Ballot Length in Instant Runoff Voting

Johan Ugander jugander@stanford.edu

INSTANT RUNOFF VOTING (IRV)

- Voter submit (partial) rankings over k candidates
- · Repeat until one candidate remains:
 - Eliminate candidate with fewest top rankings

Jon Kleinberg

kleinberg@cornell.edu

- Redistribute ballots
- · How many candidates should voters be allowed to rank? This is the ballot length.
- · We study how ballot length affects IRV winners

CONSTRUCTING ANY WINNER SEQUENCE

- Consider consequential-tie-free profiles (unique winner at every ballot length h)
- Label candidates 1, ..., k in IRV elimination order
- Sequence of winners from h = 1, ..., k 1: truncation winner sequence
 - Feasible iff element-wise > 1, ..., k 1

Theorem. For all $k \ge 3$, given any truncation winner sequence, there is a consequential-tie-free profile with $2k^2 - 2k$ voters achieving that sequence.

- Explicit construction! See center example
- · In the paper: constructions with other tie restrictions and with $\Theta(k)$ voter types

VOTER LOWER BOUNDS

Theorem. For all k > 3, a consequential-tie-free profile needs at least $2k^2 - 2k$ voters to have k - 1different truncation winners.

- Construction is tight for k 1 truncation winners!
- · In the paper: lower bounds for other restrictions on ties

PREFERENCE RESTRICTIONS

Theorem. For $k \ge 5$, k - 1 truncation winners are impossible with single-peaked or single-crossing preferences.

- However, at least $\Theta(\sqrt{k})$ winners are possible with single-peaked preferences
- Open question: up to k 2 winners?

FULL BALLOTS

- · Constructions so far use partial rankings; what if we require full ballots?
- Construction with full ballots with k / 2 winners
- Linear program found full-ballot k 1 winner constructions up to k = 10

The number of candidates that voters are allowed to rank can have a huge effect on IRV election outcomes.

Given (almost) any length k - 1 sequence of k candidates, we can construct voter preferences so that the IRV winners at ballot lengths 1, ..., k-1 follow the given sequence.

Our constructions use only $\Theta(k^2)$ voters to achieve any winner sequence, which is tight for k - 1 different winners.

Real-world IRV elections use various ballot lengths:

5

unlimited

					-
					-
		00000			-
		0000			1
		000		00	1
		00	00	010	
	000				1
000		DETEN	00	00	1
	100	1018	<u> </u>	1010	1
101012	1010	1818	<u>ŏ ŏ</u>	00	1
000	100	00	00	00	1
181812	1818	00	ňř	1ă lă	1
i di di c	1010	010	ŏŏ	1ŏ lõ	1
<u>iðiði</u> r	<u>1010</u>	010	ňľ	iřič	1
<u>SIOIO</u>	idio	ÖÖ	Ölö	10 lõ	1
101012	100	nn	ñă	1010	1

We truncate ballots in 168 real-world elections: 25% of them have multiple winners as ballot length varies.

Code + Data:

84(1): 197-218

ingle transferable vote: Ir

Ayadi, M.; Amor, N.; Lang, J.; and Peters, D. 2019

ssues. In AAMAS

incated voting systems Public Choice 59(2)

(4) Saari, D. G.; and Van Newenhizen, J. 1988. The problem of indeterminacy in approval, multiple, and

