

The Moderating Effect of Instant Runoff Voting
 Kiran Tomlinson
 Johan Ugander

AAAI '24

Cornell University

Stanford University

Jon Kleinberg
Cornell University

How do we elect a winner given the preferences of voters?

How do we elect a winner given the preferences of voters?

How do we elect a winner given the preferences of voters?

How do we elect a winner given the preferences of voters?

How do we elect a winner given the preferences of voters?

Plurality voting

choose the candidate with the most first-place votes

Plurality voting

choose the candidate with the most first-place votes

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes
Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes
Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Elimination order

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

Instant runoff voting (IRV)

repeatedly eliminate candidate w/ fewest first-place votes

a.k.a. ranked-choice voting (+ AV, STV, Hare, ...)

Who uses IRV?

Cities and counties: OIn use Opcoming use

States: Used statewide Local elections in some jurisdictions
\square Military and overseas voters $\quad 2024$ presidential primaries
Special elections

> AZ NBC NEWS
> Following a big year, more states push ranked-choice voting

> Lawmakers in 14 states have already introduced 27 bills proposing ranked-choice voting models, according to an NBC News review. | $\substack{\text { Janan } 1, \text {, } 2023,7,7,00 \text { an } \\ \text { By Adam Edelman }}$ |
| :---: |

Ranked choice voting is being touted as a cure-all for U.S. deep partisan divides

DECEMBER 3, $2023 \cdot 5: 54$ PM ET
HEARD ON ALL THINGS CONSIDERED
ค D

The Alew llork Eimes

Can Ranked-Choice Voting Cure American Politics?

June 24, 2021
By Spencer Bokat-Lindell
Supreme Court shoots down GOP attempt to stop rankedchoice voting in Maine
The system allows voters to rank candidates in order of preference on the ballot

WSJ OPINION

Ranked-Choice Voting Was a Bad Choice
Arlington County, Va., halts a system that left many voters confused.

By The Editorial Board Follow
July 25, 2023 at 6:44 pm ET

OPINION | POTOMAC WATCH
The 'Ranked Choice’ Scam
Alaskans know the truth about this confusing, coercive voting system.

By Kimberley A. Strassel Follow

```
Oct. 27, 2022 at 6:14 pm E
```

By Kimberley A. Strassel Follow

Ranked-Choice Voting Is Bad for Everyone
It appeals to progressives because it allows them to vote twice-once for show and once for real.

Common debate: does IRV benefit moderates?

[Under IRV,] civility is substantially improved. Needing to reach out to more voters leads candidates to reduce personal attacks and govern more inclusively.

The ranked-choice system [...] is biased towards extreme candidates and away from moderate ones.

Common debate: does IRV benefit moderates?

[Under IRV,] civility is substantially improved. Needing to reach out to more voters leads candidates to reduce personal attacks and govern more inclusively.

Howard Dean. How to move beyond the two-party system. NY Times, 10/8/2016
case studies
(Fraenkel \& Grofman, Public Choice 2004) (Mitchell, Electoral Studies 2014) (Reilly, Nationalism and Ethnic Politics 2018)
simulation
(Chamberlin and Cohen, APSR 1978)
(Merrill, AJPS 1984)
(McGann, Grofman, \& Koetzle, Public Choice 2002)
some limited theory
(Grofman \& Feld, Electoral Studies 2004)
(Dellis, Gauthier-Belzile, \& Oak, JITE 2017)

The ranked-choice system [...] is biased towards extreme candidates and away from moderate ones.

Nathan Atkinson and Scott Ganz. The flaw in ranked-choice voting: rewarding extremists. The Hill, 10/30/2022

Does IRV provably favor moderates compared to plurality?

1-Euclidean preference model

1-Euclidean preference model

- [0, 1]: left-right ideology

1-Euclidean preference model

- [0, 1]: left-right ideology
- Candidates are at points

1-Euclidean preference model

- [0, 1]: left-right ideology
- Symmetric distribution of voters
- Candidates are at points

1-Euclidean preference model

- [0, 1]: left-right ideology
- Candidates are at points
- Symmetric distribution of voters
- Voters prefer candidates in order of distance

1-Euclidean preference model

- [0, 1]: left-right ideology
- Candidates are at points
- Moderate = close to 0.5
- Symmetric distribution of voters
- Voters prefer candidates in order of distance

1-Euclidean preference model

- [0, 1]: left-right ideology
- Candidates are at points
- Moderate = close to 0.5

- Symmetric distribution of voters
- Voters prefer candidates in order of distance

1-Euclidean preference model

- [0, 1]: left-right ideology
- Candidates are at points
- Moderate = close to 0.5
- Symmetric distribution of voters
- Voters prefer candidates in order of distance

C is the plurality and IRV winner

D is the plurality winner, A is the IRV winner

Formalizing a moderating effect

Formalizing a moderating effect

Definition

A voting system has a combinatorial moderating effect if there is an interval $I \subset[0,1]$ s.t. a candidate from I always wins (when present).

We call I an exclusion zone of the voting system.

Formalizing a moderating effect

Definition

A voting system has a combinatorial moderating effect if there is an interval $I \subset[0,1]$ s.t. a candidate from I always wins (when present).

We call I an exclusion zone of the voting system. \downarrow implies

Definition

A voting system has a probabilistic moderating effect if
$\operatorname{Pr}($ winner is in $I) \rightarrow 1$ as the number of candidates $k \rightarrow \infty$.

Starting simple: uniform voters

IRV has a moderating effect!

Theorem 1 (Combinatorial moderation for IRV)
For any $k \geq 3,[1 / 6,5 / 6]$ is an exclusion zone of IRV with uniform voters.
No smaller interval has this property.

IRV has a moderating effect!

Theorem 1 (Combinatorial moderation for IRV)
For any $k \geq 3,[1 / 6,5 / 6]$ is an exclusion zone of IRV with uniform voters.
No smaller interval has this property.

Plurality allows extreme winners

Plurality allows extreme winners

IRV, $k=4$

Plurality, $k=5$

IRV, $k=5$

Theorem 2 (No combinatorial moderation for plurality, uniform voters) Given any distinct candidate positions x_{1}, \ldots, x_{k} (with $x_{1} \notin\{0,1\}$), we can add more candidates to make x_{1} the plurality winner.

No probabilistic moderation for plurality

Plurality, $k=100$

Theorem 3 (No probabilistic moderation for plurality, uniform voters) Let P_{k} be the position of the plurality winner with k candidates distributed uniformly. As $k \rightarrow \infty, P_{k} \rightarrow{ }_{d} \operatorname{Uniform}(0,1)$.

No probabilistic moderation for plurality

Plurality, $k=100$

Theorem 3 (No probabilistic moderation for plurality, uniform voters) Let P_{k} be the position of the plurality winner with k candidates distributed uniformly. As $k \rightarrow \infty, P_{k} \rightarrow{ }_{d} \operatorname{Uniform}(0,1)$.

Proof idea:

Connection to stick-breaking processes to find winning vote share + circle-cutting argument

[^0]
What about non-uniform voters?

[1/6, 5/6] Theorem generalizes!

[1/6, 5/6] Theorem generalizes!

Theorem 4 (Combinatorial moderation for IRV, general case)
Let the voter distribution be symmetric with CDF F and let $c \in(0,1 / 2)$.
If for all $x \in[c, 1 / 2]$,

$$
F\left(\frac{x+1-c}{2}\right)-F\left(\frac{c+x}{2}\right)>1 / 3
$$

then $[c, 1-c]$ is an exclusion zone of IRV.
(\star) intuitively: "the last moderate can't be squeezed out"

[1/6,5/6] Theorem generalizes!

Theorem 4 (Combinatorial moderation for IRV, general case)
Let the voter distribution be symmetric with CDF F and let $c \in(0,1 / 2)$.
If for all $x \in[c, 1 / 2]$,

$$
F\left(\frac{x+1-c}{2}\right)-F\left(\frac{c+x}{2}\right)>1 / 3
$$

then $[c, 1-c]$ is an exclusion zone of IRV.
(\star) intuitively: "the last moderate can't be squeezed out"

Theorem 5

exclusion
centrist voters zone:
$\left[F^{-1}(1 / 6), 1-F^{-1}(1 / 6)\right]$

$[1 / 6,5 / 6]$ Theorem generalizes!

Theorem 4 (Combinatorial moderation for IRV, general case) Let the voter distribution be symmetric with CDF F and let $c \in(0,1 / 2)$. If for all $x \in[c, 1 / 2]$,

$$
F\left(\frac{x+1-c}{2}\right)-F\left(\frac{c+x}{2}\right)>1 / 3
$$

then $[c, 1-c]$ is an exclusion zone of IRV.
(\star) intuitively: "the last moderate can't be squeezed out"

Theorem 5

exclusion zone:

$$
\left[F^{-1}(1 / 6), 1-F^{-1}(1 / 6)\right]
$$

Theorem 6

exclusion even with polarized voters! zone: $\quad(F(1 / 4)<1 / 3)$
$\left[2 F^{-1}(1 / 3)-1 / 2,3 / 2-2 F^{-1}(1 / 3)\right]$

If voters are too polarized, IRV can't elect moderates

Theorem 7 (hyper-polarized voters)
Suppose $F(1 / 4)>1 / 3$. For any $c \geq 2 F^{-1}(1 / 3)$,
$[0, c] \cup[1-c, 1]$ is an exclusion zone of IRV.

If voters are too polarized, IRV can't elect moderates

Theorem 7 (hyper-polarized voters) Suppose $F(1 / 4)>1 / 3$. For any $c \geq 2 F^{-1}(1 / 3)$, $[0, c] \cup[1-c, 1]$ is an exclusion zone of IRV.
 Theorem 1)

Plurality still elects arbitrarily extreme candidates

Theorem 8 (no combinatorial moderation for plurality)
As long as the voter distribution is continuous and positive over (0,1), we can make an arbitrarily extreme candidate win by adding more candidates.

Plurality still elects arbitrarily extreme candidates

Theorem 8 (no combinatorial moderation for plurality)
As long as the voter distribution is continuous and positive over (0,1), we can make an arbitrarily extreme candidate win by adding more candidates.

Open question: probabilistic moderation for plurality in general?

Moderation Takeaway:
 IRV provably has a moderating effect in a way plurality doesn't

Thank you!

Code:
github.com/tomlinsonk/irv-moderation
\# cs.cornell.edu/~kt/
kt@cs.cornell.edu

Coauthors:

Johan Ugander Jon Kleinberg

Funding from:

[^0]: D. A. Darling. On a class of problems related to the random division of an interval. The Annals of Mathematical Statistics, 1953.
 L. Holst. On the lengths of the pieces of a stick broken at random. Journal of Applied Probability, 1980.

