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Abstract
Instant runoff voting (IRV) is an increasingly-popular alter-
native to traditional plurality voting in which voters submit
rankings over the candidates rather than single votes. In prac-
tice, elections using IRV often restrict the ballot length, the
number of candidates a voter is allowed to rank on their
ballot. We theoretically and empirically analyze how ballot
length can influence the outcome of an election, given fixed
voter preferences. We show that there exist preference pro-
files over k candidates such that up to k − 1 different candi-
dates win at different ballot lengths. We derive exact lower
bounds on the number of voters required for such profiles
and provide a construction matching the lower bound for
unrestricted voter preferences. Additionally, we characterize
which sequences of winners are possible over ballot lengths
and provide explicit profile constructions achieving any fea-
sible winner sequence. We also examine how classic prefer-
ence restrictions influence our results—for instance, single-
peakedness makes k−1 different winners impossible but still
allows at least Ω(

√
k). Finally, we analyze a collection of

168 real-world elections, where we truncate rankings to sim-
ulate shorter ballots. We find that shorter ballots could have
changed the outcome in one quarter of these elections. Our
results highlight ballot length as a consequential degree of
freedom in the design of IRV elections.

Introduction
Instant runoff voting (IRV) has grown in popularity over
the last two decades as an alternative to plurality voting
for governmental and organizational elections. Also referred
to as ranked choice voting (RCV), single transferrable vote
(STV), alternative vote, preferential voting, or the Hare
method, IRV allows voters to submit rankings over the can-
didates rather than voting for a single option. IRV deter-
mines a winner from these rankings by repeatedly eliminat-
ing the candidate who has the fewest ballots ranking them
first; the ballots that listed this eliminated candidate first
have their votes reallocated to the next candidate on their
list. This process continues, repeatedly eliminating candi-
dates, until only one is left—the winner.

Proponents of IRV argue that it allows voters to report
their full preferences, mitigates vote-splitting when simi-
lar candidates run, encourages civility in campaigning, and
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saves money compared to holding separate runoff elec-
tions (FairVote 2022; Lewyn 2012). Many local elections
in the United States use IRV, including in Minneapolis, San
Fransisco, Oakland, Santa Fe, and New York City, as well as
statewide elections in Maine and Alaska. IRV is also used in
other countries, including Australia and Ireland.

However, IRV has vocal opponents who believe it to
be too confusing for voters (Langan 2004; Saltsman and
Paxton 2021), leading to outright bans on the use of IRV
in Florida (Florida Legislature 2022) and Tennessee (Ten-
nessee Legislature 2022). One particular issue critics point
to is the complexity of a ballot that asks voters to rank ev-
ery candidate, especially when the number of candidates is
large. One official tasked with running Utah’s first IRV elec-
tion raised this as her primary concern after the election:

My concerns with the current RCV law are that we
would recommend the number of rankings be limited
to three or five instead of an unlimited number based
on the number of candidates. So although you can list
as many candidates as file on the ballot, I think it is a
bit confusing to voters [...] For instance, in Minneapo-
lis they rank three. In St. Paul, they rank five. They
don’t usually have them rank as many candidates as
there are. (Swensen 2021, Salt Lake County Clerk)

Indeed, many municipalities have different numbers of rank-
ing slots on their IRV ballots, what we call ballot length:
Oakland uses three, Alaska four, and New York City five.
The count goes on: ballot length six would have been man-
dated by the failed 2019 Ranked Choice Voting Act propos-
ing IRV for US Congressional elections (US Congress
2019). In Maine, voters can rank all of the candidates—
even if there are 15 of them. In fact, plurality voting can
be viewed as IRV with ballot length one: losing candidates
are repeatedly “eliminated” (without redistribution) until the
candidate with a plurality is declared the winner.

While making ballots shorter does make them simpler, it
also strays from a goal of IRV: allowing voters to express
their complete preferences over the candidates. Critics of
IRV also raise concerns about ballot exhaustion during the
IRV algorithm, where all candidates ranked by a voter have
been eliminated and that vote no longer contributes to sub-
sequent tallies (Burnett and Kogan 2015).1 Ballot length is

1In plurality, any vote not cast for the winner is “exhausted.”
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therefore subject to competing desires: shorter ballots are
easier to fill out and simpler to print, but less informative
about voter preferences.

Despite the apparent trade-offs involved in ballot length,
there has been very little investigation of how these trade-
offs might work. As noted above, plurality voting can be
seen as IRV with ballot length one, and so the fact that plu-
rality and IRV can produce different outcomes already in-
dicates that ballot length can have important consequences.
But aside from early work looking at simulations and a few
real-world elections (Kilgour, Grégoire, and Foley 2020;
Ayadi et al. 2019) we do not have much insight into the
consequences of ballot length more generally. Perhaps, for
example, there are underlying structural properties to be dis-
covered that constrain how many winners are possible as we
vary the ballot length. Or perhaps “anything goes,” and if we
specify which candidate we’d like to see win at each possi-
ble ballot length, we can construct a fixed set of rankings that
produce each desired winner at the corresponding length.

Overview of Results. In this paper, we show that the ef-
fect of ballot length essentially behaves like the latter ex-
treme, where almost every sequence of outcomes is possible.
In particular, we prove that modulo a simple feasibility con-
straint, it is possible to pick any sequence of candidates (with
repetitions allowed), and to have this be the sequence of win-
ners at ballot lengths 1, 2, 3, .... For example, there are voter
preferences such that one candidate wins if the election is
run with odd ballot length and another wins with even ballot
length. We make a central assumption that voters have fixed
ideal rankings and report as long a prefix of their ideal rank-
ing as the ballot allows. Given k candidates, we show that
up to k − 1 of them can win as the ballot length varies from
1, . . . , k − 1 and voter preferences remain fixed. Moreover,
we establish exact matching lower bounds on the number of
voters required to produce k − 1 distinct winners.

We also consider how these results are affected if we make
standard modeling assumptions about voters. If we model
voters abstractly as exhibiting single-peaked or single-
crossing preferences, we prove that k − 1 distinct win-
ners across ballot lengths cannot be achieved. We also con-
sider voters who rank candidates according to a shared one-
dimensional ideological spectrum; since such voters are both
single-peaked and single-crossing, there cannot be k−1 dis-
tinct winners in these cases. We find through simulation that
in this one-dimensional case, ballot lengths above k/2 al-
most always produce the same winner as full IRV ballots.

Finally, we use data from 168 real-world elections from
PrefLib (Mattei and Walsh 2013) (most of them originally
conducted using IRV), and we find that different winners
across ballot lengths is a phenomenon that occurs com-
monly: in 25% of the PrefLib elections at least two differ-
ent candidates win as the ballot length is varied by trun-
cation. However, truly pathological cases with k − 1 win-
ners appear to be extremely rare: we observe at most three
distinct winners across ballot lengths, and that occurs only
once in the 168 PrefLib elections. But even with these real-
world voter preferences, more than three winners can oc-
cur; by resampling ballots in the PrefLib elections, we ob-

serve cases with four, five, and even six different winners
across ballot lengths. We note that one third of the elections
initially used ballot length of at most four, where it is im-
possible to have more than three different winners across
ballot lengths. An extended version of the paper including
all proofs omitted for space is available online (Tomlinson,
Ugander, and Kleinberg 2022). Our code and data are avail-
able at https://github.com/tomlinsonk/irv-ballot-length.

Related Work
There has been considerable work on what happens when
individual voters choose not to rank all the candidates—a
practice sometimes called voluntary truncation—in contrast
with forced truncation (i.e., ballot length restrictions) (Kil-
gour, Grégoire, and Foley 2020). In many voting systems
including IRV, election outcomes can change dramatically
as voters independently choose to rank more or fewer can-
didates (Saari and Van Newenhizen 1988). This matter has
been studied from a computational angle as the possible win-
ners problem, which asks, given a collection of partial bal-
lots, which candidates could become winners as those bal-
lots are filled out (Konczak and Lang 2005; Chevaleyre et al.
2010; Baumeister et al. 2012; Xia and Conitzer 2011; Ayadi
et al. 2019). There is also a wide array of research on how
partial ballots can be used for strategic voting and campaign-
ing (Baumeister et al. 2012; Narodytska and Walsh 2014;
Menon and Larson 2017; Kamwa 2022; Fishburn and Brams
1984). On the empirical side, voluntary truncation is a con-
cern since it can lead to ballot exhaustion (Burnett and Ko-
gan 2015). In political science, voluntary truncation is also
referred to as under-voting (Neely and Cook 2008). Several
studies have asked whether different demographic groups
are more likely to under-vote and how this could have a
disenfranchising effect (Neely and Cook 2008; Coll 2021;
Hoffman et al. 2021). There has also been research on “over-
voting” in IRV, which refers to ranking a single candidate in
more than one position (e.g., first and second), especially its
correlation with underrepresented voting populations (Neely
and Cook 2008; Neely and McDaniel 2015).

In contrast, we investigate what happens when all voter
preferences are truncated as a result of ballot length. That
is, we focus on a question of election design rather than on
voter choice. In this direction, Ayadi et al. (2019) investi-
gated how often IRV with short ballots produces the full-
ballot winner in the Mallows model and in five PrefLib elec-
tions. However, all five PrefLib elections they studied pro-
duced the full-ballot winner at all ballot lengths—in analyz-
ing a larger collection of 168 PrefLib elections, we find mul-
tiple winners across ballot lengths in 25% of them. Ayadi
et al. also examined several other interesting facets of IRV
ballot length, including a low-communication IRV protocol
(a form of online, per-voter ballot length customization) and
the complexity of the possible winners problem under trun-
cated ballots. The issue of ballot length in IRV was also
touched on by Kilgour, Grégoire, and Foley (2020), who ex-
amined its effect in simulation for k = 4, 5, and 6 candi-
dates, where they found up to k − 2 distinct winners across
ballot lengths. We prove that in fact k−1 winners are possi-
ble for all k ≥ 3. Ballot length has been considered in con-
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Figure 1: On the left, an example profile with k = 4 candi-
dates A, B, C, D and n = 24 voters of 6 types with partial
ballots. Ballots are listed top-down, with the number of vot-
ers of each type above each ballot. On the right, the profile
is truncated to ballot length h = 2.

texts other than IRV—for instance, research on the Boston
school choice mechanism found that limiting the number of
schools parents could rank to five resulted in undesirable
strategic behavior (Abdulkadiroglu et al. 2006). There has
also been research on ballot length in approval voting from
a learning theory angle, seeking to recover a population’s
preferences efficiently (Garg et al. 2019).

Preliminaries
An IRV election consists of k candidates labeled 1, . . . , k
and n voters. Each voter j has a preference ordering over a
subset of the candidates denoted by the ordered subset πj ,
which we refer to as a ballot. At any point down the ballot,
πj can terminate, at which point the voter is indifferent over
the remaining options. If πj includes all candidates, we call
it full, otherwise we call it partial. We call a collection of
ballots a profile. Unless otherwise specified, a profile may
contain partial ballots.2 If multiple voters have identical bal-
lots, we say they are of the same type. Given a profile, IRV
proceeds by eliminating the candidate with the fewest ballots
ranking them first and removing them from all ballots. Bal-
lots that have all their candidates eliminated are exhausted.
Eliminations continue until only one candidate remains, who
is declared the winner (equivalently, one can terminate when
one candidate has the majority of votes from non-exhausted
ballots). Ties can be broken as desired (for instance, by coin-
flip), although they are unlikely in large elections.

In many real-world elections, the number of candidates a
voter can rank is limited to h < k, which we call the bal-
lot length. We assume that if the ballot length is h, voters
submit the length h prefix πj(1, . . . , h) of their ideal ballot
πj . Voters who would have submitted a ranking listing h or
fewer candidates are unaffected. Thus, we say that ballots
are truncated to the ballot length h. See Figure 1 for an ex-
ample of a profile with partial ballots truncated to h = 2.
Note that there is no difference between running IRV with
ballot length k and k − 1, since only one candidate remains
after the (k − 1)th elimination.

The main question we focus on is how ballot length af-
fects an election. For instance, how many different candi-
dates can win as the ballot length varies for a fixed profile?
In order to address this question, we make some assumptions

2All 168 elections in the PrefLib data have partial ballots.

about the lack of consequential ties, since in trivial cases
such as zero voters, any candidate can win depending on
tie-breaks. We say that a profile is consequential-tie-free if
tie-breaks do not affect the winner under any ballot length h.
We say it is elimination-tie-free if a tie for last place never
occurs when running IRV for any ballot length h. Finally,
we say it is tie-free if no two candidates ever have tied vote
counts when running IRV at any ballot length h. We note
that the problem of determining if a given candidate could
win under some tie-breaking sequence is known to be NP-
complete (Conitzer, Rognlie, and Xia 2009).

Worst-Case Analysis of Ballot Truncation
We say a profile has c truncation winners if c different can-
didates can win depending on the ballot length. Previous
simulation work found up to k − 2 truncation winners for
k = 4, 5, and 6 (Kilgour, Grégoire, and Foley 2020). One of
our main results is that up to k − 1 truncation winners are
possible for any k. We note that it is impossible to have all k
candidates win under different ballot lengths, since lengths k
and k−1 behave the same way. All proofs omitted for space
can be found in the extended version of the paper (Tomlin-
son, Ugander, and Kleinberg 2022).

First, we establish an exact lower bound on the number of
voters required in order to achieve k − 1 truncation winners
in consequential-tie-free profiles. Our voter lower bound is
based on the observation that the winner at h = 1 (the plural-
ity winner) must be eliminated second under ballot lengths
≥ 2 for k − 1 truncation winners to occur. In order for the
plurality winner to be eliminated second, the first elimina-
tion must redistribute enough votes for every other candidate
to overtake the plurality winner.

Theorem 1. For any k > 3, a consequential-tie-free profile
requires at least 2k2 − 2k voters in order to produce k − 1
truncation winners. For k = 3, the lower bound is k2 = 9.

Our main theoretical result is a construction matching this
lower bound, showing that k − 1 truncation winners can oc-
cur for any k ≥ 3. Our construction can not only produce
k − 1 truncation winners, but any sequence of winners over
ballot lengths 1, . . . , k−1, provided that a candidate has not
yet been eliminated.

Theorem 2. Let there be k > 3 candidates, labelled
1, . . . , k in their full-ballot IRV elimination order. Fix any
sequence of candidates w1, . . . , wk−1 such that wh ∈ {h +
1, . . . , k} for all h ∈ [k − 1]. There exists a consequential-
tie-free profile with 2k2 − 2k partial ballots whose se-
quence of truncated IRV winners from h = 1, . . . , k − 1
is w1, . . . , wk−1. For k = 3, such a profile exists with 9 bal-
lots. Any sequence where wh ≤ h for some h ∈ [k − 1] is
impossible to realize as the sequence of truncated IRV win-
ners for any consequential-tie-free profile.

The idea behind the construction is to maintain a tie for
second place among all candidates but two: the candidate
about to be eliminated, in last, and the candidate next in the
winner sequence, in first. Each elimination redistributes bal-
lots to move the next candidates into first and last place. By
carefully designing ballots, they become exhausted at just
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the right moment to freeze the order once we reach step h of
IRV, causing the candidate currently in first to win. The ex-
ample in Figure 1 uses this construction for k = 4 to achieve
different winners at ballot lengths 1, 2, 3 (namely, A, B, C).
Note that the full-ballot elimination order labeling of candi-
dates A, B, C, D is 2, 3, 4, 1, which makes the truncation
winner sequence 2, 3, 4 feasible. In contrast, the sequence
2, 2, 4 would not be feasible since the candidate eliminated
second under full ballots cannot win at ballot length 2. Intu-
itively, a winner sequence with elimination order labeling is
feasible if it is element-wise at least 2, 3, . . . , k.

Restrictions on Profiles
Since IRV can behave very erratically across ballot lengths
for general profiles, we might hope that imposing restric-
tions on the space of profiles makes IRV more well-behaved.
We consider three classic profile restrictions from voting
theory, single-peaked (Black 1948; Arrow 1951), single-
crossing (Gans and Smart 1996), and 1-Euclidean prefer-
ences (see (Elkind, Lackner, and Peters 2022) for a survey
of preference restrictions). A profile is single-peaked if there
exists an order< over the candidates such that, for every bal-
lot b ranking i first, if j < k < i or i < k < j, then j is not
ranked above k in b. A profile is single-crossing if there ex-
ists an ordering L of the ballots such that for every ordered
pair of candidates (i, j), the set of ballots ranking i above
j forms an interval of L. Finally, a profile is 1-Euclidean if
there exist embeddings of the voters and candidates in [0, 1]
such that if voter b is closer to candidate i than to candidate
j, then voter b ranks i above j.

Intuitively, single-peaked profiles arise when there is a po-
litical axis arranging candidates from left to right and vot-
ers prefer candidates closer to their ideal point on the axis
(each voter can have their own ideal point). Single-crossing
preferences arise when voters are arranged on an ideological
axis and each candidate is most appealing to voters at a cer-
tain point on this axis. While the definitions appear similar,
neither condition implies the other. 1-Euclidean profiles are
both single-peaked and single-crossing—but there are pro-
files that are both single-peaked and single-crossing, but not
1-Euclidean (Elkind, Faliszewski, and Skowron 2014).

In contrast to general profiles, where k−1 truncation win-
ners can occur, we show that such cases are impossible un-
der either single-peaked or single-crossing preferences (and
therefore 1-Euclidean profiles).
Theorem 3. With k ≥ 5 candidates, no consequential-tie-
free single-peaked profile has k − 1 truncation winners.

Proof. Suppose for a contradiction that a single-peaked pro-
file has k− 1 truncation winners (k ≥ 5). We know the can-
didate eliminated first cannot win under any ballot length.
In order for the candidate eliminated second (h ≥ 2) to
win at some ballot length, it must be at h = 1—i.e., the
plurality winner must be eliminated second under h ≥ 2.
Thus, they must be overtaken by at least three candidates
(for k ≥ 5) when the first eliminated candidate X’s ballots
are redistributed. But the second place on ballots listing X
first can only be the candidate to the left or right of X in the
single-peaked ordering, making this impossible.

Theorem 4. With k ≥ 5 candidates, no consequential-tie-
free single-crossing profile has k − 1 truncation winners.

Proof. As in the proof of Theorem 3, we’ll show that the
first candidate eliminated,X , can only redistribute ballots to
two candidates. Suppose for a contradiction that they redis-
tribute ballots to at least three candidates. Call these candi-
dates A, B, and C in the order in which they first appear as
second choices in the ballots ranking X first in the single-
crossing order L. By the single-crossing property, all ballots
to the left of ballots starting X,A must rank A above B,
since a ballot to its right ranks B above A, namely those
starting X,B. Moreover, all ballots to the right of ballots
starting X,C must rank C above B by symmetric reason-
ing. But this means B cannot have any ballots ranking them
first, contradicting that X (who does have ballots ranking
them first) is the first eliminated. See below for a visual de-
piction of this argument:XA...


XB...


XC...


X ranked over B

A ranked over B C ranked over B

L

Although the upper bound on truncation winners is
strictly lower for single-peaked profiles than for general
profiles, the number of achievable truncation winners still
grows with k. In particular, we can show that Ω(

√
k) trunca-

tion winners are possible in a consequential-tie-free single-
peaked profile with Θ(k) voters.
Theorem 5. With k = κ(κ + 1)/2 candidates (κ ≥ 3),
there is a single-peaked consequential-tie-free profile with
3κ(κ+ 1)/2 partial ballots that results in κ distinct trunca-
tion winners.

The exact upper bound on the number of truncation win-
ners for single-peaked (and single-crossing) preferences re-
mains an open question—it could be as large as k − 2. Ad-
ditionally, we do not know a non-trivial lower bound on the
number of achievable truncation winners for single-crossing
or 1-Euclidean profiles.

Restrictions on Ties
Since our main theorem allows ties (albeit only ties that do
not affect the winners), one might be concerned that the large
number of truncation winners is a byproduct of these ties. In
the following results, we show that even if no vote counts are
ever tied, there can still be arbitrary truncation winner se-
quences. We can therefore get any feasible winner sequence
regardless of the tiebreaking rule. As before, we start by es-
tablishing lower bounds on the number of voters required for
k − 1 truncation winners and then provide a matching con-
struction for tie-free profiles achieving any truncation win-
ner sequence.
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Theorem 6. For any k ≥ 3, an elimination-tie-free profile
must contain at least (k3−3k)/2 voters in order to produce
k − 1 truncation winners.

Theorem 7. For any k ≥ 3, a tie-free profile must contain
at least (2k3−5k2 +3k)/2 voters in order to produce k−1
truncation winners.

Note that for consequential-tie-free profiles, the lower
bound on voters for k − 1 truncation winners is Ω(k2), but
Ω(k3) for elimination-tie-free and tie-free profiles.

Theorem 8. Given the same setup as in Theorem 2, there
exists a tie-free profile with (2k3−5k2+3k)/2 ballots whose
sequence of truncated IRV winners from h = 1, . . . , k− 1 is
w1, . . . , wk−1.

The constructions for consequential-tie-free and tie-free
profiles both use Θ(k2) distinct ballots. However, only Θ(k)
distinct ballots are required to produce k−1 truncation win-
ners. This is asymptotically tight, since each candidate who
wins at some ballot length needs at least one ballot type list-
ing them first.

Theorem 9. Given k > 3 candidates, there is a tie-free
profile producing k−1 truncation winners with Θ(k3) voters
of Θ(k) types.

Full Ballots
So far, all of our constructions have relied on partial ballots.
For profiles with full ballots, a simple extension of our con-
structions using filler candidates allows us to achieve up to
k/2 truncation winners, and in fact any feasible sequence of
winners in the first half of ballot lengths.

Corollary 1. Let k = 2κ for some κ > 3. Label the candi-
dates 1, . . . , 2κ in order of their elimination under full bal-
lots. Fix any sequence w1, . . . wκ−1 such that wh ∈ {κ +
h+ 1, . . . , 2κ} for all h ∈ [κ− 1]. There exists a full-ballot
consequential-tie-free profile with 2κ2−2κ voters and a full-
ballot tie-free profile with (2κ3−5κ2 + 3κ)/2 +κ(κ−1)/2
voters whose sequences of truncation winners from h =
1, . . . , κ− 1 are w1, . . . , wκ−1.

While we have not found a general construction with full
ballots and k − 1 truncation winners, we have found full-
ballot elimination-tie-free profiles with k−1 truncation win-
ners up to k = 10 using a linear-programming-based search
(described at the end of this section). Full ballots make in-
tuitive constructions more challenging, but do not appear to
prevent a large number of truncation winners. However, how
a full ballot requirement does or doesn’t change our main re-
sult remains an open question.

If instead of requiring ballots to be full, we require them
to all have length at least k/2− c, we can improve the above
extension of our constructions and get an additional c ballot
lengths at which we can specify the winner.

Corollary 2. Let k = 2κ for some κ > 3. Suppose we
require ballots to have length at least κ − c for c < κ. La-
bel the candidates 1, . . . , 2κ in order of the elimination un-
der full ballots. Fix any sequence w1, . . . wκ+c−1 such that
wh ∈ {κ−c+h+1, . . . , 2κ} for all h ∈ [κ−1]. There exists
a consequential-tie-free profile with 2κ2 − 2κ ballots and a

k
# trunc.
winners

ballot
types voters voters lower bound

(Theorem 6)

4 3 7 29 26
5 4 12 55 55
6 5 23 99 99
7 6 36 161 161
8 7 57 974 244
9 8 85 1759 351
10 9 122 4855 485

Table 1: LP full-ballot constructions. We used different
search strategies for k ≤ 7 and k ≥ 8, leading to profiles
farther from the voter lower bound for k ≥ 8.

tie-free profile with (2κ3−5κ2+3κ)/2+(κ−c)(κ−c−1)/2
ballots whose sequence of truncated IRV winners from h =
1, . . . , κ+ c− 1 is w1, . . . , wκ+c−1.

Given that explicit full-ballot constructions appear quite
challenging, we turn to a computational approach to investi-
gate whether full-ballot profiles can produce k−1 truncation
winners. Using a linear programming (LP) search, we iden-
tified elimination-tie-free profiles with full ballots and k− 1
truncation winners for k = 4, 5, 6, 7, 8, 9, 10 (the sizes of
these profiles are shown in Table 1). Moreover, this approach
was able to find instances with voter counts matching the ex-
act lower bound in Theorem 6 for k = 5, 6, 7. Our approach
was not able to match the voter lower bound for k = 4. For
k ≥ 8, we faced runtime constraints since the number of
variables is exponential in the number of candidates, lead-
ing us to restrict the search space (described in further detail
below). We consider elimination-tie-free profiles since they
are easiest to encode as an LP, where we use constraints to
enforce unambiguous eliminations.

The idea behind the search is to construct possible elim-
ination orders across all h that could result in k − 1 win-
ners, express these as conditions on the sums of counts of
every full ballot type in Sk (the set of permutations on k el-
ements), and then use an LP to find a feasible real-valued
solution of ballot type counts that result in that elimination
order. We round these fractional ballot counts to be integers
and check if the resulting profile has the desired elimination
order. If not, we can try another possible elimination order
or increase the gaps in the constraints so that rounding is less
likely to make a solution infeasible. For k ≤ 7, we tested all
possible elimination orders, but only tested a single elimina-
tion order for k ≥ 8 due to runtime constraints. The exact
LP formulation can be found in the extended version (Tom-
linson, Ugander, and Kleinberg 2022).

Ballot Length in Simulation
Our theoretical results show that the winner of an IRV elec-
tion can change dramatically as the ballot length varies.
Here, we ask how likely these changes are through simulated
profiles. Such simulation analysis was previously conducted
for k = 4, 5, 6 (Kilgour, Grégoire, and Foley 2020). We ex-
tend these simulations up to k = 40 (our real-world IRV
data has examples of elections with up to ≈ 30 candidates).
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Figure 2: Probability that truncated ballots produce the full
IRV winner for candidate counts k = 2, . . . , 40 and bal-
lot lengths h = 1, . . . , k − 1. (Left) For general prefer-
ences, the probability of producing the IRV winner increases
smoothly with the ballot length h. (Right) For 1-Euclidean
preferences, there is a sharper transition around h = k/2.

We simulate two different types of profiles: general pro-
files with rankings sampled uniformly at random and 1-
Euclidean profiles with voters and candidates embedded in
one dimension. For the general profiles, we fix 1000 voters.
For 1-Euclidean profiles, we simulate an infinite voter popu-
lation uniformly distributed over [0, 1], where the number of
first-place votes a candidate i has is the size of the interval of
[0, 1] containing points closer to i than any other candidate.

For both general and 1-Euclidean profiles, we simulate
both full and partial ballots to gauge the effect of forced
truncation with and without voluntary truncation. For gen-
eral profiles with partial ballots, we independently and uni-
formly perform voluntary truncation on each voter’s prefer-
ences before applying forced truncation in the form of ballot
length. For 1-Euclidean partial ballots, we do the same with
each ballot type.

In Figure 2, we show the probability that the full-ballot
IRV winner is selected with each ballot length 1, . . . , k − 1
for k = 3, . . . , 40 with initially full ballots (the heatmaps
were qualitatively identical for partial ballots (Tomlinson,
Ugander, and Kleinberg 2022)). For general preferences, the
probability of selecting the full-ballot IRV winner increases
smoothly as ballot length increases. Additionally, for any
fixed ballot length, the probability of selecting the IRV win-
ner decreases as the number of candidates increases. For in-
stance, for h = 3, the probability of selecting the IRV win-
ner first dips below 50% at k = 12. For 1-Euclidean pref-
erences, small ballot lengths are even less likely to produce
the full IRV winner: for h = 3, the probability first drops
below 50% for k = 9. On the other hand, the probability
rapidly increases around h = k/2. For ballots longer than
k/2, uniform 1-Euclidean preferences almost always pro-
duce the full IRV winner.

In Figure 3, we visualize the same data in a different way.
We plot the mean and maximum observed numbers of trun-
cation winners across ballot lengths (the figure also includes
PrefLib winner counts described in the next section). While
the difference between general and 1-Euclidean profiles was
pronounced in the previous heatmaps, they result in almost
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Figure 3: Mean (top) and maximum (bottom) number of
truncation winners in 10000 synthetic ballot simulations and
10000 PrefLib resampling trials. We simulated uniform gen-
eral and 1-Euclidean preferences for k = 3, . . . , 40. The
shaded regions show standard deviation across trials. To
simulate partial ballots, each ballot is voluntarily truncated
at a random length between 1 and k. While up to k− 1 trun-
cation winners are possible, the mean number of truncation
winners only reaches 4 around k = 40. 1-Euclidean pro-
files and profiles with partial ballots tend to produce slightly
fewer truncation winners. For the PrefLib data, each point
represents a single election, with horizontal jitter added for
legibility. Real elections tend to produce even fewer trunca-
tion winners, although it is not rare to have more than 1.

the same number of truncation winners on average. Addi-
tionally, these simulated profiles tend to have a small number
of truncation winners relative to the theoretical maximum.
On average for k ≤ 10, there are around two truncation
winners, while the theoretical maximum is nine. Addition-
ally, the maximum observed number of winners in 10000
simulated trials was well below the theoretical maximum,
especially for larger k: we only began generating any pro-
files with 10 truncation winners around k = 40.

Intuitively, these simulation results therefore indicate that
profiles with large numbers of truncation winners are very
rare in the space of profiles, at least under these (uniform)
measures. However, they do not appear to be significantly
rarer among 1-Euclidean profiles than among general pro-
files, as one might have expected given the increased struc-
ture of 1-Euclidean profiles. On the other hand, profiles in
which there are more than one winner across ballot lengths
are very common. Thus, while truly extreme cases with k−1
truncation winners might be rare, cases where ballot length
has an effect occur readily in simulation.
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Truncating Real-World Election Data
Given that many truncation winners are theoretically pos-
sible, we now ask how often multiple truncation winners
occur in real-world election data. To this end, we analyze
voter rankings from 168 elections in PrefLib (Mattei and
Walsh 2013). This collection includes 12 American Psycho-
logical Association (APA) presidential elections (Regenwet-
ter et al. 2007) (h = 5), 14 San Francisco local elections
(h = 3), and 21 Glasgow local elections (h = k), among
others. The number of candidates in these elections ranges
from 3–29 and the number of voters from tens to hundreds
of thousands. See the extended version for additional sum-
mary statistics of these elections (Tomlinson, Ugander, and
Kleinberg 2022). Some of these PrefLib datasets included
a small number of ballots with multiple candidates listed at
the same rank (0.5% of all ballots), which we omit.

In order to evaluate the impact of ballot length, we trun-
cate the rankings at each possible shorter ballot length than
the election actually used. We then run IRV on the trun-
cated ballots. We assume that if ballots had been shorter,
voters would have reported the same ranking, but truncated
to the ballot length. It is possible that voters would express
their preferences differently depending on the ballot length,
so our approach should be seen as an approximation to this
counterfactual scenario.

In 41/168 elections, there were two different winners
across ballot lengths, and in one election, there were three
different winners. Overall, 25% of the elections were sensi-
tive to ballot length. Among the elections with ballot length
h ≤ 5, 12/85 = 14% of them had two different trunca-
tion winners; for elections with h > 5, 29/83 = 35% of
elections had two or more different winners. In order to bet-
ter understand the landscape of possible outcomes in each
election, we also performed resampling of ballots. Given
a collection of n ballots, we resample a collection of n
ballots with replacement to simulate another possible elec-
tion outcome with the same pool of voters. We then trun-
cate those collections of votes to assess the impact of ballot
length. In 10000 resampling trials, we observed up to six
different truncation winners across the elections, but the ex-
pected number of truncation winners under resampling was
between one and two for all elections (see Figure 3). In
Figure 4, we also use ballot resampling to visualize the se-
quence of truncation winners in two PrefLib elections. The
2009 Burlington Mayoral election famously had a different
plurality winner (Kurt Wright) than the elected IRV winner
(Bob Kiss), but our visualization reveals that at ballot length
h = 2, the election was a complete toss-up and could have
gone either way with only a small change in ballot counts.
In the right subplot, we visualize the sequence of truncation
winners in the one PrefLib election that had three distinct
truncation winners. Not only does this election have three
truncation winners, but the sequence of winners flips back
and forth, as we proved theoretically possible.

The smaller number of truncation winners in real data
is likely due to the small number of front-runners in real-
world elections, in contrast with the uniform preferences in
our synthetic data. Our observations here are in line with the
finding that ballot truncation is less likely to change the win-
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Figure 4: Two elections in the PrefLib data, the infamous
2009 Burlington mayoral election (left, k = 6, n = 8974)
and an anonymous intra-organization election from the Elec-
toral Reform Society (right, k = 26, n = 104). The stacked
bars show the probability candidates have of winning at each
ballot length under ballot resampling. Stars indicate the win-
ners at each ballot length with actual ballot counts.

ner in the Mallows model when preferences are more tightly
clustered around the central ranking (Ayadi et al. 2019).

Discussion
Our theoretical results are fairly pessimistic: IRV election
outcomes can change dramatically with ballot length. Our
analysis of real and simulated data, on the other hand,
presents a more mixed picture: ballot length regularly has an
effect on the identity of the winner even in real elections, but
the extreme changes between winners that are theoretically
possible rarely occur, which may be cause for some degree
of optimism. Nonetheless, changes in ballot length by trun-
cation can often result in two or three different winners, even
when the ballot length is short.

There are a number of open theoretical questions around
ballot length. First, is it possible to achieve every feasi-
ble truncation winner sequence with complete ballots? We
suspect the answer is yes, but an explicit construction has
proved elusive. Second, are more than O(

√
k) truncation

winners possible for single-peaked ballots? How many trun-
cation winners are possible with single-crossing ballots?
Similar questions could be asked for other profile restric-
tions, such as 1-Euclidean preferences.

Our interest in IRV is due to its increasing popularity of
IRV in United States local elections, but one could also in-
vestigate the effects of ballot length in other ranking-based
voting systems such as Borda count or Copeland’s method.
Additionally, we do not address what ballot length should
be used in practice, which requires making a tradeoff be-
tween competing desires. Finally, it would be interesting to
understand when elections are close enough for ballot length
to affect the winner. There has been research on calculat-
ing the margin of victory for IRV (Sarwate, Checkoway, and
Shacham 2013; Blom et al. 2016; Magrino et al. 2011), de-
fined as the number of votes which would need to be altered
to change the winner, which is NP-hard to compute (Xia
2012). A notion of margin of victory that relates to winners
across different ballot lengths would be valuable.
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