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Abstract— This paper introduces U-relations, a succinct and relational DBMS. This in particular includes that querigs o
purely relational representation system for uncertain databass. the logical schema level can be translated down to, ideally,
U-relations support attribute-level uncertainty using vertical relational algebra queries on the representation rekatéomd

partitioning. If we consider positive relational algebra extended . . S . .
by an operation for computing possible answers, a query on the that this translation is simple and easy to implement. This

logical level can be translated into, and evaluated as, a single 90oal is motivated by the availability and maturity of exgfi
relational algebra query on the U-relational representation. The relational database technology.

translation scheme essentially preserves the size of the query in . . .
terms of number of operations and, in particular, number of An important aspect of a representation system is whether

joins. Standard techniques employed in off-the-shelf relational it represents uncertainty at tradtribute-levelor at thetuple-
database management systems are effective for optimizing andlevel Attribute-level representation refers to the succingtre
processing queries on U-relations. In our experiments we show resentation of relations in which two or more fields of the sam
that query gevaluatlon on U-relatlons scales to large amounts of tuple can independently take alternative values [6]. Bifié-
data with high degrees of uncertainty. .
level representation, as supported by c-tables [12] and WSDs
|. INTRODUCTION offers finer granularity of independence than tuple-leyel a

Several recent works [10], [9], [8], [2], [15] [4], [6] proaches like [8], [10], [2]. This is useful in applicatiolike

. . . data cleaning, where the values of several fields of a single
aim at developing scalable representation systems ang quer

processing techniques for large collections of uncertaaitadtume can be independently uncertain. For instance, the US

as they arise in data cleaning, Web data management, Cnedwsus Bureau maintains relations with dozens of columns

scientific databases. Most of them are based on a posszﬁeso)’ most of which may require cleaning [4].

worlds semantics, and for all of them such a semantics cangelations. In this paper, we develop and stuthyrelations

conveniently defined. a representation system that we introduce with the follgwin
Four desiderata for representation systems for incompletgample.

information appear important.

1. ExpressivenessThe representation should be closed und&xample I.1. Let us assume that an aerial photograph of a
the application of (relational algebra) queries and datarihg battleflgld shows'four vehicles at distinct positions .1.td'k.1e
algorithms (which remove some possible worlds). That is, thesolution of the image does not allow for the identificatidn

results of applying such operations to the represented d¥gdlicle types, but we can draw certain conclusions fromiezarl
should be again representable within the formalism. reconnaissance and a calculation of the maximum distance

Fsach vehicle may have covered since. Say we know that
Vehicle 1 is (a) a friendly tank. Vehicles 2 and 3 are (b) a
friendly transport and (c) an enemy tank, but we do not know
3. Efficient query evaluation A trade-off is required be- \hich one is which. Nothing is known about vehicle 4. Fig. 1a
tween the succinctness of a representation formalism aggbws a schematic drawing of how this scenario can arise.
the complexity of evaluating interesting queries. Thisléa Only 1 is in the range of (a); 2 and 3 are in the ranges of (b)
off follows from established theoretical results [1], [116]. and (c); and position 4 is near the border of the photograph
However, while the formalisms in the literature tend to @liff yt outside the ranges of (), (b), and (c), so this vehicletmu
in succinctness, several have polynomial-time data caitple have newly moved onto the map.

for (decision) problems such as tuple possibility unpesitive  \\e want to model this by an uncertain database of schema
(but not fuII)_reIat.ionaI algebra. This includes v-tabld=], R(ld, Coord, Type, Faction), representing the ids (1-4), co-
[11], uncertainty-lineage databases (ULDBs) [8], and orl o ginate positions, types, and factions of the vehicleshan t
set decompositions (WSDs) [6]. map. Let us assume there are only two vehicle types (tank or
4. Ease of usefor developers and researchers in the sentr@nsport) and two factions (friend or enemy). Then theee ar
that the representation system can be easily put on top oéight possible worlds. We obtain one by taking three choices

2. Succinctnesslt should be possible to represent large se
of alternative worlds using fairly little space.
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Fig. 1.
1,2,3,4 was taken (b).

answering the following questions: Has the friendly trasp
(b) now become vehicle 2z(— 1) or 3 (x — 2)? Is vehicle
4 a tank {; — 1) or a transporty — 2)? Is vehicle 4 friendly
(z — 1) or an enemy A — 2)? Thus the uncertainty can be
naturally modelled using three variablesy, =z that each can
independently take one of two values.

We model this scenario by the U-relational database showne

in Fig. 1b. We use vertical partitioning (cf. e.g. [7], [16})
achieve attribute-level representatiaR.is represented using
four U-relations, one for each column &f The U-relation for

the coordinate positions (which are all certain) is not smow
since we do not want to use it subsequently, but of course,

conceptually, coordinate positions are an important featti
the example and have to be part of the schema. In additi

on

there is a relatiorl/ which defines the possible values the
Ease of useA main strength of U-relations is their simplicity

We can compute a vertical decomposition of one worl@nd low “cost of ownership™:
o The representation system is purely relational and in

three variables can take.

given by a valuatior® of the variablest, y, z by (1) removing
all the tuples from the U-relations whog2 columns contain
assignments that are inconsistent with(For example, if
0 ={z+— 1,y — 1,z — 1} then we remove the third and
fifth tuples of U; and the fifth tuples ot/; andUs.) and then

(2) projecting theD columns away. Of course we can resolve

the vertical partitioning by joining the decomposed relas
on the tuple id columngg. O

U-relations have the following properties:
« ExpressivenessU-relations are&sompletéor finite sets of

possible worlds, that is, they allow for the representation

of any finite world-set.

Succinctness U-relations represent uncertainty on the

Map with moving vehicles (a) and U-relational databespresentation of the possible worlds at the time the aghialograph detecting vehicles

Q-possibility problem for positive relational algebrais i
polynomial time (previously open [6]) but puts a rich
body of research results and technology at our disposal
for building uncertain database systems.

This makes U-relations the most efficient and scalable
approach to managing uncertain databases to date.
Parsimonious translationt The translation from rela-
tional algebra expressions on the logical schema level
to query plans on the physical representations replaces
a selection by a selection, a projection by a projection,
a join by a join (however, with a more intricate join
condition), and a “possible” operation by a projection.
We have observed that state-of-the-art RDBMS do well
at finding efficient query plans for such physical-level
queries.

close analogy with relational representation schemes for
vertically decomposed data. Apart from the column store
relations that represent the actual data, there is only-a sin
gle auxiliary relation’¥ (which we need for computing
certain answers, but not for possible answers).

Query evaluation can be fully expressed in relational
algebra. The translation is quite simple and can even be
done by hand, at least for moderately-sized queries.
The query plans obtained by our translation scheme are
usually handled well by the query optimizers of off-the-
shelf relational DBMS, so the implementation of special
operators and optimizer extensions is not strictly needed
for acceptable performance.

attribute level. Even though they allow for more ef- Thus U-relations are not only suited as a representation
ficient query evaluation, U-relations are, as we showystem for dedicated uncertain database implementatiars s
exponentially more succinct than ULDBs and WSDsas MayBMS [4], but are also relevant to “casual users” of
That is, there are (relevant) world-sets that necessarigpresentation systems for uncertain data, such as resesrc
take exponentially more space to represent by ULDBs ur data cleaning and data integration who want to store and
guery uncertain data without great effort.

Apart from those implicitly mentioned above, we make the
a large class of queries (positive relational algebra efellowing further contributions in this paper.

WSDs than by U-relations.
Leveraging RDBMS technology U-relations allow for

tended by the operation “possible”) to be processsidg
relational algebra only and thus efficiently in the size
of the data. Our approach is the first so far to achieve
this for the above-named query language. Indeed, this
not only settles that there is a succinct and completee
attribute-levelrepresentation for which the so-called tuple

We study algebraic query optimization and present equiv-
alences that hold on vertically decomposed representa-
tions. We address query optimization using those in the
context of managing uncertainty with U-relations.

We present an algorithm for normalizing a U-relational
representation obtained from a query. Normalized U-



relational databases yield a conceptually simple algb-,...,cx — lg,ck+1 — lgt1,...,¢n — ), Where each
rithm for computing the certain answers of queries. In; — [; is ac; — [; for any j and alli with 1 < j <
particular, certain answer tuples on normalized tuplé-< i < n.

level representations can be computed using relationalAlthough we speak of vertical partitioning, we do not
algebra only, which is not true in general for previousequire the value columns df; ; to disjointly partition the

representation systems. columns of R;. Indeed, overlap may be useful to speed up
« We provide experimental evidence for the efficiency anguery evaluation, see e.g. [16].
relevance of our approach. We next define the semantics of a U-relational database. To

The structure of the paper is as follows. Section Il estaBbtain a possible world we first choose a total valuatjon
lishes U-relations formally. Section Ill presents our retibn over W. We then process the U-relations tuple by tuple. If
from queries on the logical level to relational algebra oae tihe functionf extend$ the ws-descriptor! of a tuple of the
level of U-relations and addresses algebraic query evatat form (d, ¢, @) from a U-relation of schem@D, 7', A), we insert
Section IV presents the normalization algorithm. Section ¥ that world the values: into the A-fields of the tuple with
discusses the relationship between U-relations, WSDs dfl@ntifiert. In general this may leave some tuples partial in the
ULDBs and argues that U-relations combine the advantagd (i-e., the values for some fields have not been provided).
of the other two formalisms without sharing their drawbackd hese tuples are removed from the world.

Section VI describes how probabilistic information can be We require, for a U-relational databagé, . .., U,, W) to
modelled using a natural extension of U-relations. In Sebe considered valid, that the representation does not ggovi

tion VII, we report on our experiments with U-relations. Wéseveral contradictory values for a tuple field in the samddvor
conclude with Section VIII. Formally, we require, for all < i,j < n, and tuplest; €

U;|D;,T;, A;] andt, € U;[D;,Tj, A;] such thatU; and U;
are vertical partitions of the same relation, that if theseai
world that extends both;.D; and t,.D;, then for all A €
We defineworld-setsin close analogy to the case of c-(4; ij), t1.A = t2.A must hold.

tables [12]. Consider a finite set of variables over ﬁnitExample 3. Suppose there are two U-relations with

domains. Apossible worldis represented by a total valuation —_— —_— -
(or assignment)f :Var — Rng of variables to constants SChematds[Dy; Tr; A, B] and Us[Da; Tr; B, C1 that jointly

in their domains, and the world-set is represented by t%ieprclasten;c;))lu?rlljs, fn,da(r; dC;)tf abcelc?tuejng. Abszjr;e tTuhp;(ra]s
1, 4,01, 4, 1 2,4,01,U, 2y .

finite set of all total valuatiorts We represent relationally theU and U cannot form part of a valid U-relational database
variable set and the associated domains yodd-tableover ! 2 P . ) .
because there would be a world with— 1, ¢ — 2 in which

schemaW(Var,Rng) such '.[haW conS|§ts of all pairgz, v) the tuple fromU; requires field;;.B to take value) while the
of variablesz and valuesy in the domain ofx. . .
tuple from U, requires the same field to take valbie O

Il. U-RELATIONAL DATABASES

Example 1l.1. The world-tableW in Fig. 1 defines three
variablest, y, z, whose common domain {8, 2}. The number
of worlds defined by is2-2-2 =8. O

A salient property of U-relational databases is that thesnfo
a complete representation systdar finite world-sets.

Theorem 11.4. Any finite set of worlds can be represented as

Given a world-tabldV/, a world-set descriptoiover W, or .
a U-relational database.

ws-descriptor for short, is a valuatiof such that its graph
is a subset ofV. If d is atotal valuation, then it represents
one world. In our examples, to represent the entire wortd-se
we use aremptyws-descriptor, as a shortcut for a singleton
ws-descriptor with a new variable with a singleton domain. The semantics of a quer@ on a world-set is to evaluate

We are now ready to define databases of U-relations. @ in each world. For complete representation systems like
U-relational databases, there is an equivalent, more eitici

Definition 11.2. A U-relational databasedor a world-set over approach [12]: Translat€) into a query such that the
schemayl = (Ry[Ai], ..., Rg[Ax]) is a tuple evaluation ofQ) on a U-relational encoding of the world-set
Uity Uty Ut oo Uiy W) produces the U-relational encoding of the answe@to

I11. QUERY PROCESSING

Queries on vertical decompositionsU-relations rely essen-
tially on vertical decomposition for succinct (attribueel)
representation of uncertainty. To evaluate a query, we first
need to reconstruct relations from vertical decomposstion

A ws-descriptor{c; — l1,...,¢c; — [} is relationally (1) joining two partitions on the common tuple id attributes
encoded imra_j(Ui,j) of arity n > k as a tuple(c; — and (2) discarding the combinations that yield inconsistes:
' descriptors. We call this operatianergeand give its precise

1This is a generalization of world-set decompositions of {fiere com- B B
ponent ids are variables and local world ids are domain values 2That is, for allz on whichd is defined,d(z) = f ().

WheEW iia world-table and @ch relatidi; ; has schema
Ui j[Dij; Tr;; Bij] such thatD; ; defines ws-descriptors
over W, T'r, defines tuple ids, and; U --- U B; ,, = A;.




definition in Fig. 4, where the two above conditions are define

by a and, respectively. merge(nx(R),m5_x(R)) = R, ~ whereA =sch(R) (1)
] ] ) merge(R, S) = merge(S, R) (2)
_I?;](ample lll.1. Consider the U-relat|0r(1la%l)dl_atf1b?ﬁe of Fig. 1. merge(merge(R, S), T) = merge(R, merge(S, T)) )
e queryaFaction:/Enenly//\Type:’Tank’ ISTS e enemy o R.S)) = —(R). S 4
tanks on the map. To answer this query, we needntage 7o (merge(R, 5)) mige(%(x’( )) @)
the necessary partitions @@ and obtain a new query with where X C sch(R)
merge(Traction (R), Trype(R)) in the place ofR. O merge(R, S) by, x ) T’ = merge(R <y, x v T, S) (5)
. hereXUY C T
Our query evaluation approach can take full advantage where X UY € sch(R) U sch(T)
mx(merge(R, S)) = merge(nrsz~z(R), mx~5(5)) (6)

of query evaluation and optimization techniques on velrtica 7 7
partitions. First, it does not require to reconstruct théren wheresch(R) = A,sch(S) = B
relations involved in the query, but rather only the necgssa
vertical partitions. Second, necessary partitions candxiblly Fig. 2. Algebraic equivalences for relational algebra gsemwith merge
merged in during query evaluation. Thus early and late tupleerator.

materialization [16] carry over naturally to our framework TDATE

For this, ourmergeoperator allows to merge two partitions

: . . A . >
not only if they are given in their original form, but also if 2N
they have been modified by queries. ONAME=AI  ODATE>2003
The first advantage only holds for so-callegduced U-
relational databases, which do not have tuples that caraot b Cust merge
completed in any world. That is, each tuple of a rgduced U- roATE moate(Ord)  meusT(Ord)  merge
relation can always be completed to an actual tuple in a world lan P1
The advantage becomes evident even for a simple projection Query plan P1. /
. .. . CUSTKEY Y ODATE>2003
guery. Consider a reduced database containing a U-relation
U defining the A attribute of R. To evaluater4(R) we do onave=al merge >custkey  mpate(Ord)
not need to merge in all U-relations defining the attributes | / AN
of R and later project ond. Instead, the answer is simply CUSt ooate>20s  meust(Ord)  onavear  meust(Ord)
U. In the following, we assume that the input database_ is oare (Ord) Cust
always reduced. As we will discuss next, our query evaluatio
technique always produces reduced U-relations for reduced Query plan P2. Query plan P3.
input U-relational databases. Fig. 3. Three equivalent query plans.

Example 1Il.2. Consider the following non-reduced database
of two U-relations: usually push down projections and selections and merge in

U-relations as late as possible. An interesting new case is
the decision on join ordering among an explicit join from
by the input query and a join due to merging: If the merge is
executed before the explicit join, it may reduce the size of
In each U-relation the second tuple cannot find a partner & input relation to join. We have seen in our experiments
the other U-relation with which a complete tuple (with botlhat the standard selectivity-based cost measures enuplyye
attributes A and B) can be formed. If these second tuples aggational database management systems do a good job, as
removed, the database is reduced. O long as the queries remain reasonably small.

We can always reduce a U-relational database as follovExample 11l.4. Consider a U-relational databa&ethat rep-
We filter each U-relation using semijoins with each of theesents a set of possible worlds over two TPC-H relations Ord
other U-relations representing data of the same relaitpn and Cust (short for Order and Customer, respectively) [7].
The semijoin conditions are the and-conditions. has one U-relation for each attribute of the two relatiorfs, o
which we only list DATE and CUSTKEY for Ord, and NAME
and CUSTKEY for Cust. The following query finds all dates
of orders placed by Al after 2003:
Algebraic equivalencesFig. 2 gives algebraic equivalences of
relational algebra expressions with merge operator oricedrt
decompositions: Merging is the reverse of vertical pamitng, Fig. 3 shows three possible plans P1, P2, and P3 using
it is commutative and associative, it commutes with sed@sti operators on vertical decompositions. Théveaplan P1 first
joins, and projections. reconstructs Ord from its two partitions then applies the

Standard heuristics known from classical query optimizati selection and the join with Cust. In P2 and P3 the merge
for relational algebra apply here as well. Intuitively, weperator is pushed up in the plans, first immediately aboge th

U.| D |T|A U:| D |T|B
ci— 1|t a—1|t
02'—>1 tz Cl>—>2 t1

Proposition 111.3. Given a schema&:, there is a relational
algebra query that reduces a U-relational database o}er

ToATE (OnAME= A1 (Cust) MNcUusTKEY 0DATE>2003(0rd))



Let Uy := [Q1] with schema D1, T, A1,

D’€U1.D1,D" €U3.Do
[possible(Q1)] := 74, (U1)
[r%(Q1)] := 75, 7, x(U1), whereX C A,
los(@Q1)] == oy(Ur), where¢ on 4,
[Q1 <4 Q2] :=7p, b, 7, 7,.2,8(U1 XMony Uz),
whereT) NTy =0

[merge(Q1,Q2)] == 75, 5, 7,07, 75Ut Many Uz)

Us := [[QQ]] with schema[ﬁg,T%Zg],
a= N (O.T=U0.1),
TET1NT2
¢:= /\(D'Var=D" Var= D'Rng= D".Rng).

Theorem 111.5. Positive relational algebra queries extended
with the possible operator can be evaluated on U-relational
databases using relational algebra only.

Example 111.6. Recall the U-relational database of Fig. 1
storing information about moving vehicles. Consider a guer
asking for ids of enemy tanks:
S = T1d (UType:’Tank’/\Faction:’Enemy’ (R))
After merging the necessary partitions of relatihand
translating it into positive relational algebra, we obtain
T1d (UType:’Tank’/\Faction:’Enemy’(Ul l><]a1/\1b1 U2 l><]a2/\1/)2 US))7

where the conditiong, v, a1, andas follow the translation

given in Fig. 4. The three vertical partitions are joined on
the tuple id attributesa; and ) and the combinations with
conflicting mappings in the ws-descriptors are discarded (
selection (P2), and then above the join operator (P3). Amoagd2). Before and after translation, the query is subject to
the three plans, P1 is clearly the least efficient. Howeveptimizations as discussed earlier. (In this case, a goedyqu
without statistics about the data, one cannot tell which 2f plan would first apply the selections on the partitions, then
and P3 should be preferred. If DAER003 is very selective, project away the irrelevant value attributes Type and Bacti
then merging immediately thereafter as in P2 will lead to tH&nd then merge the partitions).

filtering of tuples fromrcusTkey (Ord) and thus fewer tuples U] Dy D, | Ts|Id

Fig. 4. Translation of queries with merge into queries on latiens.

will be processed by the join. Is this not the case, then first Tl c 1 3
merging only increases the number and size of the tuples that T2 c | 2
have to be processed by the join. Also, in P3 all value atietbu y—1lz—2| d | 4

except for DATE are projected away after the join as they are o above U-relatioi/; encodes the query answer. 0
not needed for the final result.
) ) _ _ ) Example I11.7. We continue Example I11.6 and ask whether
Queries on U-relations. Fig. 4 gives the function]] that it s possible that the enemy has two tanks on the map, and if
translates positive relational algebra queries wpitissibleand s \which vehicles are those. For this, we compute the péirs o

mergeoperators into relational algebra queries on U-relationghemy tanks as a self-join f: (S s1) s,
databases.

The possible operator applied on a U-relatibh closes
the possible worlds semantics by computing the set of tuples

Tdstss.1d (S s2).
This query is in turn equivalent to a self-join 6f;.

U5‘ Dy Do Ds ‘ T31 TSQ ‘ |d1 |d2

. ) X L 1 1 2 d 3 4
possible inU. It thus translates to a simple projection on i: 2 Z : 1 i: 2 g d 2 4
the value attributes of/. The result of a projection is a U- y—1lz—2z—1| d ¢ 4 3
relation whose value attributes are those from the prajacti y—lzeo22—2 d c 4 2

list (thl.JS the input WS-(.j(.E‘SCFIptOI'S and tuple |d§ are preshr The answer is encoded by the above U-relafign Note that
Selections apply conditions on the value attributes. o . .

i . the combinations of the first two tuples 6f, are not inUs,
_ The merge operator that reconstructs a refation from its VeJocayse they have inconsistent ws-descriptors and amedilte
tical partitions was already explained. Similarly to thergee using they-condition (vehiclec cannot be at the same

the join uses the)-condition to discard tuple combinationsime 4t two different positions). To obtain the possiblergai
with inconsistent ws—descnptors. F|g 4 gives the trammm_ of vehicle ids, we apply the possible operator @ This is
casel; andU; do noF gontam partl.tlons.of the same relat'onexpressed as the projection on the value attributezof O
For the case of self-joins we require aliases for the copies o
the relation involved in it such that they do not have common Our translation yields relational algebra queries, whose
tuple id attributes. Example 111.7 will illustrate this. evaluation always produces tuple-level U-relations,, il
The union of/; andU, like the ones from Fig. 4 is sketchedrlations without vertical decompositions, by joining and
next. We assume that, — 4,, T, NT5 = (), and the tuples of Merging vertical partitions _of rel_atlons. FoIonvmg thefide
different relations have different ids. To brifg andUs to the tion of the merge operator, if the input U-relations are cet)

same schema, we first ensure ws-descriptors of the same Sj58 the result of merging vertical partitions is also restiic

by padding the smaller ws-descriptors with already comghin Ve thus have that

variable assignments, and add new (empty) coluitinéo Uy Proposition I11.8. Given a positive relational algebra que€y

and7'; to Uz. We then perform the standard union. and a reduced U-relational databagé, [Q](U) is a reduced
From our translatior{-] it immediately follows that U-relational database.



Algorithm 1: Normalization of ws-descriptors. U| D D, |T|A

Input: Reduced U-relational databa&e= (Us,...,Un, W) cao—lcec—1|t |a1
Output: Normalized reduced U-relational database. ci—1co—2 |2 | a2
begin ci1—2c1—2 | ta | as
R := the relation consisting of all pairs of variablés, ¢;) cgr—>1lcgm1 | i3 | aa
that occur together in some ws-descriptoraf c3t—2c3—2 |t3 |as
G := the graph whose node set is the set of variables and
whose edge relation is the refl. and trans. closurd&pf (a) U-relational database
Compute the connected componentgof ,
foreach U-relation U;(D;, ..., Dy, T, A) of U do U |Db TA w’
Uj = empty U-relation ovel/}(Var,Rng T', A); ciz = (L,1) [ |
foreacht € U do caz > (1,2) [t | @
G := connected component ¢ with id ¢ such ciz — (1,2) | t2 | a2
that the nodeg.Vary, ..., t.Var, are inG;; ci2 = (2,1) | t2 | a3
{ciy,...,ci,} = Gi — {t.Var, ..., t.Var,}; a2 (2,2) |t | as
foreach cz =1 t3 | as
lilZ(Cil,lil)em...,likZ(Cik,lik)GWdO 3 > 2 3 | as

/* Compute a new domain valuef|(;, | is

. - - (b) Database from (a) normalized
either the identity or better, for atomits, an

injective function intGil — int) */; Fig. 5. Normalization example.
l:= f\Gz\ (t.Rng, liy, ces li)’
Uj =U; U{(Gi,,t.T,t.A)}; is known that the tuple certainty problem is coNP-hard for a
- number of representation systems, ranging from attriteuel
W= Ui(gi, (b, lm)) | Gi = {1, ..., em} @nd ones like WSDs to tuple-level ones like ULDBs [6]. In case of
output (U, ..., Ul W,);(Cl’ b, (em,bm) € W, tuple-level normali_zed U-relati(_)ns, however, we can edfitly
end compute the certain tuples using relational algebra.

Lemma IV.3. Tuplea is certain in a tuple-level normalized
U-relation U iff there exists a variabler such that(z —
IV. NORMALIZATION OF U-RELATIONS l,t,a) € U for each domain valué of = and some tuple id.

. . . . The condition of the lemma can be encoded as the following
U-relations do not forbid large ws-descriptors. The aplit  yomain calculus expression:

extend the size of ws-descriptors is what yields efficiergrgu
evaluation on U-relations. However, large ws-descriptansse cert(U) := {a | 32Vl (z,1) € W = Ft(x,1,t,a) € U}

an inherent processing overhead. Also, after query evatuat

or dependency chasing on a U-relational database, it mBjye equivalent relational algebra query on a tuple-levet no
happen that tuple fields, which used to be dependent on eaghlized U-relational databagé’[Var, Rng T, A], W) is

other, become independent. In such a case, it is desirable to

optimize the world-set representation [6]. We next disarss Ta4(Tvar (W) X 77(U) = Wy 3(W X 75(U) = Tty ng 2U))-
approach to normalize U-relational databases by reduangyg |

ws-descriptors to ws-descriptors of size one. Normabizati

is an expensive operation per se, but it is not unrealistic to V. SUCCINCTNESS ANDEFFICIENCY

assume that uncertain data is initially in normal form [4] [

> I ) - This section compares U-relational databases with WSDs
and can subsequently be maintained in this form.

[4], [6] and ULDBs [8] using two yardsticks: succinctness,
Definition IV.1. A U-relational database is normalized if alll-€- how compactly they can represent world-sets, and effi-
ws-descriptors of its U-relations have size one. ciency of query evaluation. Due to lack of space, we defer a

_ _ o ~ more complete comparison (with proofs and examples) to an
Algorithm 1 gives a normalization procedure for U-relaonextended version of this paper [3].

that determines classes of variables that co-occur in so Ds vs. U-RelationsWSDs ar ntially normalized U
ws-descriptors and replaces each such class by one varia S Vs. L-Relalions. s are essentially normalized L-

whose domain becomes the product of the domains of the ational databases where each \{ariadqla)f a U-relation
variables from that class. Fig. 5 shows a U-relational dztab corresponds to a WSBomponentelationC’; and each domain
and its normalization valuel; of ¢; corresponds to a tuple @f;. The normalization

may lead to an exponential blow-up in the database size and
Theorem IV.2. Given a reduced U-relational database, Algoaccounts for U-relations with arbitrarily large ws-deptors
rithm 1 computes a normalized reduced U-relational dat&badeing more compact than U-relations with singleton ws-
that represents the same world-set. descriptors and thus than WSDs.

Computing certain answers.Given a set of possible worlds, Theorem V.1. U-relational databases are exponentially more
we call a tuple certain iff it occurs in each of the worlds. Isuccinct than WSDs.



Positive relational queries have polynomial data compexi W |Var Rng Pr
for U-relations (Section 1ll) and exponential data complex x 101 5| 1d cont
ity for WSDs [6]. This can be explained in close anal- 1 X i 8'2 3 Pz—1}) =01
ogy to the difference in succinctness and by the fact that z > 07 2 P({z—2}) =09
query evaluation creates new dependencies [10]: U-relatio ~ 1z 1 06 4 Ply—1,2+—2}) =012
can efficiently store the new dependencies by enlarging ws- z 2 04

descriptors, whereas WSDs correspond to U-relations with

normalized ws-descriptors, hence the exponential blowup. (&) Probabilistic world-table.  (b) Computing tuple confidence.

. . Fig. 6. Probabilistic U-relati
ULDBs vs. U-Relations.ULDBs are databases with uncer- 9 robabiiistic L-retations

salient results concerning our comparison to ULDBs. n
P({z1 =01, w0 = v}) = [[ P = 0i}) (%)
=1

Lemma V.2. ULDBs [8] can be translated linearly into U-

relational databases. The probabilistic extension is orthogonal to the technique

The translation uses a direct encoding of ULDB's lineagi®r evaluating positive relational algebra queries désttiin
into ws-descriptors, where ULDB'’s tuple and alternative idSection Ill. Since processing relational algebra queriely o
become variables and domain values, respectively. extends each world with the result of the query in it without
There are U-relations, however, whose ULDB encoding$anging the world’s probabilities, the algorithms carmeo
are necessarily exponential in the arity of the logicaltreta With no change to the probabilistic case as well. A different
This is the case of, e.g., or-set relations [13], attridate! class of queries are those that ask for confidence of tuples

representations that can be linearly encoded as U-retation N the result of a query. Let be a U-relation representing
exponentially as ULDBs. the answer to a query on a U-relational database. Then,

_ . the confidenceof a tuple@ in the answer tog is the sum
Theorem V.3. U-relational databases are exponentially morey the probabilities of the worlds defined iy that contairi.
succinct than ULDBs. Computing the confidence by enumerating all possible worlds
Both ULDBs and U-relations have polynomial data com@S the above definition suggested, is, however, not feagible
plexity for positive relational queries. Differently fromPetter approach is to compute the probability of the woetl-s

ULDBs, evaluating queries on U-relations is possible us"{&presented by the union of ws-descriptors associated avith

relational algebra only. The main difference between thélt - =
evaluation algorithms concerns dealing with erroneoutes)p P({d|35(d,5,a) e U})

i.e., tuples that do not appear in any world. In contrast { case only one tuple with ws-descriptdrin U/ matches
U-relations, erroneous tuples may appear in the answersifig given tuplea, then the confidence af can be trivially
queries on ULDBs (see [8] for an example). The removal @omputed asP(d) using formula (*) above. In the general
such tuples is called data minimization, an expensive ¢ipera case, however, the computation is #P-complete. This fallow
that involves the computation of the transitive closure @fom the mutual reducibility of the problem of computing
lineage [8]. Such tuples occur with ULDBs because the lireaghe probability of the union of the (possibly overlapping)
of an alternative in the answer only points to the lineage @forld-sets represented by a set of ws-descriptors and of the
alternatives from the input relations, even though thepetin #p-complete problem of counting the number of satisfying
alternatives may not occur in the same world. This canng&signments of Boolean formulas in disjunctive normal form
happen with U-relations because each query operationehsypdeed, we can encode a set bfws-descriptors{z} —

that only valid tuples are in the query answer by (1) US'”Qi,...,:c:m ol b (1< <k)asaformula \/ (2f =

the ¢)-condition in the join and merge operations and by (2) , / 1<i<k

carrying all dependencies in the ws-descriptors — and nigt ot A --- Ay, = vy, ). N _ _

to tuples of the input relation. Recent work considered efficient solutions for restricted

classes of queries and probabilistic databases [10] or by

applying approximation techniques [14]. Scalable confiden
VI. PROBABILISTIC U-RELATIONS computation is out of the scope of this paper. Our current
U-relational databases can be elegantly extended to moaeproach for exact confidence computation exploits the-inde

probabilistic information by adding a probability columm Ppendence and variable sharing among ws-descriptors and is
to the world tablel’. Thus W contains tuples(z, v, p) for by far more efficient than approaches based on enumeration

all domain values of a variablez, andp is the probability of all worlds or on the inclusion-exclusion formula.
of z — v. For each variable defined bylV, the sum of the Example VI.1. Consider a probabilistic version of the U-
valuesp, (ovar=s ) (W) must equal one. Fig. 6(a) shows aelational database of Fig. 1(b) with world-table defined in
probabilistic version of the world-table of Fig. 1(b). Fig. 6(a). Consider again relatio§ from Example 1.6

We use a functiorP to define the probability of a valuation containing the ids of enemy tanks on the map. There are three



Q@1: possible (select o.orderkey, o.orderdate, o.shippriorifyom
customer c, orders 0, lineitemnhere c.mktsegment= 'BUILDING’
and c.custkey= o.custkey and o.orderkey l.orderkey

percent of the combinations satisfy the constraints and are
preserved.

and o.orderdate> '1995-03-15'and |.shipdate< '1995-03-17") The uncertain fields are assigned randomly to variables. Thi
can lead to correlations between fields belonging to differe
tuples or even to different relations. This fits to scenarios
where constraints are enforced across tuples or relatites.

do not assume any kind of independence of our initial data as
done in several other approaches [10], [8].

For the experiments, we fixed to 0.25, m to 8, and
varied the remaining parameters as followssranges over
(0.01,0.05,0.1,0.5,1), z ranges over(0.1,0.25,0.5), and =
ranges over0.001,0.01,0.1).

An important property of our generator is that any world in

different possible enemy tank ids, whose confidence can g’eU—relationaI database shares the properties of the orie-wo
b Y ! atabase generated by the original dbgen: The sizes of rela-
computed asP({z — 1}), P({z — 2}) and P({y — 1,z —

21), respectively. The result is given in Fig. 6(b). tions are the same and the join selectivities are approeimat

The confidence of having at least one enemv tank on t gual. We checked this by randomly choosing one world of
. : vVing y e U-relational database and comparing the selectivifes
map is computed a®({{z — 1},{z — 2}, {y — 1,2 —

. . joins on the keys of the TPC-H relations for different scale
t?jg.t;l}':}\ec(t)r;rftiadee\r:vcséolizsi:rlptors represent the entire world- a{Ctors and uncertainty ratios. | |
' Queries. We used the three queries from Fig. 7. Quély

is a join of three relations of large sizes. Quepy is a
select-project query on the relation lineitem (the largesiur
Prototype Implementation. We implemented the query settings). QueryQs is a fairly complex query that involves
translator of Fig. 4. We also extended the C implement@ins between six relations. All queries use the operator
tion of the TPC-H population generator version 2.6 builtpossible’ to retrieve the set of matches across all worliste

1 [17] to generate attribute and tuple-level U-relationsl arthat these queries are modified versions(f, Qg, and Q-
ULDBSs. The code is available on the MayBMS project pagef TPC-H where all aggregations are dropped (dealing with
(http://www.cs.cornell.edu/database/maybms). aggregation is subject to future work).

Setup. The experiments were performed on a 3GHZ/1GB Fig. 9 shows that our queries are moderately selective and
Pentium running Linux 2.6.13 and PostgreSQL 8.2.3. their answer sizes increase with uncertaintgnd marginally
Generation of uncertain data. The following parameters with correlationz. For scale 1, the answer sizes range from
were used to tune the generati@tale(s), uncertainty ratio tens of thousands to tens of millions of tuples. There is only
(x), correlation ratio (z), andmaximum alternatives per field one setting £ = 0.25 andz = 0.1) where one of our queries,
(m). The (dbgen standard) parameteis used to control the )3, has an empty answer. Before the execution, the queries
size of each world;z controls the percentage of (uncertainjvere optimized using our U-relation-aware optimizatidfig.
fields with several possible values, amdcontrols how many 8 shows(@); after optimizations.

possible values can be assigned to a field. The parame@aracteristics of U-relations. Following Fig. 8, the U-

z defines a Zipf distribution for the variables with differentelational databases are exponentially more succinct than
dependent field counts (DFC). The DFC of a variable is ttdatabases representing all worlds individually: while tiven-
number of tuple fields dependent on that variable. We uber of worlds increases exponentially (when varying the un-
the parameter: to control the attribute correlations: Fer certainty ratiar), the database size increases only linearly. The
uncertain fields, there areC x 2‘] variables with DFCi, case ofr = 0 corresponds to one world gengzrated using the
where C = n(z — 1)/(z*+1 — 1), e, n = § (C = 21). original dbgen. Interestingly, to represert®'® worlds, the

. i= . .U-relational database needs about 6.7 times the size of one
Thus greaterz values correspond to higher correlations iNorld

the data. The number of domain values of a v%nable with An increase of the scaling factor leads to an exponential

DFC k > 1 is chosen using the formulg"~" « AL(mi), increase in the number of worlds and only to a linear increase
wherem; is the number of different values for theth field in the size of the U-relational database. Although we only
dependent on that variable andis the probability that a report here on experiments with scale factors up to 1, furthe
combination of possible values for thefields is valid. This experiments confirmed that similar characteristics arainbt
assumption fits naturally to data cleaning scenarios. Busvi for larger scales, too. An increase of the correlation patam
work [4] shows that chasing dependencies on WSDs enfordeads to a moderate relative increase in the database sizm Wh
correlations between field values and removes combinatiac@mmpared to one-world databases, the sizes of U-relational
that violate the dependencies. We considered here that aftatabases have increase factors that vary from 6.2 (fo0.1)
correlating two variables with arbitrary DFCs, ontyx 100 to 8.2 (forz = 0.5).

Q2: possible(selectextendedpricdrom lineitem where
shipdatebetween’1994-01-01'and '1996-01-01
and discountbetween’0.05’ and '0.08’ and quantity < 24)

Q3: possible(selectnl.name, n2.namiEom supplier s, lineitem |,
orders o, customer c, nation nl1, nationwBere n2.nation="IRAQ’
and nl.nation="GERMANY’ and c.nationkey= n2.nationkey

and s.suppkey= l.suppkeyand o.orderkey= l.orderkey

and c.custkey= o.custkeyand s.nationkey= nl.nationkey)

Fig. 7. Queries used in the experiments.

VIl. EXPERIMENTS
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[ [ [x=00 | X = 0.001 [ X = 0.01 [ X =01 ] '
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Fig. 8. (left): Total number of worlds, max. number of domain ealdor a variable (Rng), and size in MB of the U-relationalatbaise for each of our
settings. (right): Query plan foR; using merge.
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Fig. 9. Sizes of query answers for settings with scale 1.
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Fig. 10. Performance of query evaluation for various scategttainty, and correlation.

Query Evaluation on U-relations. We run four times our set size 13 GB and represenﬂs{)g'106 worlds with 1.4 GBs
of three queries on the 45 different datasets reported ing-ig each world, queryQs involving five joins is evaluated in
For each query and correlation ratio, Fig. 10 has a log-la¢escless than two and a half minutes. One explanation for the
diagram showing the median evaluation (including storaggdpod performance is the use of attribute-level representat
time in seconds as a function of the scale and uncertaiffthis allows to first compute the joins locally using only the
parameters ([3] also shows diagrams for= 0.25). The join attributes and later merge in the remaining attribudés
different lines in each of the diagrams correspond to diffier interest. Another important reason for the efficiency ig the
uncertainty ratios. to the simplicity of our rewritings, PostgreSQL optimizée t
Fig. 10 shows that the evaluation of our queries is efficiequeries in a fairly good way. ([3] shows an optimized query
and scalable. In our largest scenario, where the database ha



plan produced by the PostgreSQL ‘explain’ statement for tlexample, for scale 0.01 and uncertainty 10%, relation tiemei

rewriting of Q».)

contains more than 15M tuples compared to 80K in each of

The evaluation time varies linearly with all of our parameits vertical partitions.

ters. ForQ, (Q- and Q3 respectively) we withessed a factor

of up to 6 (4 and 10 respectively) in the evaluation time when
varying the uncertainty ratio from 0.001 to 0.1. When the
correlation ratio is varied from 0.1 to 0.5, the evaluationg

VIII. CONCLUSION AND FUTURE WORK

This paper introduces U-relational databases, a simple rep
resentation system for uncertain data that combines the ad-

increases by a factor of up to 3; this is also explained by tifgntages of existing systems, like ULDBs and WSDs, without

increase in the input and answer sizes, cf. Fig.s 8 and 9. W

time increases by a factor of up to 400; in case(nf and

z = 0.5, we also noticed some outliers where the increa
factor is around 1000.

Effect of attribute-level representation. We also performed
query evaluation on tuple-level U-relations, which reprds
the same world-set as the attribute-level U-relations gf Bj
and on Trio’s ULDBs [8] obtained by a (rather direct) mappin
from the tuple-level U-relations. To date, Trio has no rativ
support for the possible operator or the removal of erroaeod
tuples in the query answer, though this effect can be oltain@
as part of the confidence computafioffor that reason, we

the possible operator and without the (expensive) remov
of erroneous tuples or confidence computation (which is ah
exponential-time problem). Since our data exhibits a hi
degree of (randomly generated) dependency, its ULDB rep-

ring their drawbacks. U-relations are exponentiallyrano
-chcinct than both WSDs and ULDBs. Positive relational al-
gebra queries are evaluated purely relationally on U-igalat
& property not shared by any other previous succinct repre-
sentation system. Also, U-relations are a simple formalism
which poses a small burden on implementors. Following our
recent investigation on uncertainty-aware language coctst
beyond relational algebra [5], we identified common phyisica
perators necessary to implement many primitives for the
reation and grouping of worlds. It turns out that several
ther operators described in this work, including choite-o
nd repair-key, can also be evaluated on U-relational datzh
using relational algebra only. For others, including costfice
: 0%Rmputation, it appears that normalizing sets of ws-dpsms
igl the sense of Section IV plays an important role. We
e currently working on secondary-storage algorithms for
dp.'ormalization.
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