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1 Introduction

1.1 Motivation
1.2 Previous Work
1.3 Contributions

- activity type has a large influence on communication intensity
- unified tempral behavior model (inter-arrival time) for voice and data com-
munication

2 Model Overview

We focus on modeling the communication behavior of a single user (person),
as opposed to model combined traffic as it appears on communication network
elements (switched, routers, etc.) To do that, we need to find answers to the
following questions:

¢ when communication occurs,
e who communicates with whom,
e and what is being communicated.

We measure the time when communication occurs as time between two com-
munication sessions (inter-session time), finding who communicates with whom
is selecting source and destination of a session, and we refer to what is being
communicated as the content of the session.

Each of the three components is obtained using a stochastic process. Param-
eters to such processes in general depend on activity type (such as work, staying
home etc.) of a person whose session is being generated. General description of
the processes, including their dependence on activity types, is given bellow and
details for each session type are discussed in section 3.

2.1 Inter-session Time

The inter-session time can be measured either as time between end of one session
and beginning of the next (I;), or as time between two consecutive session starts
(A;). Which of the two definitions of an inter-session time is used depends on
the type of sessions. Sessions with considerable length and that cannot be made
in parallel (e.g. phone conversations) are modeled using I;, while instantaneous
session and sessions that can be performed in parallel are modeled using A4; (e.g.
emails or Web browsing).

Let s;, €; be start and end times of the ith session, respectively. Then then
the inter-sessions times are defined as follows: 4; = s; —s;_1 and I; = s; —e;_1.



We used Weibull distribution to model inter-sessions times (both A4; and I;)
of all session types we considered. It is defined with a cumulative distribution

function of: (28"
[ 1—e ifz>0
Fz) = { 0 otherwise

with shape parameter o > 0 and scale parameter 3 > 0 [4].

Even though the distributions of inter-session times look qualitatively very
different for different types of sessions, they can be modeled with Weibull distri-
bution using suitable shape parameter a. This is shown in Figure ?7. Moreover,
Weibull distribution arrises as an inter-arrival time of Power-law Nonhomoge-
neous Poisson Process, whose relevance and nice properties are discussed in
section 4

For data sessions (emails or Web browsing), probability of having short inter-
session times is high. This results in natural clustering of sessions in time, with
relatively long periods between the clusters. It corresponds to Weibull distribu-
tion with @ < 1. On the other hand, phone call sessions have low probablility of
very short inter-session times. Thus, calls are spread in time without a tendency
to form clusters. This situaton arrises for Weibull distribution with a > 1.

In other words, using the shape parameter a allows us to model the fact
that people have a tendency to send emails in bulks, while they wait longer
time between calls.

2.2 Source and Destination

A source of a session is choosen implicitly as the person who received a session-
begin event. Destination is chosen explicitely at the source’s side. Since the
nature of a destination is different for each session type (another person for
phone calls, a web or email server for data sessions), the way of choosing a
destination will depened on the session type.

There is, however, a common underlying structure for destination choosing.
Each source (person) has a destination list for each session type. The destination
list consists of pairs of destination identifiers and weights for choosing that
identifier. A destination identifier is then interpreted either as the destination
itself (e.g. person or server, this will depend on session type), or it may be
a special value singnifying that extra operations need to be done to find the
destination (e.g. choose randomly among all people at work etc).

2.3 Session Content

The ”what” is being communicated will again depend heavily on the particular
session type. It ranges from finding a duration of a phone call, to determining
number and sizes of various objects and requests for an HTTP session.



Cails/Line 100% Residential

T
1 i 1.0
[ ———
i frmm— : T
I | J I : 1 ! ! ‘f ‘ ' ‘ ] :»—!——. l
O L I : i : P | | i
8 9 10 11 i2 13 14 15 16 17 18 19 20 21 22 23 3
CCS/Line
’ (" 242
2L i [
L —T] | |
1= . U | | ! I ‘ .
oL | i | i _ | | | } ‘ ‘ i
2 9 100 11 12 i3 4 15 16 17 18 19 20 21 22 23 R
C%lls/Line 100% Business

15 16 17 18 19 20 21 22 23 8

8
CCS/Line
4 T |
" i — !
2L ! | | — |
, - i | ;_—’—_‘_L—r—v |
0Lt ‘ -
8 15 16 17 18 19 20 21 22 23 8
Clock Hours

Figure 1: Call intensity for residential (top panels) and business (bottom panels)
wire-line phones with respect to the time of day, taken from [5].

2.4 Activity Dependence

All of the above processes that determine properties of communicaton sessions
may vary with time. We identify one important variation using which we are
able to reporoduce realistic session intensity curve during a 24 hour period,
and that is activity. We use three basic categories of activities (activity types):
work, sleep, and default (all other activities). Using different parameters for the
inter-session call time process for each actity type, complicated session-intensity
curves at Figure 1 can be reproduced.

The call intensity curves in Figure 1 are strongly related to work and non-
work activities in a simulated population in Figure 2. This qualitatively justifies
the approach of varying inter-session times with activity types. While data often
shows that the intensity curve for a single user over many days itself resembles
the curves shown, we reproduce the shapes by generating sessions for many users
during a single day.

Other parts of the session-generation process can be varied likewise. So the
destination list could vary, resulting in workers calling other workers more likely
than people at home.
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Figure 2: Activities of the generated synthetic population in the Portland study
(in 15 minute bins).

3 Individual Session Models and Empirical Val-
idation

In this section, models that were introduced before are made concrete for each
of the three session types we model: phone calls, http traffic and emails. Results
from using the models are also compared to real-world data that is available to
us, or found in the literature. Many of the validation steps are performed by
observig the emergent behavior of the whole population, because that is what
empirical data is available for.

3.1 Phone Calls

The phone call model captures user behavior in making both wireline and wire-
less calls. The distinction between the two is not described in this paper, since
it is part of device usage modeling, which is not dealt with here. If data was
available that would justify making the distinction at the session level, the wire-
line and wireless call would use the same model, but with different parameters.
As it stands now, we combine bits and pieces of information we find from both
worlds to find out parameter values for the unified model.
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Figure 3: Inter-arrival time for cellular base station with a fit of Erlang-3,8
distribution, taken from [8].

3.1.1 Inter-session Time

The inter-session time in case of phone calls is modelled as time between end of
one call and beginning of the next (using the I; notation). The shape parameter
a for the Weibull distribution is chosen to be greater than 1, according to
empirically observed distributions. In Figure 3, a distribution of inter-arrival
times of calls at a cellular basestation is plotted.

Note that data in Figure 3 differs from our modeling approach in two im-
portant ways: it provides a combined inter-arrival time (for all users of the
basestation), and it plots time between two consecutive session starts (so the
A; times, using our inter-session time notation). But we can still use it to draw
conclusions about how a distribution of inter-session time should look like in our
model. In particular, we see that the distribution is not exponential. The fact
of having combined data for the empirical distribution does not matter, because
superposition of exponential distributions would again yield an exponential dis-
tribution. The error obtained by going from A; to I; is small, because of the
very short length of a phone call compared to a time between calls for a single
person. Fitting a Weibull distribution to the Erlang-3,8 data yields the shape
parameter a = 1.8 for our model.

The scale parameter S determines how frequently calls will be made. We do
not have a good source for this type of information. We use 2002 Yankee Group



Survey! [10] to estimate the number of wireless calls per person per day using
the number of monthly minutes (165) and average reported wireless call length
(3.7 min). This means cca 1.5 wireless calls/person/day. Moreover, from the
same survey, we learn that the average percentage of wireline calls replaced by
wireless is 28%, so there are about twice as many wireline calls as wireless. This
brings us to about 4.5 calls/person/day. From this, we can compute a mean
inter-session time of about 320 minutes, which corresponds to scale parameter
£ = 360 mins.

The  parameter varies with activity type, so that the resulting number of
calls per person will be different than 4.5, and the default 8 value must be tuned
accordingly. We assign (possibly different) value of the Sgefqu: parameter to
each person in our model (scale parameter for default activity). To do that,
we use a social network of our synthetic population [11], which is a graph in
which nodes correspond to people and an edge is present between two nodes if
the corresponding people somehow know each other. Now following an intuition
(we have no data to show it) that people with more social contacts tend to call
more often, we compute the individual parameters as

average number of social contacts

Bacaui = particular number of social contacts
(smaller Bgefquit value means more frequent calls).

From Figure 1, we learn that a peak intensity of business calls is approxi-
mately 3.6 times larger than home calls. So the 8 parameter for work activity is
Bwork = ﬁ Be fau“.z We have no data to set the night intensity, so we estimate
Bsteep = 10 - Baefaurr- The shape parameter a does not change with activity
type (we have no data to support the change).

Even though we concentrate on modeling exactly one day of communication
sessions, it is worthwhile to mention that [5] suggests that day-to-day call rate
distribution can be very well modeled using normal distribution.

3.1.2 Source and Destination

Destination lists for phone calls contain individual people that a particular per-
son might call, plus special entries for calling random destination and random
people that are currently at work.

The entries of individual contacts are obtained from the social network men-
tioned before. The weights are proportional to a strength of the social contact
(a weight on the edges in the network, e.g. time duration of the contact). We
have no data to set weights of the special entries, so we used the following values:
10% of random calls, and 20% of calls to random workers during work activity
(no calls to random workers during other activities).

The difference in calling random workers mentioned above is the only place
where destination lists differ with activity.

12004 survey does not have the required fields.
2We can do this because the mean of Weibull distribution is linear in its 8 parameter
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Figure 4: Call-length distribution with a normal fit on logarithmic scale, taken
from [6].

3.1.3 Session Content

Content of a phone call session is defined only by its length. Figure 4 from [6]
suggests that a log-normal distribution represents a very nice fit for wireline call
lengths. The log-normal fit (or combination of log-normals) for session lengths
is also suggested for other scenarios [7, 9]. The mean and standard deviation
for the call lengths is taken from Figure 4, m = 113s and s = 189s, respectively.

The activity dependence can be derived from Figure 1 by dividing CCS? by
then number of Calls in corresponding time bin. We find that the mean of 113
seconds corresponds best with work activity, while default activity (e.g staying
home) has calls of approximately twice the length, 226 seconds. This nicely
agrees with the information about wireless calls obtained from the Yankee Group
Survey [10] discussed above. Parameters for to the log-normal distribution are
then meanlog = 4.07, sdlog = 1.15 for work activity?, and meanlog = 4.76,
sdlog = 1.15 for default activities. In lack of any data to validate it, we do
not vary the sdlog parameter with activity, so the standard deviation of the
resulting call lengths will increase with increased mean.

Length of home phone calls also depends on time, as noted in [5]. This is
also apparent from Figure 1 by observing that the ratio between CCS and Calls
is not constant (it is more or less constant in case of business calls). This time
dependence is not captured by our model.

3.2 Http Traffic

The HTTP sessions that our model describes are sessions generated by people
using the World Wide Web service of the Internet. Other applications that may
operate using the HTTP protocol (such as streaming [12], web crawlers or other
automated HTTP usage) are not captured. The model is based on, and is very
simlar to, the one presented in [13, 14].

3Hundred Call Seconds, a measure of call intensity.
4values given in Figure 4 are for logarithm-10 base log-normal distribution.
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3.2.1 Inter-session Time

In WWW sessions, inter-session time is measured as time between two consec-
utive session starts (A4;). This approach differs from the one used in [13, 14],
where individual sessions alternate between on/off states. Scheduling a next
session right after one starts (as oppose to when it ends) allows for having mul-
tiple simultaneous sessions for the same person, which we believe corresponds
better to reality.

Fitting Weibull distribution to data from [15] and to data we collected our-
selves (see Appendix A) is shown in Figure 5. We use 900 seconds as threshold to
distinguish http requests that belong to different sessions (shorter inter-request
times are considered to belong to the same session). This technique was sug-
gested in [13]. The fitted parameters are a = 0.76 and 8 = 12000 for [15] data,
and a = 0.95 and 3 = 5600 for our dataset, in seconds (K-S and x? goodness-
of-fit tests both reject it utterly, though). The shape parameters « are similar,
while g values differ more significantly. This suggests that the model for WWW
inter-session time is similar to the phone calls model. Shape parameter « is help
constant for all users, while scale parameter § varies from user to user. Due to
lack of data to explore the user dependence, we keep both parameters constant
for all users at a = 0.81 and 8 = 6900 (fit for combined data).

Figure 6 shows Internet usage intensity by time of day. Assuming that the
usage is dominated by WWW browsing, the pattern looks remarkably simi-
lar to that of phone calls: combination of default/work/sleep activity types
with different session intensities for each type will recreate the pattern. Seeing
that work intensity is about twice the default one, we set Byorr = % - B and
betagefautt = % - B. We set again Bgeep = 10 - Baefquit as in the case of phone
calls.

3.2.2 Source and Destination

The destination list in case of HTTP traffic contains HTTP servers, along with
weights coresponding to their usage. An HTTP server can either be specified
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Figure 6: Internet usage by time of day, modified data from [16]

in terms of URL, or as an id of a particular server. Note only that while most
surveys show raning of URLs, many URLS may be mapped to go to the same
server (e.g. Akamai servers).

The weights for individual web servers should follow the Zip’s Law [15]
(weight of the ith most popular site is proportional to 1/i). The destination
list may also be different for work and default activity, but we have no data to
show that.

3.2.3 Session Content

Each WWW session consists of several requests, and each requests has a pri-
mary request and reply, plus several secondary request-reply pairs. The primary
request-reply correspond to the main HTML file, and the secondary request-
replies pairs correspond to inlined object within that web page. The process
of constructing a WWW session content, along with the random distributions
that are used, is outlined bellow:

1. Number of requests in the session: X =lognormal(meanlog=1.8, sdlog=1.68)
(from [13])

2. For each request:
(a) Choose another destination server with prob 0.3 (conforms to con-
secutive document retrievals measure from [15])
(b) Primary request-reply pair:

i. Request size [kB]: S=lognormal(meanlog=0, sdlog=0.29) (com-
bining information from [13, 15])
ii. Reply size [kB]: M =lognormal(meanlog=1.31, sdmean=1.41) (from [13])

10
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Figure 7: Distribution of inter-session time for emails and its Weibull fit (left
panel) and email send intensity during a day (right panel). Obtained from our
data (work-related emails).

(¢) Number of inlined objects in the request: N=gamma(shape=0.24,
scale=23.42) (from [13])

(d) For eech inlined object (secondary request-replies)

i. Request size [kB]: R=lognormal(meanlog=—1.4, sdlog=0.29) (com-
bining information from [13, 15])
ii. Reply size: O=lognormal(meanlog=—0.75, sdlog=2.36) (from [13])

3. Time between requests [s]: V =weibull(shape=0.51, scale=21) (data from [15]
fitted to median and stddev mentioned in [14])

The number of request that actually will need to be fetched from the original
server will depend on the browser’s and local network’s caching mechanism.
Data from [14] suggest that there is only a relatively small fraction (less than
10%) of locally cached data. Local network caches (such as corporate proxies)
might possibly have a larger amount of prestored data from popular sites. Due
to unavailability of data, we do not include any caching mechanism in our model.

3.3 Emalils

There is not much email traffic analysis in the literature. A nice overview of
what is available is in [13]. We also obtained some data ourselves, as described
in Appendix A, which we use to estimate parameter values for our model.

Unlike other session types, sending emails is a three-stage process: its send-
ing to a local email server (e.g. SMTP server), transmission to the recipient’s
email server (e.g. POP3 server), and its download to the recipient. Both first
and last stage include modeling of user behavior, but we focus on the first stage.
Another popular way of working with emails is via a WWW interface, which
we hope to capture in our WWW session model.

11



3.3.1 Inter-session Time

The inter-session time is again measured by tim between two consecutive email
sends (A;). We used our dataset to estimate the parameters for Weibull dis-
tribution, as shown in Figure 7 (left panel). The Weibull fit yields parameters
a = 0.6 and § = 3000 (in units of seconds). These values correspond to an
average of the three users we analyzed, and to work-related emails only. More-
over, we expect that the values obtained will be higly above average due to the
nature of their work. We therefore set the average work-related scale parameter
t0 Bwort = 15000. We keep the shape parameter - = 0.6 the same, which
is also supported by our data (the relative difference in the a values is small
in our sample compared to fs). Even though we observe large varience in the
scale parameter among different users (1.5K, 3K and 5.2K), we keep it fixed in
our model and do not vary it by user. This is due to lack of data to explore the
dependence properly.

The right panel of Figure 7 shows that email sending intensity follows again
the curve of work activity type. Similrarly to WWW sessions, we define the
scale parameters for other activity types as follows: Bgefquit = 2 - Bwork and
Bsteep = 10 - Baepaurr (Figure 6 can be used again).

3.3.2 Source and Destination

The destination model is essectially the same as in case of WWW sessions. The
destination list consits of email server entries (i.e. final recipients full email
address is not necessary) along with weights for choosing each.

Emails can possibly have multiple recipients. There is no source in the
literature to statistics about this, and our limited sample analysis is inconlusive
as to which distribution should be use for this purpose. Therefore, only single
recipients are included in our current model.

3.3.3 Session Content

Email session content is fully defined in our model by the email size. Fol-
lowing the model in [17], we fit our data to a trimmed Chauchy distribution
(because there is a minimal email size of about 0.4KB, all values bellow this
are discarded). The email size distribution along with the trimmed Cauchy
fit is in Figure 8. The fitted parameter values for the Cauchy distribution are
location = 0.8 and scale = 1.4. As noted in [13], the Cauchy model tends to
underestimate fraction of long emails. This is somewhat true also in our case,
althought our location parameter is larger than the one considered in [13].

It is hard to regenerate the empirical data in terms of the same mean and
standard deviation. This is due to the fact that neither of the measures is
defined in the case of Cauchy distribution, so when a sample is drawn from
such distibution, the average and sample standard deviation vary significantly.
A median (a measure that is defined for Cauchy distribution) of the trimmed
distribution matches well with the observed data, though.

12
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Figure 8: Email size distribution (on log scale) along with its (trimmed) Cauchy
fit, from our data.

3.4 Other

This section contains information about other possible session types which gen-
eration could benefit from activity information. Models for these are not devel-
oped in detail, though.

3.4.1 Streaming

From Figure 9, it can be seen that intensity of streaming applications corre-
sponds faily well with work activity (in case of live streams), or combination of
default /work/sleep activity similar to phone calls (for on-demand streaming of
pre-recorded clips). But there is a very large variability of the intensity from day
to day ([12] documents a six-fold increase from one day to the next). This sug-
gests that more data need to be explored before a model for such highly-varying
process is developed.

4 Theoretical Underpinnings

The inter-arrival times A; are modeled as a renewal process [1]. This means
that A; are independently identically distributed according to some distribu-
tion. While the distribution is different for different session types, it can be
very well modeled as Weibull distribution with different shape parameters (see
section 2.1).

13
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Figure 9: Intensity of streaming usage for on-demand clips (left panel) and live
streams (right panel), taken from [12].

The Weibull distribution has some nice properties, which are discussed bel-
low. It is a distribution of inter-arrival times arrising from a non-homohenegous
Poisson Process, with an intuitive explanation of the difference in the distri-
bution shapes. This in turn allows us to reschedule already-scheduled events
without afecting the overall inter-arrival time distribution. This is important
because we have to reschedule future session events whenever an activity of a
person changes.

4.1 Power-law Non-homogeneous Poisson Process

To review basic definitions and properties of Poisson process and to see its
relevance to session generation, see Appendix B. A non-homogeneous Poisson
process (NHPP) is a Poisson process where the rate A is a function of time,
A(t) [2]. The inter-arrival time cumulative distribution function (CDF) is given

by:
Pl <t]=1—¢ Jo 04" (1)

(see Appendix C for derivation)
For A(t) = a-t7% (a > 0, 3 < 1), we obtain a Power-law Non-homogeneous
Poisson Process [3]. Using this in Equation 1, we obtain:

a tl—ﬁ

Pl4;<fl=1-¢"75 (2)

which is a CDF of Weibull distribution with a shape parameter 1 — 8 and scale

1
1-8\1#
parameter ( 5

In session simulation, the time ¢ always measures time since the last event.
The a parameter sets the initial rate, and § governs how the rate chages in
time. When an event occurs, the rate is reset to « (by setting ¢ to 0). For

14



B = 0, the rate is constant, and the process is therefore a homogeneous Poisson
process with exponentially distributed inter-arrival times. For 0 < § < 1, the
rate decreases in time, and events are therefore more likely to happen soon after
a previous event, naturally creating clusters in time (typical for data sessions).
For 8 < 0, the rate increases in time, and consecutive events are therefore
separated by longer intervals (typical for call sessions).

4.2 Rate Parameter Change with Activities

When a change in activity of a person occurs, different aue,, and ey param-
eters may have to be supplied to the rate function A(¢). A new event has to
be scheduled with the new rate function, replacing the old event. Let T' denote
the time elapsed since the last event, T' > 0. Since T may now be non-zero, we
have to alter Equation 1 appropriately:

T+t

Pridi<tl=1-c L. T Amdr _ 1— e—fo AN(T+7)dr 3)

where ¢ measures time since the rate change.
Plugging cinew and Bpeq, into the rate function A(t) = a - t7, we obtain a
generalized version of Equation 2:

Ppld; <] = 1 — et ((@+070-11) "

From Equation 4, it follows that the time to the next event after the rate
paramater change does not depend on the previous rate paramaters, but only
on the new parameters values and the time of the last event occurance.?

There is one important property that we need to preserve when rescheduling
events. We need to make sure that the probability of an event occurring in a
certain interval (¢,¢ + A] does not change by rescheduling the event with the
same rate parameters. This is captured by the following equality:

Pr, [A; <t+ AlA; > t] = Pr, [A; <t + AJA; > ] (5)

for x > Ty > T», where T » are two times after the last event occurance when
we are rescheduling the next one. If z < T, then this would mean that the
event had already happened at time 7" and we would not be rescheduling it. To
show that Equatily 5 holds, let INT (T, t1,ts) := — fttf AT + 7)dr. Then using
a definition of conditional probability and Equation 3, we have:

1 — INT(T04+A-T) _ (1 _ JINT(T,0-T)
PriA; <t+A|A; >t] = ‘ U—e )

1— (1 — eINT(T,0,t-T))
1 — I NT(T,0,t+A=T)—INT(T,0,t—T)

1 — oI NT(Tit=T,t+A=T)
1 — INT(O.t,t+A)

Since Pr[A; <t+ AJA; > t] does not depend on T, it follows that Equality 5
holds.

5For T' > 0, Equation 4 no longer corresponds to the Weibull distribution.
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5 Conclusions

A Obtaining Data

We were able to obtain a limited sample of WWW behavior of one user and
email statistics of few. In hope that somebody may someday be able to do a
more complete study, a description of was was done is included here. All scripts
are assumed to be run from bash.

A.1 Http Traffic

Morzilla has a logging facility that can be used to gather data about requests
and responses that a user generates. It does not have any negative consequences
(like speed) as long as the logging level is kept low. To enable logging, do the
following before running Mozilla (e.g. put the follofing lines into mozilla script,
with a correct path for the log files):

export NSPR_LOG_MODULES=nsHttp:3
export NSPR_LOG_FILE=/home/kroc/HttpLogs/‘whoami‘-‘date +"/s"‘.txt

This logs all request and reply headers for the HTTP traffic. From this,
the number of seconds in a day when a request was issued and time between
requests can be obtained by:

echo -e "Seconds\tInterSeconds"
grep -E "http request|Date: " |
grep "http request" -Al |

grep "Date:" |
cut -d: -f3- |
while read DATE
do
date -d"$DATE" +"%H %M %S"
done |
gawk ’
function getSec(h,m,s) { return (h*60 + m)*60 + s }
NR==1 {
Last=getSec($1,$2,$3);
print Last,"NA";
next }
{
This=getSec($1,$2,$3)
if( This >= Last ) { print This,This - Last }
else { print This,"NA" }
Last = This
}
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The above is only an approximation, it takes a ”Date:” field from the first
responce to the request, because the request header does not have the date and
time information in it. It only outputs inter-requests times for requests issued in
the same day, we do not want ”over-night” intervals (an approximation again,
different days are recognized by decrease in time, which may not always be the
case).

A.2 Email

It is possible to extract information about emails sent by Mozilla (or Nescape)
by examining a file that contains the email Sent folder (usually something like
~/.mozilla/default/*/Mail/*/Sent). The samples we used (Jim, Stephan
and Lukas) were all work emails with not necessarily an average work schedule
:-) . The following script does that and outputs [Time, Size, Recipients] fields
for every email sent:

gawk -v F3="" -v QFS="" 7
BEGIN {
Time="Time"
Sum="Size"
Recipients="Rcps"
Email=0
Rcps=0 }

# beginning of a new email
/"From - / && Email==0 {
Email=1
print Time,"\t",Sum,"\t",Recipients
Time=llll
Sum=0
Recipients="" }

# date section

/"Date: / && Email==1 {
sub(""Date: ","",$0)
Time=$0 }

# turn recipient info off

/" [l:graph:]1]1+: / {
Rcps=0 }

# turn info about recipients on

(/~[tT1lo0]:/ Il /~[cCIlcCl:/ || /- [bBI[cC]l[cCl:/) && Email==1 {
Rcps=1 }

# looking for an empty line at the of an email header
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/" [[:space:]]1*$/ && Email==1 {
Email=0
Rcps=0 }

# remember recipients
Rcps==1 {
Recipients = Recipients " " $0 }

# sum up size of content
{ Sum += NF }

END {
print Time,"\t",Sum,"\t",Recipients }’

Then the following script takes the above output and turns it into [Seconds
in a day, Size, Number of recipients, Seconds between sends] fields (as with the
WWW sessions, the Seconds between sends may not be correct):

echo -e "Seconds\tSize\tRcpsNum\tInterSeconds"

IFS="#"

tail +2 |

tr " \t n ll#ll |

while read Time Size Rcps;
do

Time2=‘date -d"$Time" +"%H %M %S"‘
Rcps2=‘echo $Rcps | sed -e ’s/["@]//g’ | wc -c | gawk ’{print $1-1}’°¢

echo -e "$Time2\t$Size\t$Rcps2"
done |
gawk -v OFS="\t" °
function getSec(h,m,s) { return (h*60 + m)*60 + s }
NR==1 {
Last=getSec($1,$2,$3);
print Last,$4,$5,"NA";

next }
{
This=getSec($1,$2,$3)
if( This >= Last ) { print This,$4,$5,This - Last }
else { print This,$4,$5,"NA" }
Last = This
} >
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B Poisson Process

A Poisson process can be characterized as a renewal process whose inter-arrival
times {A4;} are exponentially distributed with rate parameter \:

.P[Az St] =1—eM
Equivalently, it is a counting process satisfying:

e—)\t(At)n

PN(t) =n] = —

(the number of arrivals in a given interval (0,¢) has a Poisson distribution with
a parameter At, where A is the event arrival rate and ¢ is the length of the
interval).

The derivation of the above distributions and the process’s relevance to the
problem of session generation can be viewed using a simple thought experiment.
Suppose we have i discrete time instances of length A¢. In each of these intervals,
an event may occur with a constant probability p = A\.At independent of any
other event occurrences. This corresponds to a situation where a person decides
each second whether to make a call or not, independent of his/her decision
history. Now the question is what is the probability that an event occurs exactly
n times. This can be modeled using binomial distribution:

PIBiG.p) =0l = (| )1 -

For i — oo, At — 0+, and i.At — ¢ where ¢ is a constant (overall time), the
above expression becomes e_x;# This means that it has a Poisson distribu-
tion with a parameter At, corresponding to the Counting process definition of
the Poisson process stated above.

Now a question arises of what is the waiting time until the first event arrival.
It is a random variable, which cumulative distribution function can be derived

as follows:

F(t) = P/[the first event’s time < ]
1 — P[the first event’s time > ]
1 — P[no event in interval of length {]
= 1— P[Po(At) = 0]
e~ At (/\t)O
0!
= 1—e M

It is hence an exponentially distributed random variable with rate parameter
A, as stated in the Inter-arrival time process characterization of the Poisson
process.
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C Inter-arrival time in Non-homogeneous Pois-
son Process

See [2] for the full story. Let N(t) denote the number of times an event occurs
in time interval (0,t]. Let p(n,t) = P[N(t) = n] be the probability that the
event occured exactly n times. From the definition of NHPP, it follows that

p(0,t+ A = p(0,8) (1 — A() - At — o(A?))
= p(0,t) = A(t) - p(0,t) - At — p(0, 1) - o(At)

(because probability that an event happens in time interval of length At must
be A(t)AT + o(At), so that at maximum one event occurs in a sufficiently small
interval)

Therefore,

p(0,t + At) — p(0,1)

Af — () - p(0, 1) — POD oA

At

Now assuming that p(0,¢) is differentiable with respect to ¢ and letting At —
0, we obtain:

Ep(oa t) = _)‘(t) ) p(oa t)

We solve the above equation with an initial condition of p(0,0) = 1, and get:
p(O,t) — e— fO )\(T)dT
Now following the same logic as in Appendix B, we conclude that

F(t) = P[the first event’s time <

1 — P [the first event’s time > ]
1 — P[no event in interval (0,t]]
= 1-p(0,%)

— 1_e fot A(r)dr
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