
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221138151

Towards Logical Frameworks in the Heterogeneous Tool Set Hets

Conference Paper · July 2010

DOI: 10.1007/978-3-642-28412-0_10 · Source: DBLP

CITATIONS

22
READS

50

6 authors, including:

Some of the authors of this publication are also working on these related projects:

MathML View project

COINVENT View project

Mihai Codescu

Universität Bremen

44 PUBLICATIONS 289 CITATIONS

SEE PROFILE

Michael Kohlhase

Friedrich-Alexander-University of Erlangen-Nürnberg

531 PUBLICATIONS 3,725 CITATIONS

SEE PROFILE

Till Mossakowski

Otto-von-Guericke-Universität Magdeburg

249 PUBLICATIONS 2,731 CITATIONS

SEE PROFILE

All content following this page was uploaded by Florian Rabe on 29 May 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221138151_Towards_Logical_Frameworks_in_the_Heterogeneous_Tool_Set_Hets?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221138151_Towards_Logical_Frameworks_in_the_Heterogeneous_Tool_Set_Hets?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/MathML?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/COINVENT?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mihai_Codescu?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mihai_Codescu?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universitaet_Bremen?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mihai_Codescu?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Kohlhase?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Kohlhase?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Friedrich-Alexander-University_of_Erlangen-Nuernberg?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Michael_Kohlhase?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Till_Mossakowski?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Till_Mossakowski?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Otto-von-Guericke-Universitaet_Magdeburg?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Till_Mossakowski?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Florian_Rabe?enrichId=rgreq-48c82a94ce5f2f216ca0f5677849eaaf-XXX&enrichSource=Y292ZXJQYWdlOzIyMTEzODE1MTtBUzoxMDIyOTAxMTk3MjUwNTZAMTQwMTM5OTI3MzIwNw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Towards Logical Frameworks in the
Heterogeneous Tool Set Hets

Mihai Codescu1, Fulya Horozal2, Michael Kohlhase2, Till Mossakowski1,
Florian Rabe2, Kristina Sojakova3

DFKI GmbH, Bremen, Germany,
Computer Science, Jacobs University, Bremen, Germany,

Carnegie Mellon University, Pittsburgh, USA

Abstract. LF is a meta-logical framework that has become a standard
tool for representing logics and studying their properties. Its focus is
proof theoretic, employing the Curry-Howard isomorphism: propositions
are represented as types, and proofs as terms.
Hets is an integration tool for logics, logic translations and provers, with
a model theoretic focus, based on the meta-framework of institutions, a
formalisation of the notion of logical system.
In this work, we combine these two worlds. The benefit for LF is that
logics represented in LF can be (via Hets) easily connected to various in-
teractive and automated theorem provers, model finders, model checkers,
and conservativity checkers - thus providing much more efficient proof
support than mere proof checking as is done by systems like Twelf. The
benefit for Hets is that (via LF) logics become represented formally, and
hence trustworthiness of the implementation of logics is increased, and
correctness of logic translations can be mechanically verified. Moreover,
since logics and logic translations are now represented declaratively, the
effort of adding new logics or translations to Hets is greatly reduced.
This work is part of a larger effort of building an atlas of logics and
translations used in computer science and mathematics.

1 Introduction

There is a large manifold of different logical systems used in computer science,
such as propositional, first-order, higher-order, modal, description, temporal log-
ics, and many more. These logical systems are supported by software, like (semi-
)automated theorem provers, model checkers, computer algebra systems, con-
straint solvers, or concept classifiers, and each of these software systems comes
with different foundational assumptions and input languages, which makes them
non-interoperable and difficult to compare and evaluate in practice.

There are two main approaches to remedy this situation. The model the-
oretic approach of institutions [GB92,Mes89] provides a formalisation of the
notion of logical system. The benefit is that a large body of meta-theory can
be developed independent of the specific logical system, including specification
languages for structuring large logical theories. Recently, even a good part of

model theory has been generalised to this setting [Dia08]. Moreover, the Hetero-
geneous Tool Set (Hets, [MML07]) provides an institution-independent software
interface, such that a heterogeneous proof management involving different tools
(as listed above) is practically reaslised. In Hets, logic translations, formalized
as so-called institution comorphisms, become first-class citizens. Heterogeneous
specification and proof management is done relative to a graph of logics and
translations.

The proof theoretic approach of logical frameworks starts with one “univer-
sal” logic that is used as a logical framework. This is used for representing logics
as theories (in the “universal” logic of the framework). For instance, the Edin-
burgh Logical Framework LF [HHP93] has been used extensively to represent
logics [HST94,PSK+03,AHMP98], many of them included in the Twelf distribu-
tion [PS99]. Logic representations in Isabelle [Pau94] are notable for the size of
the libraries in the encoded logics, especially for HOL [NPW02]. Logic represen-
tations in rewriting logic [MOM96] using the Maude system [CELM96] include
the examples of equational logic, Horn logic and linear logic. A notable property
of rewriting logic is reflection i.e. one can represent rewriting logic within itself.
Other systems employed to encode logics include Coq [BC04], Agda [Nor05], and
Nuprl [CAB+86]. Only few logic translations have been formalized systematically
in this setting. Important translations represented using the logic programming
interpretation of LF include cut elimination [Pfe00] and the HOL-Nurpl transla-
tion [SS04]. The latter guided the design of the Delphin system [PS08] for logic
translations.

Both approaches provide the theoretical and practical infrastructure to define
logics. However, there are two major differences. Firstly, Hets is based on model
theory – the semantics of implemented logics and the correctness of translations
are determined by model theoretic arguments. Proof theory is only used as a
tool to discharge proof obligations and is not represented explicitly.

Secondly, the logics of Hets are specified on the meta-level rather than within
the system itself. Each logic or logic translation has to be specified by imple-
menting a Haskell interface that is part of the Hets code, and tools for parsing
and static analysis have to be provided. Consequently, only Hets developers but
not users can add them. Besides the obvious disadvantage of the cost involved
when adding logics, this representation does not provide us with a way to rea-
son about the logics or their translations themselves. In particular, each logic’s
static analysis is part of the trusted code base, and the translations cannot be
automatically verified for correctness.

The present work unites and unifies these two approaches. We give a general
definition of logical framework that covers systems such as LF, Isabelle, and
Maude and implement it in Hets. We follow a “logics as theories/translations
as morphisms” approach such that a theory graph in a logical framework leads
to a graph of institutions and comorphisms via a general construction. This
means that new logics can now be added to Hets in a purely declarative way.
Moreover, the declarative nature means that logics themselves are no longer
only formulated in the semi-formal language of mathematics, but now are fully

2

formal objects, such that one can reason about them (e.g. prove soundness of
proof systems or logic translations) within proof systems like Twelf.

Our work is part of the ongoing project LATIN (Logic Atlas and Integrator,
[KMR09]). One of the main goals of LATIN is to fully integrate proof and model
theoretic frameworks. In the long run, we envision that these provers also return
proof terms, which Hets can then fill into the original file and rerun Twelf on
it to validate the proof. Thus, Hets becomes the mediator that orchestrates
the interaction between external theorem provers and Twelf as a trusted proof
checker.

This paper is organized as follows. We give introductions to the model and
proof theoretic approaches and the LATIN logic graph in Sect. 2. In Sect. 3, we
define the notion of a logical framework and describe its implementation in Hets
in Sect. 4. We will use an encoding of first-order logic in the logical framework
LF as a running example.

2 Preliminaries

2.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets, [MML07]) is a set of tools for multi-logic spec-
ifications, which combines parsers, static analyzers, and theorem provers. Hets
provides a heterogeneous specification language built on top of CASL [ABK+02]
and uses the development graph calculus [MAH06] as a proof management com-
ponent. The graph of logics supported by Hets and their translations is presented
in Fig. 1.

Fig. 1. Hets logic graph
3

Hets formalizes the logics and their translations using the abstract model
theory notions of institutions and institution comorphisms (see [GB92]).

Definition 1. An institution is a quadruple I = (Sign, Sen,Mod, |=) where:

– Sign is a category of signatures;
– Sen : Sign→ Set is a functor to the category Set of small sets and functions,

giving for each signature Σ its set of sentences Sen(Σ) and for any signature
morphism ϕ : Σ → Σ′ the sentence translation function Sen(ϕ) : Sen(Σ)→
Sen(Σ′) (denoted by a slight abuse also ϕ);

– Mod : Signop → Cat is a functor to the category of categories and functors
Cat 1 giving for any signature Σ its category of models Mod(Σ) and for
any signature morphism ϕ : Σ → Σ′ the model reduct functor Mod(ϕ) :
Mod(Σ′)→Mod(Σ) (denoted |ϕ);

– a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for each signature Σ

such that the following satisfaction condition holds:

M ′|ϕ |=Σ′ e⇔M ′ |=Σ ϕ(e)

for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ), expressing that truth is invariant
under change of notation and context.

For example, the institution of unsorted first-order logic FOL has signatures
consisting of a set of function symbols and a set of predicate symbols, with their
arities. Signature morphisms map symbols such that their arities are preserved.
Models are first-order structures, and sentences are first-order formulas. Sen-
tence translation function means replacement of the translated symbols. Model
reduct means reassembling the model’s components according to the signature
morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure.

Definition 2. Given two institutions I1 and I2 with Ii = (Sigi,Seni,Modi, |=i

), an institution comorphism from I1 to I2 consists of a functor Φ : Sig1 → Sig2

and natural transformations β : Mod2 ◦ Φ⇒Mod1 and α : Sen1 ⇒ Sen2 ◦ Φ,
such that the satisfaction condition

M ′ |=2
Φ(Σ) αΣ(e) ⇐⇒ βΣ(M ′) |=1

Σ e,

where Σ is a I1 signature, e is a Σ-sentence in I1 and M ′ is a Φ(Σ)-model
in I2.

The process of extending Hets with a new logic can be summarized as fol-
lows. First, we need to provide Haskell datatypes for the constituents of the
logic, e.g. signatures, morphisms and sentences. This is done via instantiating
various Haskell type classes, namely Category (for the signature category of the
1 We disregard here the foundational issues, but notice however that Cat is actually

a so-called quasi-category.

4

institution), Sentences (for the sentences), Syntax (for abstract syntax of basic
specifications, and a parser transforming input text into this abstract syntax),
StaticAnalysis (for the static analysis, turning basic specifications into theories,
where a theory is a signature and a set of sentences). All this is assembled in the
type class Logic, which additionally provides logic-specific tools like provers and
model finders. For displaying the output of model finders, also (finite) models are
represented in Hets, and these can even be translated against comorphisms. The
model theoretic foundation of Hets also is visible by the fact that StaticAnal-
ysis contains methods for checking amalgamability properties that are defined
model theoretically (and therefore not available in purely proof theoretic logical
frameworks). The type class Logic is used to represent logics in Hets internally.
Finally, the new logic is made available by adding it to the list of Hets’ known
logics.

The input language of Hets is HetCASL. It combines logic-specific syntax
of basic specifications (as specified by an instance of Syntax) with the logic-
independent structuring constructs of CASL (like extension, union, translation
of specifications, or hiding parts). Moreover, there are constructs for choosing
a particular logic, as well as for translating a specification along an institution
comorphism.

2.2 Proof Theoretic Logical Frameworks

We use the term proof theoretic to refer to logical frameworks whose semantics
is or can be given in a formalist and thus mechanizable way without reference to
a platonic universe. These frameworks are declarative formal languages with an
inference system defining a consequence relation between judgments. They come
with a notion of language extensions called signatures or theories, which admits
the structure of a category. Logic encodings represent the syntax and proof
theory of a logic as a theory of the logical framework, and logical consequence
is represented in terms of the consequence relation of the framework.

The most important logical frameworks are LF, Isabelle, and Maude.
LF [HHP93] is based on dependent type theory; logics are encoded as LF sig-
natures, proofs as terms using the Curry-Howard correspondences, and con-
sequence between formulas as type inhabitation. The main implementation is
Twelf [PS99]. The Isabelle system [Pau94] implements higher-order logic [Chu40];
logics are represented as HOL theories, and consequence between formulas as
HOL propositions. The Maude system [CELM96] is related to rewriting
logic [MOM96]; logics are represented as rewrite theories, and consequence be-
tween formulas as rewrite judgments. Other languages such as Coq [BC04] or
Agda [Nor05] can be used as logical frameworks as well, but this is not the
primary application encountered in practice.

In the following, we give an overview over LF, which we will use as a running
example. LF extends simple type theory with dependent function types and
is related to Martin-Löf type theory [ML74]. The grammar gives a simplified

5

grammar for LF:

Signatures Σ ::= · | Σ, c : E | Σ, c : E = E
Morphisms σ ::= · | | σ, c := E
Expressions E ::= type | c | x | E E | λx:E E | Πx:E E | E → E

LF expressions E are grouped into kinds K, kinded type-families A : K,
and typed terms t : A. The kinds are the base kind type and the dependent
function kinds Πx:AK. The type families are the constants a, applications a t,
and the dependent function type Πx:AB; type families of kind type are called
types. The terms are constants c, applications t t′, and abstractions λx:A t. We
write A→ B instead of Πx:AB if x does not occur in B.

An LF signature Σ is a list of kinded type family declarations a : K and
typed constant declarations c : A. Both may carry definitions, i.e., c : A = t and
a : K = A, respectively. Due to the Curry-Howard representation, propositions
are encoded as types as well; hence a constant declaration c : A may be regarded
as an axiom A, while c : A = t additionally provides a proof t for A. Hence, an
LF signature corresponds to what usually is called a logical theory.

Relative to a signature Σ, closed expressions are related by the judgments
`Σ E : E′ and `Σ E = E′. Equality of terms, type families, and kinds are defined
by αβη-equality. All judgments for typing, kinding, and equality are decidable.

Given two signatures Σ and Σ′, an LF signature morphism σ : Σ → Σ′

is a typing- and kinding-preserving map of Σ-symbols to Σ′-expressions. Thus,
σ maps every constant c : A of Σ to a term σ(c) : σ(A) and every type family
symbol a : K to a type family σ(a) : σ(K). Here, σ is the homomorphic extension
of σ to Σ-expressions, and we will write σ instead of σ from now on.

Signature morphisms preserve typing, i.e., if `Σ E : E′, then `Σ′ σ(E) :
σ(E′), and correspondingly for kinding and equality. Due to the Curry-Howard
encoding of axioms, this corresponds to the theorem preservation of theory mor-
phisms. Composition and identity are defined in the obvious way, and we obtain
a category LF.

In [RS09], a module system was given for LF and implemented in Twelf.
The module system permits to build both signatures and signature morphisms in
a structured way. Its expressivity is similar to that of development
graphs [AHMS99].

2.3 A Logic Atlas in LF

In the LATIN project [KMR09], we aim at the creation of a logic atlas based
on LF. The Logic Atlas is a multi-graph of LF signatures and morphisms be-
tween them. Currently it contains formalizations of various logics, type theories,
foundations of mathematics, algebra, and category theory.

Among the logics formalized in the Atlas are propositional (PL), first (FOL)
and higher-order logic (HOL), sorted (SFOL) and dependent first-order logic
(DFOL), description logics (DL), modal (ML) and common logic (CL) as illus-
trated in the diagram below. Single arrows (→) in this diagram denote transla-
tions between formalizations and hooked arrows (↪→) denote imports. Among the

6

foundations are encodings of Zermelo-Fraenkel set theory, Isabelle’s higher-order
logic, and Mizar’s Set theory [IR10].

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL
MizarZFCIsabelle

Actually the graph is significantly more complex as we use the LF module
system to obtain a maximally modular design of logics. For example, first-order,
modal, and description logics are formed from orthogonal modules for the in-
dividual connectives, quantifiers, and axioms. For example, the ∧ connective
is only declared once in the whole Atlas and imported into the various logics
and foundations and related to type theoretic product via the Curry-Howard
correspondence.

FOLSynBase

FOLPf

FOLMod

ZFC

FOLmod

FOLpf

M

FOLtruth

Moreover, we use individual modules for
syntax, proof theory, model theory so that
the same syntax can be combined with differ-
ent interpretations. For example, the formal-
ization of first-order logic ([HR10]) consists
of the signatures Base and FOLSyn for syn-
tax, FOLPf for proof theory, and FOLMod for
model theory as illustrated in the diagram on
the right. Base contains declarations o : type
and i : type for the type of formulas and
first-order individuals, and a truth judgment for formulas. FOLSyn contains dec-
larations for all logical connectives and quantifiers (see Fig. 4). FOLtruth is an
inclusion morphism from Base to FOLSyn . FOLPf consists of declarations for
judgments and inference rules associated with each logical symbol declared in
FOLSyn . FOLpf is an inclusion morphism from FOLSyn to FOLPf . FOLMod con-
tains declarations that axiomatize the properties of FOL-models. In particular,
it contains a declaration of a set univ for the universe. It also includes a formal-
ization ZFC of the Zermelo-Fraenkel set theory in which the models are defined.
The morphism FOLmod interprets FOLSyn in FOLMod .

Then individual FOL-models are represented as LF signature morphisms
from FOLMod to ZFC that are the identity on ZFC . Given such a morphism M ,
the composition FOLmod ; M yields the interpretation of FOLSyn in ZFC . This
yields a representation of models as LF signature morphisms.

7

3 Logical Frameworks

3.1 Main Definition

Following the approach taken in [Rab10], we use logical frameworks that are
based on a formal language given by a category of theories. We deliberately
restrict attention to a special case that makes the ideas clearest and discuss
generalizations in Sect. 3.2.

Definition 3 (Inclusions). A category has inclusions if it has a broad subcat-
egory that is a partial order. We write B ↪→ C for the inclusion morphism from
B to C, and given A

f→ B ↪→ C
g→ D, we abbreviate f |C = (B ↪→ C) ◦ f and

g|B = g ◦ (B ↪→ C).

Definition 4 (Logical Framework). A tuple (C,Base,Sen,`) is a logical
framework if

– C is a category that has inclusions and pushouts along inclusions,
– Base is an object of C,
– Sen is a functor C\Base → SET ,
– for t : Base → Σ, `t is a unary predicate on Sen(t),
– ` is preserved under signature morphisms: if `t F then `t′ Sen(σ)(F) for

any morphism σ : t→ t′ in C\Base.

C is the category of theories of the logical framework. Our focus is on declar-
ative frameworks where theories are list of named declarations. Typically these
have inclusions and pushouts along them in a natural way.

Logics are encoded as theories Σ of the framework, but not all theories can be
naturally regarded as logic encodings. Logic encodings must additionally distin-
guish certain objects over Σ that encode logical notions. Therefore, we consider
C-morphisms t : Base → Σ where Base makes precise what objects must be
distinguished.

We leave the structure of Base abstract, but we require that slices t : Base →
Σ provide at least a notion of sentences and truth for the logic encoded by Σ.
Therefore, Sen(t) gives the set of sentences, and the predicate `t F expresses
the truth of F .

Example 1 (LF). We define a logical framework FLF based on the category C =
LF. LF has inclusions by taking the subset relation between sets of declarations.
Given σ : Σ → Σ′ and an inclusion Σ ↪→ Σ, c : A, a pushout is given by

(σ, c := c) : (Σ, c : A) → (Σ′, c : σ(A))

(except for possibly renaming c if it is not fresh for Σ′). The pushouts for other
inclusions are obtained accordingly.

Base is the signature with the declarations o : type and ded : o → type.
For every slice t : Base → Σ, we define Sen(t) as the set of closed βη-normal

8

LF-terms of type t(o) over the signature Σ. Moreover, `t F holds iff the Σ-type
t(ded) F is inhabited.

Given t : Base → Σ and t′ : Base → Σ′ and σ : Σ → Σ′ such that σ ◦ t = t′,
we define the sentence translation by Sen(σ)(F) = σ(F). Truth is preserved:
assume `t F ; thus t(ded) F is inhabited overΣ; then σ(t(ded) F) = t′(ded) σ(F)
is inhabited over Σ′; thus `t′ Sen(σ)(F).

Example 2 (Isabelle). A logical framework based on Isabelle is defined similarly.
C is the category of Isabelle theories and theory morphisms. Base consists of
the declarations bool : type and trueprop : bool → prop where prop is the type
of Isabelle propositions. Given t : Base → Σ, we define Sen(t) as the set of
Σ-terms of type t(bool), and `t F holds if t(trueprop) F is an Isabelle theorem
over Σ.

We use logical frameworks to define institutions. The basic idea is that slices
t : Base → LSyn define logics (LSyn specifies the syntax of the logic), signatures
of that logic are extensions LSyn ↪→ ΣSyn , and sentences and truth are given by
Sen and `. We could represent the logic’s models in terms of the models of the
logical framework, but that would complicate the mechanizable representation
of models. Therefore, we represent models as C morphisms into a fixed theory
that represents the foundation of mathematics. We need one auxiliary definition
to state this precisely:

Definition 5. Fix a logical framework, and assume Lmod : LSyn → LMod in C
as in the diagram below.

LSyn

LMod

Lmod

ΣSyn

ΣMod

Σmod

Σ′Syn

Σ′Mod

Σ′mod

σsyn

σmod

Firstly, for every inclusion LSyn ↪→ ΣSyn , we define ΣMod and Σmod such
that ΣMod is a pushout. Secondly, for every σsyn : ΣSyn → Σ′Syn , we define
σmod : ΣMod → Σ′Mod as the unique morphism such that the above diagram
commutes.

Then we are ready for our main definition:

Definition 6. Fix a logical framework F = (C,Base,Sen,`). Assume L =
(LSyn , Ltruth , LMod ,F , Lmod) as in the following diagram:

9

Base LSyn

LMod

F

Ltruth

Lmod

F
idF

ΣSyn

ΣMod

Σmod

Σ′Syn

Σ′Mod

Σ′mod

σsyn

σmod

m
m′

Then we define the institution F(L) = (SigL,SenL,ModL, |=L) as follows:

– SigL is the full subcategory of C\LSyn whose objects are inclusions. To sim-
plify the notation, we will write ΣSyn for an inclusion LSyn ↪→ ΣSyn below.

– SenL is defined by

SenL(ΣSyn) = Sen(Ltruth |Σ
Syn

) SenL(σ) = Sen(σ).

– ModL is defined by

ModL(ΣSyn) = {m : ΣMod → F | m|F = idF} ModL(σsyn)(m′) = m′◦σmod

All model categories are discrete.
– We make the following abbreviation: For a model m ∈ ModL(ΣSyn), we

write m for m ◦Σmod ◦Ltruth |ΣSyn

: Base → F . Then we define satisfaction
by

m |=L
ΣSyn F iff `m Sen(m ◦Σmod)(F).

Theorem 1. In the situation of Def. 6, F(L) is an institution.

Proof. We need to show the satisfaction condition. So assume σ : ΣSyn →
Σ′Syn , F ∈ SenL(ΣSyn), and m′ ∈ ModL(Σ′Syn). First observe that m′ =
m′ ◦ Σ′mod ◦ Ltruth |Σ′Syn

= (m′ ◦ σmod) ◦ Σmod ◦ Ltruth |ΣSyn

= m′ ◦ σmod . Then
ModL(σ)(m′) |=L

ΣSyn F iff `
m′◦σmod Sen((m′◦σmod)◦Σmod)(F) iff `m′ Sen(m′◦

Σ′mod)(Sen(σsyn)(F)) iff m′ |=L
Σ′Syn SenL(σsyn)(F).

Example 3 (FOL). We can now obtain an institution from the encoding of first-
order logic in Sect. 2.3 based on the logical framework FLF . First-order logic
is encoded as the tuple FOL = (FOLSyn ,FOLtruth ,FOLMod ,ZFC ,FOLmod).
FOLSyn , FOLMod , ZFC and FOLmod are as in Sect. 2.3. FOLtruth is the in-
clusion from Base to FOLSyn .

We obtain an institution comorphism FOL → FLF (FOL) as follows. Signa-
tures of FOL are mapped to the extension of FOLSyn with declarations f : i→
. . . → i → i for function symbols f , p : i → . . . → i → o for predicate sym-
bols p. If we want to map FOL theories as well, we add declarations ax : dedF
for every axiom F . Signature morphisms are mapped in the obvious way. The
sentence translation is an obvious bijection. The model translation maps ev-
ery m : ΣMod → F to the model whose universe is given by m(univ), which
interprets symbols f and p according to m(f) and m(p).

10

Logical frameworks can also be used to encode institution comorphisms in
an intuitive way:

Theorem 2. Fix a logical framework F = (C,Base,Sen,`). Assume two log-
ics L = (LSyn , Ltruth , LMod ,F , Lmod) and L′ = (L′Syn , L′truth , L′Mod ,F , L′mod).
Then a comorphism F(L) → F(L′) is induced by morphisms (lsyn, lmod) if the
following diagram commutes

Base

F

LSyn

LMod

Ltruth
Lmod

L′Syn

L′Mod

L′truth
L′mod

lsyn

lmod

Proof. A signature LSyn ↪→ ΣSyn is translated to L′Syn ↪→ Σ′Syn by pushout
along lsyn yielding σsyn : ΣSyn → Σ′Syn . Sentences are translated by applying
σsyn . We obtain σmod : ΣMod → Σ′Mod as the unique morphism through the
pushout ΣMod . Then models are translated by composition with σmod . We omit
the details.

It is easy to see that comorphisms that are embeddings can be elegantly rep-
resented in this way, as well as many inductively defined encodings. However,
the assumptions of this theorem are too strong to permit the encoding of some
less trivial comorphisms. For example, non-compositional sentence translations,
which come up when translating modal logic to first-order logic, cannot be rep-
resented as signature morphisms. Or signature translations that do not preserve
the number of non-logical symbols, which come up when translating partial to
total function symbols, often cannot be represented as pushouts. More general
constructions for the special case of LF are given in [Rab10] and [Soj10].

3.2 Generalizations

In Ex. 3, we do not obtain a comorphism in the opposite direction. There are
three reasons for that. Firstly, FLF (FOL) contains a lot more signatures than
needed because the definition of SigL permits any extension of LSyn , not just
the ones corresponding to function and predicate symbols. Secondly, the discrete
model categories of FLF (FOL) cannot represent the model morphisms of FOL.
Thirdly, only a (countable) subclass of the models of FOL can be represented
as LF morphisms. Moreover, Def. 4 and 6 are restricted to institutions, i.e., the
syntax and model theory of a logic, and exclude the proof theory. We look at
these problems below.

11

Signatures In order to solve the first problem we need to restrict F(L) to a sub-
category of SigL. However, it is difficult to single out the needed subcategory in
a mechanizable way. Therefore, we restrict attention to those logical frameworks
where C is the category of theories of a declarative language.

In a declarative language, the theories are given by a list of typed symbol
declarations. In order to formalize this definition without committing to a type
system, we use Mmt expressions ([Rab08]) as the types. Mmt expressions are
formed from variables, constants, applications @(E, l) of an expression E to a
list of expressions l, bindings β(E, l, E′) of a binder E with scope E′ binding
a list of variables types by the elements of l. To that we add jokers ∗, which
matches an arbitrary expressions, and E, which matches a list of expressions
each of which matches E.

Such Mmt expression patterns give us a generic way to pattern-match dec-
larations of the logical framework. If a concrete logic definition contains a set
P of patterns, we represent its logical signatures as C-objects ΣSyn that extend
LSyn only with declarations matching one of the patterns in P . For example, the
patterns for first-order logic from Ex. 3 would be @(→, i, i) and @(→, i, o) for
function and predicate symbols of arbitrary arity, and @(ded, ∗) for axioms. i
stands for a list of i representing an arbitrary number of arguments; ∗ stands for
an arbitrary expression, which in this case must be a sentence to be well-typed.

Model Morphisms Regarding the second problem, if C is a 2-category, we can de-
fine the model morphisms of F(L) as 2-cells in C. However it is difficult in practice
to obtain 2-categories for type theories such as LF or Isabelle. In [Soj10], we give
a syntactical account of logical relations that behave like 2-cells in sufficiently
many ways to yield model morphisms.

Undefinable Models The third problem is the most fundamental one because no
formalist logical framework can ever encode all models of a Platonic universe.
Our encoding of ZFC is strong enough to encode any definable model. We call
a model M definable if it arises as the solution to a formula ∃!M.F (M) for some
parameter-free formula F (x) of the first-order language of ZFC. This restriction
is philosophically serious but in our experience not harmful in practice. Indeed,
if infinite LF signatures are allowed, using canonical models constructed in com-
pleteness proofs, in many cases all models can be represented up to elementary
equivalence.

Proof Theory Our examples from Sect. 2.3 already encoded the proof theory of
first-order logic in a way that treats proof theory and model theory in a balanced
way. Our definitions can be easily generalized to this setting.

Logic encodings in a logical framework become 6-tuples (LSyn , Ltruth , LMod ,F ,
Lmod , LPf , Lpf) for Lpf : LSyn → LPf . LPf encodes the proof theory of a logic,
which typically means to add auxiliary syntax, judgments, and proof rules to
LSyn . Def. 5 can be extended to obtain Σpf : ΣSyn → ΣPf as a pushout in
the same way as Σmod . Finally the logical framework must be extended with a

12

component that yields a data structure of proofs (such as entailment systems or
proof trees) for every slice out of Base.

For example, for the framework FLF , the proof trees for proofs of F using
assumptions F1, . . . , Fn can be defined as the βη-normal LF terms over ΣPf of
type Σpf

(
Ltruth(ded)F1 → . . . → Ltruth(ded)Fn → Ltruth(ded)F

)
. A

similar construction was given in [Rab10].

4 Logical Frameworks in Hets

The differences between LF and Hets mentioned in Sect. 2 exhibit complemen-
tary strengths, and a major goal of our work is to combine them. We have en-
hanced Hets with a component that allows the dynamic definition of new logics.
The user specifies a logic by giving the representation of its constituents (syn-
tax, model theory) in a logical framework and the combined system recognizes
the new logic and integrates it into the Hets logic graph. The implementation
follows the Hets principles of high abstraction and separation on concerns: we
provide an implementation for the general concept of logical frameworks, which
we describe in Sect. 4.1. This is further instantiated for the particular case of LF
in Sect. 4.2. Finally, in Sect. 4.3 we present a complete description of the steps
necessary to add a new logic in Hets using the framework of LF.

4.1 Implementing Logical Frameworks in Hets

To be able to specify a new object logic L in Hets, we start by declaring a Haskell
type class LogicalFramework, which is instantiated by the logics which can be
used as logical frameworks i.e. in which object logics can be specified by the user.
Such candidates are for example LF, Maude and Isabelle. The class provides
a selector for the Base signature and a method writeLogic, which generates
the instances of the classes Syntax, Sentences, StaticAnalysis, and Logic for the
object logic L.

Each logic implementing LogicalFramework must likewise implement the class
Category, from which we get the category C mentioned in Def. 4. The sentence
functor Sen is specified implicitly by the writeLogic method: the instantiation
of the StaticAnalysis class determines exactly which sentences are valid for a
particular signature of L, thus giving Sen on objects. Since the current imple-
mentation of logics in Hets does not include satisfaction of sentences in models,
the predicate `t is currently not represented as its main purpose is to define the
satisfaction relation for object logics.

At the syntactic level, we must provide a way to write down new logic defini-
tions in HetCASL, the underlying heterogenous algebraic specification language
of Hets. Since definitions of new logics have a different status than usual algebraic
specifications, we extend the language at the library level.

13

newlogic L =
meta F
syntax Ltruth

models Lmod

proofs Lpf

patterns P

Concrete Syntax We add the following concrete syn-
tax (on the right) to HetCASL in order to define
new logics. Here L is the name of the newly defined
logic and FLF is an identifier pointing to the logical
framework used. The identifiers Ltruth , Lmod , Lpf

are the components of the new logic L. They refer
to previously declared signature morphisms of FLF
and the signatures representing LSyn , LMod , LPf

can be inferred from them. The declaration of patterns is optional.
After encountering a newlogic declaration, Hets invokes a static analyzer,

which retrieves the signatures and morphisms constituting the components of
the logic L. The analyzer verifies the correct shape of the induced diagram and
instantiates the Logic class for the logic L as specified by the writeLogic method
of the framework used to encode L.

The logic L arising from the newlogic L declaration differs from the one
described in Def. 6 in that it does not use slice categories - the signatures of L
are those signatures of F which extend LSyn and the morphisms of L are those
morphisms of F which are identity on LSyn. This has the advantage that the data
types representing the signatures and morphisms of F can be directly reused for
L and no separate instantiation of the class Category is required.

4.2 LF as a Logical Framework in Hets

To instantiate the LogicalFramework class for LF, we will make use of the in-
stance of Logic class for LF 2.

The aim here is to reuse Twelf for parsing and static analysis: Any applicable
input file - i.e. a Twelf file or a HetCASL file which has LF as the designated
logic - is forwarded to Twelf, where parsing, static analysis and reconstruction
of types and implicit arguments are performed. If the analysis succeeds, Twelf
stores the output as an OMDoc version of the input file, which is then imported
into Hets using standard XML technologies. Hets reads the imported OMDoc
input and transforms it into corresponding LF signatures and morphisms in their
Hets internal representation.

The instantiation of the LogicalFramework class specifies the Base signature
as the LF signature containing the symbols o and ded, described in Sect. 3. The
writeLogic method specifies how to implement the Logic class for object logics
using LF as the framework. While most data types and methods are inherited
directly from LF, the method providing the static analysis of basic specifications
is implemented differently. As before, it uses Twelf to verify the well-formedness
of the specifications; the input signatures are assumed to be given relative to the
LSyn signature supplied when defining the object logic.

2 An institution for LF can be defined as for example in [Rab08].

14

4.3 Example: Adding FOL as a New Logic in Hets

We will now illustrate the steps needed to add first-order logic as a new logic in
Hets. First, we need to gather the components of FOL in a new logic definition,
as in Fig. 2. The first three lines are the imports of the morphism FOLtruth

from Base to FOLSyn , the morphism FOLmod from FOLSyn to FOLMod , and
the morphism FOLpf from FOLSyn to FOLPf as in Ex. 3, from their respective
directories. Note that the directory structure is used to ease the modular design
of logics in the Logic Atlas.

from ../first -order/syntax/fol get FOL_truth %%FOLtruth

from ../first -order/model_theory/fol get FOL_mod %%FOLmod

from ../first -order/proof_theory/fol get FOL_pf %%FOLpf

newlogic FOL =

meta LF %%FLF

syntax FOL_truth %%FOLtruth

models FOL_mod %%FOLmod

proofs FOL_pf %%FOLpf

end

Fig. 2. Defining FOL as a new object logic.
As a result of calling Hets on the above file, a new sub-directory is added

to the source folder of Hets. The subdirectory contains automatically generated
files with the instances needed for the logic FOL. Moreover, the Hets variable
containing the list of available logics is updated to include FOL. After recom-
piling Hets, the new logic is added to the logic graph of Hets (the node FOL in
Fig. 1 for the dynamically-added logic) and can be used in the same way as any
of the built-in logics.

In particular, we can use the new object logic to write specifications. For
example, the specification in Fig. 3 uses FOL as a current logic and declares a
constant symbol c and a predicate p, together with an axiom that the predicate
p holds for the constant c. Notice that the syntax for logics specified in a logical
framework M is inherited from the framework (in our case LF), but it has been
extended with support for sentences, in the usual CASL syntax i.e. prefixed by
the ”.” character.

Fig. 4 presents the theory of SP as displayed from within Hets; the theory is
automatically assumed to extend FOLSyn . Since in Hets all imports are internally
flattened, the theory of SP when displayed will include all symbols from FOLSyn .

5 Conclusion

We have described a prototypical integration of the institution-based Heteroge-
neous Tool Sets (Hets) with logical frameworks in general and LF and the Twelf

15

logic FOL

spec SP =

c : i.

p : i -> o.

. p c

end

Fig. 3. Specification in
the new object logic. Fig. 4. Theory of SP

tool in particular. The structuring language used by Hets has a model theoretic
semantics, which has been reflected in the proof theoretic logical framework LF
by representing models as theory morphisms into some foundation. While LF is
the logical framework of our current choice, both the theory and the implemen-
tation are so general that other frameworks like Isabelle can be used as well.

Proof theory of the represented logics has been treated only superficially
in the present work, but in fact, we have represented proof calculi for all the
LATIN logics within LF. Representing models as well has enabled us to formally
prove soundness of the calculi. It is straightforward to extend the construction
of institution out of logic representations in logical frameworks such that they
deliver institutions with proofs. Hets will be extended in the future to deal with
proof terms as well.

While the theory and implementation described in this paper make it possible
to add logics to Hets in a purely declarative way, further work is needed in
order to turn this into a scalable tool. Firstly, the logic translations-as-theory
morphisms approach needs to be generalised in order to cover more practically
useful examples. Secondly, the new LF generated logics present in Hets need
to be connected (via institution comorphisms) to the existing hard-coded logics
in order to share the connection of the latter to theorem provers and other
tools. Thirdly, it will be desirable to have a declarative interface for specifing
the syntax of new logics, such that one is not forced to use the syntax of the
logical framework. We are currently examining whether Eclipse and xtext are
helpful here. Finally, also the various tool interfaces of Hets should be made more
declarative, such that Hets logics specified in a logical framework can be directly
connected to theorem provers and other tools, instead of using a comorphism
into a hard-coded logic. Then, in the long run, it will be possible to entirely
replace the hard-coded logics with declarative logic specifications in a logical
framework — and only the latter need to be hard-coded into Hets.

16

We explicitly invite researchers outside the LATIN project to contribute their
logics. This should usually be a matter importing the aspects that are provided
by Logic Atlas theories, and LF-encoding the aspects that are not.

Acknowledgments This paper mainly addresses the model theoretic side of the
logic atlas developed in the LATIN project — funded by the German Research
Council (DFG) under grant KO-2428/9-1.

References

ABK+02. E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. Mosses, D. San-
nella, and A. Tarlecki. CASL: The Common Algebraic Specification Lan-
guage. Theoretical Computer Science, 286(2):153–196, 2002.

AHMP98. A. Avron, F. Honsell, M. Miculan, and C. Paravano. Encoding modal logics
in logical frameworks. Studia Logica, 60(1):161–208, 1998.

AHMS99. S. Autexier, D. Hutter, H. Mantel, and A. Schairer. Towards an Evolution-
ary Formal Software-Development Using CASL. In D. Bert, C. Choppy,
and P. Mosses, editors, WADT, volume 1827 of Lecture Notes in Computer
Science, pages 73–88. Springer, 1999.

BC04. Y. Bertot and P. Castéran. Coq’Art: The Calculus of Inductive Construc-
tions. Springer, 2004.

CAB+86. R. Constable, S. Allen, H. Bromley, W. Cleaveland, J. Cremer, R. Harper,
D. Howe, T. Knoblock, N. Mendler, P. Panangaden, J. Sasaki, and S. Smith.
Implementing Mathematics with the Nuprl Development System. Prentice-
Hall, 1986.

CELM96. M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude. In
J. Meseguer, editor, Proceedings of the First International Workshop on
Rewriting Logic, volume 4, pages 65–89, 1996.

Chu40. A. Church. A Formulation of the Simple Theory of Types. Journal of
Symbolic Logic, 5(1):56–68, 1940.

Dia08. R. Diaconescu. Institution-independent Model Theory. Birkhäuser, 2008.
GB92. J. Goguen and R. Burstall. Institutions: Abstract model theory for speci-

fication and programming. Journal of the Association for Computing Ma-
chinery, 39(1):95–146, 1992.

HHP93. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics.
Journal of the Association for Computing Machinery, 40(1):143–184, 1993.

HR10. F. Horozal and F. Rabe. Representing Model Theory in a Type-
Theoretical Logical Framework. Under review, see http://kwarc.info/

frabe/Research/HR_folsound_10.pdf, 2010.
HST94. R. Harper, D. Sannella, and A. Tarlecki. Structured presentations and logic

representations. Annals of Pure and Applied Logic, 67:113–160, 1994.
IR10. M. Iancu and F. Rabe. Formalizing Foundations of Mathematics. Under re-

view, see http://kwarc.info/frabe/Research/IR_foundations_10.pdf,
2010.

KMR09. M. Kohlhase, T. Mossakowski, and F. Rabe. The LATIN Project, 2009.
See https://trac.omdoc.org/LATIN/.

MAH06. T. Mossakowski, S. Autexier, and D. Hutter. Development Graphs - Proof
Management for Structured Specifications. Journal of Logic and Algebraic
Programming, 67(1-2):114–145, 2006.

17

http://kwarc.info/frabe/Research/HR_folsound_10.pdf
http://kwarc.info/frabe/Research/HR_folsound_10.pdf
http://kwarc.info/frabe/Research/IR_foundations_10.pdf
https://trac.omdoc.org/LATIN/

Mes89. J. Meseguer. General logics. In H.-D. Ebbinghaus et al., editors, Proceed-
ings, Logic Colloquium, 1987, pages 275–329. North-Holland, 1989.

ML74. P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In
Proceedings of the ’73 Logic Colloquium, pages 73–118. North-Holland, 1974.

MML07. T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set.
In O. Grumberg and M. Huth, editor, TACAS 2007, volume 4424 of Lecture
Notes in Computer Science, pages 519–522, 2007.

MOM96. N. Mart́ı-Oliet and J. Meseguer. Rewriting Logic as a Logical and Semantic
Framework. In Rewriting Logic and its Applications, volume 4 of Electronic
Notes in Theoretical Computer Science, pages 352–358, 1996.

Nor05. U. Norell. The Agda WiKi, 2005. http://wiki.portal.chalmers.se/agda.
NPW02. T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant

for Higher-Order Logic. Springer, 2002.
Pau94. L. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture

Notes in Computer Science. Springer, 1994.
Pfe00. F. Pfenning. Structural cut elimination: I. intuitionistic and classical logic.

Information and Computation, 157(1-2):84–141, 2000.
PS99. F. Pfenning and C. Schürmann. System description: Twelf - a meta-logical

framework for deductive systems. Lecture Notes in Computer Science,
1632:202–206, 1999.

PS08. A. Poswolsky and C. Schürmann. System Description: Delphin A Func-
tional Programming Language for Deductive Systems. In A. Abel and C. Ur-
ban, editors, International Workshop on Logical Frameworks and Metalan-
guages: Theory and Practice, pages 135–141. ENTCS, 2008.

PSK+03. F. Pfenning, C. Schürmann, M. Kohlhase, N. Shankar, and S. Owre. The
Logosphere Project, 2003. http://www.logosphere.org/.

Rab08. F. Rabe. Representing Logics and Logic Translations. PhD thesis, Ja-
cobs University Bremen, 2008. Available at http://kwarc.info/frabe/

Research/phdthesis.pdf.
Rab10. F. Rabe. A Logical Framework Combining Model and Proof Theory. To

be submitted, see http://kwarc.info/frabe/Research/rabe_combining_

09.pdf, 2010.
RS09. F. Rabe and C. Schürmann. A Practical Module System for LF. In

J. Cheney and A. Felty, editors, Proceedings of the Workshop on Logi-
cal Frameworks: Meta-Theory and Practice (LFMTP), pages 40–48. ACM
Press, 2009.

Soj10. K. Sojakova. Mechanically Verifying Logic Translations, 2010. Master’s
thesis, Jacobs University Bremen.

SS04. C. Schürmann and M. Stehr. An Executable Formalization of the
HOL/Nuprl Connection in the Metalogical Framework Twelf. In 11th In-
ternational Conference on Logic for Programming Artificial Intelligence and
Reasoning, 2004.

18

View publication statsView publication stats

http://wiki.portal.chalmers.se/agda
http://www.logosphere.org/
http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/phdthesis.pdf
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
http://kwarc.info/frabe/Research/rabe_combining_09.pdf
https://www.researchgate.net/publication/221138151

	Towards Logical Frameworks in the Heterogeneous Tool Set Hets
	Introduction
	Preliminaries
	The Heterogeneous Tool Set
	Proof-Theoretical Logical Frameworks
	A Logic Atlas in LF

	Logical Frameworks
	Main Definition
	Generalizations

	Logical Frameworks in Hets
	Implementing Logical Frameworks in Hets
	LF as a Logical Framework in Hets
	Example: Adding FOL as a New Logic in Hets

	Conclusion

