surprising that the Magical Names

and Characteres classifiers experience no significant loss in performance given

these labels were similar to one of the removed SVD dimensions. Then again,

this suggests that the observed similarities are more related to overlap with the

Photograph label rather than something inherent to magical names or symbols.
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While the classifiers are becoming more blind to photographs and drawings

of gems, this is only with respect to linear expression. The UMAP projections in

Figure 7.9 show that there are still dominant clusters of photographs and drawings

of gems although these clusters are less distinct and homogeneous. While there is

little motivation to remove more SVD dimensions from the transformed cut-ups, it

is irrelevant because no existing SVD dimension shares high similarity with any

label. While simulacra are very easy to identify, their structure is spread across

many dimensions rather than concentrating among a small few.

Figure 7.9: Two dimensional UMAP projections of computational cut-ups with first two
SVD components removed. Drawings are not as well-separated but remain
fairly distinct from photos and casts.

These results match Gonen and Goldberg [2019]’s findings that debiasing tech-

niques such as Bolukbasi et al. [2016]’s do not fully debias embedding spaces; bias

is still reflected in how the “debiased” word vectors cluster together. Unlike the

fairness setting, medium-related structures do not need to be removed wholesale.

Each medium usefully captures some important visual characteristics and not

others. Instead, the overall goal is to dampen the prominence of medium-related

structures so that other structures can become more prominent as was the case

in Chapter 6. Table 7.4 shows that there is still more linear structure related to

depicted medium that can be removed, particularly relating to photographs of

simulacra. This leads me to apply a related, but more sophisticated and iterative
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approach to removing linear structure correlated with data-level labels: Iterative

Null-space Projection (INLP) recently proposed by Ravfogel et al. [2020].

For a given structure that we want to remove, INLP iteratively trains linear

classifiers to predict this structure and remove the directions corresponding to

the decision boundaries of the linear classifiers (i.e. its null space). This method

is very easy to use since it only requires data vectors and labels corresponding to

the structure to be removed; these labels do not need to be binary. Using Ravfogel

et al. [2020]’s implementation,11 I apply INLP with 10, 25, 50, and 100 iterations (i)

to remove a combined three-class Medium label composed of the positive labels

of the Drawing, Photograph, and Simulacrum labels. This new three-class label

encompasses the entire set of working images.

INLP projections effectively remove photograph-, drawing-, and simulacrum-

related structures without negatively impacting encoding of the wanted, “magical”

structures. Table 7.5 shows that for color computational cut-ups all medium-

related classifiers perform significantly worse than 0.5 balanced accuracy of the

simple baseline, while the performance for the other labels’ classifiers do not

change significantly. There are no significant differences in classifier performance

for grayscale cut-ups. Increasing the number of iterations of INLP makes linear

classifiers more oblivious to the targeted unwanted structure. The trained classifiers

balanced accuracies drop well below 50% for the test data, but also plummet to 60–

75% for the training data. Of course there is a saturation point where linear models

no longer recover any useful decision boundaries for predicting the blinded labels.

In the extreme, continual applications of INLP will negatively affect encodings of

labels of interest as seen in Table 7.5 for 100 iterations. I observe that the saturation

11https://github.com/shauli-ravfogel/nullspace_projection

https://github.com/shauli-ravfogel/nullspace_projection
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point is reached near 50 iterations,12 but iteration choice is fairly flexible since INLP

can be continued from where the last run ended.

While INLP transformations do not significantly impact the classifier perfor-

mance for the non-medium labels, they do have some effect on classifier interpre-

tation. Over half of the four most confident (mis)predictions for the image-level

Anguipede and Chnoubis labels change when comparing the classifiers before and

after applying 50 iterations of INLP (see Figures 7.6 and 7.7; Figures 7.10 and 7.11).

For true positives and false negatives, these changes are more of a reordering of

high confidence predictions; the new and replaced images tend to rank within

the top 25. Still there are a few exceptional cases. For the Chnoubis label, a gem

impression depicting a radiated snake wrapped around a cylindrical base (CBd-209)

has gone from a confident misprediction to a confident correct prediction. For

the Anguipede label, the updated top false negatives helped identify two images

of a gem face that were mislabeled (CBd-1918).13 In contrast, the differences for

true negatives and false positives speak to a more substantial shift in how images

without Anguipede and Chnoubis iconographies are perceived by the classifiers.

The true negatives for both labels more strongly indicate that neither iconographic

scheme is associated with rings or text heavy inscriptions by the classifiers. The

false positives still remain fairly opaque but suggest that Anguipede figures are

being associated with damaged gems, possibly large, lower-case omegas (i.e. ω),

and possibly humanoid figures with heads turned in profile. In turn, the false

positives for the Chnoubis figure suggest that it is being confused with snakes,

typically in ess-shaped poses, and gems with lighter, semi-transparent materials.

So while INLP transformations do not make characteristics of magical gems more

12
50 is likely higher than necessary, but is sufficient

13Correcting the labels of these two images had no significant effect on classification performance.
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Label i = 10 i = 25 i = 50 i = 100

Magical Names 59.53± 1.08 59.56± 1.08 58.97± 1.49 57.20± 0.95

Characteres 57.15± 1.78 56.61± 1.95 57.14± 1.83 54.78± 1.22

Anguipede (clean) 76.06± 0.67 76.25± 1.17 75.25± 1.02 68.49± 0.61

Chnoubis (clean) 72.44± 2.64 72.19± 2.33 70.89± 2.22 67.60± 1.01

Drawing 76.83± 1.45 36.10± 1.31 25.22± 1.02 24.30± 1.24

Photograph 56.84± 1.42 29.33± 1.14 24.97± 0.65 24.32± 0.51

Simulacrum 54.16± 1.53 38.25± 2.16 29.96± 1.90 27.25± 1.33

Table 7.5: Mean and standard deviation of balanced accuracy scores for transformed color
cut-ups using Iterative Null-space Projection (INLP) with i ∈ {10, 25, 50, 100}
iterations. Bold values indicate statistically significant drops in performance.
INLP effectively removes medium-related structure without harming the other
structures of interest.

Figure 7.10: Four most confident true positive (top) and true negatives (bottom) classifica-
tions for image-level Anguipede (left) and Chnoubis (right) labels using INLP
transformed cut-ups as input (i = 50).

Figure 7.11: Four most confident false negatives (top) and false positives (bottom) classi-
fications for image-level Anguipede (left) and Chnoubis (right) labels using
INLP transformed cut-ups as input (i = 50).
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prominent (at least for simple linear classifiers), they do make classifier predictions

more humanly interpretable.

Figure 7.12: Two dimensional UMAP projections of transformed color cut-ups using INLP
with i ∈ {10, 25, 50}. While medium-specific clusters are still present after 50

iterations of INLP, these clusters are more diffuse and more overlapping.

Figure 7.13: Three medium cross-cutting clusters identified by spherical k-means for INLP-
transformed computational cut-ups (i = 25). INLP enables the formation
of a small number of cross-cutting clusters within the embedding space of
computational cut-ups.

INLP clearly removes medium-related linear structures, but the encoding of

depicted mediums within computational cut-ups might not be predominantly

linear. The UMAP projections of the INLP-transformed cut-ups in Figure 7.12

confirm that depicted medium is still captured by computational cut-ups if not

quite as strongly. After 50 iterations of INLP, there is still distinct, medium-specific

clustering but it tends to be less concentrated and more overlapping. This indicates

that these transformed computational cut-ups still contain problematic non-linear
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structures related to specific medium types, but that INLP did remove some of the

contributing linear structures. However, the clusters of the transformed cut-ups as

identified by spherical k-means indicate that persisting medium-related structures

still need to be dealt with. The majority of clusters are still medium-specific,

however there are some promising cross-cutting clusters. Figure 7.13 depicts three

such clusters. The first two contain all three medium types within the top 5 images

and appear to be capturing gem shape. Although the third cluster’s top images only

depict photographs of gems and casts, they seem to share a common iconography

of a central humanoid figure standing in profile. Ultimately, INLP can diminish the

encoding of unwanted structures from computational cut-ups but it only removes

linear—and not non-linear—aspects of these structures.

7.5 related work

The task of removing unwanted known structure from an embedding space is very

similar to learning fair representations [Zemel et al., 2013; Edwards and Storkey,

2016; Madras et al., 2018; Quadrianto et al., 2019]. In this work, the general goal is

to transform a data set X with some sensitive variables S to a new space Z such

that Z is still useful for predicting a target variable Y. Typically S and Y are binary

labels, but most methods can be extended to multi-class settings. Fairness can be

defined in a number of ways, but one of the most common is demographic parity

where the conditional probability of a positive outcome for Y given S is the same

between the protected and unprotected classes of S.

Using methods from this literature can be useful, but there is a cost in flexibility.

Most methods require the knowledge of Y a priori, but it may be difficult to identify

and construct a specific Y for exploring the representational space of a working
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collection. Ultimately, it is much easier to identify known, unwanted structures

than specifying unknown, interesting properties of a collection before studying it.

So, the requirement of target variable Y is overly limiting.

In one of the more recent adversarial learning methods, LAFTR [Madras et al.,

2018], a target variable Y is not explicitly required, but these adversarial learning

methods come with their own trade-offs. They tend to require a large amount

of domain knowledge to run and adapt to a new dataset or problem setting.

Additionally, these models are very sensitive to hyperparameter choices. While I

believe adversarial methods have much promise, more work needs to be done for

them to be a realistic option for out-of-domain users.

7.6 conclusion

In this work, I have shown the potential of using computational cut-ups for studying

magical gems and that these cut-ups can be made more useful by eliminating

unwanted, structures from their encodings. Iterative Null-space Projection (INLP)

provides a simple method for eliminating unwanted structure and only requires

data-level labeling of said structure. However, this method can only fully remove

linear structures. Persisting non-linear aspects will remain encoded within the

representations of computational cut-ups and continue to influence the clustering

of the embedding space. Nonetheless, I have demonstrated that INLP can improve

the human interpretability of computational cut-up analysis. All told, this work is

a promising step in enabling an image-based computational analysis of magical

gems and more broadly studying large visual material collections, especially from

museums and archives.





8
A S Y M B I O T I C F U T U R E F O R M A C H I N E L E A R N I N G & T H E

H U M A N I T I E S

In this dissertation I present a series of work that demonstrate the opportunities

for machine learning and the humanities to help one another. Machine learning

methods have the potential to be additional analytical tools for humanities schol-

arship that both support and expand the directions of current research. Perhaps

less obvious but no less important is the converse. The humanities can provide an

additional perspective on the affordances of machine learning methods. Testing,

expanding, and at times discovering the limits of computational models, but also

highlighting and possibly breaking model assumptions presumed and established

by their creators and the broader machine learning community. Clearly, there is

a larger range of interplay between the humanities and machine learning (and

technology more broadly), especially as it pertains to ethics, but this dissertation

focuses specifically on machine learning and humanities research.

Part I focuses on understanding what machine learning models actually learn.

Chapters 3 and 4 study the geometries of the vector spaces of word representations.

Chapter 3 examines how the clustering of contextualized word representations

produced by BERT and other pre-trained language models can be used to identify

and locate the themes of a specific collection of texts in a way similar to topic mod-

eling. Chapter 4 investigates how the geometries of word embeddings differ across

languages. Clearly, these works propose new ways to compare language models

through the geometries of their representational spaces, but they are also driven by

151
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humanities use cases. The first focuses on a new instance of the topic modeling-

like work flow commonly used in the humanities, while the second provides a

new way of comparing human languages from a (computational) distributional

semantics lens. In contrast, the more humanities-focused Chapter 5 asks how deep

learning image models sees Dada and the avant-garde. This chapter proposes a

new methodological framework for studying visual humanities collections using

machine learning models, specifically convolutional neural networks. In addition

to providing a new tool for (digital) humanities research, it demonstrates how

statistical machine learning methods can be used qualitatively. In sum, a humanities

perspective can drive why and expand how we ask what machine learning models

learn. The results of which benefit both communities providing more transparent

and attenuated tools for humanities research as well as deeper understandings of

the machine learning models themselves.

Part II uses purposeful data modification to transparently direct what models

learn. Chapter 6 focuses on the textual domain with science fiction novels and

U.S. state supreme court opinions, while Chapter 7 focuses on the visual, image

domain with engraved magical gemstones from the Graeco-Roman world. These

works focus on a problem often encountered by humanities scholars when using

machine learning methods that of models predominantly—if not entirely—learning

known, uninteresting aspects of a collection. While this can be reassuring that

the model is learning something meaningful, meaningful does not necessarily

imply useful or insightful. Chapter 6 shows that topic models learn discourses

that can often correlate by known, unwanted contexts and that these problematic

topics are not inherently obvious by inspection. An apparent topic on robots

might be more exclusively about Isaac Asimov’s Robots series, or an apparent

topic on water rights only covers Hawaii-specific issues. This work shows that

this problem can be mitigated by selectively subsampling words that are overly
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context-specific. Chapter 5 seeks to apply this use of purposeful data modification

to the image domain. Namely, improving the computational analysis of magical

gem characteristics by mitigating the encoding of depicted medium. Ultimately,

this problem is more difficult because of the limited interpretability of image

vector features. Nonetheless, linear medium-related structures are identified and

removed. Although the remaining non-linear structures maintain the encoding of

depicted medium, its presence is diminished and the interpretability of the magical

characteristics is improved. Altogether, Part II embodies how the humanities and

machine learning can help one another. By addressing problems faced by humanists,

we not only gain models that are more useful for humanities research, but also

gain a better understanding of which structures models are capable of learning.

Moreover, purposeful data modification shifts the focus to the transformative

power of data itself. A fixed model can learn a wide range of structures, just as a

microscope can view a wide range of phenomena with the right stains.

This dissertation has focused on a small slice of how machine learning and

humanities research beneficially overlap. I have focused predominantly on unsuper-

vised models—models that learn patterns without any guidance through labelled

examples—but this is only one flavor of computational analysis used by digital

humanists and computational social scientists. Similarly, I have focused on problem

settings with massive quantities of data where automation is a necessity. Even

though automation is needed, it is not a replacement of scholarly analysis but

an aid. It should be used in conjunction with other methods of analysis, both

qualitative and quantitative.

While machine learning, statistics, and technology more broadly are often pitted

against the humanities, there is a path for their relationship to be mutually beneficial

and symbiotic rather than antithetical and parasitic. It requires an awareness,

recognition, and respect of each other’s scholarship; a value of both qualitative
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and quantitative research. I hope this dissertation exemplifies the exciting range of

possibilities in combining these multiple perspectives. Machine learning has the

potential to be a powerful tool that complements existing humanities scholarship.

Likewise, humanities research and collections test, challenge, and expand the

affordances of machine learning models. Machine learning helps the humanities

and the humanities helps machine learning.
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