SimCore

June 10, 2005

Contents
1 Introduction

2 Architecture Overview

2.1 Concepts and Tools Provided by SimCore
3 API
3.1 Entity, Service, Info
311 Entity
3.1.2 Service.
313 Info
3.2 Managers e e e
3.2.1 EntityManagero oo
3.2.2 ServiceManagero
3.2.3 InfoManager
33 Input.
3.3.1 Entity Input
3.3.2 Servicelnput
333 Infolnput
34 Output
3.5 Miscellaneous L
3.5.1 mnamespace Control
3.5.2 namespace Logger L.
3.6 Simulationmain()o

4 Working with User Defined Objects

4.1 Working with Entities
4.1.1 Creating Entities 0oL
4.1.2 Accessing Entities oo

4.2 Working with Services L oL
4.2.1 Creating Services oo
4.2.2 Accessing Services

4.3 Working with Infos L.
4.3.1 CreatingInfos 0000,

4.3.2 SendingInfos oL 24
4.3.3 ReceivingInfos 0oL 24

5 SimCore Internals 25

1 Introduction

SimCore is a library that allows to write code for discrete event simulations.
The usage goals are the following:

e Simulation of nation-wide socio-technological infrastructure

— 100s of millions of simulated elements (people, computers, etc.)

— Requires as-of-yet unknown approximation techniques of the ele-
ments and processes.

e Obtaining results that are meaningful and provide useful information.
— Limits approximation mentioned in previous bullet.
e Ease of combining simulations that were developed independently.

— Simulation of people generating phone calls, and simulation of phone
infrastructure. Combining the two allows feedback to session gener-
ation in case of e.g. overloaded network.

In a short, SimCore’s goal is to provide basis for ceating simulations of var-
ious socio-technological aspects, altering their functionality as the used models
develop, and combining the simulations into more complex ones. I will use Ses-
sion Simulator and Network Simulator as examples, because these are the only
ones using SimCore at the moment, but the library itself is general and not
restricted to communication simulations.

From the usage goals, we have identified several important design goals for
the SimCore library, roughly in order of importance:

Extensibility: adding a new functionality is very easy and does not require
changing much of the existing code (changes are localized). E.g. adding
a new protocol to Network Simulator does not require changing the al-
ready existing code (which also means that removing an unused protocol
is seamless).

Expressive power: the library does not restrict the user to only certain con-
structs, the full power of C++ language and any library is available. This
is important so that any computation and simulated element interaction
technique can be implemented if needed, event if it does not fit well into
the SimCore design. Unknown approximation techniques may require un-
forseen implementation steps.

Conceptual simplicity: so that as it grows, it doesn’t become an unpene-
trable jungle. The places where the different components interact (like
different Network Simulator protocols) should be well defined. This is
important so that the simulations can grow without anybody having to
know all details about all parts of it.

Scalability: there should not be anything that would result in significantly
higher memory usage or lower running speed when using the library, com-
pared to when the simulation code is taylored to a particular application.
In particular, it must run efficiently on parallel architectures, and there
should not be any inherent bottleneck that would limit the simulation scale
based on limited resources (e.g. memory) on a single computing node. It
must run on distributed memory architectures (better availability, cheaper
than shared-memory architectures).

2 Architecture Overview

SimCore is a layer that is responsible for providing the user (an end simulation,
such as Network Simulator) with concepts and tools for fulfilling Extensibility
and Conceptual simplicity design goals. The Expressive power goal comes for
free by SimCore being a library in C++ (as opposed to being a simulation-
definition language, which could be limiting in allowed constructs). It is not a
discrete event simulation engine, e.g. it is not directly responsible for passing
events between computing nodes, event queue maintenance and synchronization.
For this, SimCore uses an external software package. Currently, only DaSSF has
been ever tried, but in theory, any parallel distributed memory simulation engine
should work. The Scalability design goal is therefore largely determined by the
simulation engine used, and SimCore simply tries to impose as little performance
overhead as possible. The ”library stack” is shown in Figure 1. Note that the
end simulation is not supposed to interact with the simulation engine directly
(let alone message passing layer), which makes them easily portable (even if
a different simulation engine would have to be used on a different computer
architecture, the end simulation does not need to change).

2.1 Concepts and Tools Provided by SimCore

There are three major concepts provided (and required to be used) by SimCore:

Entity: primary element of the simulation study (a person, a computer etc.)
Element, to which events happen during the simulation, and in which
properties we are interested.

Service: an element that determines behavior of entities, e.g how they respond
to events that happen to them.

End simulation (e.g. Network Sim.)
SimCore
Simulation engine (e.g. DaSSF)

(message passing, e.g. MPI)
Figure 1: SimCore in an architecture of a simulation.

Info: content of events, e.g. information that is being passed between entities
(or, more precisely, services on entities) and which services use to make
actions (e.g. sending other infos).

Let’s consider the Network Simulator for an example again: the entities
would model devices (e.g. computers), interfaces (e.g. network cards) and media
(e.g. network cable or a frequency as a wireless medium). Entities, therefore,
correspond to hardware. Services would model various protocols (e.g. FTP,
TCP, IP on a device; RED buffer and CSMA on an interface; and a ”signal
transmission functionality” on a medium). So services correspond to software.
Software is installed on hadrware, and it is the interaction of the various software
parts that determines overall behavior of the hardware. Infos then model packets
that travel on a network, and they are also used to implement passing of various
control information (e.g. backoff of a CSMA protocol).

Some most important properties are review bellow:

Entity
e Uniquely identified throughout the simulation system (by an EntityID).

e Has general features (e.g location, capacity, status, etc.)

e Has its own services (each service lives at — is accessed through — a
ServiceAddress: known identifier, such as ”service that models MAC pro-
tocol”)

e Forwards Info to an appropriate service (should not handle the info dire-
clty)

¢ Different entities are not, in general, in the same memory space (e.g. on
the same computing node). But it is possible to assure that some related
Entities are.

Service

e Is NOT uniquely identified (MUST be on some Entity, at a certain Ser-
viceAddress).

e Handles incoming Infos (reacts on them).
e Can only be on ONE Entity.
e Can have multiple ServiceAddresses on the same Entity

e All Services living on the same Entity are in the same memory space (e.g.
on the same computing node).

Info
e Data to be exchanged between Entities (or, better, Services on them)
e Info destination address = EntityID + ServiceAddress.

e By default empty, all content is user-defined (in particular, does not con-
tain sender’s information by default)

An example of a service having multiple ServiceAddresses would be an FTP
server accessible via many port numbers. For network applications in general,
ServiceAddress can be well thought of as a port number.

Having a clear distinction between objects (entities) and their behavior (ser-
vices) is the main tool to address the Extensibility and Conceptual simplicity
design goals. Adding a new functionality to an entity amounts to adding a new
service to it, without having to change existing code. And interaction between
different entities is (mostly) restricted to exchanging Info messages (communi-
cation between services on the same entity can, nontheless, be made via regular
function calls). The concept of services living at ServiceAddresses also allows
for easy dynamic change of behavior by simply replacing at run time one service
by another at the same ServiceAddress.

3 API

This section describes how are the concepts and tools of SimCore library cast
into a C++ code. All of the SimCore code is written in namespace SimCore.
There are some basic types that are user in various places of SimCore:

Time — data type used to represent time. Can be one of float, double, long
and longlong (other types can be added to type.h). The choice is made
by macro LTIME_FLOAT ..., the default is float. There is a constant
MINDELAY of type Time defined in constants.h, which specifies the min-
imum amount of time that events can be scheduled for since the current
simulation time (must be greater than zero, a limitation of DaSSF).

Random::TRandom — object that represents a random number generator,
can generate numbers from various distributions. See framework/src/Random/Random.h
for details.

Ptr;iTYPE; — smart pointer to TYPE. Defined in Ptr.h. All pointer oper-
ations in SimCore visible to the user are done using smart pointers, so
all objects created by SimCore are automatically deleted when no longer
needed. This reduces possibility of memory leaks. Ptrj; being 0 means
Ptrj; == Ptrj;(). The current implementation uses boost::shared_ptr,
and has one extension: method giveup. This method returns the pointer,
and resets itself, therefore transfers the pointer ownership (acting like
std::auto_ptr).

Some other types, usually associated with a particular SimCore object, are
defined in type.h file.

SimCore executables (executables that use the SimCore library) need to be
run with one parameter that specifies a config file to use. In the following
description, the content of the config file is referred to.

3.1 Entity, Service, Info

All three main objects in SimCore are represented by a class in C++. User
defined objects in an end simulation need to be derived from these base objects
(the base objects are not meant to be used directly). This section reviews
their basic functionality (public methods and associated functions), while how
to derive user objects and the creation process is described in section 4.

3.1.1 Entity

Declared and implemented in files Entity.h and Entity.C. Entities are identified
by an EntityID (declared in type.h): a 2-tuple of char and long, signifying the
type of entity (’p’ person, ’d’ device, ...), and its number, respectively. The
char part serves to easily have EntityIDs unique, especially in cases where two
simulaitons are combined (such as Session Simulator and Network Simulator)

Information methods These methods provide basic information about the
Entity and the simulation environment.

EntityID getId() — returns an EntityID of the entity

Random: : TRandom getRandom() — returns a random number stream

e Time getNow() — returns the current simulation time

void print(std::ostream&) — used by operator<< for outputting con-
tent of an entity (only for debugging purposes)

Info handling methods These methods provide functionality to ”intercept”
sending and receiving Infos by services. By default they just forward the infos
to the simulation engine, or to the service, but can be overriden to do something
more.

e void processQutgoingInfo(const Ptr<const Info>, const Time&, const

EntityID&, const ServiceAddress&) — schedules an Info to be deliv-
ered to ServiceAddress at EntitylD with Time delay. Ptrjlnfo; muts not
be 0, Time must be >= MINDELAY.

e void processIncomingInfo(Ptr<Info>, const ServiceAddress&) — for-

wards the Info to a service at ServiceAddress to handle (described in sec-
tion 4.3.3), and outputs a warning if it fails (no service at the address or
a service that cannot handle the Info type).

Service handling methods These methods provide access to services living
on the Entity.

® bool getService(ServiceAddress, Ptr<ServiceClass>) — retrieves
a service that lives at a particular ServiceAddress. Returns true iff a
service convertible to ServiceClass exists at ServiceAddress (” convertible”
means that a pointer to it can be converted into pointer to ServiceClass).

e void setService(ServiceAddress, Ptr<Service>) — puts a Service
to a ServiceAddress (possibly overwriting the old one), or deletes an ex-
isting service at ServiceAddress if Ptrj; is PtrjSrevice;() (NULL).

e void getServiceAddresses(std::list<ServiceAddress>&) — returns
(in the argument) a list of ServiceAddresses that are used at the Entity
(some Service lives there). Does not clear the list first.

Miscellaneous external functions These functions are not methods of En-
tity, but are defined in the same header file. They provide functionality that
can be achieved by using other methods of Entity, but is sufficiently common
to be its own function.

e void getRequiredService(const Entity&, const ServiceAddress&,
Ptr<ServiceClass>&) — just like getService method of Entity, but
throws an exception if the service cannot be returned (either there is no
service at the ServiceAddress, or the service that lives there cannot be
converted to ServiceClass). This means that if the function returns, the
PtriServiceClass,, is not 0.

e void createServices(Entity& ent, const EntityInput::ServiceMap&)

— creates services on an Entity based on input. The creation process is
described in more detail in section 4.2.1.

e int distributeInfo(const Entity& ent, Ptr<InfoType> info, const
Service* const exclude = 0) — lets all services on a entity handle
the Info (with a possible exception of ”exclude”, if that is not 0 - to
prevent infinite recursion). This is used when other services may be in-
terested in a certain info (mostly entity status updates). Whether the
service can handle the info is decided by trying to convert each service to
InfoRecipient<Infotype>, for those that can, receive (Ptr<InfoType>)
is called (see section 4.3.3).

3.1.2 Service

A Service lives on an Entity, at a certain ServiceAddress (an integer, defined
in type.h). At most one service can live at one ServiceAddress, but the same
service can live at multiple ServiceAddresses.

Information methods These methods provide basic information about the
Service and the simulation environment.

e ServiceName getName() — returns a name of a service. ServiceName
is defined in type.h . The meaning of ServiceName is discussed in more
detail in section 3.3.2.

e EntityID getEntityId() — returns an ID of the entity where the service
was created. At creation time, it is assigned to an entity, and this cannot
be changed. But its ServiceAddress at the entity can be changed at run
time, or the service may not reside at any address at all.

e Random: : TRandom& getRandom() — the same as in Entity
e Time getNow() — the same as in Entity

e void print(std::ostream&) — the same as in Entity

Info handling methods These methods provide functionality to send Infos.
Receiving Infos is done via inheritance from InfoRecipient<InfoType> and
method receive (see section 4.2).

e void sendInfo(Ptr<InfoClass>&, const Time& delay, const EntityID&,
const ServiceAddress&, const bool invalidate = true) — sendsthe
info to service living at ServiceAddress at EntityID (possibly itself) with
delay (mustbe >= MINDELAY). PtrjInfoClass; must not be 0, and by
default will get invalidated by the call (reset to 0, so that the data it poits
to can no longer be changed). A warning is issued if PtrjInfoClass;, is
not the only pointer pointing to the Info data (because in that case, the
data could be changed after this call using the other pointer, and it is
not specified whether or not the change would get sent). If the invalidate
parameter is set to ”false”, then the Ptrj; does not get invalidated, and
no warning is issued if multiple pointers to the info exist.

Miscellaneous external functions These functions are not methods of Ser-
vice, but are defined in the same header file. They provide functionality that
can be achieved by using other methods of Service, but is sufficiently common
to be its own function.

e int multiSendInfo(const Service& service, Ptr<InfoClass>& info,
const Time& delay, const Container& neighbors, const ServiceAddress&
address, const bool invalidate = true) — same as sendInfo method
of Service, but sends the same Info to ServiceAddress on multiple entities
(neighbors). Neighbors is an STL container.

3.1.3 Info
Infos can be created in one of two ways:

e Internally, in the user code, e.g in response to receiving some other Info,
see section 4.3.2.

e Externally, read from an input file. These Info messages start the whole
simulation (”seed” events), and can be also send any time during the
simulation.

It is not possible for the objects ”inside” the simulation to distinguish between
these two ways, which can provide a great flexibility in controlling the simula-
tion: artificial events can be injected by hand.

Information methods These methods provide basic information about the
Info.

e Size getSize() — returns a size of the info. May be overriden, but the
default version returns byte size of the structure (sum of byte sizes of data
members of the Info-derived structure).

e void print(std::ostream&) — the same as in Entity

e const InfoHandler& getInfoHandler() — returns an InfoHandler ob-
ject that can do things with the particular type of the user derived Info
(mostly for internal purposes, defined in InfoHandler.h):

— create — construcsts an object of that type, also a duplicating ver-

sion (using the derived object’s copy-constructor). Used in InfoManager: : createInfo

and InfoManager: :duplicatelInfo, see section 3.2.3.
— execute — calls an appropriate receive method of a service that is
supposed to handle the info. Used in Entity: :processIncomingInfo.

— getClassType — returns an identifier of the particular info-derived
object. Used when packing/unpacking the Info before/after sending
it to another machine in EventInfo.

— getByteSize — returns byte size of the objects, used by the default
Info::getSize.

Packing and Unpacking Because SimCore works in distributed memory en-
vironment, it is sometimes necessary to exhange information (in form of Infos)
between different computing nodes using a network connection. To do that,
the info needs to be put into a sequence of bytes (packing) that can be later
reinterpreted as the original Info (unpacking).

Datastucture called PackedData is used as an intermediate format (coded by
packing and decoded by unpacking). The structure is defined in PackedData.h
and provides overloaded add and get methods for all basic datatypes (including
most common STL containers).

e void pack(PackedData&) const — called whenever the Info needs to
be send to another computer, anytime between calling Service::sendInfo
(or equivalent) and the time when the Info must be delivered. It is not
specified whether or not it will get called if the Info’s recipient resides on
the same computing node (it will not, for efficiency reasons, but should
not be relied on).

e void unpack(PackedData&) — called at the recipient’s side, whenever
pack was used on the sender’s. The user-derived Info object is first created
using the default constructor, and then this method is called to fill its data
from the PackedData format.

Reasonable defaults are provided for both methods. They interpret the content
of the object as byte sequence, and send it over as-is. This means, that this
will work only for Plain Old Datatypes (char, int, long, float... NOT pointers,
references and STL containers, but it WILL work for boost::tuples, so EntityID
is OK).

Input For Infos that the user wishes to be input-able for a file, it is necessary
to specify how to fill in the Info’s content from an input record. The input
scheme details are described in section 3.3, so the used methods are only stated
here. For Infos that the user only wants to create internally, the following
methods can be left unoverridden.

e void readData(Input::DataSource&)

e void readProfile(Input: :ProfileSource&)

3.2 Managers

Each of the three basic objects has a manager, defined in EventManager.h, Ser-
viceManager.h and InfoManager.h. The managers are responsible for creating
and maintaining the respective objects. All managers are acessible through sin-
gletons: theEntityManager (), theServiceManager () and theInfoManager(),
so they can easily be used anywhere in the code. No SimCore object is created
directly using operator new, rather, they are created via calls to methods of
the managers. They always return a Ptr<> smart pointer, so no dealocation is
necessary (no calls to delete operator).

10

Every user-defined C++ object derived from one of the SimCore’s three
basic objects needs to be registered, and this is also one using the managers.
The registration is necessary because, for example, the system needs to know
what C++ object to create when a particular identifier (number, string,...) is
found in input.

3.2.1 EntityManager

EntityManager is responsible for creating entities, and letting user code access
them later, if needed. In the current model, Entities are created on Logical
Processes (LPs), and there might be several LPs in a single unix-process’. LPs
are identified by LPIDs. Before creating an Entity, it is necessary to decide
which LP it will live at. Entitymanager is defined in EntityManager.h.

Entity information Provide information about Entities in the simulation
system.

e LPID findEntityLpId(const EntityID& id) — returns an LPID where
the given entity lives at (no matter whether on the current unix-process or
a remote one). This function will return without any warning even if an
EntityID of an nonexistent entity is returned! See section 4.1.1 for details.

® bool getEntity(const EntityID& id, Ptr<EntityClass>&) — re-
turns (in its second argument) a pointer to an Entity, given its ID. Re-
turns true iff the entity if found and lives in the current unix-process. So
a return value of ”false” means either that the Entity does not live in the
current unix-process (the one from which the method was called), that
it does not exist at all, or that the entity with the id lives in the current
unix-process, but cannot be converted to type EntityClass. If the last case
occurs, a warning is issued.

Entity creation There is only one method that creates Entities, all from an

input filed, and called before the simulation starts — void createEntities(const

Control::LpPtrMap& lps, const std::string& dataFile). Support for cre-
ating individual entites while the simulation is running would have to be added.

Registering

e template<class EntityClass, class InputClass> void registerEntity(
const Entity::ClassType& id, void (*preCreator)(const EntityID&,

const InputClass&) = 0) — this registers an object EntityClass derived
from Entity which uses InputClass as input parameters in constructor with
input identifier id, and, possibly, a preCreator function which will be called
for each Entity input record prior to creation. See section 4.1.1 for details.

11t is not clear whether the LP concept is necessary at all

11

e void registerPlacingFunction(bool (*)(const EntityID&, LPID&)
) — register a function that will be used to determine which LP will an
Entity live on. The functions will be called in the order they were regis-
tered, until a first one that return true is found. In that case, the LPID
returned in the second parameter is used. If none returs true (or none are
registered), a default function is used (Entity number modulo number of
LPs). See section 4.1.1 for details.

3.2.2 ServiceManager

Defined in ServiceManager.h.

Service creation

e void prepareServices(const std::string& protFile) — prepares ser-
vices (does not create any) to be later created on entities. Basically, read
in service input file(s) and stores the content. Must be run prior to creat-
ing any services.

e Ptr<Service> createService(const ServiceName&, Entity&) — cre-
ates a service ServiceName (prepared by prepareServices on Entity.
This member function is called from Entitye’s miscellaneous function createServices,
but can also be called ”by hand”.

Registering Services are registered using method template<class ServiceClass,
typename EntityClass, typename InputClass> void registerService(const
Service::ClassType& servClass), which registers a C++ object of type Ser-
viceClass derived from Service, which is intended to live on entity of type Entity-

Class and uses input (constructor parameter) of InputClass. The identification

of the C++ object is servClass. See section 4.2.1 for details.

3.2.3 InfoManager
Defined in InfoManager.h.

Info information Method template<class InfoClass> const InfoHandler&
getInfoHandler () returns an appropriate InfoHandler (see section 3.1.3) for
the Info type supplied as the template argument. Is used mostly for internal
purposes.

Info creation Internally (not from a file), an Info can be created in one of
three ways: if its numerical (of type Info::ClassType) identification is known; if
its C++ identification (it’s C++ type) is known; or making a duplicate copy of
an already existing Info. See section 4.3.1 for details about creating Infos.

12

e void createInfo(Info::ClassType type, Ptr<Info>&) — creates an
Info if its identification type is known. Uses default constructor of the Info
type to be created.

e template<class InfoClass> void createInfo(Ptr<InfoClass>&) — cre-

ates an Info is its C++ identification is known. Uses default constaructor
of the InfoClass.

e template<class InfoClass> void duplicateInfo(const Ptr<InfoClass>

orig, Ptr<InfoClass>& copy) — makes a duplicate of an already exist-
ing Info. Uses copy constructor of the InfoClass. Variations with ”const”
pointers are also defined.

Methods void prepareDataFiles(const Control::LpPtrMap& lps, const
std::string& infoFiles) and void readDataFile(int fileId) are used for
creating Infos externally (from a file). See section 3.3.3 for details.

Registering Method template<class InfoClass> void registerInfo(const

Info::ClassType& classType = Info::ClassType()) is used to register user
objects InfoClass derived from Info. The classType parameter specifies its nu-
merical identification, and must only be specified for Infos, which the user wished
to input extenrally (from a file) and must be a positive number. If left unspec-
ified, the system assigns a numerical identification automatically, and the user
can still create and use such Infos by creating them using their C++ identifica-
tion.

3.3 Input

Input correspond to the three basic objects: Entity, Service and Info input.
Each of the inputs is in separate file(s), and multiple files can be specified for one
input type. The config keys used are ENTITY _FILES, SERVICE_FILES, and
INFO_FILES, respectively (multiple filenames are separated by a whitespace on
the same line). All files start with a header line, which begins with #.

Each line corresponds to one input record (e.g. one Entity to be created)
and is of a variable length (different entity types will require different number of
inputs). Each record means that some object in the simulation (Entity, Service
or Info) will be created. First few fields in a record have fixed meaning for all
records, the rest has user-defined meaning and may have varying number of
fields (including none)

Because many input settings may be the same for many objects, an complete
input item (data that will be given as a parameter to a constructor of the object
being created) is devided into two parts:

Profile: values that are shared by many objects. They are only read-in once.
They are specified in the main config file, or included in it using include
"profileFile" directive, and referred to from the input files.

A profile is an entry of the form:

13

set EntityProfile <ProfileNumber> active { }

(the EntityProfile becomes ServiceProfile or InfoProfile as needed, and
ProfileNumber is a positive integer, unique for each *Profile family) Inside
the {} are KEY <whitespace> VALUE pairs (only one on a line, VALUE
extends to the end of the line) that represent the actual input values.

Custom Data: this is input data that is unique to the object being input.

This is exactly the length-varying part of the input record with user-define
meaning.

The fixed-meaning fields in the input record vary between Entity, Service

and Info input. But the last of these fields is an integer specifying the Profile
to use for that input item. Therefore, this profile id plus the rest of the input
record constitute information that will be used to fill in an input item. This
item is then given to a constructor of Entity, Service of Info.

An input item is a structure derived from class Input (defined in Input.h).

It contains user-defined data items that will used in the constructor (they will
mostly be publicly available data members, because input item is nothing more
than a data holder). It is responsible for parsing content of the inputs (both
profile and custom data) from its textual representation into the proper data
format. For this, the user needs to override the following two methods:

e void readData(DataSource&) — for reading in custom data part. The
DataSource structure is a std::istream containing the rest of the input
record from the input file. User can pars it using operator;; . After this
method is called, a status of the DataSource is checked and a warning
issued if it is failed.

void readProfile(ProfileSource&) — for filling in the profile part.
ProfileSource is a ProfileHolder structure defined in ProfileHolder.h, which
provides template<class Result> bool get(const KeyType& key, Result&
result) method for automatic parsing of the KEY VALUE pairs into the
desired type (operatory; of Result type is used for the conversion from
VALUE). It returns true iff the KEY was found in the profile and the
conversion was successful.

Any of the above methods can be left unoverloaded, in case that the praticular
input part is not needed. But if it is overloaded, it should call the corresponding
method of the parent object.

The readProfile method is called only once for each profile id (in each

*Profile family) on each computing node. Each time a ProfileID is encountered
in an input record, it is looked up. It if was never used before, a new user-defined
Input-derived object is created (based on what input class was registered with
the object being created, see section 3.2). Its readProfile method is called
and the object is stored for later use. If it was already used, the stored object
is recalled. Then, a copy of the input object (using its copy constructor) is
made, on which the readData method is called. The result is then used as a

14

parameter to a (Entity,Service or Info) constructor (and deleted afterwards).
This way, the content of the ”original” input object with its profile part filled
in is always kept. This means that references and pointers to its data members
are valid throughout the simulation.

Input object may also have the void print(std::ostream&) const method
overloaded for debug printing.

3.3.1 Entity Input

Has the following format:
EntityId ClassType ProfileId CustomData....
where the Entityld is the ID of an entity to be created, ClassType is its associ-
ated C++ structure (the ClassType is given at registration time, see section 3.2),
Profileld specifies the EntityProfile to use.
Inputs for entities should be derived form EntityInput class (defined in En-
tity.h). Its readProfile method allows for automatic parsing of SERVICES
profile entry. The value corresponding to the SERVICES key is a sequence of
ServiceAddress=ServiceName entries (separated by a whitespace), which spec-
ifies which services should be created on the entity at which address (see sec-
tion 3.3.2 for meaning of ServiceName). This way, a data member EntityInput::fServiceMap
is filled in, and services on an entity can be created using a call to createServices
function in the entity’s constructor (see section 3.1.1).
The Entity input file is read before the simulation begins in call to Control: : createEntities()
function.

3.3.2 Service Input

Has the following format:
ServiceName ClassType Profileld CustomData....
where the ServiceName (std::string) is an identification of the pair (ClassType,Input
item). The ClassType is the service’s associated C++ structure (the ClassType
is given at registration time, see section 3.2). The Input item is the combinatin
of the profile (identified by the Profileld) and CustomData parts. Therefore,
ServiceName can be looked upon as an identifier of a ”program” (the C++
class) plus its ”config files” (the input item).
The Service input file is read before Entities are created by a call to Control: : prepareServices()
functoin.

3.3.3 Info Input

Has the following format:

Time EntityId ServiceAddress ClassType ProfilelId CustomData....
Info itself is derived from Input, so it has its readProfile and readData meth-
ods to fill itself with data form a file (using the Profileld and CustomData
fields). The other fields specify that the user-defined Info-derived object with
numerical identifier ClassType (see section 3.2.3) will be delivered to service at
ServiceAddress on Entityld at time Time.

15

The Info input file is the only input file that is time-dependent. It is read
during the while simulation (not the whole file at once, Infos are scheduled as
their time of delivery draws near).

3.4 Output

Output is done through functions in namespace Output. Only one output file
is created, specified with config file key OUTPUT _FILE. It is record-oriented,
i.e. each output operation results in one record (line) in the output file. Each
output record has an associated type (an integer), and different record types
may be of different leghts (in fact, it is only up to the user to make all output
records of some type ”semantically compatible”).

The output is done via call to functions Output: :output (const Entity&,
const QutputRecordType) or Qutput::output(const Service&, const OutputRecordType)
(they only differ in whether they take Entity or Service as a parameter that
specifies where is the output coming from). They return an output stream,
into which any data (whatever user wants to output) can be send with using
operator<<. A separator (tab) is automatically added between each item be-
ing output. Next time the output function is called, a newline character is
appended, therefore closing the previous record.

The fields in each output record are:

Time Entityld ServiceName Type CustomData....

Time is the simulation time when the corresponding output was called, Entityld
is the entity from which it was called, ServiceName is the name of the service
which called it (or ”0” if called from Entity) and Type if the output record type
specified. Following are custom data items that are sent to the returned output
stream using operator<<.

3.5 Miscellaneous
3.5.1 mnamespace Control

This namespace provides basic functionality of the simulation.

Main functions These functions should be called in the simulation main()
function, in this order:

e void init(const std::string& modulename)
e void prepareQutput ()

e void prepareServices()

e void createEntities()

e void startSimulation() — this method does not returns until the sim-
ulation is over.

16

The following functions provide basic information about the simulation en-
vironment:

e int getNumMachines() — returns the number of computing nodes used.

e int getRank() — returns rank of current process (0..getNumMachines()-
1)

e getNumLPs () — returns the number of LPs (may be higher than number
of machines).

The Control namespace makes use of the following config settings: SEED
(for random seed, the rank of a process gets added to this so that each of
the parallel processes have different random seeds), NUMBER_LPS (how many
Logical Processes to use, uses LPID modulo rank to decide which process will
have which LP), END_TIME (determine till when will the simulation run. It
always starts at time 0).

3.5.2 mnamespace Logger

Provides logging facility. The functions error, warn, info, debugl, debug2,
debug3 all return std::ostreamé& wher the log data is send to. They are listed in
the order of decreasing urgency. Input settings LOG_.COUT_LEVEL, LOG_LEVEL,
LOG_FILE and LOG_ABORT_ACTION determine control the logging facility.

3.6 Simulation main()

The end simulation main () (usually void ModuleMain() in our framework) will
look like this:

void ModuleMain()

{
/// reads in main config file
Control::init("SessionSim");

/// registers all user-defined SimCore-derived objects
SessionSim: :registerAl1();

/// prepares output mechanism
Control: :prepareQutput () ;

/// loads services from a file for later creation
Control: :prepareServices();

/// creates entities (and services on them) from input file
Control::createEntities();

/// starts the simulation (read the Info input file(s))

17

/// does not return until done
Control::startSimulation();

}

The order of the calls is important.

4 Working with User Defined Objects

This section describes basic steps in usign the SimCore API to construct an
end simulation. Each end simulation is written in a separate namespace (e.g.
namespace SessionSim), but for ease of using the SimCore library (which is
written in namespace SimCore), using namespace SimCore directive is used.

4.1 Working with Entities

Each entity in the end simulation must be derived from Entity class (defined in
Entity.h), or Entity’s descendant, e.g.:

class MyEntity : public Entity
{
public:
MyEntity(const EntityID entId, LP& lp, const MyEntityInput& input);
virtual void print(std::ostream&) const;

int myMethod () ;
private:
int fMyProfileltem;
int fMyCustomDataItem;
};

Each derived entity must have a constructor with the following parameters:
e entld — EntityID assigned to this entity (in Entity input file)

e Ip — Logical Process where this entity will live (only to be passed to
SimCore::Entity constructor)

e input — Input structure derived from SimCore::EntityInput, containing
the entity-specific input (as described in section 3.3)

SimCore::Entity’s constructor uses exactly the same parameters, so they are just
passed. At the end of the constructor, services that will be living on the entity
should be created, which can be done by a call to createServices function
(see section 3.1.1). Each derived entity should also override the print method,
where the user-defined data (fMy*Item) is printed (this only serves debugging
purposes). In addition, the derived Entity may define methods of it own (e.g.
myMethod).

18

Also, methods processIncomingInfo and processOutgoingInfo can be
overriden if the default behavior (described in section 3.1.1) is not appropriate.
They can be used to ”spy” on all incoming and outgoing infos from all services
at the entity.

The MyEntityInput might look like:

struct MyEntityInput : public EntityInput

{
virtual void readData(DataSource& ds)
{
EntityInput::readData(ds);
ds >> fMyCustomDataltem;
X
virtual void readProfile(ProfileSource& ps)
{
EntityInput::readProfile(ps);
if(!ps.get("ITEM", fMyProfileltem))
{
Logger::error() << "MyEntityInput cannot find ITEM in profile" << endl;
}
}
virtual void print(std::ostream& os) const
{
os << fMyProfileItem << "," << fMyCustomDataltem;
}
int fMyProfileltem;
int fMyCustomDataltem;
s

(note the calls to EntityInput’s readData and readProfile methods) The Enti-
tyInput structure itself has a container (fServiceMap) that contais information
about which services should be created on the Entity (and is given as parameter
to the createServices function). This container is filled from the ProfileSource
structure (key SERVICES, see section 3.3.1) in EntityInput::readProfile
method.

Before a user-defined entity can be used, it needs to be registered. This is
done using a method of EntityManager (see section 3.2.1):

theEntityManager () .registerEntity<MyEntity, MyEntityInput>("myentity");

This call is usually made from register.C file in the end simulation code, but
can be done anywhere before call to Control::createEntities() The string
"myentity” is the ClassType of the C++ MyEntity object, and is used in the
Entity input file (see section 3.3.1).

19

4.1.1 Creating Entities

All entities are created automatically from the Entity input file during the call
to Control::createEntities() function (see section 3.5.1) just before the sim-
ulation starts.

The whole Entity input file(s) is read on all simulating nodes (all machines).
If the preCreator argument is specified in the call to EntityManager: :registerEntity
function of the appropriate Entity ClassType (see section 3.2.1), then the spec-
ified function (preCreator) is called for every record in the input file (no matter
whether or not the entity will be created on the machine). This is useful if
some input-specific operations are needed for every input record (like counting
number of people in the simulation).

Then, a placement function is called. This function is responsible for de-
ciding which LP will the entity be created on, based only on the EntityID.
The same function is later used to find which LP each entity lives on. The
default placement function is ”Entity number (second part of its ID) mod-
ulo number of LPs”. User may use any function and register it with a call to
EntityManager: :registerPlacingFunction(bool (*) (const EntityID&, LPID&)
). Such functions take an EntityID (as their first argument) and output the
place for it (in their second argument) and return true, or return false if they
cannot decide the LPID. The Entity’s placement is then decided by calling the
user-registered functions in the order they were registered, until some return
"true”. If none of the user-registered functions return true, then the default
function is used. So each user-registered function may be capable of placing
only one "type” of Entity (decided using the first element of the EntityID), and
returns false for all other entities. It is important to note that the placement
function must return location consistently, e.g. it must not change its result
during the simulation?.

Use of the placementFunctions allows to have constant-time entity-location
look-up (asuming there is a ”constant” number of placing functions) when we
only know the entity’s ID (which is the case when we send messages). Using a
map from EntityID to LPID would not be constant, and it would also impose a
limit on how many entities can be handled by the overall simulation (the map
could not exceed memory limits of one process). Using placement functions
does not impose such limits. Moreover, the map-usage approach can be used
within the placement function one: the preCreator function would determine
the entity’s location (based, for example, on a value from the CustomData input
part) and store it in a ”global” map, where placement function could later find
it.

4.1.2 Accessing Entities

In most cases, the user does not have to access entities explicitly. Every time an
info is received, it is delivered to the recipient entity and service automatically

2Unless an Entity migration scheme is implemented, which would allow for synamic load
balancing.

20

(see section 4.3.3).

But, if need be, entities can be accessed via a call to EntityManager: :getEntity
(see section 3.2.1). But only entities living on the same simulating node (possi-
bly different LPs) can be accessed in this way.

4.2 Working with Services

Every user-defined service must be derived from class Service (defined in Ser-
vice.h), or Service’s descendant. In addition, it must also be derived from
template class InfoRecipient<InfoType> (defined in InfoRecipient.h) for each
InfoType info that it can receive. This results in multiple inheritance, but inher-
itance from InfoRecipient is purely an interface inheritance. The InfoRecipient
class has only one pure virtual method void receive(Ptr<InfoType>). This
method is the one that will get called whenever an Info of type InfoType is
delivered to the service.

class MyService : public Service,
public InfoRecipient<MyInfo>
{
public:
MyService(const ServiceName& name, MyEntity& ent,
const MyServiceInput& input) ;

virtual void receive(Ptr<MyInfo>);
virtual void print(std::ostream&);

void myMethod() ;
private:
int fMyItem;
I

Each derived service must have a constructor with the following parameters:
e name — name of the service (from Service input file)

e ent — Entity that the service lives on, assigned at registration time (see
bellow). A Service may have multiple constructors of this form with dif-
ferent Entity to love on (in which case it can be created on more-than-one
entity types, but must also be registered multiple times)

e input — Input structure derived from SimCore::Servicelnput, containing
the service-specific input (as described in section 3.3)

SimCore::Service’s constructor uses exactly the same parameters, so they are
just passed. Every receive method inherited from all InfoRecipints must
be declared and implemented. Each derived service should also override the
print method, where the user-defined data (£MyItem) is printed (this only serves

21

debugging purposes). In addition, the derived Service may define methods of it
own (e.g. myMethod).

Working with MyServicelnput is the same as with MyEntityInput (see sec-
tion 4.1). The only diference is that service inputs are derived from ServiceInput
(defined in Service.h)

Before a user-defined service can be used, it needs to be registered. This is
done using a method of ServiceManager (see section 3.2.2):

theServiceManager () .registerService<MyService, MyEntity,
MyServiceInput>("myservice");

This call is usually made from register.C file in the end simulation code, but
can be done anywhere before call to Control: :prepareServices() The string
"myservice” is the ClassType of the MyService C++ object, and is used in the
Service input file (see section 3.3.2).

4.2.1 Creating Services

Services are created on-demand, which means that user need to specify when
and where to create it. It is usually done at the end of entity constructor
and via call to createServices function (see section 3.1.1), which creates
and places (to ServiceAddress) services specified in the entity’s profile input
with key SERVICES. But it can also be done any other time (after the en-
tity where the service will live is created, of course) and by hand” via call to
ServiceManager: :createService:

Ptr<Service> myService =
theServiceManager () .createService("myservice", myEntity);

This way, the service is created to live on myEntity, but it is not assigned to
any ServiceAddress yet. To do so, call:

myEntity.setService(<ServiceAddress>, myService);

4.2.2 Accessing Services

Services on the same entity can easily cooperate via calling each others methods
directly. This approach is used whenever no progression of simulated time is
desired or needed. Sending Infos (to itself or another service on the same entity)
is used when progress in time is required.

Direct access to a service is provided by method getService of an entity
where the requested service lives, or by function getRequiredService (see sec-
tion 3.1.1). They only differ in whether or not it is an error if the requested
service cannot be returned. The C++ type of the service that we wish to re-
trieve must be known a-priory (it is specified in form of type of the pointer to
contain the return value). Then, any public methods of the returned service can
be called, including receive methods.

22

4.3 Working with Infos

Every user-defined info must be derived from class Info (defined in Info.h), or
Info’s descendant. Often, an info can be viewed as a data container, so it is
reasonable to make its data members public.

struct MyInfo : public Info
{

virtual void print(std::ostream&);

int fMyInfoltem;
I

Each derived info must have a default constructor, and should have a deep copy
constructor if the default is not (e.g. if it has pointers, it should copy the
content of the pointer, not only the pointer itself). Each derived info should
also override the print method, where the user-defined data (fMyInfoItem) is
printed (this only serves debugging purposes). It is perfectly reasonable to have
derived infos which have no specific data members (and therefore don’t need to
override any methods) to model various events.

If the info contains more than only Plain Old Datatypes (POD, e.g. int,
float, ...), then it must overload pack and unpack methods (see section 3.1.3).
Overloading these methods is also necessary whenever the simulation is to be
run in heterogeneous environment, where sizes of PODs can vary.

If the info is to be read in from the Info input file(s), then it is necessary to
overload readData and readProfile methods (see section 3.3.3).

Before a user-defined info can be used, it needs to be registered. This is done
using a method of InfoManager (see section 3.2.3):

const Info::ClassType myInfoType = 4;
theInfoManager () .registerInfo<MyInfo>(myInfoType);

This call is usually made from register.C file in the end simulation code, but can
be done anywhere before call to Control::startSimulation() The constant
myInfoType is the ClassType of the MyInfo C++ object, and is used in the
Info input file (see section 3.3.3). It is only necessary to specify this parameter
if user wishes to input the info from the input file (externally), i.e. whenever
methods readData and readProfile are overloaded. The ClassTypes must be
unique across different infos.

4.3.1 Creating Infos

Infos can be either crated on demand, whenever user neds them (internally),
or automatically from an Info input file (externally). The recipient cannot find
out whether the recieved info was created internally or externally.

23

Internal creation Used mostly in methods of services, as a way of exchanging
information. They are created by a call to InfoManager: : createInfo for empty
infos, or InfoManager: :dusplicateInfo for copy of already existing infos. See
section 3.2.3 for details about the methods, and section 4.3.2 for an example.

External creation Infos sent from the Info input file(s). They are created
automatically and are delivered to specified service at specified time (specified
in the input file, see section 3.3.3).

4.3.2 Sending Infos

This sections only concers infos that are created internally (see section 4.3.1),
because externally created infos are sent automatically.
After an info is created, they are filled with data, and then sent off:

/// create it
Ptr<MyInfo> mylInfo;
theInfoManager () .createInfo(myInfo);

/// £ill it with data
myInfo->fMyInfoIltem = 1;

/// send it
sendInfo(myInfo, delay, destDevice, destServiceAddress);

The sendInfo is a method of Service, where most infos will be sent from. By
default, it invalidates the info pointer (myInfo) so that the user cannot modify
the content of the info after the call (it is unspecified whether or not the change
would be delivered!) and issues a warning if another pointer to the same info
exists (because that could still be used to change it). An optional fifth parameter
(invalidate, see section 3.1.2) can be set to ”false”, in which case the pointer
parameter will not get invalidated, and no warning will be issued if multiple
pointers exist. It is a responsibility of the user not to modify the info after the
call to sendInfo in such situation. The delay parameter must be greater or
equal to constant MINDELAY defined in constants.h, or else a warning is issued
and the info is delivered later (with delay equal to MINDELAY). This implies
that infos cannot be delivered immediately (a common restriction imposed by
many discrete event simulation engines).

The Service’s sendInfo method calls processOutgoingInfo method of an
entity where the service lives (see section 3.1.1). The default version of processOutgoingInfo
calls appropriate functions of the simulation engine to dispatch the Info (see En-
tity.C for details), but can be overriden.

4.3.3 Receiving Infos

The simultion engine first handles an incoming Info to a processIncomingInfo
method (see section 3.1.1) of an entity that is a recipient of the info (infos are

24

addressed to (EntityID, ServiceAddress) pairs). The processIncomingInfo
method is guaranteed to receive the only pointer to the info (so the method can
do anything it wants with the info). The default version forwards the info to the
repient Service, by a call to InfoHandler: :execute (see section 3.1.3 and file
Entity.C). If the recipient service does not exist, i.e. there is not service at desti-
nation ServiceAddress on the entity, a warning is issued and the info dropped. If
the service at destination ServiceAddress cannot handle the given Info type, i.e.
it does not have an appropriate receive (Ptr<InfoType>) method, a warning
is issued also and the info dropped. The processIncomingInfo method can be
overriden.

So, by default (and if all goes well), the info is finally delivered to the des-
tination service by a call to the service’s receive(Ptr<InfoType>) method,
where InfoType is the C++ type of the info that was sent.

5 SimCore Internals

25

