
Language�Based Security

Dexter Kozen

Department of Computer Science
Cornell University

Ithaca� NY ����������� USA
kozen�cs�cornell�edu

Abstract� Security of mobile code is a major issue in today	s global
computing environment
 When you download a program from an un�
trusted source� how can you be sure it will not do something undesirable�
In this paper I will discuss a particular approach to this problem called
language�based security
 In this approach� security information is derived
from a program written in a high�level language during the compilation
process and is included in the compiled object
 This extra security in�
formation can take the form of a formal proof� a type annotation� or
some other form of certi�cate or annotation
 It can be downloaded along
with the object code and automatically veri�ed before running the code
locally� giving some assurance against certain types of failure or unau�
thorized activity
 The veri�er must be trusted� but the compiler� code�
and certi�cate need not be
 Java bytecode veri�cation is an example of
this approach
 I will give an overview of some recent work in this area� in�
cluding a particular eort in which we are trying to make the production
of certi�cates and the veri�cation as e�cient and invisible as possible

� Introduction

With the rise of the Internet� security of mobile code is emerging as one of the
most important challenges facing computing research today� As we become more
and more dependent on the global information infrastructure� we are �nding
ourselves increasingly vulnerable to malicious attacks and buggy software� Yet�
even as Melissa and Happy�� wreak worldwide havoc� we continue to download
and run plug�in software with little regard for the consequences�

A recent study of the Computer Science and Telecommunications Board of
the National Research Council ���� details the extent of the security problem� It
argues that much of our critical infrastructure	transportation� communication�
�nancial markets� energy distribution� health care	is becoming dangerously de�
pendent on a computing base that is out of the purview of any single authority�
We are already vulnerable to many forms of malicious attack and software failure
with potentially devastating consequences�

The recent report of the President
s Information Technology Advisory Com�
mittee �PITAC� ��� warns of this dependence and recommends a substantial
increase in federally funded research�

We have become dangerously dependent on large software systems whose
behavior is not well understood and which often fail in unpredicted ways
� � � Our nation
s dependence on the Internet is increasing� While this is
an exciting development� the Internet is growing well beyond the intent
of its original designers and our ability to extend its use has created enor�
mous challenges� As the size� capability� and complexity of the Internet
grows� it is imperative that we do the necessary research to learn how
to build and use large� complex� highly�reliable� and secure systems � � �

This research will � � � protect us from catastrophic failures of the com�
plex systems that now underpin our transportation� defense� business�
�nance� and healthcare infrastructures� ���

President Clinton and Vice President Gore responded to an interim version
of this report with a far�reaching initiative known as IT� in which they propose
a ���� million� ��� increase for research in information technology as part of
the �scal ���� federal budget ����� In their words�

As our economy and society become increasingly dependent on informa�
tion technology� we must be able to design information systems that are
more secure� reliable� and dependable� The software systems that lie at
the core of worldwide �nancial systems� air tra�c management� defense
command and control	indeed� virtually all parts of our economy	are
the most complex human inventions ever created� As a result� however�
our society now faces unknown hazards both from hostile attacks on
these systems and from the even greater threat that simple mistakes
or system failures will bring wholesale collapse of critical systems� The
small software failures that have shut down large parts of the nation
s
phone systems and air tra�c control systems and the �millennium bug�
are examples of what can go wrong in our current environment� We do
not know how to design and test complex software systems with millions
of lines of code in the same way that we can verify whether a bridge or
an airplane is safe� ���� p� ��

And from elsewhere in the same report�

Active software participates in its own development and deployment�
We see the �rst steps towards active software with �applets� that can
be downloaded from the Internet� but this is just the beginning� Active
software will eventually be able to update itself� monitor its progress
toward a particular goal� discover a new capability that is needed for
the task at hand� and safely and securely download the piece of software
needed to perform that task� ���� p� ��

In this paper we focus on a particular approach to the security problem known
as language�based security� We give a general overview� then we discuss several
current research projects that fall within this framework� proof�carrying code
�PCC� ������� typed assembly language �TAL� ��� �� �� ��� security automata
�SASI� ��� ��� ���� e�cient code certi�cation �ECC� ��� and information �ow
�JFlow� ������

� Some Issues in Security

��� Safety Policies

Suppose we wish to download and run a program from an unknown or untrusted
source� Before running our downloaded program� it would be nice to have some
assurance that the code is safe to run� Of course� �safe� is subject to interpre�
tation and may have di�erent meanings in di�erent contexts� The de�nition of
�safe� used in a particular application is that application
s safety policy� For
example� we may wish to be sure that the program will never accidentally over�
write critical system data� thereby causing a crash� this would be desirable in�
say� �ight control software or active messages in network routers� We may wish
to know that the program does not access memory allocated to other processes
running in the same physical address space� this would be an important con�
sideration in smart cards� We may wish to deny all disk I�O� this is currently
part of the default safety policy for Java applets downloaded o� the net� This
restriction is rather strong� and we may wish to weaken it to allow restricted
forms of disk I�O� For example� we may wish to allow the applet to read disk
�les provided it does not send any messages out on the net afterwards� or we
may wish to let it deposit a limited amount of data of a certain form �cookies�
in a particular directory�

At the very minimum� any safety policy for untrusted machine code executing
locally should guarantee the following fundamental safety properties�

� Control �ow safety� The program should never execute a jump or call to a
random location� but only addresses within its own code segment containing
valid instructions� All calls should be to valid function entry points and all
returns to the location from which the function was called�

� Memory safety� The program should not access random places in memory�
but only valid locations in its own static data segment� live system heap
memory explicitly allocated to it� and valid stack frames�

� Stack safety� For stack�based runtime architectures� the runtime stack should
be preserved across function calls� We interpret this �exibly� minor modi��
cations near the top of the stack are allowed� as is tail recursion elimination�

These three considerations turn out to be interdependent� The level of security
they mutually represent is evidently the minimum nontrivial level of safety one
could expect in the sense that it is hard to imagine a meaningful security policy
that would be enforceable without them� More complicated policies are certainly
possible depending on the application at hand�

Many papers consider type safety as well� however this makes sense only in the
presence of a typing discipline� A typing discipline is a way of assigning intention
to raw data and code� The type of a function usually gives a relationship between
the input and output states in terms of this intention� For example� we might
have a function of type r� � int � r� � int � r� � int� which says that if registers
r� and r� contain integer values when the code is called� then upon return�
register r� must contain a valid integer� In the presence of types� control �ow

safety� memory safety� and stack safety are subsumed by type safety� since these
properties are encoded in the typing discipline� This is the approach of TAL �see
Section ��� below��

��� Trust

Security is based on the notion of trust� In reality� there may be di�erent degrees
of trust� but for the sake of simplicity we partition the universe into two classes�
those agents and artifacts that are trusted and those that are not� separated by
an imaginary trust boundary� All trusted software	that is� all software on our
side of the trust boundary	is called our trusted code base�

All software security mechanisms depend on some trusted code� We can as�
sume that the trusted code base includes at least the local operating system
kernel and some programming language runtime support �provided they have
not been corrupted� part of the security problem is to prevent this from happen�
ing�� However� it is generally desirable to keep the trusted code base as small as
possible� simply because the less we need to trust� the less vulnerable we are�

Control �ow safety� memory safety� and stack safety can be guaranteed by
writing the program in a type�safe language and compiling with a trusted com�
piler� The disadvantage of this solution is that the compiler must be part of
the trusted code base� Either you must send me your source code so that I can
compile it locally� which forces you to release proprietary source code and forces
me to spend time compiling it� or I must trust your compiler and the channel by
which you ship the object code to me� Both are unsatisfactory� the former from
a performance standpoint and the latter from a security standpoint� Many of
the approaches described below� including the language�based approach� achieve
their objectives without assuming that the compiler is part of the trusted code
base�

��� Performance vs� Safety

It is of course nice to have both strong safety guarantees and good performance�
but these are often in con�ict� the latter prefers to allow� the former to restrict�
In a sense� much of the current research in security is concerned with resolving
the tension between these opposing forces in some acceptable way� Di�erent
approaches to the security problem fall on di�erent points of the spectrum� and
it is perhaps unreasonable to expect a single mechanism to be optimal on both
counts� This is true also for language�based mechanisms� However� language�
based approaches can give improvements on both counts� as described in Section
� below�

� Traditional Approaches

Traditional approaches to the security problem include kernel as reference mon�
itor� cryptography� code instrumentation� and trusted compilation� These mech�
anisms o�er a �xed set of basic safety policies with little �exibility� Security

automata and PCC are more recent developments that provide a general frame�
work for expressing and enforcing a wide range of security policies� TAL and
ECC share the same goals� but sacri�ce expressiveness for e�ciency�

Kernel as reference monitor is probably the oldest and most widespread
security mechanism used in software systems� It refers to the practice of isolating
operations on critical system components and data in a system kernel� The kernel
is a privileged body of code that may access these critical components and data
directly� All other processes may only access them in limited ways using the
kernel as proxy� communicating their desires by message� This not only prevents
untrusted code from corrupting the system� but also allows the kernel to monitor
all access� perform authentication� or enforce other safety policies�

However� allowing non�kernel processes direct access to critical system com�
ponents and data can improve performance signi�cantly� With kernel calls� access
is limited to a few high�level abstract operations provided by the kernel interface�
but with direct access� more sophisticated algorithms that exploit properties of
the low�level data structures can be used� Also� kernel calls typically involve
some overhead for packaging parameters and for saving and restoring registers
�called a context switch�� which can be circumvented with direct access� It is
therefore desirable to �gure out how to allow non�kernel processes more direct
access to critical system components and data without compromising security�
The SPIN system ��� is one e�ort in this direction� The SPIN system enforces
security by using a trusted compiler�

Cryptography can discourage access to sensitive data during transit across an
untrusted network and can be used for authentication� Unfortunately� the safety
of current cryptographic protocols depends on unproven complexity�theoretic
assumptions� Current standards such as the Digital Encryption Standard �DES�
can be broken by an agent with su�cient computing power ���� To make mat�
ters worse� we are not completely free to use it� current policy regarding the
commercial use of strong cryptography is hopelessly entangled in a web of polit�
ical and legal complications ���� Finally� cryptography alone cannot ensure that
downloaded code is safe to run� only that it came from a particular source and
that it has not been compromised in transit�

Code instrumentation refers to the process of altering �instrumenting� ma�
chine code so that critical operations can be monitored during execution� This is
done in such a way that �i� the functional behavior of the instrumented code is
the same as the original uninstrumented code� provided the original code would
not have violated the safety policy� and �ii� if the original uninstrumented code
would have violated the safety policy� then at the time of the violation� the in�
strumented code either detects the violation and causes the system to intercept
control and shut down the errant process� or otherwise prevents the transgression
from having any ill e�ects on the rest of the system�

An example of code instrumentation is software fault isolation �SFI� or sand�
boxing ����� In one particularly simple and e�cient variant of SFI� the untrusted
code and data are loaded into a block of contiguous memory with addresses
in the range �c�k� c�k � �k � � for some integers c and k �the �sandbox�� and

then linked� Then a pass is made over the code� replacing the higher order
wordlength � k bits of all direct memory access and jump addresses with the
bits of c� For indirect addresses� code is inserted to do this operation at runtime�
This has no e�ect on instructions that target addresses inside the sandbox� so
a correct program will not be a�ected� However� addresses outside the sandbox
get mapped to addresses inside the sandbox� The addresses they get mapped to
are random from the point of view of the program� which of course breaks the
program� but the error is con�ned to the sandbox and cannot compromise the
rest of the system�

Schneider ���� ��� extends this idea to handle any safety policy that can
be expressed by a �nite�state automaton� For example� one can express the
condition� �No message is ever sent out on the net after a disk read�� with a
two�state automaton� These automata are called security automata� The code
is instrumented so that every instruction that could potentially a�ect the state
of the security automaton is preceded by a call to the automaton� Security
automata give considerable �exibility in the speci�cation of safety policies and
allow the construction of specialized policies tailored to a consumer
s particular
needs� The main drawback is that some runtime overhead is incurred for the
runtime calls to simulate the automaton�

An advantage of code instrumentation is that it can be performed in isolation
by the consumer with no particular assumptions or extra information about the
code� However� enforcing safety policies for arbitrary code by instrumentation
alone can be costly� A runtime check is required before every sensitive opera�
tion� which could contribute substantially to runtime overhead� Some runtime
checks can be eliminated if program analysis determines that they are unnec�
essary� but this is also costly undertaking and could contribute substantially to
loadtime overhead� Moreover� even the most sophisticated analysis techniques
are necessarily incomplete� because safety properties are undecidable in general�

There is recent evidence that code instrumentation can be used in conjunction
with language�based methods to improve performance ��� ����

� Language�Based Security

Schneider de�nes language�based security very broadly as �a set of techniques
based on programming language theory and implementation� including seman�
tics� types� optimization� and veri�cation� brought to bear on the security ques�
tion�� By that de�nition� SFI and SASI are instances of language�based security�
For the purposes of this paper� however� we would like to focus on a more speci�c
model�

Compilers for high�level programming languages typically accumulate much
information about a program during the compilation process� This information
may take the form of type information or other constraints on the values of vari�
ables� structural information� or naming information� This information may be
obtained through parsing or program analysis and may be used to perform opti�
mizations or to check type correctness� After a successful compilation� compilers

traditionally throw this extra information away� leaving a monolithic sequence
of instructions with no apparent structure or discernable properties�

However� some of this extra information may have implications regarding the
safety of the compiled object code� For example� programs written in type�safe
languages must typecheck successfully before they will compile� and assuming
that the compiler is correct� any object code compiled from a successfully type�
checked source program should be memory�safe� If a code consumer only had
access to the extra information known to the compiler when the program was
compiled� it might be easier to determine whether the downloaded object code
is safe to run�

We will use the phrase language�based security to refer to the idea of retaining
this extra information from a program written in a high�level language in the
object code compiled from it� This extra information	call it a certi�cate	is
created at compile time and packaged with the object code� When the code is
downloaded� the certi�cate is downloaded along with it� The consumer can then
run a veri�er� which inspects the code and the certi�cate to verify compliance
with a safety policy� If it passes the test� then the code is safe to run� The
veri�er is part of the consumer
s trusted code base� the compiler� the compiled
code� and the certi�cate need not be� Figure illustrates a simpli�ed version of
this framework�

�
�

�
�

low�level program

� certi�cate

�

certifying

compiler

�

�
�

�
�high�level program

Software Supplier Software Consumer

veri�er�

�

run

tr
u
st
b
o
u
n
d
a
ry

Fig� �� Language�Based Security �Simpli�ed View�

The key bene�t of this approach is that the onus of ensuring compliance
with the desired safety policy is shifted from the consumer to the supplier� The
supplier must provide a certi�cate that gives su�cient information to verify that

the object code meets the security policy� The consumer
s task is thus reduced
from the level of proving to the level of checking� a much simpler matter�

The certi�cate can take di�erent forms� With PCC� the certi�cate is a proof
in �rst�order logic of certain veri�cation conditions� and the veri�cation process
involves checking that the certi�cate is indeed a valid �rst�order proof� With
TAL� the certi�cate is a type annotation� and the veri�cation process involves
type checking� With ECC� the certi�cate is an annotation of the object code
that indicates the structure and intention of the code along with some basic
type information�

What high�level language constructs best translate to useful information in a
certi�cate What security policies can be handled How can we allow consumers
to express specialized security policies easily Can we make certi�cates concise
How e�ciently can the supplier construct them and how e�ciently can the con�
sumer verify them How do we prove that the veri�cation mechanism is correct
By now there are a number of related projects that address these questions and
more� Although the various proposals di�er in expressiveness� �exibility� and ef�
�ciency� they all share a common goal� to use extra information generated during
compilation to help make the local execution of untrusted mobile code safe and
e�cient�

��� Java

Perhaps the �rst large�scale practical instance of the language�based approach
was the Java programming language ���� Java contains a language�based mech�
anism designed to protect against malicious applets� The Java runtime environ�
ment contains a bytecode veri�er that is supposed to ensure the basic properties
of memory� control �ow� and type safety� There is also a trusted security manager

that enforces higher�level safety policies such as restricted disk I�O�

The Java compiler produces platform�independent virtual machine instruc�
tions or bytecode that can be veri�ed by the consumer before execution� The
bytecode is then either interpreted by a Java virtual machine �VM� interpreter
or further compiled down to native code�

Early versions of Java contained a number of highly publicized security gaps
���� For example� one problem was a subtle defect in the Java type system that
allowed a partially instantiated class loader to be created under the control of
an applet� It was then possible for the applet to use this class loader to load�
say� a malicious security manager that would permit unlimited disk access�

According to some authors ��� ��� these problems were ultimately due to a
lack of an adequate semantic model for Java� Steps to remedy this situation have
since been taken �� ���� Nevertheless� despite these initial failings� the basic ap�
proach constituted a signi�cant step forward in practical programming language
security� It not only pointed the way toward a simple and e�ective means of
providing a basic level of security� but also helped to galvanize the attention of
the programming language and veri�cation community on critical security issues
engendered by the rise of the Internet�

One disadvantage to the Java system is that the machine�independent byte�
code that is produced by the Java compiler is still quite high�level� After down�
loading� it must either be interpreted by a Java VM interpreter or compiled to
native code by a just�in�time �JIT� compiler� Either way� a runtime penalty is
incurred� If the safety certi�cate represented in the bytecode were mapped down
to the level of native code by a back�end Java VM compiler� then the same degree
of safety could be ensured without the runtime penalty� because the back�end
compilation could be done by the code supplier before downloading� This would
trade the platform independence of Java VM for the e�ciency of native code�

��� Proof Carrying Code �PCC�

Proof carrying code �PCC� ������ refers to a methodology for allowing formal
proofs of general safety properties to be produced and veri�ed before the code
is run� The safety conditions are expressed in �rst�order logic augmented with
symbols for various language and machine constructs� The verication process
involves a proof generation step on the part of the software supplier and a proof
checking step on the part of the software consumer�

The most general version of PCC is somewhat more complicated than indi�
cated in Figure � involving a two�phase interaction between the supplier and
the consumer� In the �rst phase of the PCC protocol� the supplier produces
a program consisting of annotated object code and sends it to the consumer�
The annotation consists of loop invariants and function pre� and postconditions�
These annotations make subsequent phases of the protocol easier� The consumer�
who has a particular safety policy in mind� generates from the annotated code
a veri�cation condition� a logical formula that implies that the program satis�es
the safety policy� and sends it back to the supplier� A proof of the veri�cation
condition constitutes a proof of safety of the program with respect to the con�
sumer
s safety policy� The supplier then runs a theorem prover� which produces
a proof of the veri�cation condition� then sends the proof back to the consumer�
The consumer then runs a proof checker to check that the proof is valid�

The initial annotation of the code is produced by a certifying compiler� The
compiler uses information from the program source and program analysis dur�
ing compilation to construct loop invariants� This process is mostly automatic�
but sometimes human intervention is required� depending on the complexity of
the security policy� Also included in the initial annotation are pre� and post�
conditions of functions� The precondition of a function should provide enough
information to allow a veri�cation condition to be constructed for that function
in the next phase� The veri�cation condition implies that the function satis�es
the security policy and satis�es its postcondition�

The Touchstone compiler ���� is a certifying compiler for a type�safe sub�
set of C that implements this phase of PCC� In addition to the object code� it
provides information su�cient for constructing a veri�cation condition for type
safety� One of the major strengths of the Touchstone compiler is that it admits
many common optimizations such as dead code elimination� common subex�
pression elimination� copy propagation� instruction scheduling� register alloca�

tion� loop invariant hoisting� redundant code elimination� and the elimination of
array bounds checks�

In the next phase of the PCC protocol� the consumer produces from the
code and certi�cate provided by the code supplier a statement in �rst�order
logic called the veri�cation condition� This task is performed by the veri�cation

condition generator �VCGen�� The consumer
s security policy is de�ned by the
action of the VCGen component� that is� the veri�cation condition that VC�
Gen generates is� by de�nition� the formal statement of the security policy as
instantiated for that particular program� It would be di�cult	and for practical
purposes� unnecessary	to express the security policy formally independent of
any particular program� Part of the de�nition can be understood in terms of the
action precondition of each individual operation� which is a formal statement
of what it means for that action to be safe locally� However� the safety policy
can be more than just the accumulation of all local action preconditions� The
veri�cation condition is returned to the software supplier�

The next phase of the protocol involves proving the veri�cation condition�
At this point the protocol works entirely in the framework of �rst�order logic�
independent of the original program or programming language� The software
supplier constructs a formal proof of the veri�cation condition and returns it to
the consumer for checking� The veri�er checks that the proof is indeed a valid
proof of the veri�cation condition constructed in the previous phase�

In the PCC implementation ����� the veri�cation condition and its proof are
encoded using the Edinburgh Logical Framework �LF� ���� The theorem prover is
based on the Nelson�Oppen theorem prover architecture for combined theories�
Key tools are congruence closure for dealing with equality and linear simplex
for dealing with arithmetic� The latter is important in eliminating array bounds
checks�

Necula
s PhD thesis ���� describes extensive experiments with PCC giving
results on running times and code and proof sizes for various benchmarks�

The advantages of the PCC approach are its expressiveness and the abil�
ity to handle code optimizations� In principle� any security policy that can be
constructed by a veri�cation condition generator and expressed as a �rst�order
veri�cation condition can be handled� The main disadvantages are that it is
a two�phase protocol� that it involves weighty machinery such as a full��edged
�rst�order theorem prover and proof checker� and that proof sizes are quite large�
roughly ��� times the size of the object code for type safety and even larger sizes
for more complicated safety policies� This makes PCC appropriate for applica�
tions requiring fast optimized code that will be veri�ed once but run many times�
such as extensions to extensible system kernels� but less attractive for run�once
applications such as applets and active messages�

��� Typed Assembly Language �TAL�

Typed assembly language �TAL� ��� �� �� �� is a language�based system in
which type information from a strongly�typed high�level language is carried
down during the compilation process through a series of transformations through

a platform�independent typed intermediate language �TIL� ��� �� and �nally
down to the level of the object code itself� The result is a type annotation of
the object code that can be checked by an ordinary type checker� One can view
TAL as a form of proof�carrying code �PCC� in the sense that a complete type
annotation is essentially a proof of type safety� In this view� a type checker is
essentially a proof checker�

TAL is not as expressive as PCC� but it can handle any security policy that
can be expressed in terms of the type system� This includes memory� control
�ow� and type safety� among others� TAL is also robust with respect to compiler
optimizations� since type annotations can be transformed along with the code�

The original version of TAL ��� was rather abstract� compiling down from
an polymorphically�typed abstract ML�like language to an idealized RISC�like
assembly language� Function call linkages were encoded using continuation pass�
ing semantics� This version of TAL already distinguished between initialized
and uninitialized data� so that allocation of memory and its initialization need
not occur atomically� Deallocation of memory is assumed to be handled by a
trusted garbage collector� although some work has been done toward relaxing
this assumption ���� The syntax of the original version of TAL is given in Figure
��

types � ��� � j int j ������ j h���
�

� � � � � ��nn i j ����
initialization �ags � ��� � j �
label assignments � ��� f�� � ��� � � � � �n � �ng
type assignments � ��� � j ���
register assignments � ��� fr� � ��� � � � � rn � �ng
registers r ��� r� j � � � j rk
word values w ��� � j i j �� j w�� � j pack ��� w� as � �

small values v ��� r j w j v�� � j pack ��� v� as � �

heap values h ��� hw�� � � � � wni j code�����I
heaps H ��� f�� �� h�� � � � � �n �� hng
register �les R ��� fr� �� w�� � � � � rn �� wng
instructions i ��� aop rd� rs� v j bop r� v j ld rd� rs�i� j malloc r�� �

j mov rd� v j st rd�i�� rs j unpack ��� rd�� v
arithmetic ops aop ��� add j sub j mul
branch ops bop ��� beq j bneq j bgt j blt j bgte j blte
instruction sequences I ��� 	� I j jmp v j halt �� �
programs P ��� �H�R� I�

Fig� �� Syntax of TAL ����

In order to conform more directly to stack�based runtime architectures� TAL
has been extended to include stack types ���� The syntax of this extension is
given in Figure ��

types � ��� � � � j ns
stack types
 ��� � j nil j � ��

type assignments � ��� � � � j ���
register assignments � ��� fr� � ��� � � � � rn � �n� sp �
g
word values w ��� � � � j w�
� j ns
small values v ��� � � � j v�
�
register �les R ��� fr� �� w�� � � � � rn �� wn� sp �� Sg
instructions i ��� � � � j salloc n j sfree n j sld rd� sp�i� j sst sp�i�� rs
stacks S ��� nil j w �� S

Fig� �� Extension of TAL to accommodate stacks ����

Other extensions of the TAL approach include type support for modules and
static linking ���� eliminating array bounds checks ����� and runtime code gener�
ation ���� A realistic version of TAL for the x�� architecture called TALx�� has
been developed� along with a prototype compiler for a type�safe C�like language
called Popcorn ����

��� E�cient Code Certi	cation �ECC�

The author
s project on e�cient code certi�cation �ECC� �� was conceived as a
way to improve the runtime e�ciency of small� untrusted� run�once applications
such as applets and active messages while still ensuring safe execution� �Run�
once� means that the cost of veri�cation cannot be amortized over the lifetime
of the code� so certi�cates should be as concise and easy to verify as possible�

ECC attempts to identify the minimum information necessary to ensure a
basic but nontrivial level of code safety� including control �ow� memory� and
stack safety� and to encapsulate this information in a succinct certi�cate that is
easy to produce and to verify� The level of safety currently provided by the ECC
prototype is roughly comparable to that provided by Java bytecode veri�cation�
but unlike bytecode� it operates at the level of native code� thus avoiding the
runtime overhead of bytecode interpretation or just�in�time compilation� The
prototype implementation compiles Scheme to executable x�� machine code�

The system does not rely on general theorem provers or typing mechanisms�
Although less �exible than PCC or TAL� certi�cates are compact and easy to
produce and to verify� The certi�cate can be produced by the code supplier
during the code generation phase of compilation and veri�ed by the consumer
at load time� both operations are automatic and invisible to both parties�

Although inspired by PCC� it would be inaccurate to call ECC certi�cates
proofs� because they are not proofs in any formal system� The certi�cate consists
of annotations that provide information about the structure and intention of
the code� as well as some basic typing information� This information is derived
from the high�level program during compilation� Guided by this information�
the veri�er checks a set of simple static conditions that inductively imply the
desired safety properties�

Drawbacks to ECC include platform�dependence and fragility with respect to
fancy compiler optimizations� Simple local optimizations such as tail recursion
elimination can be handled� Preliminary experiments indicate that the sizes of
ECC certi�cates range from �� to ��� of the size of the object code� This seems
to indicate a substantial improvement over PCC� although a fair comparison
would require a more careful analysis to take all variables into account�

The main reason for the savings in certi�cate size in ECC over PCC or TAL
is that ECC makes heavy use of compiler conventions� This is both an advantage
and a disadvantage� The advantage is that it allows information that must be
included explicitly in a PCC or TAL certi�cate to be omitted from an ECC
certi�cate� The disadvantage is that it makes the veri�er heavily dependent on
the compiler implementation�

For example� suppose subroutines always return their result in register r�
The certi�cate does not need to say this� but only indicate where the subroutine
linkages are� The veri�er� knowing about this convention and knowing from the
annotation that a certain piece of code is an instance of a standard subroutine
linkage� has only to check that the correct subroutine linkage code is there� It may
then proceed under the assumption that the result is in register r� Subroutine
linkage code generated by the compiler will be fairly uniform	a simple function
of the number and type of arguments� modulo work register names	so the check
can be done by table lookup with uni�cation on register names� All the certi�cate
has to do is indicate the intention of the code�

The veri�cation process in ECC is very e�cient� It is linear time except for
a sorting step to sort jump destinations� but since almost all jumps are forward
and local� a simple insertion sort su�ces�

��
 Information Flow

Language�based methods can be used to control information �ow among mutu�
ally distrustful agents ������ This is similar to other forms of safety described
in the previous section� except that the security policies are based on a model
of information �ow� The policy is speci�ed by the user by means of annotations
in the high�level language that limit how information can �ow in a program and
between programs� Annotated programs are then checked at compile time to
ensure that they conform to the �ow rules�

Currently� a prototype implementation called JFlow has been created that
augments Java with information �ow primitives ���� The JFlow compiler is im�
plemented as a source�to�source translator that checks information �ow safety
using a type�checking mechanism� then discards the annotations� emitting ordi�
nary Java� If the control information were passed down to the object code� then
downloaded object code could be veri�ed in a manner similar to TAL or ECC
before running to ensure that it does not leak information�

Acknowledgements

I thank Mart!"n Abadi� Jim Ezick� Neal Glew� Peter Lee� Greg Morrisett� Andrew
Myers� George Necula� Fred Schneider� and David Walker for valuable conversa�
tions� In particular� Neal Glew and Fred Schneider provided extensive comments
on an earlier draft� The support of the National Science Foundation under grant
CCR������� is gratefully acknowledged�

References

�
 M
 Abadi and R
 Stata
 A type system for Java bytecode subroutines
 In Proc�
��th Symp� Principles of Programming Languages� pages �������
 ACM SIG�
PLAN�SIGACT� January ����

�
 B
 Bershad� S
 Savage� P
 Pardyak� E
 G
 Sirer� D
 Becker� M
 Fiuczynski� C
 Cham�
bers� and S
 Eggers
 Extensibility� safety� and performance in the SPIN operating
system
 In Proc� ��th Symp� Operating System Principles� pages �������
 ACM�
December ����

�
 K
 Crary� D
 Walker� and G
 Morrisett
 Typed memory management in a calculus
of capabilities
 In Proc� ��th Symp� Principles of Programming Languages� pages
�������
 ACM SIGPLAN�SIGACT� January ����

�
 Drew Dean� Ed Felten� and Dan Wallach
 JAVA security� From HotJava to
Netscape and beyond
 In Proc� Symp� Security and Privacy
 IEEE� May ����

�
 Whit�eld Di�e and Susan Landau
 Privacy on the Line� The Politics of Wiretap�
ping and Encryption
 MIT Press� ����

�
 Ulfar Erlingsson and Fred B
 Schneider
 SASI enforcement of security policies� A
retrospective� April ����
 Preprint

�
 N
 Glew and G
 Morrisett
 Type�safe linking and modular assembly language

In Proc� ��th Symp� Principles of Programming Languages� pages �������
 ACM
SIGPLAN�SIGACT� January ����

�
 Robert Harper� Furio Honsell� and Gordon Plotkin
 A framework for de�ning
logics
 J� Assoc� Comput� Mach�� �������������� January ����

�
 Luke Hornof and Trevor Jim
 Certifying compilation and runtime code generation

In Proc� Workshop on Partial Evaluation and SemanticsBased Program Manipu�
lation� pages �����
 ACM� January ����

��
 Bill Joy and Ken Kennedy� co�chairs
 Information Technology Research� Investing
in Our Future
 President	s Information Technology Advisory Committee� February
����
 http���www�ccic�gov�

��
 Dexter Kozen
 E�cient code certi�cation
 Technical Report �������� Computer
Science Department� Cornell University� January ����

��
 Tim Lindholm and Frank Yellin
 The JAVA virtual machine speci�cation
 Addison
Wesley� ����

��
 G
 Morrisett� K
 Crary� N
 Glew� D
 Grossman� R
 Samuels� F
 Smith� D
 Walker�
S
 Weirich� and S
 Zdancewic
 TALx��� A realistic typed assembly language
 In
Proc� Workshop on Compiler Support for System Software� pages �����
 ACM
SIGPLAN� May ����

��
 G
 Morrisett� K
 Crary� N
 Glew� and D
 Walker
 Stack�based typed assembly
language
 In Xavier Leroy and Atsushi Ohori� editors� Proc� Workshop on Types
in Compilation� volume ���� of Lecture Notes in Computer Science� pages �����

Springer�Verlag� March ����

��
 G
 Morrisett� D
 Tarditi� P
 Cheng� C
 Stone� R
 Harper� and P
 Lee
 The TIL�ML
compiler� Performance and safety through types
 In ���� Workshop on Compiler
Support for Systems Software� ����

��
 Greg Morrisett� David Walker� Karl Crary� and Neal Glew
 From System F to
typed assembly language
 In ��th ACM SIGPLAN	SIGSIGACT Symposium on
Principles of Programming Languages� pages ������ San Diego California� USA�
January ����

��
 Andrew C
 Myers
 JFlow� Practical static information �ow control
 In Proc� ��th
Symp� Principles of Programming Languages
 ACM� January ����

��
 Andrew C
 Myers and Barbara Liskov
 A decentralized model for information �ow
control
 In Proc� ��th Symp� Operating System Principles� pages �������
 ACM�
October ����

��
 Andrew C
 Myers and Barbara Liskov
 Complete� safe information �ow with de�
centralized labels
 In Proc� Symp� Security and Privacy� pages �������
 IEEE�
May ����

��
 National Coordination O�ce for Computing� Information� and Communications

Information Technology for the ��st Century� A Bold Investment in America
s
Future� �� January ����
 Draft
 http���www�ccic�gov�

��
 George C
 Necula
 Proof�carrying code
 In Proc� ��th Symp� Principles of Pro�
gramming Languages� pages �������
 ACM SIGPLAN�SIGACT� January ����

��
 George C
 Necula
 Compiling with proofs
 PhD thesis� Carnegie Mellon University�
September ����

��
 George C
 Necula and Peter Lee
 Safe kernel extensions without run�time checking

In Proc� �nd Symp� Operating System Design and Implementation
 ACM� October
����

��
 George C
 Necula and Peter Lee
 The design and implementation of a certify�
ing compiler
 In Proc� Conf� Programming Language Design and Implementation�
pages �������
 ACM SIGPLAN� ����

��
 George C
 Necula and Peter Lee
 E�cient representation and validation of proofs

In Proc� ��th Symp� Logic in Computer Science� pages ������
 IEEE� June ����

��
 George C
 Necula and Peter Lee
 Safe� untrusted agents using using proof�carrying
code
 In Giovanni Vigna� editor� Special Issue on Mobile Agent Security� volume
���� of Lect� Notes in Computer Science� pages �����
 Springer�Verlag� June ����

��
 Robert O	Callahan
 A simple� comprehensive type system for Java bytecode sub�
routines
 In Proc� ��th Symp� Principles of Programming Languages� pages �����

ACM SIGPLAN�SIGACT� January ����

��
 Fred B
 Schneider
 Towards fault�tolerant and secure agentry
 In Proc� ��th Int�
Workshop WDAG
�� volume ���� of Lecture Notes in Computer Science� pages
����
 ACM SIGPLAN� Springer�Verlag� September ����

��
 Fred B
 Schneider
 Enforceable security policies
 Technical Report TR��������
Computer Science Department� Cornell University� January ����

��
 Fred B
 Schneider� editor
 Trust in Cyberspace
 Committee on Information Sys�
tems Trustworthiness� Computer Science and Telecommunications Board� National
Research Council
 National Academy Press� ����

��
 D
 Tarditi� G
 Morrisett� P
 Cheng� C
 Stone� R
 Harper� and P
 Lee
 TIL� A type�
directed optimizing compiler for ML
 In Conf� Programming Language Design and
Implementation
 ACM SIGPLAN� ����

��
 R
 Wahbe� S
 Lucco� T
 E
 Anderson� and S
 L Graham
 E�cient software�based
fault isolation
 In Proc� ��th Symp� Operating System Principles� pages �������

ACM� December ����

��
 David Walker
 A type system for expressive security policies
 In Proc� FLOC
��
Workshop on Run�time Result Veri�cation� July ����
 To appear

��
 Hongwei Xi and Frank Pfenning
 Eliminating array bound checking through de�
pendent types
 In Proc� Conf� Programming Language Design and Implementation�
pages �������
 ACM SIGPLAN� June ����

