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This paper presents two complementary but equivalent semantics for a high level 
probabilistic programming language. One of these interprets programs as partial measurable 
functions on a measurable space. The other interprets programs as continuous linear operators 
on a Banach space of measures. It is shown how the ordered domains of Scott and others are 
embedded naturally into these spaces. We use the semantics to prove a general result about 
probabilistic programs, namely, that a program’s behavior is completely determined by its 
action on fixed inputs. 

1. INTRODUCTION 

Probabilistic computation has recently become an important topic of investigation 
in theoretical computer science. Major areas of activity include average-case analysis 
of algorithms, stochastic programming such as probabilistic primality testing, and the 
study of probabilistic machine models and reductions. In this paper we provide a 
formal semantics for a class of probabilistic programs. There are several reasons why 
this should prove worthwhile: 

(1) Yao (1977) and Rabin (1976) have grouped research in probabilistic 
algorithms into two areas, which Yao has termed the distributional approach and the 
randomized approach. In the former, the program is deterministic, the input varies 
according to some probability distribution, and the average behavior of the program 
is studied with respect to that distribution (see, e.g., Knuth (1973), Karp (1976), Yao 
and Yao (1978)). In the latter, the input is fixed, but the program can make 
stochastic moves (see, e.g., G ill (1974), Miller (1975), Rabin (1976), Solovay and 
Strassen (1977), Adleman (1978)). Yao (1977) established a connection between the 
two approaches by defining a measure of complexity based on each and proving their 
equivalence. The formal semantics herein provides a common framework in which the 
two approaches are unified. 

(2) Until now, models used in the study of probabilistic complexity have been 
relatively low-level from a programming language point of view (decision trees in 
Yao (1977), probabilistic Turing machines in G ill (1974), directed graphs in Gouda 
and Manning (1976), probabilistic finite automata in Paz (1971)). These machines 
are severely limited in the way they use probability and do not offer the programmer 
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much versatility. For example, randomness is available only in simple discrete 
distributions. However, high-level probabilistic languages have been in use since the 
earliest versions of FORTRAN (Backus et al. (1957)) and BASIC (see Kurtz 
(1978)), both of which had a random number facility. The BASIC random number 
generator uses a continuous distribution: it gives a random real number between 0 
and 1 with uniform probability. This is useful in computing over the real numbers, 
since continuous distributions can often be more realistic, for instance in modeling 
economic systems or population growth. Here we consider while programs with a 
random assignment x := random, an idealized language that more closely resembles 
these high-level programming languages. Neither the distribution of the random 
number generator nor the distribution of the input is restricted in any way. In 
particular, there is no distinction drawn between discrete and continuous 
distributions. 

(3) Up to now, probabilistic algorithms have been analyzed largely by ad hoc 
methods. This is acceptable for simple discrete distributions, since they are fairly well 
understood (e.g., a “random graph” is usually taken to have every edge with 
probability l/2, certainly an expedient choice, but not necessarily the most realistic). 
In general, sums are replaced by integrals, combinatorics is replaced by analysis, and 
intuition is more likely to fail. In such cases it is useful to have a formal deductive 
system, but a viable semantics is a necessary first step. Ramshaw (1979) has taken a 
further step by proposing a deductive system and proving it sound with respect to this 
semantics. 

(4) Finally, and most importantly, this work recasts the usual Scott-Strachey 
least fixed point semantics in a unexpected mold: the theory of linear operators in 
Banach spaces. If is shown how the partially ordered domains of Scott (1970) and 
others, which originally may have appeared contrived, are in fact embedded as 
substructures of more conventional mathematical structures which have been studied 
since the 1930s. Specifically, programs and data are interpreted as elements of the 
ordered Banach spaces of Birkhoff (1938) and Kakutani (1941). These spaces have a 
wide range of applications: statistical mechanics, functional analysis, ergodic theory, 
Markov processes, and differential equations. Their theory is a rich combination of 
analysis and algebra and has been the subject of dozens of volumes published over 
the past 50 years. It therefore seems worthwhile to point out their relationship to 
programming language semantics, thereby putting this well-developed theory at our 
disposal. 

In order to be as self-contained as possible, and for ease of reference, Section 2 
contains the basic definitions and elementary results of linear analysis and probability 
theory that are relevant to this paper. 

In section 3 we describe the syntax of probabilistic while programs, which are like 
deterministic while programs (simple assignments 

Xi :=f(X, ye**) X,), 
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composition, conditional tests, while loops), except that they also allow calls on a 
random number generator 

xi := random. 

We then give two equivalent semantic definitions, 1 and 2. Semantics 1 is closer to 
classical probability theory as found in Feller (1968) and Chung (1974), and is more 
likely to be the result of a first attempt at describing probabilistic programs formally, 
since it is more operational and more intuitive. Semantics 2 is more denotational and 
more closely resembles Scott-Strachey least fixed point semantics, since it involves 
partially ordered domains, namely, the partially ordered Banach spaces of Birkhoff 
(1938) and Kakutani (1941). In this semntics, programs are interpreted as continuous 
linear operators on a Banach space of distributions. We prove the equivalence of the 
two semantics and argue that Semantics 2 expresses properties of the probabilistic 
behavior of programs at a more appropriate level of abstraction. 

In Section 4 we demonstrate the connection between Scott-Strachey least fixed 
point semantics and probabilistic semantics by showing how an ordered domain of 
partial functions is embedded naturally into an ordered Banach space. 

In Section 5 we show how to extend the semantics to all higher functional types. 
In Section 6 we prove a result about probabilistic programs illustrating the use of 

the formalism developed in previous sections. The result gives a sufficient condition 
for program equivalence. It says that if two programs agree whenever the input is 

fixed, then they are equivalent. In order words, a program’s behavior is completely 
determined by its behavior on inputs whose distribution is a point mass. This result 
may be considered a manifestation of the discrete nature of programs. One of its 
consequences is that programs can be proved equivalent by considering their action 
on discrete inputs only, which can be represented by countable sums instead of 
abstract integrals. Thus combinatorics can replace analysis and integration theory in 
equivalence proofs. 

2. BACKGROUND AND NOTATION 

We will use the notation and terminology of the following books: measure theory: 
Halmos (1950); probability theory: Feller (1968), Chung (1974); linear analysis: 
Dunford and Schwartz (1958). In addition, Birkhoff (1967) is an excellent 
introduction to partially ordered vector spaces. Some of the basic definitions and 
standard notation from these fields are reviewed below. 

R denotes the real numbers, IR+ the nonnegative real numbers, and o the 
nonnegative integers. 

2.1. Measure and Probability 

A measurable space is a pair (X, A4) where X is a set and M is a o-algebra of 
subsets of X, i.e., M is a Boolean algebra of subsets of X closed under countable 
union. Elements of M are called measurable sets or events and are denoted B, C,.... 
-B denotes the complement of B in X. A function f: (X, M) + (Y, N) is measurable 
provided f -l(B) E M whenever B E N. 
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Let (X,, M,) be a sequence of measurable spaces and let n,,X,, be the direct 
product of the X,, with projections n,: l7,X,, -+ Xi. The Cartesian product Z?,,(X,, M,) 
is the space (n,X,, M), where M is the smallest u-algebra containing all cylinders 
~~7 l(B), B E Mi. If the number of X,, is countable, then M is the smallest a-algebra 
containing all rectangles lI,,B,, , each B, E M,. The Cartesian product of a copies of 
(X, M) is denoted (X”, Ml”‘). 

A measure or distribution p on (X, M) is a function M-+ R that is countably 
additive, i.e., if B, are a countable set of pairwise disjoint elements of M, then 
,u(U,, B,) = Z,,u(B,). It follows that ,u(A U B) <p(A) + ,u(B) and ~(0) = 0. A measure 
,U is positive if ,u(B) > 0 for all B E M. It is a probability measure if it is positive and 
p(X) = 1 and a subprobability measure if it is positive and ,u(X) < 1. 

If X and Y are two measurable spaces, and if ~1, v are measures on X and Y, respec- 
tively, then the product of ,u and u, denoted ,u X v, is the unique measure on the 
Cartesian product X x Y such that (u x v)(B x C) =p(B) v(C) for all rectangles 
B x C. 

Let (X, M) be a measurable space, ,B E A4. The characteristic function of B is the 
function xB: X + (0, 1 } such that xB(x) = 1 iff x E B. A measurable partition of B is a 
family of pairwise disjoint measurable sets whose union is B. A simple function 
f: X+ IF? is one of the form ZBEnaaxB where aB E R and n is a finite measurable 
partition of X. 

If ,D is a measure and B E M, let ,u* denote the measure r(lg(A) =,@ n B). The 
conditional probability relative to B is given by the measure ,uuB/p(B). 

Every measure can be decomposed into its positive and negative parts: to every 
measure ,u there correspond unique positive measures ,u+ and lu - such that ,U ’ = ,ua 
and ,K = -+-,a for some B E M (Halmos 1950, Theorem B, p. 123). This is calied 
the Jordan decomposition of p. The measures p+ and ,K are called called the positive 
and negative variation of p respectively. The measure ly 1 = ,u + + p”- is called the total 
variation or absolute value of ,a The total variation norm is a map 11 I(: B -+ R ’ 
associating with each measure p the nonnegative real number ll~ll= 1~1 (X). 

A measure is discrete if all its weight is on at most countably many points, i.e., if 
there exists a countable measurable set B such that p =.~a. If ,u =,u,,., and ,u((x}) = 1, 
then ,a is called a point mass. A measure is continuous if ,a(B) = 0 for all countable B. 
Every measure can be represented uniquely as the sum of a discrete measure and a 
continuous measure. 

A measure space (X, M,,u) is a measurable space equipped with a measure. A 
probability space is a measure space (X, M,p) where ~1 is a probability measure. A 
random variable is a (partial) measurable function whose domain is a probability 
space. The domain of a random variable is called the sample space and its range is 
called the value space. 

A random variable x: (X, M, ,u) -+ (Y, N) induces a subprobability measure P o x- ’ 
on (Y, N): 

,u ox-‘(B) =p(x-‘(B)). 

If x is total, then ,U o x-’ is a probability measure. When the sample space is 
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understood, we occasionally use the more intuitive notation “Pr(x E A)” and say “the 
probability that x lies in A” to denote the value of p o x-‘(A). 

A random vector is a list of random variables 

with the same domain. Equivalently, a random vector is a random variable from 
(X, M, p) into the Cartesian product n(Y,, Ni). If x =x,, x2,... is a random vector, 
then the subprobability measure p o x-i on Z7(Yi, Ni) induced by x is called the joint 
distribution of the random variables x, , x2,.... Two random variables x, y defined on 
the same sample space (X, M, ,u) are independent if their joint distribution is exactly 
the product distribution (,u o x-‘) x (u 0~~‘). In other words, x and y are 
independent if Pr(x E A and y E B) = Pr(x E A) . Pr(y E B). 

2.2. Partially Ordered Normed Vector Spaces 

A norm on a vector space B is a map I( 11: B + Rt such that 

II4 = 0 iff x=0, 

II4 = I4 Ilxll for all scalars a, 

IIX +Yll G IIXII + IIYII. 
The norm induces a metric on B: the distance between x and y is 1(x --y/l. If B is 
complete with respect to this metric, then B is called a Banach space. 

If (By II II), CC II II) are two normed vector spaces and if T: B + C is a linear 
transformation, T is (( ((-bounded if 

s;p lIT(x < 00, 

where the supremum is taken over the closed unit sphere S = (x ( I(x(( < 11. A linear 
transformation is II (J-bounded if and only if it is continuous with respect to the metric 
induced by 1) I). The space of I( (J-bounded linear transformations from B to C is a 
normed vector space under pointwise addition and scalar multiplication, with the 
uniform norm 

II TII = s;p II T(x)ll, 

so called because it characterizes uniform convergence of sequences of functions. A 
II [l-bounded linear transformation B -+ B is called a linear operator on B. If B is a 
Banach space, then so is the space of linear operators. 

A positive cone in a normed vector space B is a distinguished subset P of B 
satisfying the two properties 

x,yEPanda,baO --) ax+byEP 

x,-xEP-+x=O. 
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For example, P might be the set of vectors in R” with nonnegative coefficients, or the 
set of functions taking on only nonnegative values in the space of continuous real 
valued functions on some interval. 

P induces a partial order on B: x < y iffy - x E P. P is then the set of x > 0 (hence 
the term positive). 

With respect to the order <, addition and scalar multiplication are order 
continuous, i.e., 

x + sup x, = sup@ + x,)3 (I (I 

sup ax, =a supxn, a>0 
a a 

in the sense that if one side exists, then so does the other and they are equal. The 
following are equivalent: x < y for some y E P; x is in the linear span of P; x can be 
written as the difference of two positive elements. 

A directed set is a subset A of B such that any pair of elements in A has an <- 
upper bound in A. An interval is a set [x, y ] = {z 1 x < z < y ). A set is order-bounded 
if it is contained in an interval. 

(B, P) is a Vector lattice if every pair x, y E B has a <-least upper bound or join 
x V y. Equivalently, B is a vector lattice if every pair x, y E B has a greatest lower 
bound or meet x A y. Vector lattices are distributive, addition and scalar 
multiplication distribute over V and A, and 

x+y=xVy+xAy. 

Every x in a vector lattice can be written uniquely as the difference of two positive 
elements x+, x- whose meet is 0. This is called the Jordan decomposition of x. The 
absolute value of x, denoted 1 x 1, is defined as 

(XI =x+ +x- =x+ v x-. 

For any x, y in a vector lattice, 

x+=xvo and x- = (-x) v 0, 

xvY=(x-y)+ +y. 
xAy=-(-XV--y), 

lxI>Oo, and Ix\=Oiffx=O, 

IX-yI=xVy-xxy, 

xVy=j(x+y+(x-y(). 

A vector lattice (B, P) is conditionally complete if every set of elements of B with 
an <-upper bound has a least upper bound. 
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Let T be a linear transformation between vector latices. T is is&one if x < y 
implies T(x) ( T(y). Equivalently, T is isotone if T maps the positive cone of the 
domain into the positive cone of the range. The set of isotone maps forms a positive 
cone in the space of linear transformations, and this induces an order < as above. T 
is said to be order bounded if it maps order-bounded sets to order-bounded sets. If the 
range of T is conditionally complete, then the following are equivalent: T is order 
bounded; T is in the linear span of the isotone linear transformations; T has a Jordan 
decomposition T= T+ - T- (Birkhoff, 1967, p. 366). The set of order-bounded 
linear transformations from a vector lattice to a conditionally complete vector lattice 
is again a vector lattice under the definition 

(S ” T)(Y) = os;uxqy S(x) + T(Y -xl, Y 2 09 

(S ” T)(Y) = P ” TNY’) - (S ” qy-). 
(2.2.1) 

If B = (B, P, [( 11) is both a Banach space and a vector lattice such that order and 
norm are related by the properties 

III~III = IIXII~ 
o<~<Y+llxll~IIYII9 

then B is called a Banach lattice. 
If (X, M) is a measurable space, the set B(X, M) of measures on (X, M) with the 

cone P of positive measures and total variation norm )I I( forms a Banach lattice, with 
addition scalar multiplication defined pointwise: 

CA+ v)(B) = P(B) + @I, 

@MB) = w(B). 

3. PROBABILISTIC while PROGRAMS 

In this section we describe a class of probabilistic programs called probabilistic 
while programs and give two equivalent approaches to their interpretation. 

3.1. Syntax 

We consider while programs over the variables x, ,..., x,. Syntactically, there are 
five types of statements: 

(3.1.1) simple assignment. 

xi:=“tyxl ,*.., XJ. 

(3.1.2) random assignment. 

xi := random. 
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(3.1.3) composition. 
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(3.1.4) conditional. 

S; T. 

ifBthenSelse Tfi. 

(3.1.5) while loop. 

while B do S od. 

The delimeters fi and od will usually be omitted. 

3.2. Semantics 1 

In trying to assign formal meaning to these programs, Semantics 1 would likely 
be the first idea to occur. It is closer to classical probability theory as found in Feller 
(1968) or Chung (1974), extends deterministic semantics more directly, and is 
somewhat more operational and intuitive. Unfortunately, there are numerous 
problems with this approach, as we shall see later. 

Let us assume that all variables range over the same domain X (this assumption is 
for simplicity of presentation only and is not essential). Suppose X has a family of 
measurable sets M associated with it. The B E A4 are the sets for which it makes 
sense to ask, “What is the probability that xi E B?” For example, if X= R, then the 
class of Lebesgue measurable sets is a good choice for M, if X = w, M should be the 
power set 2”. 

Under Semantics 1, input variables x,,..., x, will be random variables on a fixed 
probability space (Q, F, p), i.e., each xi is a measurable function (Q, F, ,a) -+ (X, M). 
The “random number generator” will be a countable sequence of independent, iden- 
tically distributed random variables y,, y, ,... on (R, F,p), each yj independent of the 
xi. Informally, a sample program execution consists of first picking a sample point 
o E R, simultaneously determining the values of the input variables and countably 
many random numbers, which are placed on an infinite stack. The program then 
executes deterministically. Each time xi := random is executed, the next random 
number is popped from the stack and assigned to xi. 

More formally, let (X”“‘, tin+“) ) be the Cartesian product of n + w copies of 
the measurable space (X, M). The first n components represent the n program 
variables and the last w represent the infinite stack of random numbers. 

We will allow the B appearing in (3.1.4) and (3.1.5) to be any measurable set 
B E A4(“). The f in (3.1.1) may be any partial measurable function f: X” -+ X. The 
restriction of measurability of B and f is necessary for technical reasons but 
sufftciently general for all practical purposes: in R, all common functions such as + 
or log are measurable, and all first-order definable sets in a language with f, 1, and ,< 
are measurable. 
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Under these conditions, each program S denotes a partial measurable function 
fS:Xn+W+XI+W, as follows: 

(3.2.1) simple assignment. If f: X” -+X is a measurable function, the simple 
assignment (3.1.1) denotes the measurable function X”tD + X”+O which takes 
sequence 

to sequence 

(3.2.2) random assignment. The statement (3.1.2) denotes the measurable 
function which takes sequence 

to sequence 

u, ,***, ui-l,“n+l,ui+],...,un,un+2,.... 

That is, the infinite stack a,, , , an+* ,... of random numbers is popped, and the top 
element is assigned to xi. 

(3.2.3) composition. The program S; T denotes the composition f, ofs. 
(3.2.4) conditional. The conditional statement (3.1.4) denotes the measurable 

function which on input a = u,, a,,... gives 

f,(a) if uEBxX”, 

f,(a) otherwise. 

(3.2.5) while loop. The while statement (3.1.5) denotes the partial measurable 
function which on input u = a,, a, ,... gives 

f i(u) where n is least number such that f l(u) & B x X”, if such an n exists, 
undefined otherwise. 

The specification is completed by giving a sequence JJ,, + r, y,, 2 ,... of independent, 
identically distributed random variables (D, F, p) --t (X, M) for the random number 
generator. If the input is a sequence of random variables xi,..., x,, we also require 
that Y~+~JL+~,... be independent of x, ,..., x,. The result of applying program S to 
the input x,,...,x, is the first n components of the random vector 
fs o 6 , 9***7 x, 9 Y, + 1 Y..). 

The most noteworthy problem with this approach is that too much has to be 
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specified. For example, the particular random number assigned to xi in the random 
assignment xi := random depends on the path of execution up to that point, whereas 
the probabilistic behavior of the program is independent of this, since the yi are 
independent and identically distributed. Moreover, the probabilistic flow of the 
program, based on tests in (3.1.4) and (3.1.5), does not depend on the random vector 
of inputs itself, but only on its distribution. Finally, if we are studying the average 
behavior of a deterministic program with respect to some input distribution, we are 
usually given only the distribution and not some random variable satisfying it. In 
such cases we would be forced to construct a sample space (Q, F, p) and an input 
vector x: (~2, F, p) --+ (X”, tin)) satisfying that distribution. This also applies to the 
random number generator y, + I ,.... These observations suggest a new approach in 
which random vectors with the same distribution are identified, and programs are 
interpreted as mappings from distributions to distributions instead of from random 
vectors to random vectors. In so amending Semantics 1, the (J?‘, M’“‘) tail 
constructed to accommodate the random number generator will become superfluous. 

3.3. Semantics 2 

Semantics 2 is closer to Scott-Strachey semantics, since it involves partially 
ordered domains and least fixed points of monotone maps. The domains in question 
are the partially ordered Banach spaces of Birkhoff and Kakutani, as described in 
Section 2. In this semantics, a program S maps distributions ,U on (Xn, tin)) to 
distributions Sk) on (Xn, Mn’) (we use the same symbol S for both the program and 
its meaning under Semantics 2). 

The intuition behind this approach is as follows. The program variables x1 ,..., x, 
satisfy some joint distribution ,U on input. We will forget the variables themselves and 
concentrate on the distribution ,u. We can think of ,U as a fluid mass distributed 
throughout X”. This mass is concentrated more densely in some areas than others, 
depending on which inputs are more likely to occur. Execution of a simple or random 
assignment redistributes the mass in x”. Conditional tests cause the mass to split 
apart, and the two sides of the conditional are executed on the two pieces. In the 
while loop (3.1 S), the mass goes around and around the loop; at each cycle, the part 
of the mass which occupies -B breaks off and exits the loop, and the rest goes 
around again. Part of the mass may go around infinitely often. Thus, at any point in 
time, there are different pieces of the mass that occupy different parts of the program, 
and each piece is spread throughout the domain according to the simple and random 
assignments that have occurred in its history. Different pieces that have come to 
occupy the same parts of the program through different paths are accumulated. At 
certain points in time, parts of the mass find their way out of the program. The 
output distribution S(U) is the sum of all the pieces that eventually find their way out. 
Thus the probability that program S halts on input distribution p is S@)(X), the 
probability of the universal event X” upon output. 

More formally, let (X, M) be a measurable space and let B = B(X”, tin’) be the set 
of measures on the Cartesian product (x”, M’“‘). B consists of all possible joint 
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distributions of the program variables x, ,..., x,, plus all their linear combinations, 
where addition and scalar multiplication are defined by 

01+ VP) = A@) + VP99 

@P)(W = &@))9 a E R. 

If P is the set of positive measures and if 11 )I denotes the total variation norm 

IIPII = IPI WI 
then (B, P, 11 II) is a conditionally complete Banach lattice as described in Section 2; 
that is, (B, II II) is a Banach space, or complete normed vector space, and (B, P) is a 
conditionally complete vector lattice under the order < induced by P, such that 

The measures we are primarily interested in are the subprobability measures. These 
are the positive measures of norm at most 1, i.e., the elements of S nP, where 
s = {P I lb11 G 11 is the closed unit ball of B. The probability measures are the 
subprobability measures whose norm is exactly 1, i.e., they are elements of 3 n P, 
where a, is the boundary of S. 

Every program S will map a probability distribution into a subprobability 
distribution, thus it can be interpreted as a function aS n P -+ S n P. It will turn out, 
however, that when this function is defined in a way consistent with Semantics 1 
above, it will extend uniquely to a linear transformation B + B. Moreover, this 
extension will be 11 [l-bounded and therefore continuous with respect to the metric 
induced by I( II. Thus each program will define a continuous linear transformation or 
operator B + B. 

The space B’ of operators B -+ B forms a Banach space under the uniform norm 

II TII = E!l II m)ll 
and pointwise addition and scalar multiplication. Thus programs will be interpreted 
as elements of this space. 

A linear operator T: B -+ B is isotone with respect to the order < in B, i.e., 

iff T preserves the positive cone P. Denote by P’ the set of isotone elements of B’. 
Then P’ is a positive cone in B’, and so induces a partial order < on B’. S < T with 
respect to this order if and only if S@) < T(p) f or all ~1 E P. (There is an interesting 
relationship between < as defined above and the order L in Scott-Strachey least fixed 
point semantics: they are the same thing. This will be discussed further in Section 4.) 

Besides P’, define S’ as the set TE B’ which preserve S. By the definition of the 
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uniform norm, S’ is exactly the closed unit ball of B’. Since the linear operators 
described by programs will preserve both S and P, they will be elements of S’ n P’. 

B’ is not necessarily a vector lattice, however it is conditionally complete in the 
sense that any set of elements with an <-upper bound has a g-least upper bound. In 
particular, any pair S, T with an upper bound has a join S V T given by (2.2.1). If S, 
T E P’, then S V T exists, since S and T are bounded above by S + T. 

More important for our purposes than conditional completeness, however, is the 
property: any 11 II-bounded directed set x, of positive elements has a least upper bound 
sup, xa; moreover IIsup4 x,11 = sup, llxnll. This property holds in both B and B’. 
Since it is a special case of Theorem 5.6 below, we defer its proof until Section 5. A 
proof for the space B may be found in Birkhoff (1967, Theorem 21, p. 371). 

We are now ready to give Semantics 2. In order to understand definitions 
(3.3.1~(3.3.5) of Semantics 2, it is helpful to keep in mind the definitions 
(3.2.1~(3.2.5) of Semantics 1. At each of the five steps, it is straightforward to verify 
that the two definitions are equivalent, in the sense made precise by Theorem 3.3.9 
below. In the following, we use the symbol S for both a program and the linear 
operator it denotes. 

(3.3.1) simple assignment. If S is the program x,:=f(x,,...,xJ, where 
f: X” -+ X is a measurable function, then the meaning of S is the linear operator 

S(a) =/I 0 F-‘, 

where F: X” -+X” is the measurable function 

F@ l,..., a,) = (a,,..., ai-,,f(a,,..., a,), ai+,,..., a,>. 
Since f is measurable, so is F, thus ,U o F-’ is indeed a measure. 

(3.3.2) random assignment. If S is the program xi:= random then S denotes 
the linear operator 

S@)(B, x  *** x  B,) =p(B, x  *** XBi-lXXXBi+,X*** XB,)p(Bi), 

where p is a fixed distribution, the distribution of the random number generator. Since 
MC”) is generated by rectangles of the form B, X ... X B,, S@) is well defined. 

(3.3.3) composition. The meaning of the program S; T is the composition of 
operators TO S. 

(3.3.4) conditional. Let pe denote the measure J&I) =,u(A n B). If p is a 
probability measure, the conditional probability relative to B is given by the 
normalized measure ,D~/,u(B). Intuitively, the conditional test should work as follows. 
Suppose the input satisfies probability distribution p. First membership of x1 ,..., x, in 
B is tested. This occurs with probability p(B), and hence S is executed with this 
probability. However, once this branch has been taken, we know that the event -B is 
impossible, but aside from this we have no more knowledge than before. Therefore S 
should be executed on the conditional probability distribution &/p(B), giving 

571/22/3-6 
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S@,/,u(B)). Similarly, with probability ~(4) the program T will be executed on 
,u,Jp(4?) to give T(,u,Jp(-B)). After the conditional statement, the probability that 
x, ,..., x, lies in A is the probability that either the “true” branch was taken and 
x, ,..., x, lies in A after executing S, or the “false” branch was taken and xi ,..., x, lies 
in A after executing T, or in symbols 

P(B) SOddB))(~) + 4-B) WL~P(-B))(~) 

= 01(B) W,/P@)) +/d-B) TOr,h(-B)))(~). 

Using the fact that S and T are linear, this becomes 

Thus the semantics of the program if B then S else T is the operator 

Soe,+Toe,, 

where e, is the operator e,@) =,uu, and + is addition in B’. 
(3.3.5) while loop. We want equivalence between the program while B do S 

and the program 

if-B then I else S; while B do S od ti, (3.3.6) 

obtained by unwinding the loop once. Accordingly, using the composition and 
conditional semantics already defined, the meaning of (3.15) must be a solution of 

W=e,+ WoSoeB. (3.3.7) 

This is a case of a simple operator equation scheme studied in functional analysis, 
and well-established techniques are available for its solution (see, e.g., Collatz, 1966, 
p. 358). A common approach is to search for a fixed point of the afine transfor- 
mation r: B’ + B’ defined by 

r(W)=e,t WoSoeB. 

We will use Theorem 5.6 to obtain a fixed point. First, note that r preserves S’ and P’ 
and is isotone with respect to < in B’. If A is the set of elements of S’ n P’ such that 
W < r(W), then A is nonempty (it contains 0) and is closed under suprema of 
directed sets, by Theorem 5.6. By Zorn’s Lemma, A has a maximal element W, so W 
must be a fixed point. 

Once a solution to (3.3.7) has been found, it is easy to show that 

W,=inf{WES’nP’)r(W)= W} 

is the unique least such solution in S’ n P’. First, W, exists since B’ is conditionally 
complete. Since r is isotone, r( W,) < r(W) = W for any fixed point W, so 
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r(W,,) < IV,,. By Tarski’s theorem (see Birkhoff, 1967, exercise 6, p. 116), r has a 
fixed point in the interval [0, IV,]. This fixed point must be IV,, since IV, is the 
inlimum of fixed points. 

As is customary, we take the least fixed point W, as the meaning of the program 
while B do S. 

It may also be shown by a well-known construction that the supremum of the 
sequence 

t”(O)= x eyB 0 (S 0 eglk 
O<k<n-1 

is exactly W,, by showing that r is order continuous. The present approach was used 
instead to illustrate a more general technique, which applies even in the absence of 
order continuity. This is discussed further in Section 5. 

The following theorem asserts that the constructions above indeed give elements of 
S’ n P’. The proof is a straightforward induction on program structure, treating each 
of the five cases (3.1.1)-(3.1.5) separately. We leave the details of the proof to the 
reader. 

THEOREM 3.3.8. Let S be any while program over the variables x, ,..., x,, and let 
B = B(X”, A#“)) be the space of measures on (X”, tin’). Under Semantics 2, S 
denotes a positive linear operator on B with J(S(j < 1. 1 

Let x: (Q, F, P) -+ (Xnto, Mn+W) ) be any random vector such that the components 
X It+17 X n+Z ,... of x are independent of xi ,..., x, and are themselves independent and 
identically distributed with distribution p, and let ~1 be the distribution on X” induced 
by the first n components of x. Then x has distribution ~1 x p”. If program S is 
applied to x under Semantics 1, the result is f, o x- ’ with distribution @A X p”) 0 f S ‘. 
In light of this, the following theorem asserts the equivalence of Semantics 1 and 
Semantics 2. 

THEOREM 3.3.9. Let S be any program over x, ,..., x,. For all p E B(X”, M(“)), 
B E MC”‘. 

S@)(B) = 01 x p”) of,‘(B x P). 1 

4. ENCODING DETERMINISTIC SEMANTICS 

It is obvious how deterministic semantics is a special case of probabilistic 
semantics: eliminate the random assignment, and restrict input distributions to point 
masses. When this is done, there appears a striking correspondence between the 
present formalism and the partially ordered domains encountered in Scott-Strachey 
denotational semantics. 

Consider the domain Pfn(w -+ w) of partial functions w--, w, with the usual 
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ordering E and bottom (least defined) element 1. We show that this space can be 
embedded in a partially ordered Banach space so that cr. becomes Q and I becomes 
0, and the elements of pfn(w -+ w) are all members of S’ f7 P’. The construction was 
in fact foreshadowed by Zeiger (1969). 

First, endow o with a class of measurable sets. For this purpose we use the power 
set 2”. Let B = B(o, 2”) be the Banach space of measures. Elements of B may be 
viewed as formal sums 

c a,x, 
XEW 

where the coefficients a, are real numbers such that 

The total variation norm is given by 

/I II c a,x = C IaA. XEO XEW 
Let P be the cone of positive measures and let S be the closed unit ball. 

In the Scott-Strachey construction, a “flat domain” is constructed by appending a 
bottom element I to o and defining an order & on o U {I ) so that I & I C_X c x 
for all x E o, but no other inequality x c_y holds. Then a partial function o + w may 
be viewed as an c-isotone function UJ U (I) --f o U {I } which takes I to 1. 

If each y E w is identified with its corresponding point mass C x(,,,(x) x, where xlvl 
is the characteristic function of {y}, and if I is identified with 0 in B, then the result 
is an embedding of cc) U (I} into S n P which takes c into <. Under this embedding, 
each g-isotone function t: w U {I} + o U {I} preserving I becomes a partial 
function t: S i7 P --t S n P, and t extends uniquely to a linear transformation T: B + B 
by taking 

Moreover, it is easy to verify that T is 11 11-b ounded (indeed 11 T/J < 1) and that T 
preserves P. This says that T is in both the positive cone and the closed unit ball of 
the space B’ of operators. 

Under this embedding of Pfn(w -+ w) in B’, the totally undefined function on o is 
mapped to 0, and r in Pfn(w -+ cc) is mapped to < in B’, as desired. 

5. EXTENSION TO HIGHER TYPES 

In this section we show how the least fixed point construction of the previous 
section extends naturally to higher types, in contrast to nondeterministic order 
semantics, in which the corresponding result is somewhat less natural. 
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The proof of Theorem 5.6 will show how order and norm interact. Scott and 
others, who used order exclusively, based their strategy on the view that “all seman- 
tically meaningful functions should be [order] continuous” (Lehmann, 1976, p. 123). 
However, this requirement makes the extension of Scott-Strachey semantics to higher 
types difficult. Besides, although all elements of B’ are order continuous (use 
Birkhoff, 1967, Theorem 21, p. 371), many potentially interesting operators in higher 
types may not be. Theorem 5.6 gives a more general method of obtaining a fixed 
point which does not require order continuity but only isotonicity. Accordingly, as 
the restriction of order continuity is relaxed, the properties of the norm /I )I take up the 
slack. 

The space B(X, M) of measures on (X, M) with the norm /I 11 and positive cone P 
enjoys some very powerful properties: it is a Banach lattice, i.e., a Banach space 
under (1 I( and a vector lattice under <, satisfying the two properties 

o~x<Y~llxll~llYll~ (5.1) 
lIIx/ll = IIXII. (5.2) 

Moreover, it satisfies two important properties that allow the least fixed point 
construction: 

every (I II-bounded directed set has a supremum. 

if x, is a directed set of positive elements with a supremum, then 

(5.3) 

II ““kP x, II = s:P /lx, II * (5.4) 

Note that (5.4) implies (5.1). Properties (5.1) and (5.3) together imply conditional 
completeness, i.e., every order-bounded set of elements has a supremum. To see this, 
let A be contained in the interval [x, y] = (z /x <z <y}. The set A’ of finite joins of 
elements of A is also contained in [x, JJ], and is directed; then A’ - x E 10, y - ~1, 
and by (5.1), every element of A’ -x has norm no greater than 11 J -xl/. By (5.3). 
A’ - x has a supremum z, thus z + x is the supremum of A. 

The space of operators on B(X, M) does not satisfy all these properties; indeed, it 
is not even necessary that two elements have an upper bound. However, if we restrict 
our attention to the order-bounded operators, i.e.. those that map order-bounded sets 
to order-bounded sets, then it is the case that every pair of elements S, T has a 
supremum given by (2.2.1). In fact, the following three conditions are equivalent: S is 
order bounded; S is an element of the linear span of the positive cone; S’, S-, and 
/ SI exist. Thus redefining B’ to be the set of jl Ii-bounded, order-bounded linear 
transformations, and using the norm 

IISII. =lII~/l/ (5.5) 

instead of // I/, B’ becomes a Banach lattice and satisfies (5.3) and (5.4) (this is a 
special case of Theorem 5.6 below). The restriction of the space of operators to the 
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order-bounded ones and the use of (( (I+ instead of (I(( constitute no loss of generality 
for all practical purposes, since programs are always positive and hence order- 
bounded, and )( (( and II 11, agree on the positive cone. 

Define a type recursively as either the space of measures (B(X, M), P, II 11) or the 
space (C --) D, P’, 1) )( +) of order-bounded, )( II +-bounded linear transformations C -+ D, 
where (C, P, II II) and CD, P, Il II) are types. Here P’ is the positive cone of isotone 
elements of C + D. 

THEOREM 5.6. Every type is a Banach lattice satisfying (5.3) and (5.4). 

ProoJ The proof is by induction on type structure. The base type 
WC Ml, P, II II) is a Banach lattice (Birkhoff, 1967, Corollary 1, p. 374) and satisfies 
(5.3) and (5.4) (Birkhoff, 1967, Theorem 21, p. 371). For the induction step, we need 
to show that if (C, P, (I 11) and (D, P, II II) satisfy the theorem, then so does 
(C --) D, P’, II II+). S ince (2.2.1) above defines the supremum of two elements, 
(C --t D, P’) is a vector lattice; also, it is easily verified that )( (I+ is a norm. Then 5.2 
is satisfied trivially. 

To show 5.1, define 

0%. = ;“,g IlwwlllxlII~ 

LEMMA. For all S>O, IJSjI,=IISII. 

Proof: Clearly (JSI(, < II S(I. N ow x < (xl for any x E C, and since S > 0, 
S(x) ( S((x(). Similarly S(-x) Q  S((-xl) = S((x(), thus -S((x() ( S(x) < S((xl). It 
follows that 0 < I S(x)1 Q  S(lx I), and since D satisfies (5.1) and (5.2), IIS(x)(l < 
II wdIl * Thus 

IISII = I${ IIwIllllxll9 

< y${ IIwwllxll9 

= ;${ IIw4Illll IXIII 

=Il~lI,. I 

since C satisfies (5.2), 

Thus C -+ D satisfies (5-l), since if O,< S Q  T then S((xJ) < T(lxl) for all x, 
therefore (1 Slip < II Tllp. 

Now we show that C -+ D satisfies (5.3) and (5.4). Suppose S, is a [I() +-bounded 
directed set in C -+ D. Since translation preserves ax&r, we may assume without loss 
of generality that the S, are all positive. For any &red xE C, x&Q tie set of a¶! 
S,(x) is I( II-bounded in D: 

II ~&II G  II s, II lb II * 
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Also, S,(X) is a directed set. Since D satisfies (5.3) and (5.4), sup,(S,(x)) exists for 
positive x, and 

II S~PMM = s:P II S&)ll * 

Define 

S(x) = S~PGw))~ x 2 0, 

S(x) = s(x+) - 23(x-). 

As addition and scalar multiplication are order continuous, S is linear on the positive 
cone P of C, thus S is linear on all C (Birkhoff, 1967, Lemma 2, p. 365). S is 
positive and therefore order bounded, and easily shown to be the least upper bound of 
the S,, thus (5.3) is satisfied. In addition, 

= “x”,g ““,P II~a(xNlll4l 

= Su,P ;“,g II ~,(xMl x II 

= Su,P II s, II 7 

since D satisfies (5.4), 

thus (5.4) is satisfied. We have shown that C -+ D is a normed vector lattice 
satisfying (5.1)-(5.4). It remains to show that C -+ D is a Banach space, i.e., that 
C -+ D is complete in the I( I(+ metric. This follows immediately from 

LEMMA. Any normed vector lattice satisfying (5.1 j(5.4) is a Banach space. 

Proof. Sq.vose (C, P, II II) is a normed vector lattice satisfying (5.1~(5.4), and let 
x, be a Cauchy sequence. Assume a subsequence has been chosen so that for all n, 
(lx, - xkl( < 2-” for all m, k > n. Define 

a,= C lxm+I--X,l. 
man 

a, exists by (5.3), since the set of all 

2: I%iI+t -x,I, N> n, 
n<m<N 
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is a I( J/-bounded directed set: 

Moreover, by (5.4), Ila,II < 2-“+‘. Now 

X n+l +a,+, =x, +x,+1 -x, +a,+, 

GAxn+1--X,I+%+I 
=x,+a,, 

and similarly x,, + i - a n+ I > x, - Al,, so the sequence of intervals [x, - a,, X, + a,,] 
is a descending chain with respect to set inclusion. By conditional completeness, there 
is an x contained in the intersection of the [x, - a,, x, + a,], thus Ix, -x( < 2a,. By 
(5.1) and (5.2), (Ix, -x1( < 2 ((u,JI 1 0, thus x, converges to x. I 

6. A RESULT ON PROBABILISTIC PROGRAMS 

In Section 3 we showed that all probabilistic programs denote elements of S’ n P’. 
However, the reverse inclusion does not hold, so it is natural to seek a charac- 
terization of those elements of S’ n P’ which are denoted by programs. Theorem 6.1 
below sheds some light on this question. It says that all programs are completely 
determined by their behavior on fixed inputs. That is, if S and T are two programs 
such that 5’6~) = T(u) whenever ,u is a point mass, then S = T under Semantics 2. 

The closure of the linear span of the point masses is the set of discrete measures, 
i.e., those ,D such that p =,u, for some countable set B. Since programs are linear and 
continuous, it is immediate that programs which agree on all point masses also agree 
on all discrete measures. However, this argument does not say anything about the 
behavior of the programs on nondiscrete measures. 

Any measure ,U can be decomposed uniquely into its discrete and continuous parts 
edi,,@) and econ&) =,D - edi&). The projection edisc which takes a measure into its 
discrete part is a continuous linear transformation in S’ ~7 P’, given by sup e,, where 
the supremum is taken over all countable measurable sets B. This supremum exists 
and is in S’ n P’ by Theorem 5.6. The projection econt = I - edisc, also in S’ n P’, 
takes a measure into its continuous part. There are certainly distinct elements of 
S’ n P’ which agree on the discrete measures; I and edisc, for example. Since 1 is 
given by a program, Theorem 6.1 says that there is no program to compute edisc. 

It is relatively easy to see why Theorem 6.1 holds in the absence of random 
assignments. In the usual deterministic semantics, a program S has only countably 
many halting computation paths, and each such path is described a program Si 
consisting of the finite sequence of simple assignments that occur along that path, 
with no conditional tests or while loops. Moreover, the set of inputs that follow this 
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computation path is a measurable set Bi, since it is a Boolean combination of 
measurable sets occurring in conditional tests along the path. The complement of the 
union of these B, are all the inputs on which S does not halt; call this set B,. Then 
the set of all Bi forms a countable measurable partition, and 

S = x Si 0 eni. 

We can use this characterization to construct discrete measures which account for all 
“behavior patterns,” by picking a representative point from each partition element 
and assigning it a nonzero weight. 

In the presence of a random assignment, however, the situation is much more 
complicated. For one thing, no such notion of “countably many behavior patterns” 
exists, even if the distribution of the random number generator is discrete. For 
example, it is an easy exercise to construct a probabilistic program with only a fair 
coin for a random number generator which, given real number x with probability one. 
0 < x < 1, halts with probability exactly x. In this example, there are uncountably 
many behavior patterns, one for each 0 < x < 1. 

In general, the situation is even more complicated than this. The random number 
generator may satisfy an arbitrary distribution, discrete or continuous. The result of 
any call on the random number generator not only may be used for deciding which 
path to take in an execution, but also may be added, multiplied, or in general 
combined with any other random number or input in any (measurable) way. 
Nevertheless, we have 

THEOREM 6.1. rf S, T are programs such that S(u) = T(u) for all point masses 
,u E B(X”, M(“‘), then S = T. 

Proof. Suppose S and T agree on all point masses. Then they agree on all 
discrete measures. In order to show S = T, by linearity it suffices to show that S and 
T agree on an arbitrary positive measure ,u. 

According to Semantics 1 of Section 3.2, S and T denote partial measurable 
functions x7,, f,: Xntw dXn+w, respectively, and according to Theorem 3.3.9. it 
sufftces to show that 

(u x p”) of,‘(B x F”) = @  x p”) 0 f; ‘(B X X“), 

where B E M ” is arbitrary. 
Let rc be the finite measurable partition of x”+w generated by the measurable sets 

fs ‘(B x A?‘). f; ‘(B x A?‘). For each x E X“, A E n, let 

~,={yE~“l(x,.Y)~~l. 

Then A, is a measurable set in X” (Halmos, 1950, Theorem A, p. 141), and 
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(Halmos, 1950, Theorem B, p. 144). Let E > 0 be arbitrarily small. By definition of 
integral, there is a simple function sA with 

such that 

for all x, (6.2) 

or in other words 

01 x P”)(A) - J SA(X) 4 < &* (6.3) 
X” 

The simple function s, is defined in terms of a finite measurable partition of X”; by 
taking the least common refinement of these partitions over all A E II, we may 
assume all the sA are defined in terms of the same partition. Thus there is a finite 
measurable partition u of X such that 

sA = c aA,CxC9 
CEO 

where 0 < aA ,c. 
Construct a discrete measure v on X” which agrees with ,U on all elements of 0. 

This is done by choosing an element xc from each C E o and assigning it weight 
p(C). Then 

sA(xC) = ‘A,C G P”&) 

by 6.2, so 

I ‘Atx) h = c aA,cdC) 
X” CECI 

Also, 

(v x P”>(x”+“) = (v x P”> (,I;! A) 

= c c P”(4&4c) 
AElr CEa 

= 2 P(C) c P”(4J 
CEU AEX 

= #4x”)PV”) 
= (jf x p”)(x”+“). 

(6.4) 

(6.5) 
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By 6.3, 6.4, and 6.5, for any A E rr, (u x p”)(A) and (v xp")(A) differ by no more 
than ( 7cJ E, where 1~ ( is the cardinality of x. Since f; ‘(B x XW) and f; ‘(B X Xw) are 
each the disjoint union of two elements of rc, (U x p”)df;‘(B X Xw)) differs from 
(v x p”)df;‘(B x X0)) by no more than 21 X~E, and similarly for f; ‘(B X X0). By 
assumption, S and T agree on discrete measures, thus 

(v x p”)cf, ‘(B x X0)) = (v x p”)(f; ‘(B x XW)> 

by Theorem 3.3.9. Therefore, (,u x p”)df;‘(B x XW)) and @  X p”)df;‘(B X X0)> 
differ by no more than 4 17~ 1 E. As E was arbitrary, 

@ I x p”)df, ‘(B x X0)) = tjl x p”)(f, l(B x X9), 

thus by Theorem 3.3.9, S(U) = T(u). 1 
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