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ABSTRACT
Workplace communication software such as Microsoft Teams, Slack,

and Google Workspace have become integral to workplace collabo-

ration, especially due to the rise of remote work. By making it easier

to access relevant or useful information, recommender systems for

these platforms have the potential to improve efficient cross-team

information flow through a company’s communication network.

While there has been some recent work on recommendation ap-

proaches that optimize network objectives, these have focused on

static graphs. In this work, we focus on optimizing information

flow, which is highly temporal and presents a number of novel

algorithmic challenges. To overcome these, we develop tractable

measures of temporal information flow and design efficient online

recommendation algorithms that jointly optimize for relevance and

cross-team information flow. We demonstrate the potential for im-

pact of these approaches on a rich multi-modal dataset capturing

one month of communication between 180k Microsoft employees

through email, chats and posts on Microsoft Teams, and file shar-

ing on SharePoint. We design an offline model-based evaluation

pipeline to estimate the effects of recommendations on the tempo-

ral communication network. We show that our recommendation

algorithms can significantly improve cross-team information flow

with only a small decrease in traditional relevance metrics.

CCS CONCEPTS
• Information systems→ Social recommendation; Recom-
mender systems; • Theory of computation→ Social networks.
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1 INTRODUCTION
Social communication software such as Microsoft Teams, Slack, and

GoogleWorkspace has become a vital component of workplace com-

munication in the last decade, enabling remote collaboration and

knowledge transfer between workers [2, 43, 49]. These platforms

have become evenmore important with the increase in remote work

due to the COVID-19 pandemic [53]. However, the large quantity of

electronic communication can be overwhelming for workers [44].

Recommender systems are a key tool for managing information

overload, helping users filter out irrelevant content [55]. In the con-

text of workplace communication software, recommender systems

provide an opportunity not only to help users find relevant informa-

tion, but also to shape the structure of a company’s communication

network. By bringing information from different parts of a com-

pany to a worker’s attention, recommender systems can help ideas

and resources spread more quickly and efficiently. Traditionally,

recommender systems have been entirely relevance-driven—other

objectives have only recently begun to be explored [1]. There has

been some work on recommender systems with network objectives

(e.g., [17, 42, 47]), but the full potential of these systems has not been

realized, especially in the context of workplace communication.

We model multi-platform workplace communication as a tempo-

ral network and consider how recommendations on one communi-

cation platform can increase global information flow. In particular,

we focus on the efficient spread of information between teams in

a company rather than between all individuals, as within-team

communication is likely to already be strong—although the same

principles apply to individual-level information flow. We consider

recommendations in a post-based conversation platform like Mi-

crosoft Teams or Slack, where users make posts within channels,

which are usually centered around a topic, team, or project. Posts

in a channel are only visible to the channel’s members, who can in-

teract with the post (e.g., replying). Our goal is to recommend posts

from channels a user belongs to in a way that increases the speed

and quantity of cross-team information flow, without increasing

the communication burden on individuals. This can be achieved by

efficiently taking advantage of indirect communication: if 𝐴 tells

𝐵 something, 𝐵 can then relay it to 𝐶 . Additionally, it is important

that recommended posts still be relevant to users, or they might

become dissatisfied with the system’s recommendations. As such,

4958

https://doi.org/10.1145/3580305.3599932
https://doi.org/10.1145/3580305.3599932
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3580305.3599932&domain=pdf&date_stamp=2023-08-04


KDD ’23, August 6–10, 2023, Long Beach, CA, USA Kiran Tomlinson, Jennifer Neville, Longqi Yang, Mengting Wan, and Cao Lu

we jointly optimize traditional relevance metrics and network in-

formation flow objectives. The need for post recommendations on

a platform like Microsoft Teams arises for two reasons: (1) users

often belong to many channels with a large number of posts, more

than they can easily pay attention to; and (2) users have a limited

amount of time and effort, so any way of making it easier for them

to access relevant information provides a benefit, allowing them to

focus that effort elsewhere.

In contrast with prior work on recommendation with network

objectives [11, 17, 35, 42, 47, 57, 58], our networks and network

objectives are strongly temporal: it matters when communication

takes place as well as who participates. Fleshing out the earlier

example, if 𝐵 replies to an email from 𝐴 and then later replies to a

post written by 𝐶 , 𝐵’s reply to 𝐶 can draw on information learned

from 𝐴—but 𝐵’s reply to 𝐴 can’t contain information later learned

from 𝐶’s post. We develop an efficient recommendation algorithm,

TIER, for optimizing two temporal network objectives that capture

the speed and quantity of information flow: one existing measure,

information latency [26] and one novel measure, total information.

We also analyze the algorithmic problem of finding the edges that

most improve these measures. We show these problems are NP-

hard, but that the greedy algorithm provides an approximation,

as the objectives are submodular—TIER takes advantage of this to

make efficient recommendations.

Estimating the impact a recommender will have on a commu-

nication network is a particular challenge. One costly and time-

consuming approachwould be an organization-level A/B test, where

different companies use different recommenders during a test pe-

riod, after which their communication patterns can be measured.

As this is impractical, prior recommendation work with static net-

works used offline evaluation. The typical approach is to add a fixed

number of recommended edges to an existing network and evalu-

ate objectives on the augmented graph [11, 17, 42, 47]. In addition

to violating our principle of not increasing users’ communication

burden, this type of evaluation is ill-suited to temporal recommen-

dations. In the temporal setting, the recommendations users have

taken in the past influence the structure of the communication

network, which future recommendations need to account for. To

address this crucial feedback loop, we design an offline evaluation

pipeline for recommendation with temporal network objectives.

We use a simple and tunable user modeling approach to understand

a range of possible outcomes of our recommendation algorithms.

Using our offline evaluation pipeline, we demonstrate the effec-

tiveness of TIER on a rich dataset comprising one month of com-

munication between 180k full-time employees at Microsoft. Our

data spans multiple communication platforms: emails on Outlook,

posts and chats on Microsoft Teams, and file sharing on SharePoint.

In total, this month of activity results in a communication network

with over 100 million edges. We focus on recommending Teams

posts (using only non-content features for privacy reasons), with

the joint objectives of relevance and improved cross-team informa-

tion flow. We demonstrate a tradeoff between these two objectives.

Traditional relevance-based recommenders unsurprisingly score

highly in terms of relevance, achieving mean reciprocal rank [50]

(MRR) 0.76–0.80, but do not improve cross-team information flow.

Conversely, a recommender only optimizing for network objectives

significantly improves information flow, but results in very poor

Figure 1: Left: cross-team post communication in Microsoft
during March 2022. Right: estimated communication with
a network recommender. Edge area is proportional to post
interaction count. Total information scores are shown below.

relevance (MRR 0.20). TIER allows us to make a small sacrifice

in MRR (3-10%) for a large gain in cross-team information flow

(50-85% of the gain from a network-objective-only recommender).

This tradeoff can be adjusted to taste with a single parameter. See

Figure 1 for a visualization of cross-team post communication in

the Microsoft data, both with and without our network-driven rec-

ommendations. Network-driven recommendations can increase

cross-team communication, enabling information to spread more

efficiently though a company.

2 RELATEDWORK
There has been recent interest in using recommender systems to im-

prove workplace productivity, collaboration, organizational knowl-

edge, and time management [25]. Some prior work has investi-

gated recommender systems for improving knowledge sharing or

learning in the workplace [12, 13, 19], although not with temporal

communication network objectives. The most closely related line

of research to our focuses on recommendation with static network

objectives. For instance, there has been work on link recommen-

dations that reduce polarization and insularity in online commu-

nities [11, 17, 47, 58], make the distribution of PageRank scores

across groups more fair [48], increase the structural diversity of a

network [42], increase the influence of specific nodes [57], increase

algebraic connectivity [54], and reduce the ability of an adversary

to manipulate opinions [3]. In perhaps the closest paper to study-

ing recommendation with temporal network objectives, Parotsidis

et al. investigated how to make recommendations that maximally

improve a node’s expected closeness centrality over probabilistic

future graphs [35]. Parotsidis et al. showed their problem to be NP-

hard, designed a greedy approximation algorithm, and studied the

tradeoff in recommendation accuracy and centrality improvement.

Sanz-Cruzado and Castells also designed a recommender system

with the goal of improving information spread [42], although they

made recommendations in a static network and then ran simulated

diffusions for evaluation. In contrast, we explicitly track temporal

information flow and make live recommendations according to the

current state of a temporal communication network.
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There are also several papers that consider non-temporal edge ad-

dition problems. For instance, adding 𝑘 shortcut edges to minimize

weighted all-pairs shortest path sums is known to be NP-hard [31],

as is minimizing a graph’s diameter by adding 𝑘 shortcut edges [8].

Another related line of work has developedmeasures of information

flow in temporal networks [16, 26, 33, 45].

In another direction, there is a large body of research on rec-

ommending a sequence of items over time, for instance in music

streaming (called sequential or temporal recommendation) [9, 18,

22, 29, 52]. While such methods are influenced by temporal patterns

in user preferences, they still focus on maximizing user engagement

and are not directly applicable to optimizing cross-team information

flow. However, such methods could be used as the relevance-based

recommender component of TIER.

3 DEFINITIONS
We represent a communication network as a temporal directed

graph with departure and arrival times for each edge. This allows

us to model asynchronous communication across many platforms

such as chats, email, and file sharing. Formally, a temporal graph [24]

𝐺 consists of a set of nodes 𝑉 and a set of temporal edges 𝐸, with

𝑛 = |𝑉 | and 𝑚 = |𝐸 |. Nodes in 𝐺 represent individuals in the

communication network. A temporal edge is a 4-tuple (𝑢, 𝑣, 𝑑, 𝑎),
where 𝑢 ∈ 𝑉 is the source, 𝑣 ∈ 𝑉 the destination, 𝑑 the departure

time, and𝑎 > 𝑑 the arrival time. For example, this could represent an

email sent by𝑢 at time 𝑑 that is later read by 𝑣 at time 𝑎. If edges are

weighted, we add a fifth element𝑤 to the tuple. A temporal path [51]

𝑃 of length 𝑘 is a sequence of distinct nodes 𝑣1, . . . , 𝑣𝑘+1 traversed
by edges 𝑒1, . . . , 𝑒𝑘 where 𝑒𝑖 = (𝑣𝑖 , 𝑣𝑖+1, 𝑑𝑖 , 𝑎𝑖 ) for 𝑖 = 𝑖, . . . , 𝑘 and

𝑑𝑖+1 ≥ 𝑎𝑖 for 𝑖 = 1, . . . , 𝑘 − 1. The departure time 𝑑 (𝑃) of a path
is the departure time of its first edge, while the arrival time of a

path 𝑎(𝑃) is the arrival time of its last edge. Let P(𝑢, 𝑣) denote
the set of all temporal paths from 𝑢 to 𝑣 in 𝐺 . A temporal graph

is strongly connected if for every ordered pair of nodes 𝑢, 𝑣 ∈ 𝑉

there exists a path from 𝑢 to 𝑣 [34] (i.e., P(𝑢, 𝑣) is nonempty for

all 𝑢, 𝑣 ∈ 𝑉 ). We use 𝐺𝑡 = (𝑉 , 𝐸𝑡 ) to denote the state of 𝐺 at

time 𝑡 , where 𝐸𝑡 only includes edges with arrival times before 𝑡 :

𝐸𝑡 = {(𝑢, 𝑣, 𝑑, 𝑎) ∈ 𝐸 | 𝑎 ≤ 𝑡}. The set of paths from 𝑢 to 𝑣 in 𝐺𝑡 is

then denotedP𝑡 (𝑢, 𝑣). A temporal networkmetric is a functionF (𝐺)
of a temporal graph that computes how effectively information is

transmitted within 𝐺 (discussed further in Section 5).

We assume the collection of nodes 𝑉 has a natural clustering

structure—for instance, teams in a company. That is, there is a

natural partition of 𝑉 into disjoint sets 𝑆1, . . . , 𝑆𝑘 . Given 𝐺 and

this partition, we can construct another graph of interest: the cross-

cluster communication network𝐺𝑐
, a coarsening [20] of𝐺 according

to 𝑆1, . . . , 𝑆𝑘 . To form𝐺𝑐
, we collapse every node 𝑣 ∈ 𝑆𝑖 into a super-

node 𝑠𝑖 [28]. Edges in 𝐺 between 𝑢 ∈ 𝑆𝑖 and 𝑣 ∈ 𝑆 𝑗 (𝑖 ≠ 𝑗 ) become

edges in 𝐺𝑐
between the super-nodes 𝑠𝑖 and 𝑠 𝑗 , with the same

departure and arrival times as the original edge. Within-cluster

edges are removed. See Figure 2 (1) and (2) for an example.

In addition to the communication network𝐺 , we also have a post-

based communication platform represented in𝐺 in which we make

recommendations. On this platform, a post 𝑝 = (𝑢, 𝑡) is written by

a user 𝑢 ∈ 𝑉 at a time 𝑡 and published in a channel. Each channel

has a set of members, a subset of 𝑉 , and users can be members of

many channels. Posts in a channel are only visible to the channel’s

members. If another user 𝑣 reads 𝑝 at time 𝑡 ′, this adds the in-edge
(𝑢, 𝑣, 𝑡, 𝑡 ′) to 𝐺 , representing the transfer of information from the

author to the reader. If 𝑣 replies to the post at 𝑡 ′ and the post author
𝑢 reads the reply at 𝑡 ′′, this adds the out-edge (𝑣,𝑢, 𝑡 ′, 𝑡 ′′) to 𝐺 .

4 PROBLEM STATEMENT
Our goal is to improve cross-team communication in a company by

recommending posts (see Figure 2 for an overview of the problem

setting). Formally, given a multi-platform temporal communication

network 𝐺 and a temporal network metric F , we want to improve

F (𝐺𝑐 ) by recommending posts to users in 𝑉 , without compromis-

ing traditional recommendation relevance metrics. Formally, let

𝑅𝑢,𝑡 be the ranking of posts recommended to user 𝑢 at time 𝑡 . The

candidate set of posts for 𝑅𝑢,𝑡 consists of recent posts (no older than

𝑡 − 𝛿) from channels 𝑢 is a member of. Let 𝑦𝑢,𝑡 = 1 if 𝑢 takes an ac-

tion on one of the recommended posts (otherwise 0). If a user takes

the recommendation and reads a post, this adds the author-reader

in-edge (and out-edge, if the user replies to the post) to𝐺 . Let𝐺𝑐
𝑅,𝑡 ′

be the cross-cluster communication network resulting from using

recommender 𝑅 up until time 𝑡 ′. Our goal is to maximize

F (𝐺𝑐
𝑅,𝑡 ′ ) + 𝛾

∑︁
𝑅𝑢,𝑡 |𝑡<𝑡 ′

𝑦𝑢,𝑡 , (1)

where 𝛾 controls the importance of recommending relevant posts.

We thus aim to place posts that will improve F (𝐺𝑐 ) higher in the

ranking, encouraging users to interact with them, and therefore

influencing F (𝐺𝑐 ). However, in order to achieve our goal of si-

multaneously maximizing post relevance (note we use actions as

binary indications of relevance), we also want to recommend posts

a user is more likely to engage with. We now discuss our temporal

network metrics F .

5 MEASURES OF INFORMATION FLOW IN
TEMPORAL NETWORKS

We consider two measures of temporal information flow: (1) an

existing metric, information latency [26], and (2) a new metric we

call total information. Latency captures the age of the most recent

information one node could have about another, an idea adapted

from computer networking systems [27, 30]. This is a natural metric

that has easy-to-interpret time-based units, but fails to capture

several salient aspects of temporal information flow, including the

degradation of information along long paths (as in the game of

telephone [4, 5]) and the quantity of communication. Our total

information metric accounts for both, but at the cost of less intuitive

units and parameters that require tuning. For simplicity, we define

both information latency and total information with respect to the

individual-level graph 𝐺 . For our recommendations, we will apply

these measures to the cross-cluster communication graph 𝐺𝑐
.

5.1 Information latency
Information latency was originally defined for temporal networks

in which each edge has a single timestamp [26] (i.e., 𝑎 = 𝑑), but it

is straightforward to extend it to account for separate departure

and arrival times. The view of 𝑢 with respect to 𝑣 at time 𝑡 , de-

noted view(𝑢, 𝑣, 𝑡), is the latest departure time of a path from 𝑢 to

𝑣 that arrives no later than 𝑡 : view(𝑢, 𝑣, 𝑡) = max𝑃∈P𝑡 (𝑢,𝑣) 𝑑 (𝑃) .
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Figure 2: Overview of our problem setting. (1) Temporal communication network 𝐺 at 𝑡 = 5 with clusters colored. (2) Cross-
cluster communication network 𝐺𝑐 at 𝑡 = 5. (3) Channel membership on the post platform. (4) Post recommendations for user 𝑖
at 𝑡 = 6, with dashed lines indicating each post’s channel. User 𝑖 engages with 𝑐’s post, creating the new communication edge
(𝑐, 𝑖, 3, 6). (5) Cross-cluster communication network at 𝑡 = 6 with new communication edge.

If no such path 𝑃 exists, we say view(𝑢, 𝑣, 𝑡) = −∞. The informa-

tion latency [26] of a node 𝑢 with respect to 𝑣 at time 𝑡 , denoted

latency(𝑢, 𝑣, 𝑡), is the shortest amount of time between 𝑡 and the

departure time of a path leaving 𝑢 and arriving at 𝑣 no later than 𝑡 :

latency(𝑢, 𝑣, 𝑡) = 𝑡 − view(𝑢, 𝑣, 𝑡). Thus, latency(𝑢, 𝑣, 𝑡) represents
the minimum age of 𝑣 ’s knowledge about 𝑢: any new idea 𝑢 has

between view(𝑢, 𝑣, 𝑡) and 𝑡 cannot possibly have reached 𝑣 through
𝐺 . In order to track all pairwise latencies in a graph, we store them

in the latency matrix 𝐿𝑡 , where (𝐿𝑡 )𝑢𝑣 = latency(𝑢, 𝑣, 𝑡). To mea-

sure the overall communication in 𝐺 , we define the latency of 𝐺

at time 𝑡 to be the sum of all pairwise latencies: latency(𝐺𝑡 ) =∑
𝑢,𝑣∈𝑉 latency(𝑢, 𝑣, 𝑡). Note that latency(𝐺𝑡 ) is only finite if 𝐺𝑡 is

strongly connected. We want to minimize latency(𝐺𝑡 ), so we can

think of defining F (𝐺𝑡 ) = −latency(𝐺𝑡 ) in the context of eq. (1).

For latency with a single timestamp per edge (𝑎 = 𝑑), there is a

simple single-pass algorithm to compute all pairwise latencies at

all times 𝑡 [26, 27, 30], which can be adapted to our setting with

separate departure and arrival times using a priority queue to store

in-transit edges. Since the algorithm for latency is similar to the

one for total information, we omit a full description.

5.2 Total information
We now turn to our new measure of information flow, total infor-

mation, which differs from information latency in capturing the

quantity of information flow (direct or indirect) between nodes, in

addition to recency. Intuitively, the total information 𝑣 has about 𝑢

at time 𝑡 represents the proportion of 𝑢’s state that 𝑣 is aware of at

𝑡 , under the following assumptions. Nodes always have informa-

tion 1 about themselves and information 0 about nodes they have

never heard from, even indirectly. When a node 𝑢 communicates

with a node 𝑣 , 𝑣 learns about the state of every other node 𝑢 has

knowledge of. We assign a weight 𝑤 ∈ [0, 1] to each edge 𝑒 in 𝐺

representing how efficiently that edge transmits information, from

zero transfer (𝑤 = 0) to perfect transfer (𝑤 = 1). Additionally, we

use exponential decay with rate _ to model the decay of informa-

tion over time. Let 𝐸𝑡 (𝑣) denote the set of all incoming edges to 𝑣

arriving at time 𝑡 . We recursively define the total information 𝑣 has

about 𝑢 at time 𝑡 as a sum of the information 𝑣 already had about

𝑢 at 𝑡 − 1 and the amount of information contained in each new

edge. We time-discount the information in each edge, scale by edge

weight, and cap total information at 1 at each timestep:

totalInf(𝑢, 𝑣, 𝑡) =min{1, _ totalInf(𝑢, 𝑣, 𝑡 − 1)

+
∑︁

(𝑧,𝑣,𝑑,𝑎,𝑤 ) ∈𝐸𝑡 (𝑣)
𝑤_𝑡−𝑑 totalInf(𝑢, 𝑧, 𝑑)}. (2)

As base cases, we say totalInf(𝑢,𝑢, 𝑡) = 1 and totalInf(𝑢, 𝑣, 𝑡0) = 0

for times 𝑡0 before the earliest departure in 𝐺 and all 𝑢 ≠ 𝑣 . As

with latency, we store all pairwise total informations in a matrix

𝑇 𝐼𝑡 where (𝑇 𝐼𝑡 )𝑢𝑣 = totalInf(𝑢, 𝑣, 𝑡). To summarize the overall in-

formation quality of a graph, we sum the total information of every

pair of nodes: totalInf(𝐺𝑡 ) =
∑
𝑢,𝑣∈𝑉 totalInf(𝑢, 𝑣, 𝑡) .

The recursive structure of total information accounts for indi-

rect information flow, while edge weights account for the decay

of information over long paths. By summing over incoming edges

in total information, we account for the benefit of hearing many

times from someone. Our use of a sum corresponds to an assump-

tion that the information contained in different communications

is non-overlapping. At the other extreme, we could assume that

information has total overlap, and that multiple communications

are not beneficial. This can be modeled by taking a maximum rather

than a sum, which we call the maximum information (defined in

Appendix B). Reality is likely somewhere between these extremes,

with multiple interactions containing some new and some redun-

dant information. We adopt total information for simplicity and

leave the exploration of intermediate metrics to future work.

As with latency, we can compute total information efficiently

using a single pass through the edges. The idea is to sweep through

edges in temporal order, simulating the spread of information. Par-

alleling the recursive definition, each edge only requires a local

update to total information values, and we can keep track of in-

transit edges efficiently using a priority queue. We provide a formal

description of this algorithm for single-source information in Algo-

rithm 1, which can be easily extended to all-pairs total information.

Given the absence of external knowledge of edge weights 𝑤 , we

calibrate weights so that information values are approximately sta-

ble over time. For simplicity, we fix a single weight 𝑤𝑖 for each

edge type 𝑖 (email, chat, posts, etc.) See Appendix A for weight

calibration details.
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Algorithm 1 Single-source total information.

1: Input: nodes 𝑉 , temporal edges 𝐸 sorted by departure time,

source node 𝑥 ∈ 𝑉
2: 𝑖𝑥 ← 1

3: 𝑖𝑢 ← 0, for all 𝑢 ≠ 𝑥

4: 𝑡𝑢 ← first departure time in 𝐸, for all 𝑢 ∈ 𝑉
5: 𝑄 ← empty min-priority queue

6: while |𝑄 | > 0 or 𝐸 has unprocessed edges do
7: if |𝑄 | = 0 or the next departure time in 𝐸 is before the next

arrival time in 𝑄 then
8: (𝑢, 𝑣, 𝑑, 𝑎,𝑤) ← next edge in 𝐸

9: if 𝑢 ≠ 𝑥 then
10: 𝑖𝑢 ← 𝑖𝑢_

𝑑−𝑡𝑢

11: if 𝑖𝑢 > 0 and 𝑣 ≠ 𝑥 then
12: add (𝑣, 𝑎, 𝑖𝑢𝑤_𝑎−𝑑 ) to 𝑄 with priority 𝑎

13: 𝑡𝑢 ← 𝑑

14: else
15: (𝑣, 𝑎, 𝑖) ← next arrival in 𝑄

16: 𝑖𝑣 ← 𝑖𝑣_
𝑎−𝑡𝑣

17: 𝑖𝑣 ← min{𝑖𝑣 + 𝑖, 1}
18: 𝑡𝑣 ← 𝑎

19: 𝑖𝑢 ← 𝑖𝑢_
𝑡max−𝑡𝑢

, for all 𝑢 ≠ 𝑥

20: return {(𝑢, 𝑖𝑢 ) | 𝑢 ∈ 𝑉 }

6 RECOMMENDATIONWITH TEMPORAL
NETWORK OBJECTIVES

We can now turn to our primary focus: recommending posts that

balance cross-team information flow and user engagement, to max-

imize the objective defined in Equation (1). Our approach, TIER

(Temporal Information and Engagement Recommender), balances

these objectives by computing relevance and cross-team informa-

tion scores and ranks posts by a weighted combination of these

scores. Weighted score combination is commonly used in multi-

objective ranking [32, 56]. The challenging part is computing infor-

mation scores, as we can simply use the relevance score from any

existing relevance-based recommender as an estimate of 𝑦𝑢,𝑡 .

6.1 Optimizing temporal network objectives
In Section 5, we discussed how to compute F from an observed

graph𝐺𝑡 at time 𝑡 . However, in order to optimize F for a future time

𝑡 ′, we need to select edges for recommendation that will impact the

future graph. We will consider the both information latency and

total information as our objective F . First, we consider the problem
of optimizing information latency. Let 𝐺 = (𝑉 , 𝐸) be a strongly

connected temporal graph whose last edge arrives at 𝑡 . We define

the following four edge addition problems on 𝐺 .

Minimum latency in-edges (mli): given a target node 𝑣 and a time

𝑡 ′ ≤ 𝑡 , find𝑘 sources𝑢1, . . . , 𝑢𝑘 such that adding edges {(𝑢𝑖 , 𝑣, 𝑡 ′, 𝑡 ′+
1) | 𝑖 = 1, . . . , 𝑘} minimizes latency(𝐺𝑡+1).

Minimum latency out-edges (mlo): given a source node 𝑢 and

a time 𝑡 ′ ≤ 𝑡 , find 𝑘 targets 𝑣1, . . . , 𝑣𝑘 such that adding edges

{(𝑢, 𝑣𝑖 , 𝑡 ′, 𝑡 ′ + 1) | 𝑖 = 1, . . . , 𝑘} minimizes latency(𝐺𝑡+1).
Myopic minimum latency in-edges (mmli): given a target node

𝑣 , find 𝑘 sources 𝑢1, . . . , 𝑢𝑘 such that adding edges {(𝑢𝑖 , 𝑣, 𝑡, 𝑡 + 1) |
𝑖 = 1, . . . , 𝑘} minimizes latency(𝐺𝑡+1).

Myopic minimum latency out-edges (mmlo): given a source node

𝑢, find 𝑘 targets 𝑣1, . . . , 𝑣𝑘 such that adding edges {(𝑢, 𝑣𝑖 , 𝑡, 𝑡 + 1) |
𝑖 = 1, . . . , 𝑘} minimizes latency(𝐺𝑡+1).

Note that for all four of these problems, we can equivalently

maximize the view sum instead of minimizing latency. We show

that optimizing the first three of these problems is NP-hard. But

because the view sum is submodular in the set of added edges,

the greedy algorithm that repeatedly picks the edge that most

improves latency approximates these hard problems. Due to space

constraints, all proofs can be found in an online supplement at

https://github.com/tomlinsonk/network-rec-supplement.

Theorem 6.1. mli, mlo, and mmli are NP-hard.

Theorem 6.2. The greedy algorithm formli,mlo, andmmli (1− 1

𝑒 )-
approximates the optimal final view sum.

mmlo surprisingly turns out to be easy: the greedy algorithm for

selecting edges solves mmlo.

Theorem 6.3. The greedy algorithm for mmlo is optimal.

We can also define the equivalent edge addition problems for

total information, in which we maximize totalInf(𝐺𝑡+1) instead of

minimizing latency(𝐺𝑡+1). We call these four problems (myopic)

maximum total information (in/out)-edges (mtii, mtio, mmtii, and

mmtio). We show that these problems behave exactly like the la-

tency versions.

Theorem 6.4. mtii, mtio, and mmtii are NP-hard.

Theorem 6.5. The greedy algorithm for mtii, mtio, and mmtii

(1 − 1

𝑒 )-approximates the optimal final total information.

Theorem 6.6. The greedy algorithm for mmtio is optimal.

6.2 TIER
Based on the above theoretical reasoning, we use a greedy approach

for recommending posts in order to improve latency and total

information. Since we do not know the future edge stream, our

approach most closely parallels the myopic edge addition problems.

Specifically, suppose we are recommending posts to a user 𝑣 at

time 𝑡 ′. In order to compute the cross-team information score of

a post 𝑝 = (𝑢, 𝑡), we measure how much cross-team information

flow would immediately improve if recommendation resulted in

𝑣 reading 𝑝 or 𝑣 replying to 𝑝 . Recall that if 𝑣 reads 𝑝 , this would

add the in-edge (𝑢, 𝑣, 𝑡, 𝑡 ′) to 𝐺 and if 𝑣 replies to 𝑝 , this would add

the out-edge (𝑣,𝑢, 𝑡 ′, 𝑡 ′′) to 𝐺 , where 𝑡 ′′ is the time when 𝑢 will

receive the reply (since 𝑡 ′′ is unknown at recommendation time, an

estimate must be used). To measure how much the in- or out-edges

would improve cross-team information flow, we maintain the cross-

cluster total information and latency matrices 𝑇 𝐼𝑐 and 𝐿𝑐 . Any

time cross-cluster communication occurs on any platform we are

considering, we update 𝑇 𝐼𝑐 and 𝐿𝑐 according to the corresponding

communication edge in 𝐺𝑐
. These updates only occur when an

edge arrives. As in Algorithm 1, we keep track of in-transit cross-

cluster edges in a priority queue along with the source cluster’s

total information and latency values at time of departure, which is

sufficient for computing the update. In other words, we essentially

run the all-source version of Algorithm 1 in an online fashion
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on 𝐺𝑐
, processing edges as they occur in the real cross-cluster

communication network.

Then, when we want to estimate the potential impact on 𝐺𝑐
of

recommending a post 𝑝 = (𝑢, 𝑡) to 𝑣 at time 𝑡 ′, we greedily com-

pute the effect that adding the post’s in- or out-edge would have

on 𝐿𝑐 and 𝑇 𝐼𝑐 . To quantify this effect, we use the total change in

latency(𝐺𝑐 ) or totalInf(𝐺𝑐 ) that would result from this in- or out-

edge. We can therefore compute four different network information

scores for a post recommendation depending on whether we evalu-

ate impact on information or latency and whether we consider the

effect of an in- or out-edge. We call these four scores (and the rec-

ommendation algorithms that rank by these scores) information-in,

information-out, latency-in, and latency-out. Note that if the post

author 𝑢 and the reader 𝑣 belong to the same team, the post has no

effect on cross-team information flow and its network information

score is 0.

TIER combines one of these network scores with a relevance

score produced by a traditional recommender system. In order to

to this, we first normalize both the network and relevance scores

to the range [0, 1]. Given a collection of posts 𝑝 to rank, we divide

the relevance scores by the maximum relevance score and divide

the network score by the maximum network score. Then, given

normalized network and relevance scores 𝑛𝑝 and 𝑟𝑝 for each post

𝑝 , the TIER score of 𝑝 is

TIER(𝑝) = 𝑛𝑝 + 𝛼𝑟𝑝 , (3)

where 𝛼 ≥ 0 is a tunable parameter controlling the importance of

relevance relative to information flow. TIER ranks posts by this

combined score, paralleling the weighted objective in Equation (1);

in particular, note the equivalence between the parameter 𝛼 and the

weight 𝛾 in the objective. Traditional recommender systems can be

thought of as using 𝛼 = ∞, while using a smaller 𝛼 places relatively

less importance on relevance. In our experiments, we found that

TIER with 𝛼 ∈ [1.5, 5] provided significant gains in information

flow with only a small decrease in relevance, although appropriate

value for a particular application depends on the priorities of the

system designers. When we want to emphasize which network or

relevance score TIER is using, we append it to the acronym (e.g.,

TIER-information-out).

6.2.1 Time and space complexity of TIER. Recall that we have 𝑘
teams. Suppose we need to rank 𝑛 posts and that the engagement-

based recommender takes 𝑓 (𝑛) time to produce the relevance scores

𝑟𝑝 . The running time of TIER for a single recommendation is then

𝑂 (𝑓 (𝑛) +𝑛𝑘)—that is, TIER adds𝑂 (𝑘) time per post to incorporate

its potential impact on cross-team information flow. Since we typi-

cally have a small number of teams 𝑘 , this overhead is also small. In

the background, we need to update the 𝑘 × 𝑘 matrix of cross-team

information scores (either total information or information latency)

as the stream of temporal edges arrives. Given a temporal stream

of𝑚 edges, of which at most 𝑐 are in transit at any one time, this

takes total time𝑂 (𝑚 log 𝑐) using a priority queue to store in-transit
edges (Algorithm 1). Finally, the additional space cost of using TIER

is 𝑂 (𝑘2), from the matrix of cross-team information scores. All of

these costs are low, allowing TIER to scale to large organizations.

6.3 Offline evaluation
Evaluating network-wide impacts of a recommender system is very

challenging; an experimental A/B test would require deploying mul-

tiple recommenders to large collection of organizations, each with

their own communication network. Due to this difficulty, existing

work on recommendation with network objectives has used a vari-

ety of offline evaluation approaches, including removing a subset

of real edges and then adding back all recommended edges from

this subset [35, 54], adding all top-𝑘 recommended edges for each

user [42, 47], and globally adding a fixed number of edges [11, 17].

These previous approaches are not well-suited to our temporal set-

ting, as it is unrealistic to expect users to increase their quantity

of communication. Additionally, our recommendations rely on the

current informational state of a network, which is itself influenced

by the recommender. This feedback loop is crucial for realistic eval-

uation of our methods. To see why, suppose a there are two clusters

𝑆1 and 𝑆2 who have high mutual latency or low information about

each other. We might therefore want to recommend a post from

𝑆1 to someone in 𝑆2. If the recommendation is taken, then 𝑆2 now

has more information about 𝑆1. If we don’t account for this in our

recommendations, we may keep recommending 𝑆1 posts to 𝑆2 users

ad infinitum, at the expense of other cluster pairs.

With this feedback loop in mind, we now provide an overview of

our offline evaluation approach and then describe each component

in detail. Our historical interaction data is a stream of user actions

on a variety of platforms (email, chats, posts, and file sharing), which

we convert into temporal edges (𝑢, 𝑣, 𝑑, 𝑎) as described in Section 7.1.
In evaluating the recommender 𝑅, we keep all of these interactions

fixed except on the platform where we make recommendations

(posts). Intuitively, our evaluation of 𝑅 asks what the cross-cluster

communication network would have looked like if users sometimes

interacted with posts recommended by 𝑅 instead of the posts they

would otherwise have interacted with, keeping the total amount

of user activity constant. Specifically, we simluate a cross-cluster

communication network 𝐺𝑐
𝑅
under recommender 𝑅 as follows:

(1) Add all edges from platforms we are holding constant (email,

chats, file sharing).

(2) On the recommendation platform, for each true action by

user 𝑢 at time 𝑡 on a post 𝑝 by author 𝑣 , we:

(a) Construct a candidate set of posts for user 𝑢 at time 𝑡 ,

(b) Rank the candidates according to 𝑅,

(c) With probability 𝜌 , simulate 𝑢 acting on a top-𝑘 recom-

mended post 𝑝′ instead of 𝑝—otherwise, keep the action

on 𝑝 ,

(d) If 𝑢 and 𝑣 are in different clusters, add the edge corre-

sponding to the user-post action (true or recommended)

to 𝐺𝑐
𝑅
.

More precisely, we process edges in temporal order, allowing

𝐺𝑐
𝑅
to populate until the beginning of the test period. During the

test period, we simulate a recommendation instance whenever we

encounter a post interaction where user 𝑢 replied or reacted at

time 𝑡 to a post 𝑝 authored by 𝑣 no older than 3 days. In each

recommendation instance, we construct a candidate set of recent

posts to recommend from channels 𝑢 is active in, downsampling to

100 such posts if necessary and always including the true positive

interaction on post 𝑝 . We rank the candidate posts according to
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the recommender 𝑅 and compute accuracy-based ranking metrics

according to the rank of the true post 𝑝 that 𝑢 interacted with. Fi-

nally, we model whether the user takes one of the recommendations

(deferring the details of this model for a moment). If the model says

no, we keep the true interaction edge and add it to𝐺𝑐
𝑅
. If the model

says that 𝑢 takes the recommendation of a post by 𝑣 ′, we instead
add an interaction edge between 𝑢 and 𝑣 ′ to 𝐺𝑐

𝑅
. When replacing

a true action with a simulated one, we keep the interaction type

(react or reply) the same as in the true action. Once this procedure

is complete, we have a simulated version of what the cross-cluster

communication network might look if the recommender 𝑅 were

deployed. We can then evaluate the latency and total information

of the simulated network 𝐺𝑐
𝑅
in comparison with the true cross-

cluster communication network𝐺𝑐
. We don’t even need to perform

another pass through the edges to do this, as long as we store the

state of the cross-cluster total information and latency matrices

𝑇 𝐼𝑐 and 𝐿𝑐 during the first pass—which we need anyway for the

network-based recommenders. We take checkpoints of 𝑇 𝐼𝑐 and 𝐿𝑐

once per day in the historical data stream to track the simulated

effects of our recommendations over time.

The final component of the evaluation procedure left to describe

is the model for whether users take action on the top-𝑘 recommen-

dations from 𝑅. Learning such a model from historical user-post

interaction is extremely difficult, as the recommendations we pro-

vide present a distributional shift in the posts users are exposed

to. For instance, historically users may have rarely interacted with

cross-cluster posts, but this may change when we actually recom-

mend them. To avoid the issues this distribution shift presents, we

take a simple approach: we assume a fixed user action probabil-

ity 𝜌 . That is, we say users take one of the recommended actions

with probability 𝜌 and otherwise take the historical action with

probability 1 − 𝜌 . We can then adjust 𝜌 to understand a range of

possible outcomes of the recommender system. Conditioned on

taking a recommended action, we assume users always interact

with one of the top-5 recommended posts, sampled with a position

bias [7], where higher ranked posts are more likely to be chosen.

Specifically, we sample from top-5 posts with weights proportional

to 5, 4, 3, 2, 1 (i.e., the rank-1 post is chosen w.p. 5/15, the rank-2
post w.p. 4/15, etc.). Post hoc validation on historical Teams post

ranking data found this to be a good match for actual user position

bias—albeit under traditional engagement-based recommenders.

7 EXPERIMENTAL EVALUATION
In this section, we describe our real-data experiments. We use one

month (March 2022) of communication data among approximately

180k Microsoft employees, including channel posts and chats on

Microsoft Teams, emails on Outlook, and file sharing on SharePoint,

resulting in a temporal graph with over 100 million communication

edges. We then design an offline temporal evaluation procedure

for recommendation with temporal network objectives. Finally, we

describe the relevance-based recommenders we tested and present

the weight calibration approach we used for total information.

7.1 Data description
We use a communication dataset covering one month (March 1,

2022 to April 1, 2022) of interactions between approximately 180,000

full-time employees at Microsoft. We gathered anonymized inter-

actions (using only non-content features for privacy reasons) on

Microsoft Teams, Outlook, and SharePoint during this period. In

total, these data streams represent over 100 million interactions, an

average of ∼20 outgoing communications per person per day. We

now describe how we converted these interactions into a temporal

communication graph 𝐺 and the types of clusters we used to form

the cross-cluster graph 𝐺𝑐
.

7.1.1 Teams posts. Posts in Microsoft Teams are made in a par-

ticular channel and are only visible to members of that channel.

Users can react to posts with emojis or reply to posts with text

comments. We collected all Teams posts, replies, and reacts made

during the data period, storing anonymized user IDs, timestamps,

and anonymized channel IDs. For each react by a user 𝑣 at time 𝑡 ′

on a post written by 𝑢 at time 𝑡 , we added a temporal communi-

cation edge (𝑢, 𝑣, 𝑡, 𝑡 ′) to 𝐺 indicating the transfer of information

from the post author to the reactor. We did the same for replies,

but also added the out-edge (𝑣,𝑢, 𝑡 ′, 𝑡 ′)1 to indicate the transfer of

information from the replier to the post author. We say that a user is

active in a channel if they perform at least one post action (react or

reply) in that channel any time in our data. In our recommendation

task, we only suggest recent posts (no more than 𝛿 = three days

old) from channels a user is active in. Almost 90% of reacts and

replies in our data were on recent posts.

7.1.2 Teams chats. Chats in Teams are group conversations be-

tween two or more users. Whenever a user 𝑣 sent a message to a

chat at time 𝑡 ′, we assumed that they read every message in the

chat since the last time 𝑣 sent a message to that chat. For each such

earlier message written by 𝑢 at time 𝑡 , we thus added the edge

(𝑢, 𝑣, 𝑡, 𝑡 ′) to the communication network 𝐺 .

7.1.3 Outlook emails. We gathered timestamped email send and

receive actions from the Microsoft Outlook email client. For each

email sent by 𝑢 at time 𝑡 and received by 𝑣 at time 𝑡 ′, we added the

communication edge (𝑢, 𝑣, 𝑡, 𝑡 ′) to 𝐺 . We filtered out mass emails

by ignoring any email received by more than 100 recipients.

7.1.4 SharePoint file actions. Finally, we gathered two types of

timestamped file actions from SharePoint: (1) author actions (up-

loads and edits) and (2) viewer actions (downloads and views). We

ignored files that had no author actions during our data period and

restricted to user-readable file types (Word, Excel, and PowerPoint

documents plus PDFs). Whenever a user 𝑣 performed a viewing

action on a file 𝑓 at time 𝑡 ′, we considered 𝑣 to have received infor-

mation from every user who took an author action on 𝑓 since the

last time 𝑢 took a viewer action 𝑓 . For each such author action by

𝑢 at time 𝑡 , we added the temporal edge (𝑢, 𝑣, 𝑡, 𝑡 ′) to 𝐺 .

7.1.5 Clusters. We considered three clusterings of Microsoft em-

ployees, two based on empirical email patterns and one based on

the organizational chart (org chart) of the company. For the org

chart clusters, we grouped all employees by the subtree they belong

to in the organizational hierarchy. We considered subtrees rooted

two steps below the CEO, resulting in 79 clusters. For the empirical

1
Since our data doesn’t say when the reply was read, we use the reply time as the edge

arrival time.
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Figure 3: Relevance vs information information flow tradeoff (𝜌 = 0.01). Each point represents a different recommendation
algorithm. The 𝑥-axis shows the average improvement in cross-cluster total information compared to the true edge stream
(higher is better), as a proportion of the gain under information-out. Horizontal error bars (tiny) show standard error in
information improvement. The 𝑦-axis shows each recommender’s MRR. For TIER, 𝛼 ranges from 5 at the top left to 0.5 at the
bottom right (all values: 0.5, 0.75, 1, 1.5, 2, 3, 4, 5).

clusters, we used two levels from a hierarchical clustering of em-

ployees based on a graph embedding of their email communication

network (level 0 = 45 clusters, level 1 = 794 clusters). We ran sepa-

rate experiments evaluating cross-cluster information flow in 𝐺𝑐

for each of these clusterings. For a visual example of a clustering,

see Figure 1; this used level 0 clusters (as well as the information-out

recommender and action probability 𝜌 = 1).

7.2 Recommendation algorithms
We compare TIER to four other types of recommenders described

below. Since we are evaluating methods along two axes (ranking

relevance and resulting information flow), we compare TIER against

traditional methods that optimize only for relevance and methods

that optimize only for information flow, as well as several baselines.

Relevance only: logit and lightgbm [23] rank posts by the pre-

dicted probability that a user will interact with them using multi-

nomial logistic regression and gradient-boosted decision trees, re-

spectively. We use simple predictive models since they are widely

used in industry [6, 46] and are often competitive with much more

complex and costly neural models [14, 37]. We use the same set of

post features for logit and lightgbm, including count-based features

(e.g., reply and react counts on the post, author post count, channel

action and post counts) and temporal features (e.g., post recency,

action recency, user-post action recency). We trained both models

on the first 30% of post interactions after a burn-in period. See

Appendix C for a full list of features and training details.

Information flow only: the information-in, information-out,

latency-in, and latency-out rankers order posts by their correspond-

ing information flow scores as defined in Section 6.

Randombaseline: random simply shuffles candidate posts. Note

that even random recommendations are a relatively strong baseline,

since we only rank “hard negatives” [21, 40] that were recently

posted in a channel the user is active in. As such, these are all posts

that users could reasonably take interest in.

Cross-cluster first baselines: cc-first-random, cc-first-logit, and

cc-first-lightgbm always rank cross-cluster posts higher than within-

cluster posts. Among those two categories, they rank posts using

random, logit, or lightgbm.

TIER: we tested all eight combinations of the information flow

and relevance recommenders: TIER-{information-in, information-

out, latency-in, latency-out}-{logit, lightgbm}. For each configuration

of TIER, we tested relevance weights 𝛼 = 0.5, 0.75, 1, 1.5, 2, 3, 4, 5.

8 RESULTS
We begin by summarizing the average performance of each of the

ranking algorithms in terms of relevance and information flow

(total information and latency). For information flow measures, this

average is taken over daily snapshots and over cluster pairs.

Average performance. In Figure 3, we show the average relevance

score and total information gain of different recommendation al-

gorithms using each of the three clusterings and a conservative

action probability 𝜌 = 0.01. We focus on the logit-based recom-

menders since they achieved a better tradeoff between relevance

and information flow and plot information gain relative to purely

optimizing for information flow using information-out. See Appen-

dix C for equivalent plots with lightgbm, latency, and high action

probability 𝜌 = 1. As expected, the relevance-based recommenders,

logit and lightgbm, achieve high mean reciprocal rank (MRR): 0.76

and 0.80, respectively. However, they have essentially no effect

on information flow compared to the true edge stream. Random

recommendations perform much worse in terms of relevance (MRR

0.24-0.26), although they do somewhat improve cross-cluster con-

nectivity. Ranking cross-cluster posts first achieves even better total

information, but again poor relevance (MRR 0.39 at best). The best

total information is achieved by one of the network recommenders,

information-out, but it scores even worse in terms of relevance

(MRR 0.20-0.21). Similarly, latency-out achieves the highest latency

improvement overall and very low MRR (see Appendix D). TIER

allows for significant gains in information flow: at least 60% as

much as information-out, and almost as much ranking all cross-

cluster posts first. At the same time, TIER still achieves high MRR

(0.70 − 0.78 depending on 𝛼).

Varying the action probability. In Figure 4, we show how the

information flow results are impacted by the simulated user action

probability 𝜌 . We tested 𝜌 = 0.01, 0.05, 0.2, 1. For clarity, we only

plot the best-performing network recommender for each network

measure, logit-based relevance recommenders, and TIER-logit with
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Figure 4: Mean total information gain (left) and latency re-
duction (right) under different recommenders for different
action probabilities 𝜌 (level 0 clusters). The true edge stream
has mean total information 0.66 and 47minute mean latency.
TIER uses logit and information-out (left) or latency-out
(right), and 𝛼 = 2. The more likely users are to accept rec-
ommendations, the more opportunity we have to improve
information flow metrics.

Figure 5: Total information gain and latency reduction tra-
jectories (level 1 clusters, 𝜌 = 0.2). Each line shows the im-
provement in information flow from a recommender over
the true edge stream through the test period, averaged over
all pairs of clusters. Shaded regions around each line show
standard error over cluster pairs. In these plots, TIER uses
logit, information-out (left) or latency-out (right), and 𝛼 = 2.

𝛼 = 2. When users take more of our recommendations (higher 𝜌),

we have more of an opportunity to impact cross-cluster communi-

cation. However, there are diminishing returns—notice the change

in slope at 𝜌 = 0.2. For latency, low action probabilities produce

noisy results due to the coarseness of daily checkpointing relative

to the small cross-cluster latencies.

Effects over time. In Figure 5, we plot information and latency

gain trajectories of different recommenders during the test period

for level 1 clusters and action probability 𝜌 = 0.2. We plot the

same recommenders as in the action probability sweep. With 𝛼 =

2, TIER gets high MRR 0.72-0.76 while providing significant and

sustained gains to information and latency (almost as much as cc-

first-logit). Note that 3/20 and 3/27 were Sundays—cross-cluster

latency gains spike on weekends, while total information gains

decay over weekends.

Change in cross-cluster edges. There are two ways that our net-

work recommenders increase cross-cluster information flow in our

simulations: by replacing intra-cluster communication with cross-

cluster communication and by focusing user attention on the the

most efficient cross-cluster posts (in terms of information flow).

Since we keep the total amount of user activity fixed, any increase in

cross-cluster communication must be accompanied by an equal ab-

solute decrease in intra-cluster communication. However, because

most communication is intra-cluster, we only need to sacrifice a

small proportion of intra-cluster edges to achieve larger proportional

gains in cross-cluster communication. We illustrate this principle

in Table 1, where we show the percent change in intra- and cross-

cluster post edges resulting from TIER-logit-information-out (with

level 0 clusters and 𝛼 = 2) over the range of action probabilities 𝜌 .

The proportional gain in cross-cluster post edges is over 10× the
proportional loss in intra-cluster edges.

Table 1: Percent change in post edges from TIER.

𝜌 = 0.01 𝜌 = 0.05 𝜌 = 0.2 𝜌 = 1

intra-cluster −0.06% −0.30% −1.19% −5.83%
cross-cluster +0.63% +3.16% +12.48% +60.89%

9 CONCLUSION
In this work, we took a first step in studying recommendation algo-

rithms with temporal network objectives, focusing on the potential

for impact on workplace communication. Specifically, we focused

on optimizing cross-team information flow in organizational com-

munication networks. We developed tractable measures of temporal

information flow and used these in the design of TIER, an efficient

online recommendation algorithm that jointly optimizes for rele-

vance and information propagation. We evaluated our proposed

method on a dataset of 100M+ interactions among 180k Microsoft

employees and showed that our recommendation algorithms can

significantly improve cross-team information flowwith only a small

decrease in traditional relevance metrics.

Our investigation was necessarily limited in scope; for instance,

we assumed a simple model of user-post interaction for our offline

evaluation and our total information metric assumes that different

incoming communications never overlap in informational content.

Our approach to optimizing information flow is also myopic, only

considering the impact of the recommended edge. Each of these limi-

tations invites additional exploration in future work. One important

direction is the development of additional evaluation mechanisms

that can account for downstream network-wide effects such as

graph-based off-policy evaluation and A/B testing for information

flow. Other future directions include exploring other network met-

rics, such as combining total and maximum information to account

for a mixture of redundant and novel information, and accounting

for likely future edges.
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A WEIGHT CALIBRATION FOR TOTAL
INFORMATION

We assign a single weight𝑤𝑖 to each edge type 𝑖 (in our data, 𝑖 ∈
{post, reply, chat, email, file}) and fix _ so that 20% of information

decays per day; with 𝑡 in seconds, _ = exp(log 0.8/(60 ∗ 60 ∗ 24)) ≈
0.999997. We make the following assumptions: (1) the amount of

information transmitted on each platform is the same, (2) informa-

tion quantities are stable in the long run, (3) the stable amount of

information a node has about its closest contact on a single platform

is 𝛽 = 0.1, and (4) if two nodes 𝑢, 𝑣 both have mutually high infor-

mation with a third node 𝑤 , then 𝑢 and 𝑣 have high information

about each other (the principle of triadic closure [15, 38, 41]).

Each day, we need the amount of information received by a node

about their closest contact on each platform to result in stable infor-

mation 𝛽 after decay. To calibrate𝑤𝑖 to the edge frequency of the

platform, we use two empirical measures: `𝑖 , the average number

of edges received per day by nodes on platform 𝑖 and b𝑖 , the average

number of edges received per day from each node’s most frequent

contact on platform 𝑖 . A node 𝑢’s closest contact 𝑣 has information

1 about itself, and we assume all other nodes communicating with

𝑢 have information 𝛽 about 𝑣 (i.e., we generously apply the triadic

closure assumption). To simplify matters, we also assume all in-

formation arrives at the very start of the day, so that all decay for

a day occurs after information has arrived. We then arrive at the

following fixed point formula for the stable information 𝛽 in terms

of _, `𝑖 , b𝑖 , and the calibrated edge weight𝑤𝑖 :

_60∗60∗24 ( 𝛽︸︷︷︸
prior inf.

+𝑤𝑖 ( b𝑖︸︷︷︸
closest contact

+ 𝛽 (`𝑖 − b𝑖 )︸      ︷︷      ︸
other nodes

)) = 𝛽 (4)

For each of the five edge types 𝑖 ∈ {post, reply, chat, email, file},

we then use empirical values of `𝑖 and b𝑖 along with our assumed

values of _ and 𝛽 to derive a calibrated edgeweight𝑤𝑖 . Edgeweights

used in our experiments are below.

level 0 level 1 org chart

post 1.23 × 10−3 9.96 × 10−3 1.92 × 10−3
reply 1.80 × 10−3 1.34 × 10−2 2.77 × 10−3
chat 5.14 × 10−6 8.47 × 10−5 1.02 × 10−5
email 1.60 × 10−4 1.45 × 10−3 2.20 × 10−4
file 2.08 × 10−5 4.80 × 10−4 3.08 × 10−5

B MAXIMUM INFORMATION
We define the maximum information 𝑣 has about 𝑢 at time 𝑡 as the

maximum age-discounted information transmitted along any path

from 𝑢 to 𝑣 arriving no later than 𝑡 :

maxInf(𝑢, 𝑣, 𝑡) = max𝑃∈P𝑡 (𝑢,𝑣) _
𝑡−𝑑 (𝑃 ) ∏

𝑒∈𝑃 𝑤𝑒 .

Theorem B.1. We can compute all single-source maximum infor-

mations in time 𝑂 (𝑚 + 𝑛𝑐 log𝑛 + 𝑛𝑐 log 𝑐), where 𝑛 = |𝑉 |,𝑚 = |𝐸 |,
and 𝑐 = 𝑂 (𝑚) is the maximum degree of any node in 𝐺 .

See the online supplement for a proof (https://github.com/tomlinsonk/

network-rec-supplement).

C TRAINING AND DATA DETAILS
We define the recency of an event that occurred 𝑡 seconds ago (e.g.,

post creation) to be log
−1 (2 + 𝑡) (or 0 if the event has not occurred).

We construct the following features for the post ranking task for

post 𝑝 written by author 𝑣 in channel 𝑐 being recommended to user

𝑢: 𝑝 creation recency, 𝑝 action count, 𝑝 action recency, 𝑢-𝑝 action

count, 𝑢-𝑝 action recency, 𝑐 action count, 𝑐 action recency, 𝑐 post

count, 𝑢-𝑐 action count, 𝑢-𝑐 action recency, action count on posts

by 𝑣 , 𝑣 post count. Here, “action” refers to replies and reacts. We log-

transform all count features, adding 1 to avoid taking log(0). We

implemented the (multinomial) logit recommender in PyTorch [36].

Given the set of up to 100 candidate posts to rank, themodel predicts

which one the user actually interacted with. We train the logit

model with a negative log-likelihood (i.e., cross-entropy) loss. Posts

are then ranked by their logit score. We trained the logit model

with Rprop [39] with learning rate 0.05 for 100 epochs or until the

squared gradient magnitude dropped below 10
−8
. We use Rprop

since it converges very fast for batch training without requiring

learning rate tuning [10]. For the lightgbm recommender, we used

the LightGBM binary classifier [23] with 5-round early stopping

and fully default parameters. Here, the task is to predict whether

a post is a positive (true interaction) or negative (other candidate

post). Posts are then ranked by their LightGBM prediction score.

We used the first 25% of edges for burn-in, the next 30% of edges

for model training and validation, and the final 45% for testing.

D ADDITIONAL PLOTS
See the following page for versions of Figure 3 with the LightGBM

recommender (Figure 6), with latency instead of total information

(Figure 7), and with action probability 𝜌 = 1 (Figure 8). Note that

latency is a much coarser and noisier measure than total informa-

tion.
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Figure 6: Relevance vs total information tradeoff (𝜌 = 0.01) for lightgbm recommenders.
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Figure 7: Relevance vs latency tradeoff (𝜌 = 0.01) for logit (top row) and lightgbm (bottom row) recommenders.
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Figure 8: Relevance vs total information (top row) and latency (bottom row) tradeoff (𝜌 = 1) for logit recommenders.
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