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Abstract

Structured peer-to-peer (P2P) overlays rely on consis-
tent and robust key-based routing to support large-scale
network applications such as multicast and global-scale
storage. We identify the main attack in these networks as
a form of P2P identity theft, where a malicious node in the
path of a message claims it is the desired destination node.
Attackers can hijack route and lookup requests to forge and
destroy data to disrupt applications. We propose a solu-
tion where nodes sign proof-of-life certificates for partial
node ids and distribute them to randomly chosen proof man-
agers in the network. Source nodes can evade attackers by
requesting proofs from multiple proof managers. Analysis
and simulation show the approach is effective and imposes
storage and communication costs that grow logarithmically
with network size.

1 Introduction

Structured peer-to-peer overlays [15, 8, 14] provide scal-
able and resilient infrastructures for Internet-scale applica-
tions. A variety of Internet-scale applications have been
built on them, including application-level multicast [18, 10],
distributed file systems [7, 9] and distributed query pro-
cessing [5]. While many projects have studied these over-
lays, few have examined their security issues [12, 1]. Given
their global scale, use of low cost identities, and distribu-
tion across independent network domains, we cannot treat
the presence of malicious nodes as aberrations, but must ex-
pect them as part of normal operations.

The core functionality applications leverage is key-based
routing (KBR) [2], where all messages with the same
destination-key route to the same node consistently across
changes in the network. Applications use this mechanism
to store and locate data using location-independent names,
much like a distributed hash table [2]. Since the overlays
use large sparse namespaces (160 bits) to avoid name colli-
sion, nodes must deliver each message by choosing a single
node closest to the destination key. This is often called the

key’s root node.
For any route request to key K , a malicious node on the

routing path can hijack the key-based routing primitive by
claiming that it is K’s root node. Since nodes only keep
state about logN nodes for a N node network, they must
rely on intermediate nodes to determine the key to root map-
ping. For example, an attacker with ID 12340 can hijack a
message destined for node 12345 by claiming it is the only
node with prefix 1234. We call this the Identity Attack,
since the attacker is stealing the identity of the true root
node. To attack a file system, several malicious nodes close
to a target node can claim they (or their colluding neigh-
bors) are the root nodes for all outgoing read requests, and
return arbitrary data in response.

In this paper, we describe the Identity attack, and present
a solution where client nodes find self-certifying proofs to
verify the existence of their desired destinations. Nodes pe-
riodically push signed proofs of their existence out to a ran-
dom subset of network nodes. Client nodes use their routing
table to estimate namespace density and determine when a
root node is suspicious. They verify authenticity of root
nodes by requesting existence proofs for closer IDs. Our
detailed simulations show that namespace density estima-
tion is effective at detecting suspicious nodes, and existence
certificates provide proof of an attack while requiring rea-
sonable traffic overhead.

We begin in Section 2 with a discussion of structured
overlay security and related work. We then describe the
identity attack and our defense in Section 3. Next in Sec-
tion 4, we explore its efficiency and cost tradeoffs via de-
tailed simulations, followed by conclusions in Section 5.

2 Background and Related Work

In this section, we describe structured overlays and key-
based routing. We then discuss known attacks on these sys-
tems and other work related to this paper.

Key-based Routing A structured overlay is an
application-level network connecting any number of
nodes, each representing an instance of an overlay partici-
pant. The nodes are assigned nodeIds uniformly at random
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Figure 1. Base 10 prefix routing in Tapestry from 5230
to 8954.
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Figure 2. Base 4 routing table for node 123002.

from a large identifier space. Application-specific objects
are assigned unique identifiers called keys from the same
space.

Each key is dynamically mapped by the overlay to a
unique live node, called its root node. While a key’s root can
change with network membership, a single node is respon-
sible for a key in a consistent network at any given time. To
deliver a message to its root node (key-based routing), each
node forwards messages using a locally maintained rout-
ing table of overlay links. Figure 1 shows an example of
Tapestry’s prefix routing algorithm, and Figure 2 shows a
node’s routing table.

Each system defines a function that maps keys to nodes.
For example, keys can be mapped to the live node with the
closest nodeId as in Pastry [8], or the closest nodeId clock-
wise from the key as in Chord [14].

P2P Attacks and Defenses Previous work describes two
attacks on structured overlays, the Sybil attack [3] and the
Eclipse attack [1]. In the Sybil attack, an attacker generates
a large number of identities and uses them together to dis-
rupt normal operation. In the Eclipse attack, attackers try
to organize to disproportionately populate routing tables in-
side target nodes to affect routing operation. Both attacks
can increase the probability that a malicious node can inter-
cept a desired route request, resulting in an Identity attack.
The Identity attack is more general, however, since it can
be launched by a single malicious node, and affects every
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Figure 3. In a network using digits of base 4, node 1023
routes a message towards key 3223. Before it reaches
the root (3223), an attacker intercepts the message and re-
sponds as the root.

route, lookup or store operation.
Several approaches limit the Eclipse attack by constrain-

ing connectivity in the network [1, 4, 11]. However, these
defenses can only limit attackers from attracting more than
their share of normal traffic, but cannot protect traffic that
routes to malicious nodes. They also require external mech-
anisms to verify node properties such as in-degree and loca-
tion in the network. In contrast, our approach requires only
key-based routing, and can significantly reduce the impact
of malicious nodes in the routing path.

Finally, public-private keypairs based on prefix IDs was
also used in the Cashmere [17] anonymous routing sys-
tem. Network indirection across an overlay is generalized
for mobility and resilience in the Internet Indirection Infras-
tructure (I3) project [13].

3 Defending Against the Identity Attack

3.1 The Identity Attack

To perform an Identity Attack, a malicious node hijacks
an overlay connection at setup time by spoofing the destina-
tion node. When an overlay node routes a message to some
key K , it wants to connect to K’s root node (generally the
node in the overlay with ID closest to the key). A mali-
cious node on the routing path intercepts the message and
responds to the source claiming that it is K’s root node.

By claiming to be K’s root node, the attacker can inter-
cept application requests and return data of its own choos-
ing. For example, the attacker can hijack a request for a
block in a distributed file system and respond with arbitrary
data. At worst, she can arbitrarily manipulate application
behavior; at best, the application invalidates the data, re-
ducing this to an effective denial-of-service attack. Figure 3
shows an example of the identity attack.

While a single node can perform the attack, malicious
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parties can increase the effectiveness of the attack by using
the Sybil attack [3] to generate a large number of colluding
attacker nodes. Attackers can generate numerous identities
to perform a client-based or key-based identity attack. In a
client-based attack, multiple malicious nodes collude to fill
a target node’s routing table using the Eclipse attack [11].
They can then isolate the node and hijack all outgoing ap-
plication requests. In a key-based attack, the attacker targets
a specific application-level key, and generates identities un-
til it obtains a substantial number of identities close to the
target key. Distributed across the network, these nodes will
intercept most routing paths to the target, and effectively
isolate the real root node (and content) from the network.

3.2 Existence Proofs

Our defense uses signed certificates to prove the exis-
tence of nodes with IDs in a namespace range. Online nodes
periodically sign and send these existence proofs to a ran-
dom subset of nodes, proof managers, for storage. When a
node responds to a message with key K , the message source
uses a namespace density estimate to determine whether the
responder is a likely root. If not, the source node guesses
the prefix that K’s real root will share with K , and sends
verification requests to the proof managers responsible for
that prefix. If a better root exists, it will have signed a re-
cent certificate with which the source can prove the identity
theft. See Figure 4 for an example.

In a prefix routing protocol such as Tapestry [15], we use
prefixes of different lengths to identify specific ranges of
nodeIDs. In a namespace where nodes have IDs of L digits,
we use a prefix of length l < L to define a prefix group cor-
responding to the set of all nodes whose IDs start with that
prefix. Shorter prefixes will have prefix groups with more
members. If nodes use L-digit IDs, each node potentially
belongs to L different prefix groups. This corresponds to
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Figure 5. Routing table for node 1213220, showing the
cusp region.

different sized partitions of the namespace whose members
are nodes with IDs in the range.

To certify that a prefix-group is non-empty, a member
node uses a public key to sign an existence certificate em-
bedded with a nonce. To simplify verification, a central of-
fline CA distributes a unique public-private key pair to all
members of each unique prefix group when they join the
network. For example, a node ABCD would receive key
pairs for prefix groups A, AB, ABC, and ABCD. Existence
proofs are signed with the private key for the correspond-
ing prefix. At regular intervals according to a network-wide
parameter I , a node N signs certificates proving the exis-
tence of various prefix groups it belongs to. To determine
the proof managers for prefix group P , N applies a SHA-1
hash to P with several salts (i.e., 1,2,3) to generate several
random keys in the namespace. The proof-managers are the
root nodes of those keys.

A node initiates verification when it thinks a responder
to a message for key K is suspicious. It examines its local
routing table, to find the longest prefix column for which
it has all entries filled. This threshold T is a measure of
the density of the network. The responder should match the
desired key with at least T prefix digits. If not, the node
tries to verify the existence of nodes matching longer pre-
fixes of key K . It searches for nodes matching a prefix by
calculating its proof managers using the salted hash as de-
scribed above, and queries them for the relevant certificates.
If any queries are successful, it has discovered an attempted
identity attack.

3.3 Limiting Prefix Groups

Certifying every possible prefix group in the network
would be effective, but prohibitively expensive. In this sec-
tion, we show how to validate the entire network by certify-
ing only a small number of prefixes.

Our goal is to provide existence proofs for all prefixes
of a certain length L. A small L means many nodes will
matching the prefix, resulting in large bandwidth and stor-
age overheads for verification. A large L means the client
node may need to verify many prefixes in order to “find” a



suitable root node.
Recall that nodeIDs are chosen uniformly at random us-

ing a secure hashing function (e.g. SHA-1). To choose
an appropriate prefix length to store proofs for, the client
node examines its own routing table to measure the den-
sity of nodes in the namespace. It chooses several prefix
lengths for which its routing table contains columns with
a mixture of empty and nonempty entries. We call this re-
gion the cusp. Figure 5 shows a node’s routing table along
with its cusp region. Choosing a prefix length L in this re-
gion means that each prefix of length L is likely to match a
“small” number of nodes in the system.

Prior work [16] proved that with a high probability, such
a cusp will have a size ≤ 2, independent of network size.
The proof is an application of the Coupon Collector prob-
lem, where entries in a row of the routing table are coupons,
and collecting coupons is the act of assigning random IDs
to fill a particular entry. The result says the probability of
the cusp including more than 2 routing levels is P ≤ b/eb,
where b is the base of the prefix digit. P is less than 0.07
for b = 4 and less than 1.8 ∗ 10−6 for b = 16.

As a result, we assume a cusp size of 3. A client node
searches its routing table, and marks the start of the cusp as
the first routing level that contains an empty entry. For ex-
ample, node 1213220 in Figure 5 uses prefixes of length
4, 5, and 6 when sending certificates and requesting verifi-
cations. Verifications start from the longest possible prefix
and work downwards. To test for the existence of a node
12301230, our node would first test prefix 123012, then
12301 if necessary, and finally 1230.

3.4 Replicating Proof Managers

Several factors can affect the success rate of verification
requests. Node churn can limit the availability of proof
managers for a given prefix. Malicious nodes on the path
between the client and proof managers can hijack and drop
the verification request. Finally, if proof managers them-
selves are compromised, they can simply deny ever seeing
the requested existence certificate.

We can improve the verification success rate by increas-
ing the number of randomly chosen proof managers. A
larger replication factor means more managers will be on-
line despite network churn and more of them will be non-
malicious. Verification requests will take a larger number
of random routes, increasing the number of requests that
will avoid malicious nodes. We evaluate the impact of these
factors on verification in Section 4.

3.5 Extension to Other Protocols

While much of our discussion assumes the use of prefix
routing, our technique easily generalizes to other protocols.

Topology Random
Length of run 7200s
Base 16
Prefixes certified (cusp size) 3
Certification interval 500s
Certificate time-out period 1500s

Table 1. Simulation Settings

For example, a range-based routing protocol like Chord
simply routes “towards” a given value. Instead of certifying
existence of nodes matching a given prefix 0123, we would
certify existence of nodes in a certain value range (e.g.
12300-12399). Similarly, our mechanism for choosing
prefix lengths to certify reduces to finding several range
sizes that have the right node density. We are studying these
mechanisms in ongoing work.

4 System Evaluation

In this section we describe some preliminary results
based on detailed simulations on the P2PSim simulation
platform. P2PSim [6] is a multithreaded discrete event
simulator with full implementations of several protocols.
Our experiments are run using the implementation of
Tapestry [15] included with P2PSim. The simulation set-
tings are listed in Table 1.

4.1 Overhead of Existence Proofs

In order to defend against Identity Attacks, each node
in the network incurs bandwidth overhead in sending ex-
istence proofs (certificates) to proof managers, and storage
overhead in storing existence proofs for other prefixes. We
use simple analysis to quantify these overheads.

Bandwidth Cost. Nodes certify their prefix groups every
T seconds (T = 500s in our simulations). Let v denote
the number of prefix groups each node certifies (v = 3 in
our simulations), and r denote the replication factor (num-
ber of proof managers per prefix). Thus the rate that each
node sends out certificates is v·r

T . With our simulation pa-
rameters, we expect each node to send 3·4

500 = 0.024 certifi-
cates/second. This is confirmed by our measurements that
show the rate to be 0.025 certificates per second for all net-
work sizes. As expected, this overhead increases linearly
with replication factor. Certificates should be no larger than
50 Bytes, resulting in bandwidth cost of 1.25 Bytes/second
or 10 bps.

Storage Cost. If we assume that a new certificate replaces
previous certificates from the same host, then each node
generates vr certificates to be stored. Assuming the hash
function to generate proof manager IDs spreads the load



evenly across all nodes, each node only needs to store vr
certificates, for a total cost of 600 Bytes of storage per node
using our parameters. Clearly, the overhead from generat-
ing and storing certificates is small enough to not impact
overall system performance.

4.2 Resilience Against the Identity Attack

We evaluate our defense against the Identity Attack un-
der a variety of conditions. We first consider the basic
identity attack in a stable network where all mechanisms
function normally. Next, we consider the case when com-
promised proof managers deny the presence of certificates.
This models colluding malicious attackers, where colluding
attackers cover each others’ tracks by refusing to service
verifications. Another factor is certificate hijacks, where
malicious nodes intercept certificates on the path between
the signer and a proof manager. This is a stronger at-
tack, where we assume in-path routers has read the message
payload to determine if it is a certificate (i.e. no overlay
link level encryption). This attack also applies if malicious
nodes indiscriminately hijack all messages they see with-
out interpretation. Finally, we examine the impact of nodes
entering and leaving the network (node churn).

Performance Metrics To quantify the effectiveness of
our defense, we examine two metrics, the trigger rate, how
often does an attack trigger a verification request, and the
verification rate, how often do requests succeed in locating
an existence proof proving the attack. Our simulations show
that we get a trigger rate of 100% using our threshold detec-
tion scheme, with roughly 3 verifications requested per ac-
tual attack. We are currently tuning our threshold to reduce
the verification overhead. Since the trigger rate is 100%,
our experiments measure the verification rate under differ-
ent conditions.

Ideal Conditions We assume that malicious nodes hijack
non-certificate messages, but do not hijack certificates, and
compromised proof managers perform normally. We vary
the network size and assume no node churn. Figure 6 shows
that for all network sizes, our trigger rate is 100%, and ver-
ification rate is over 99.8%.

Verification Denials Here we assume malicious nodes hi-
jack messages and deny verification requests, but do not hi-
jack certificates. We simulate a network of 4K nodes while
varying the percentage of malicious nodes. Figure 7 shows
that the verification rate falls as the proportion of malicious
nodes increases. For a given proportion of malicious nodes,
however, performance improves if we increase the number
of proof managers. This improvement is significant when
a large number of nodes is malicious. Note that even when
90% of nodes are malicious, over 80% of attacks are caught
with just two proof managers.
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Figure 7. Use of replication factor to increase
verification effectiveness (certificate denials,
no hijacks, no node churn).

Certificate Hijacks This model is similar to the last
model, with the addition that malicious nodes also hijack
certificates en route to proof managers. Our results in Fig-
ure 8 show that this additional factor causes a steep fall in
performance. For a given % of malicious nodes in the net-
work, certificate hijacks have a much stronger impact than
verification denials. This is because the likelihood that a
malicious node is in the path of a certification is higher than
the likelihood that it is a proof manager. For predominantly
malicious (over 50%) networks, the percentage of attacks
caught is very poor, even when many proof managers are
used. But for networks with up to 40% malicious nodes,
nearly 80% of the attacks are caught.

Churn Finally, we examine the effect of adding churn to
the network. We simulate an attack model that includes
Identity Attacks, verification denials as well as certificate
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hijacks, and ran it on networks of 4096 nodes, 20% of which
are malicious. Figure 9 shows that increasing churn de-
grades performance. With 8 or more proof managers, it is
highly likely that at least one non-malicious proof manager
can service each verification request; hence over 95% of the
attempted hijacks are caught.

5 Conclusion

In this paper, we described the Identity Attack, a sim-
ple attack that subverts the fundamental key-based routing
functionality in structured peer-to-peer overlays. Unlike the
Sybil and Eclipse attacks, the Identity attack directly im-
pacts application level behavior, and can leverage both prior
attacks for increased effectiveness. We propose a defense

that uses the placement of signed existence proofs at ran-
domized node subsets. After routing requests, source nodes
use estimates of namespace density to trigger verification,
where they determine whether “better” root nodes exist by
searching for their existence proofs.
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