Ballot Length in Instant

 Runoff Voting(4) Kiran Tomlinson
 k kecs.cornell.edu
, Johan Ugander

INSTANT RUNOFF VOTING (IRV)

- Voter submit (partial) rankings over k candidates
- Repeat until one candidate remains:
- Eliminate candidate with fewest top rankings
- Redistribute ballots
- How many candidates should voters be allowed to rank? This is the ballot length.
- We study how ballot length affects IRV winners

CONSTRUCTING ANY WINNER SEQUENCE

- Consider consequential-tie-free profiles (unique winner at every ballot length h)
- Label candidates $1, . ., k$ in IRV elimination order
- Sequence of winners from $h=1, \ldots, k-1$: truncation winner sequence
- Feasible iff element-wise $>1, \ldots, k-1$ Theorem. For all $k \geq 3$, given any truncation winner sequence, there is a consequential-tie-free profile with $2 k^{2}-2 k$ voters achieving that sequence.
- Explicit construction! See center example - In the paper: constructions with other tie restrictions and with $\Theta(k)$ voter types

VOTER LOWER BOUNDS

Theorem. For all $k>3$, a consequential-tie-free profile needs at least $2 k^{2}-2 k$ voters to have $k-1$ different truncation winners.

- Construction is tight for $k-1$ truncation winners! - In the paper: lower bounds for other restrictions on ties

PREFERENCE RESTRICTIONS

Theorem. For $k \geq 5, k-1$ truncation winners are impossible with single-peaked or single-crossing preferences.

- However, at least $\Theta(\sqrt{ } k)$ winners are possible with single-peaked preferences
- Open question: up to $k-2$ winners?

FULL BALLOTS

- Constructions so far use partial rankings; what if we require full ballots?
- Construction with full ballots with k / 2 winners - Linear program found full-ballot $k-1$ winner constructions up to $k=10$

The number of candidates that voters

 are allowed to rank can have a huge effect on IRV election outcomes.Given (almost) any length $k-1$ sequence of k candidates, we can construct voter preferences so that the IRV winners at ballot lengths $1, \ldots, k-1$ follow the given sequence.

Example. $k=4$ candidates, winner sequence ABC:

A wins

B wins
Ballot length 3

Our constructions use only $\Theta\left(k^{2}\right)$ voters to achieve any winner sequence, which is tight for k - 1 different winners.

Real-world IRV elections use various ballot lengths:

Minneapolis, MN

5

New York, NY
unlimited

Portland, ME

We truncate ballots in 168 real-world elections: 25% of them have multiple winners as ballot length varies.

Paper:

Code + Data:

BALLOT LENGTH IN SIMULATION

- General profiles: 1000 uniform rankings
- 1-Euclidean profiles: uniform 1-dimensional voters
- Multiple truncation winners are common
- Extreme cases are rare (e.g., $k-1$ winners)

BALLOT LENGTH IN REAL-WORLD DATA

- 168 elections from PrefLib (1)
- 25% of them have 2 or 3 truncation winners

- We resample ballots w/o replacement 1 k times to reveal possible winners over ballot lengths:

RELATED WORK

