SessionSim

June 9, 2005

Contents
1 Introduction
2 Implementation
2.1 Entities
2.1.1 Person
2.1.2 Device
2.2 Services
2.2.1 Person Services . .
2.2.2 Device Services . .
23 Info
2.4 Miscellaneous
2.4.1 CalleeGroup . ..
2.4.2 CallingList
2.4.3 CallingPattern . .
2.4.4 ConnectionList . .

2.4.5 DeviceTypePattern
General Input

Generating Phone Calls

41 Input.
4.2 Info-passing Map
4.3 Output

Generating WWW Sessions
51 Input............

5.2 Info-passing Map
5.3 Output
Generating Email Sessions

6.1 Input............
6.2 Info-passing Map
6.3 Output

1 Introduction

This document describes implementation of models for generating synthetic
communication sessions described in [1] using a simulation library described
in [2]. The goal is the same as in [3], and even though the implementation
and some of the model details are different, the reference could still be useful.
Familiarity with the above documents is assumed in this text.

Three types of sessions can simulated:

e phone calls (both wire-line and wire-less calls)
e emails
e www browsing

As of now, a person can be involved in all session types simultaneously (be mak-
ing a phone call while browsing the web and sending an email). The generation
process of various session types is independent at the person level, but a device
can only do one task at a time, even if it could be used for multiple session

types.

2 Implementation

2.1 Entities

There are two entity types that SessionSim creates: Person and Device. Per-
son is a user whose communication behavior is being simulated. Devices are
instruments that allow the communication to happen (a phone, a computer).
Each communication session (a phone call, an email, ...) is started by a person,
and realized by a device (or multiple devices). The relation between Persons
and Devices is many-to-many (e.g. many different people can own the same
device, and one person can own many devices). The problem of choosing which
device(s) to use for a particular session is also part of SessionSim.

2.1.1 Person

e time-dependent properties: location, activity and status (one of: idle,
calllnit, callSource, callDestination)

e time-independent properties: social contacts (list of people that the person
knows, along with time spent with them and activity during the contact)
and list of devices that the person owns.

e static objects (static in C++ sense): callee groups for all people (Callee-
GroupAll) and for people that are at work (CalleeGroupWorkers), see
section 2.4.1. Average number of social contacts per person.

PersonIDs are EntityIDs with the first element equal to 'p’.

2.1.2 Device

Device is empty. All of its properties relevant to SessionSim are in DeviceCon-
trolService (see section 2.2.2). The reason for this is that the Device entity is
also defined in the Network Simulator, where it has a more important role. Of-
floading all session-related properties to ControlService allows to easily combine
SessionSim and the Network Simulator. Device has a Device type assigned, only
for the SessionSim purposes (to distinguish whether the device can do phone
calls, emails, etc.). It is not a property of the device, rather, it is remembered
along with device’s ID in the list of devices that a person owns. DevicelDs are
EntityIDs with the first element equal to 'd’.

A device that belongs to some person is location-available to the person if
they have the same location, or the device’s location is 0 (which means location-
available from anywhere). It can be used by the person only if it is location-
available and in status ”idle” (i.e. not already in use).

2.2 Services

There is a Handler service on both Person and Device entity for each session
type to be simulated. In addition, there is a ControlService for both entities.
The ControlService is responsible for receiving and handling infos about changes
of the entity’s properties (location, activity, ...), usually send externally from
Info input file. It may also provide other general functionality.

All services have a refernece to the Entity they live on (Person or Device).
Only important properties and methods are shown, without most Info handling
receive methods. Those are described in ” Generating *” sections.

2.2.1 Person Services

PersonControlService Handles PersonTemporalChange Infos (see section 2.3)
by updating the time-dependent values in Person entity. It also forwards the
PersonTemporalChange Info to all other service on the person that can receive
it (i.e. are derived from InfoRecipient<PersonTemporalChange>).
In addition, it provides functionality of finding devices that are ready to use
by the person (location-available and idle). This is done via call to method
getAvailableDevices(ServiceAddress asker) (asker is address of the ser-
vice that needs the information, to deliver answer to). The answer is delivered
(laterin simulation time) via call to asker’s method receive (Ptr<AvailableDevicesReply>).

CallHandlerPerson Time-independent parameters read from Profile input:

¢ DefaultBeginParam — parameters to Weibull distribution that determines
default time between calls

e WorkBeginParam — parameters to Weibull distribution that determines
time between calls in work activity

SleepBeginParam — parameters to Weibull distribution that determines
time between calls in sleep activity

DefaultLengthParam — parameters to Lognormal distribution that deter-
mines default call lengths

WorkLengthParam — parameters to Lognormal distribution that deter-
mines call lengths while in work activity

RandomCallsFraction — fraction of calls made to random people (as op-
posed to using the CallingList)

WorkCallsFraction — fraction of calls made to random other workers,
while in work activity

DefaultCallingPattern — calling pattern (see section 2.4.3) used by default

WorkCallingPattern — calling pattern (see section 2.4.3) used when in
work activity

CallingList — list of people to call that the person knows (see section 2.4.2).
Created based on social network input of person.

HttpHandlerPerson Time-independent parameters read from Profile input:

BaseRate — parameters to Weibull distribution that determines default
time between www sessions

WorkRate — parameters to Weibull distribution that determines time
between www sessions in work activity

SleepRate — parameters to Weibull distribution that determines time
between www sessions in sleep activity

DefaultHttpList — connection list (see section 2.4.4) used to determine
destination server by default

WorkHttpList — connection list (see section 2.4.4) used to determine des-
tination server in work activity

DeviceTypePattern — device type pattern (see section 2.4.5) used to de-
cide which device to use

EmailHandlerPerson Time-independent parameters read from Profile in-

put:

BaseRate — parameters to Weibull distribution that determines default
time between email sends

WorkRate — parameters to Weibull distribution that determines time
between email sends in work activity

e SleepRate — parameters to Weibull distribution that determines time
between email sends in sleep activity

e SizeParam — parameters to Cauchy distribution that determine size of
emails

e DefaultEmailList — connection list (see section 2.4.4) used to determine
destination email server (or recipient) by default

e WorkEmailList — connection list (see section 2.4.4) used to determine
destination email server (or recipient) in work activity

e DeviceTypePattern — device type pattern (see section 2.4.5) used to de-
cide which device to use

2.2.2 Device Services

DeviceControlService Contains all session-related properies of a Device: lo-
cation, cellld (which network element, such as Central Office Switch of a cell
phone Base Station to connect to) and status (one of: idle, calllnit, callBusy,
emailBusy, httpBusy).

Handles DeviceTemporalChange Infos (see section 2.3) by updating the
time-dependent properties. It also forwards the DeviceTemporalChange Info
to all other service on the device that can receive it (i.e. are derived from
InfoRecipient<DeviceTemporalChange>).

In addition, it replies to DeviceAvailabilityQuestion Infos send from a
person ControlSerice by sending back a DeviceAvailabilityReply Info.

CallHandlerDevice None.
HttpHandlerDevice None.

EmailHandlerDevice None.

2.3 Info

Most used Infos are described in Info-passing maps in ” Generating *” sections,
all of which are internally created. Here, only externally created Infos (from
Info input file(s)) are mentioned.

*9

PersonTemporalChange This Info (defined in PersonControlService.h) de-
livers information about location and activity of the person. It it send (from
input) every time any of the two change.

DeviceTemporalChange This Info (defined in DeviceControlService.h) de-
livers information about location and cellld of the device. It it send (from input)
every time any of the two change. The cellld specifies which network element
(switch, basestation, ...) is the device connected to. Wire-line devices should
only have one DeviceTemporalChange input record at time O (because they are
not mobile).

2.4 Miscellaneous
2.4.1 CalleeGroup

A data structure that holds a dynamic set of people, and can select uniformly
at random of of them. Dynamic in a sense that people can subscribe and
unsubscribe to/from it (become and cease to be members).

Used to do random calls. A set of all people and a set of people currently at
work is used in generating call sessions.

2.4.2 CallingList

Calling list is a set of (Person,weight) pairs. It can pick a random person from
the set, with probability proportional to the weights. It is generated using social
contacts input for a person (the contact time is used as the weight).

Used to choose a callee from people that the caller knows.

2.4.3 CallingPattern

A set of triples (Source device type, Destination device type, weight).

It is used when choosing a device pair (source and destination device) for
a phone call. From two sets of DevicelDs of devices owned by source and
destination Person, a list is made of all possible pairs of DeviceIDs where the
corresponding device types match one of the CallingPattern’s entry. From this
list, a DevicelD pair is chosen randomly according to the weight assigned to the
corresponding CallingPattern’s entry.

2.4.4 ConnectionList

Similar to CallingList, used for data sessions. A list of pairs of (Destination
identifier, weight). The destination identifier is currently of type EntityID (De-
viceID of a network element to connect to), but can be changed to any type
(e.g. a string and then do DNS lookup in the Network Simlator).

2.4.5 DeviceTypePattern

Similar to CallingPattern, but only contains the source device type, so it is a
list of pairs (Device type, weight). Used to pick a device to use for data sessions.
From a list of available devices, one is chosen randomly according to a weight
assign to it in the DeviceTypePattern entry corresponding to its type.

3 General Input

All input files, except for Service Input file, are generated using MakeSessionSimInput
program (part of mobicom/SessionSim module). The Service Input file is writ-
ten by hand.

Relevant profiles are described in Input subsections of ” Generating *” sec-
tions.
Entity Input Files

Person: custom data: SocialNetVector DeviceVector. SocialnetVector is a
vector of triples (PersonlD, activity, length) specifying the person’s social
contacs, e.g. [((p 2) 1 2) ((p 3) 2 3)]. DeviceVector is a vector of
pairs (DevicelD, device type) specifying which devices the person owns,
eg. [((d0)2) ((d1) 1) ((d11) 10)].

Device: no required custom data.
Service Input File No custom data input part for any service.

Info Input Files

Person: custom data: LocationID ActivityID. Numbers corresponding to
the current location and activity of the person.

Device: custom data: LocationID CellID. Numbers corresponding to the cur-
rent location and cellld of the device.

4 Generating Phone Calls

4.1 Input

¢ DefaultBeginParam, WorkBeginParam, SleepBeginParam — (scale shape
location) parameters of Weibull distribution.

¢ DefaultLengthParam, WorkLengthParam — (meanlog standard_deviation_log)
parameters to Lognormal distribution

¢ RandomCallsFraction, WorkCallsFraction — number from < 0,1 >

e DefaultCallingPattern, WorkCallingPattern — a vector (enclosed in []) of
triples (src_device_type dest_device_type weight)

4.2 Info-passing Map

An info-passing map is a graphical representation of which Infos are sent from
and to which Services and Entities during some part of the simulation. Columns
correspond to different services on different entities involved in the process,
bubbles to received methods of the service on the corresponding entity, and
arrows to messages being passed (labels are the Info types). Only arrows with
the same info type can be incoming to a bubble (only one Info type can be
handled by one method), but multiple info types can be outgoing (only one is
usually sent, depending on the logic, but multiple could be sent as well)

Figure 1 shows the info-passing map for generating phone calls. There are
four entities involved in the process: caller and callee person, and their respec-
tive devices. Each entity uses only one service for call generation: CallHan-
dler{Person,Device}. The "MakeCall” Info going into ”1” in the upper left
corner is a starting Info, which is scheduled whenever some parameters change
(in response to PersonTamporalChange Info, see section 3)

Following is a description of what happens at each bubble:

C1: receive(Ptr<CallHandlerInfo::MakeCall>) — signifies that a new call
should be made by the person (caller). Can only occur if the person is
7idle”. Chooses a callee:

e if in work activity and calling another worker at random (yes with
probability WorkCallsFraction from input), choose a callee from Per-
son::CalleeGroup Workers.

e else if calling another person at random (yes with probability Ran-
domCallsFraction from input), choose a callee from Person::CalleeGroupAll

e eclse choose a callee from a personal CallingList

Then it asks the callee for his/her devices. Puts the person into ”calllnit”
status.

C2: receive(Ptr<CallHandlerInfo: :AskDevices>) — returns DevicelDs of
all devices that the person (callee) owns (even those that are not location-
available, i.e. at different location than the person and not at location

0).

C3: receive(Ptr<CallHandlerInfo: :AnswerDevices>) — (caller) picks de-
vices that will be used, both source and destination device. If in work
activity, uses WorkCallingPattern, otherwise uses DefaultCallingPattern.

C4,C5,C6: receive(Ptr<CallHandlerInfo::CallBegin>) — determines whether
or not the call can be made. It can be made if:

e the source device is at the same location as source person (or the
devices location is 0)
e source device is ”idle”

e destination device is ”idle”

Source Source Dest Dest
Person Device Device Person
MakeCall
\/
v Cl1
AskDevices
> C2
AnswerDevices
C3 -
CallBegin
» Cd
MakeCall CallBegin
aC5
CallBegin
CallBegin »C6
g CallResult CallResult CallResult
C7 4
A CallResult
v Cg 4
Y CaiiResult
Co -4
FinishCall
\J
C10
CallEnd
aCl1
CallEnd
aC12
CallEnd
~C13
MakeCall
\j

Figure 1: Info-passing map for phone call sessions.

e destination person is at the same location as destination device (or
the device’s location is 0)

e destination person is ”idle”.

If the call can be made, the CallBegin info is passed on and the person or
device is put into ”calllnit” status. If it cannot, a CallResult is sent back
with info on what happened. On the destination person (C6), CallResult
is sent back either way, and the person is put into ”callDestination” status
is succesful (and upcoming MakeCall info for the callee is invalidated).

C7,C8: receive(Ptr<CallHandlerInfo::CallResult>) — If the call was suc-
cessful, puts the device into ”callBusy” status, else puts it into ”idle”.
Pass the result on. On source device (C8), output a CALL_BEGIN record
if successtul, CALL_.ATTEMPT otherwise. (C8) is also the place where
Network Simulator would be called to simulate the connection start.

C9: receive(Ptr<CallHandlerInfo::CallResult>) — Caller reacts based
on received result:

e If successful, goes into ”callSource” status and schedules for itself a
FinishCall info (usign either DefaultLegthParam or WorkLength-
Param, based on activity).

e If there was a problem with the source device, choose another pair of
devices with different source device and try it again. A CallBegin
info is sent to the newly chosen source device.

e If there was another problem, schedule yourself new MakeCall info,
using DefaultBeginParam, WorkBeginParam or SleepBeginParam ac-
cording to activity.

C10: receive(Ptr<CallHandlerInfo::FinishCall>) — Caller puts itself to
status ”idle” and sends a CallEnd info. It also schedules itself new
MakeCall info, using DefaultBeginParam, WorkBeginParam or SleepBe-
ginParam according to activity.

C11,C12,C13: receive(Ptr<CallHandlerInfo::CallEnd>) — puts the en-
tity into ”idle” status and pass on. On callee (C13), schedules a new
MakeCall info, using DefaultBeginParam, WorkBeginParam or SleepBe-
ginParam according to activity. On source device (C11), outputs a CALL_END
record. (C11) is also the place where Network Simulator would be called
to simulate the connection end.

There is are also receive (Ptr<CallHandlerInfo: :CallInterrupted>) meth-
ods on both device and person. These are not used as of now (and are empty),
but could be used by the Network Simulator if a connection had to be inter-
rupted.

10

4.3 Output

OutputRecordType is bold. Following each record type are only CustomData
fields that are output. Source device and simulation time are always included
in the fixed fields of all output records.

10001 "CALLBEGIN" sessionID srcDeviceCellld srcPerson srcPersonlLocation
srcPersonActivity destDevice destDeviceCellld destPerson destPersonLocation
destPersonActivity

10002 "CALL_ATTEMPT" srcDeviceCellld srcPerson srcPersonlLocation srcPersonActivity
destDevice destDeviceCellld destPerson destPersonlLocation destPersonActivity
result

The result is one of: 0=kSrcDevUnaval, 1=kSrcDevBusy, 2=kDestDe-
vBusy, 3=kDestPerBusy, 4=kDestPerUnaval.

The destPersonActivity and Location may be zero for some results.

10003 "CALL_END" sessionID srcDeviceCellld srcPerson srcPersonLocation
srcPersonActivity destDevice destDeviceCellld destPerson destPersonLocation
destPersonActivity

5 Generating WWW Sessions

Each WWW session (time spent browsing the web) consists of several requests
(web pages downloads), and each request consists of a HTTP-request and -reply
for the main object (the HTML document), and a number of HTTP-request-
reply pairs for inlined objects (pictures, etc.). See [1]

5.1 Input

e BaseRate, WorkRate, SleepRate — (scale shape location) parameters of
Weibull distribution.

e DefaultHttpList, WorkHttpList — vector (enclosed in []) of pairs (desti-
nation_id weight)

¢ DeviceTypePattern — a vector (enclosed in []) of pairs (device_type weight)

5.2 Info-passing Map

In case of Http sessions, there are only two entities involved: the person and
his/her device (computer). On each device, two serviecs are used: ControlSer-
vice and HttpHandler service (see section 2.2).

Figure 2 shows and Info-passing map for generating WWW sessions. Arrows
with circle heads and function name labels in the map correspond to direct
function calls, not Info passing. The ”Find available devices” box correspond
to a sub-map in Figure 3. And the ”MakeHttp” Info going into bubble 71”7 is a

11

Person Device
HttpHandler Control Control HttpHandler

MakeHttp

y
»Hl1

MakeHttp
getAvailableDevices()

° Find available
devices

receive(Ptr<AvailableDevicesReply>)

H2®
receive(Ptr<HttpRequest>)

» H3
HttpRequest HttpBegin
b H4
HttpResult
H5 -

Figure 2: Info-passing map for WWW sessions.

12

starting Info, which is scheduled whenever some parameters change (in response
to PersonTamporalChange Info, see section 3)

Hi1:

H2:

H3

H4:

H5:

Following is a description of what happens at each bubble:

receive(Ptr<HttpHandlerInfo::MakeHttp>) — signifies that an www
session should be started. Only asks the ControlService for devices that
are available (location-available and idle), and schedules itself again (using
BaseRate, WorkRate or SleepRate intput, according to activity).

receive(Ptr<AvailableDevicesReply>) — is called directly from the
ControlService, and contains information about which devices could be
used for the www session.

e Choose a device to use using DeviceTypePattern input. If no de-
vice could be used, just drop the intent for the www session (stops
transversing the Info-passing map).

e Detrermine now many requests will be in this session (hard coded
parameters).

e (Call the receive(Ptr<HttpHandlerInfo: :HttpRequest>) method
directly.

: receive(Ptr<HttpHandlerInfo: :HttpRequest>) — is responsible for is-

suing sets of HTTP-request-reply pair corresponding to dowloading one
WWW page. Most parameters for this are hard-coded.

e Choose a destination WWW server (only change it from previous
server with 30% probability), using DefaultHttpList or WorkHttpList
input, accoring to activity.

e Create the request: number of inlined objects, sizes of HT' TP-requests
and -replies.

o Send the HttpBegin info to the user device (computer).

o Schedule itself another HttpRequest (www page download), after
some time (hard-coded parameters).

receive(Ptr<HttpHandlerInfo: :HttpBegin>) — if everything is OK (de-
vice location-available and idle), outputs a HTTP_REQUEST output, oth-
erwise outputs HTTP_ATTEMPT (should happen only very rarely, due
to time delay between finding available devices and their using). Then
sends an HttpResult info back to the person. This is the place where Net-
work Simulation would be called to simulate the download. Right now,
the http session is done instantaneously, and status of the device is set to
”httpBusy” and then immediately back to ”idle”.

receive (Ptr<HttpHandlerInfo: :HttpResult>) — doesn’t do anything,
is there in case a reasonable action were to be taken in case an error
occured (right now, the request is just skipped).

13

Person Device
Control Service Control Service

getAvailableDevices()

[]
Al
DeviceAvailabilityQuestion
A2
DeviceAvailabilityReply
A3 4

receive(Ptr<AvailableDevicesReply>)

Figure 3: Info-passing map for finding available devices.

Finding available devices Figure 3 is the Info-passing sub-map that shows
the procedure of finding devices that are available for use. This means devices
that are at the same location as the person (or at location 0) and have sta-
tus ”idle”. The double-head arrow represents Infos that are sent to multiple
Services of the same type, of which only one is shown. Only Person and De-
vice ControlServices are used. This procedure is general, and can be used in
conjunction with any other services, as shown in Figure 2.
Following is a description of what happens at each bubble:

Al: getAvailableDevices(ServiceAddress asker) — sends requests to all
devices that the person could use (from input) and remembers the asker
so that a reply can be later send back.

A2: receive(Ptr<DeviceAvailabilityQuestion>) — sends back a response
with info of whether the device is available or not.

A3: receive(Ptr<DeviceAvailabilityReply>) — collects the replies. If replies
from all devices to which DeviceAvailabilityQuestion was sent are re-
ceived, calls the asker’s receive (Ptr<AvailableDevicesReply>) method
with the list of available devices.

5.3 Output

OutputRecordType is bold. Following each record type are only CustomData
fields that are output. Source device and simulation time are always included
in the fixed fields of all output records.

14

10020 "HTTP_REQUEST" srcPerson destIdentifier (mainRequestSize mainReplySize)
[(inlineReqSize inlineReplySize)...]

10021 "HTTP_ATTEMP" srcPerson destIldentifier result
The result is one of: 0=kSrcDevUnaval, 1=kSrcDevBusy, 2=kFError.

6 Generating Email Sessions

In contrast to WWW and call session types, the email sessions are intentions
that are mot dropped if no device is available to realize them. Rather, the
intention is remembered and the email send as soon as an appropriate device
becomes available.

6.1 Input

BaseRate, WorkRate, SleepRate — (scale shape location) parameters of
Weibull distribution.

DefaultEmailList, WorkEmailList — vector (enclosed in []) of pairs (des-
tination_id weight)

SizeParam — (scale location) parameters to Cauchy distribution

DeviceTypePattern — a vector (enclosed in []) of pairs (device_type weight)

6.2 Info-passing Map

There are only two entities involved in generating Email sessions: person and
his/her device (e.g. computer). Only EmailHandler sevices are used.

Figure 4 shows and Info-passing map for generating Emails. The ”Ma-
keEmail” Info going into bubble ”1” is a starting Info, which is scheduled when-
ever some parameters change (in response to PersonTamporalChange Info, see
section 3).

Following is a description of what happens at each bubble:

E1l: receive(Ptr<EmailHandlerInfo::MakeEmail>) — signifies that a new
email should be sent.

e Picks a destination of the email, using DefaultEmailList or WorkE-
mailList input, according to activity.
e Determines the size of the email, using SizeParam input

e Adds the new email to a queue of ”pending” emails (emails that were
created before, but possibly not sent due to device unavailability).

e If not already trying to send emails, do so (try to send all emails in the
queue). This means choosing a device from the ones that the person
owns (using DeviceTypePattern input) and sending it EmailBegin
Info, so see if it can send the email or not.

15

Person Device

EmailHandler EmailHandler
MakeEmail
A4
»El
MakeEmail EmailBegin
> E2
emailFinished()
EmailBegin [}
o o1 E3
EmailResult
E4 4

Figure 4: Info-passing map for Email sessions.

e Plan a new MakeEmail info using BaseRate, WorkRate or SleepRate
intput, according to activity.

E2: receive(Ptr<EmailHandlerInfo::EmailBegin>) — finds out whether the
device can send the email (is location available and idle). If yes, puts it-
self into ”emailBusy” status, outputs an EMAIL_SEND record and calls
emailFinished after the email is sent (this is where Network Simulator
could be used to decide it). If the device cannot send the email, sends back
a EmailResult info. If the device is location-available, but busy, outputs
an EMAIL_ ATTEMPT record.

E3: emailFinished (EmailHandlerInfo::EmailResult: :Result result) —
exists so that it can be called from the Network Simulator if enabled, with
the result of the email sent. Sets the device to ”idle” status and forwards
the result to the person.

E4: receive(Ptr<EmailHandlerInfo: :EmailResult> info)

e If the sent was successful, deletes the email from the email queue
and uses the same device to send (possibly) the next email from the
queue. Sends EmailBegin info.

e If it was not successful, and there are still deviced that were not
tried yet, try some other device (using DeviceTypePattern). Sends a
EmailBegin info to this other device, trying to send the same email.

e If no other device could be tried, then just leave the email in the
queue. It will be retried when situation changes (the person moves
to a different location).

16

6.3 Output

OutputRecordType is bold. Following each record type are only CustomData
fields that are output. Source device and simulation time are always included
in the fixed fields of all output records.

10010 "EMAIL_SEND" srcPerson destIldentifier size

10011 "EMATIL_ATTEMPT" srcPerson destIdentifier result
The result is one of: 0=kSrcDevUnaval, 1=kSrcDevBusy, 2=kError.

References

[1] Document describing the model used for generation synthetic communica-
tion sessions (SessionSim/DOC/model.report).

[2] Document describing SimCore simulation library (SimCore/DOC /report).

[3] L.Kroc: Simulation Based Analytical Tools for Mobile Communi-
cations, diploma thesis, Charles University, 2004, Prague (Session-
Sim/DOC/old.sessiongenerator).

17

