Loop Calculus for Satisfiability

LAUR 08-0321

Michael Chertkov

Los Alamos National Lab

chertkov@lanl.gov

1. Introduction

Problems as Factor Graphs

- Many problems can be naturally cast as inference in factor graphs. We focus on estimating the partition function $Z = \sum_{\vec{x}} w(\vec{x})$ e.g. number of solutions of a problem.
- **Loopy Belief Propagation as a Heuristic**
- BP is exact on tree factor graphs, and often provides a surprisingly good approximation on other topologies.
- Loop Series as Correction to BP
 - Loop Calculus is a way to express the exact value of Z as an (exponentially long) sum with BP's estimate as a leading term.

2. Main Idea

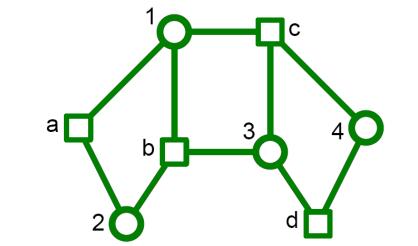
Incremental improvement to BP's estimate with a **tunable** efficiency/accuracy **tradeoff**.

3. Research Agenda

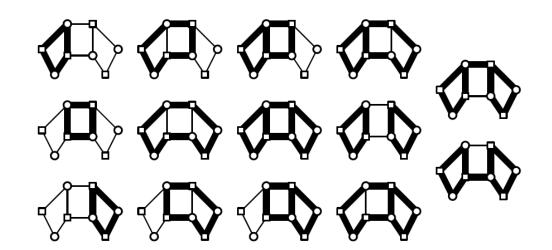
- A) incremental improvement of BP's estimate for number of solutions of a SAT problem
- **B)** efficient partial summation of the loop series
- C) empirical tests for applicability of the approach in the SAT domain

A) Loop Calculus for SAT

- Exact value expressed as $Z=Z_0\left(1+\sum_{i}r_{\mathcal{C}}\right)$ where Z_0 is BP's estimate and r_c a generalized loop contribution (sum of
- Generalized loops are subgraphs of the factor graph with no degree 1 nodes



which is **loop series**)



 Loop contributions are computed entirely from BP's beliefs as

$$r_C = \left(\prod_{i \in \mathcal{C}} \mu_i\right) \left(\prod_{\alpha \in \mathcal{G}} \mu_{\alpha;\mathcal{C}}\right)$$

$$\mu_{i} = \frac{\sum_{\sigma_{i}} (\sigma_{i} - m_{i})^{q_{i}} b_{i}(\sigma_{i})}{(1 - m_{i}^{2})^{q_{i}}}$$

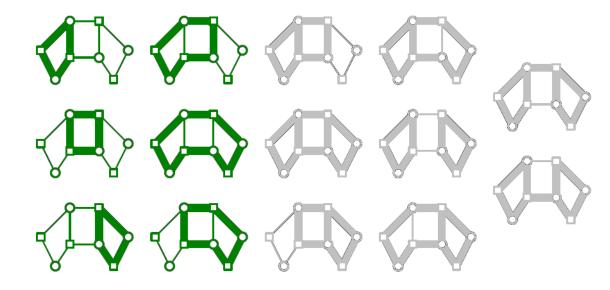
$$\mu_{\alpha;\mathcal{C}} = \sum_{\sigma_{\alpha}} b_{\alpha}(\sigma_{\alpha}) \prod_{i \in \alpha;\mathcal{C}} (\sigma_{i} - m_{i})$$

and magnetization $m_i \equiv \sum \sigma_i b_i(\sigma_i)$ and variable node degree q_i

Drawback: Loop contributions can be both positive and negative, resulting in non monotonic improvements.

B) Summation of Loop Series

- Full summation requires an exponential amount of work \Rightarrow do **partial summation.**
- Generalized loops with low node degrees have in general higher weight than highdegree loops.
- Sum weights of **simple loops**: connected graphs with node degrees exactly 2.



For simple loops, the loop weights simplify

$$r_C = \prod_{\alpha \in C} \tilde{\mu}_{\alpha,ij}$$

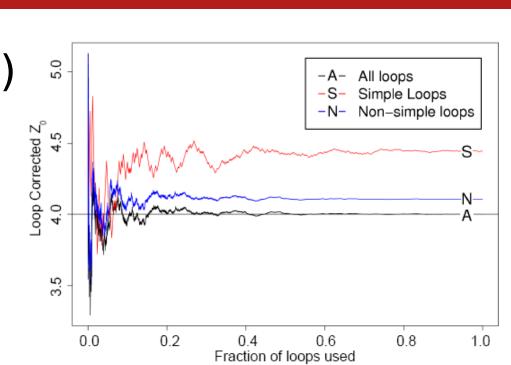
$$\tilde{\mu}_{\alpha,ij} = \frac{\mu_{\alpha}}{\sqrt{1 - m_i^2} \sqrt{1 - m_j^2}}$$

for *i,j* adjacent to α in C

- Approach based on A* search algorithm can efficiently list simple loops in order of decreasing weight (in absolute value):
 - Search for a loop of minimal weight in a derived graph with labeled edges, such that each edge label appears at most once.
- The algorithm is not polynomial in the worst case, but works well in practice.

C) Empirical Tests

 Tiny formula (4 vars) where all loops can be listed: there are 682 simple loops and 330,000 nonsimple loops.



 Larger formulas (100 vars): improvement is possible, but mainly for easier instances.

α	exact count Z	LBP's Z_0	$Z_0 \left(1 + \sum r_c\right)$
3.0	1.97×10^{10}	4.34×10^{10}	2.09×10^{10}
3.5	6.66×10^{8}	2.60×10^{8}	2.46×10^{8}

4. Discussion and Remarks

- Loop Calculus provides a way to incrementally improve on BP's results.
 - It has been shown to improve quality of BP based decoding in information theory, and in a particle tracking problem for learning flows.
- This research focuses on its application to SAT:
 - The problem is more general, the search space is more complicated.
 - Progress made towards loop series summation, but results do not yet show consistent improvement.
- Main future research goal is to identify problem domains with few important loops.
- Where significant improvement is possible.