
E�cient Inference of Partial Types

Dexter Kozen

Computer Science Department

Cornell University

Ithaca� New York ������	�
�

USA

kozen�cs�cornell�edu

Jens Palsberg

Computer Science Department

Aarhus University

�


 Aarhus C

Denmark

palsberg�daimi�aau�dk

Michael I� Schwartzbach

Computer Science Department

Aarhus University

�


 Aarhus C

Denmark

mis�daimi�aau�dk

�



Proposed running head�

Inference of Partial Types

Send proofs to�

Dexter Kozen
Computer Science Department
Cornell University
Ithaca� New York ������	�
�
USA

�



Abstract

Partial types for the ��calculus were introduced by Thatte in ����
��� as a means of typing objects that are not typable with simple
types� such as heterogeneous lists and persistent data	 In that paper
he showed that type inference for partial types was semidecidable	
Decidability remained open until quite recently� when O
Keefe and
Wand ��� gave an exponential time algorithm for type inference	

In this paper we give an O�n�
 algorithm	 Our algorithm con�
structs a certain �nite automaton that represents a canonical solution
to a given set of type constraints	 Moreover� the construction works
equally well for recursive types� this solves an open problem stated in
���	

�



� Introduction

Partial types for the pure ��calculus were introduced by Thatte in ���� 
��
as a way to type certain ��terms that are untypable in the simply�typed
��calculus� They are of substantial pragmatic value� since they allow the
typing of such constructs as heterogeneous lists and persistent data that
would otherwise be untypable�

Formally� partial types comprise a partially ordered set �T���� where T
is the set of well�formed terms over the constant symbol � and the binary
type constructor�� and � is the partial order de�ned inductively as follows�

�i� t � � for any t�

�ii� s� t � s� � t� if and only if s� � s and t � t��

Intuitively� the type constructor � represents the usual function space con�
structor� and � is a universal type that includes every other type� The partial
order � can be thought of as type inclusion or coercion� that is� s � t if it is
possible to coerce type s into type t�

Clause �ii� in the de�nition of � models the fact that a function with
domain s and range t can be coerced to a function with domain s� and range
t� provided s� can be coerced to s and t can be coerced to t�� thus the coercion
order on functions is covariant in the range and contravariant in the domain�
That � is contravariant in the domain is considered to be the main source
of di�culty in type inference algorithms�

If E is a ��term� t is a partial type� and A is a type environment� i�e� a
partial function assigning types to variables� then the judgement

A � E � t ���

means that E has the partial type t in the environment A� Formally� this
holds when the judgement ��� is derivable using the following four rules� �rst
proposed by Thatte 
���

A � x � t �provided A�x� � t� ���

A
x� s� � E � t

A � �x�E � s� t
���

�



A � E � s� t A � F � s

A � EF � t
���

A � E � s s � t

A � E � t
���

The �rst three rules are the usual rules for simple types and the last rule is
the rule of subsumption�

More ��terms are typable with partial types than with simple types� For
example� the term �f��fK�fI��� where K � �x���y�x� and I � �z�z� has
partial type

��� ��� ��� � � �

but no simple type�
As with any type discipline� the question of type inference is of paramount

importance�

Given a ��term E� is E typable� If so� give a type for it�

For this particular discipline� the type inference question can be reduced
to the problem of solving a �nite system of type constraints� which are just
inequalities over terms with type variables� Rephrased� the problem becomes�

Given a system of inequalities of the form s � t� where s and t

are terms over � and variables ranging over T � does the system
have a solution in �T���� If so� give a solution�

We give this reduction and prove its correctness in Section ��
In his original paper 
��� Thatte showed that the type inference prob�

lem for partial types is semidecidable� The problem of decidability remained
unsolved until quite recently� when O�Keefe and Wand 
�� presented an ex�
ponential time algorithm� Their algorithm involves iterated substitution and
gives no hint of the possibility of the existence of canonical solutions� indeed�
there exist satis�able constraint systems with no ��minimal solution�

In this paper we show that the type inference problem for partial types
is solvable in time O�n��� where n is the size of the ��term� Moreover� the
solutions we construct are canonical in the sense that they are least in the
so�called B�ohm order � a natural order di�erent from ��

Our algorithm constructs a certain �nite automaton with O�n�� states
from the given system of type constraints� The canonical solution to the

�



system is just the regular language accepted by the automaton� where we
represent types as binary trees and binary trees as pre�x�closed sets of strings
over a two�letter alphabet� In this representation� the B�ohm order is just set
inclusion � �

The canonical solution always exists� but it may not be �nite� however�
since it is contained in all other solutions� we can check for the existence of a
�nite solution by checking whether the canonical solution is �nite� Thus the
typability question reduces essentially to the �niteness problem for regular
sets�

Our construction works equally well for recursive types� this solves an
open problem stated in 
���

Henglein 
�� has shown that the type inference problem for partial types
is P �hard� thus it is P �complete� It can also be shown that every ��term with
a partial type is strongly normalizing 
�� and that every ��term in normal
form has a partial type 
���

Despite the fact that our polynomial�time algorithm now makes auto�
matic type inference for partial types feasible� we feel that the more impor�
tant contribution of this work is theoretical� namely� the precise mathemat�
ical characterization of the set of solutions to a system of type constraints
and the identi�cation of a canonical solution� We hope that the automata�
theoretic approach developed here will be useful in dealing with other type
systems�

� From Rules to Constraints

In this section we rephrase the type inference problem in terms of solutions
of �nite systems of type constraints� This isolates the essential combinatorial
structure of the problem independent of type�theoretic syntax�

Given a ��term E� the type inference question can be rephrased in terms
of solving a system of type constraints� Assume that E has been ��converted
so that all bound variables are distinct� Let X be the set of ��variables x
occurring in E� and let Y be a set of variables disjoint from X consisting of
one variable 

F �� for each occurrence of a subterm F of E� �The notation


F �� is ambiguous because there may be more than one occurrence of F in
E� However� it will always be clear from context which occurrence is meant��
We generate the following system of inequalities over X � Y �

�



� for every occurrence in E of a subterm of the form �x�F � the inequality

x� 

F �� � 

�x�F �� �

� for every occurrence in E of a subterm of the form FG� the inequality



F �� � 

G��� 

FG�� �

� for every occurrence in E of a ��variable x� the inequality

x � 

x�� �

Denote by C�E� the system of constraints generated from E in this fashion�
We show below that the solutions of C�E� over T correspond to the possible
type annotations of E in a sense made precise by Theorem ��

Let A be a type environment assigning a type to each ��variable occurring
freely in E� If L is a function assigning a type to each variable in X � Y � we
say that L extends A if A and L agree on the domain of A�

Theorem � The judgement A � E � t is derivable if and only if there exists
a solution L of C�E� extending A such that L�

E��� � t� In particular� if E
is closed� then E is typable with type t if and only if there exists a solution
L of C�E� such that L�

E��� � t�

Proof� We �rst prove that if C�E� has such a solution L� then L � E �
L�

E��� is derivable� We proceed by induction on the structure of E�

For the base case� L � x � L�

x��� is derivable using rules ��� and ���� since
L�x� � L�

x����

For the induction step� consider �rst �x�E� To derive L � �x�E �
L�

�x�E���� by rule ��� and the fact that L�x� � L�

E��� � L�

�x�E��� it
su�ces to derive L � �x�E � L�x�� L�

E���� By rule ��� it su�ces to derive
L
x � L�x�� � E � L�

E���� or in other words L � E � L�

E���� But since
L is a solution of C��x�E�� it is also a solution of C�E�� thus the desired
derivation is provided by the induction hypothesis�

Now consider EF � Since L is a solution of C�EF �� it is also a solution
of C�E� and C�F �� From the induction hypothesis� we obtain derivations
of L � E � L�

E��� and L � F � L�

F ���� Moreover� since L is a solution of

	



C�EF �� L�

E��� � L�

F ��� � L�

EF ���� Then L�

E��� must be of the form
s � t where L�

F ��� � s and t � L�

EF ���� Using rule ���� we can derive
L � F � s� Using rule ���� we can derive L � EF � t� Using rule ��� again�
we can derive L � EF � L�

EF ����

Conversely� suppose A � E � t is derivable� and consider a derivation
of minimal length� Since the derivation is minimal� there is exactly one
application of the rule ��� involving a particular occurrence of a subterm
FG� exactly one application of the rule ��� involving the subterm �x�F � and
exactly one application of the rule ��� involving a particular occurrence of a
��variable x� In the last case� there is a unique type s such that B�x� � s for
any B such that a judgement B � G � u appears in the derivation for some
occurrence of a subterm G of �x�F � this can be proved by induction on the
structure of the derivation of B � G � u� Finally� there can be at most one
application of the rule ��� involving a particular occurrence of any subterm�
if there were more than one� they could be combined using the transitivity
of � to give a shorter derivation�

Now construct L as follows� For every ��variable x occurring freely in E�
de�ne L�x� � A�x�� For every bound ��variable x� let �x�F be the subterm
of E in which it is bound� �nd the last judgement in the derivation of the
form B � F � s involving that occurrence of F � and de�ne L�x� � B�x��
Finally� for every occurrence of a subterm F of E� �nd the last judgement
in the derivation of the form B � F � s involving that occurrence of F � and
de�ne L�

F ��� � s�

Certainly L extends A and L�

E��� � t� We now show that L is a solution
of C�E��

For an occurrence of a subterm of the form �x�F � �nd the unique ap�
plication of the rule ��� deriving the judgement B � �x�F � s � u from
the premise B
x � s� � F � u� Then L�x� � s� L�

F ��� � u� and L�x� �
L�

F ��� � s� u � L�

�x�F ����

For an occurrence of a subterm of the form EF � �nd the unique applica�
tion of the rule ��� deriving the judgement B � EF � u from the premises
B � E � s � u and B � F � s� Then L�

E��� � s � u� L�

F ��� � s� and
u � L�

EF ���� thus L�

E��� � L�

F ���� L�

EF ����

Finally� for an occurrence of a bound ��variable x� �nd the unique appli�
cation of the rule ��� deriving the judgement B � �x�F � s � u from the
premise B
x � s� � F � u� Then L�x� � s� The rule ��� must have been
applied to obtain a judgement of the form B� � x � L�x� and only rule ���

�



applied to that occurrence of x thereafter� thus L�x� � L�

x���� �

A similar constraint system was used without proof in 
	�� Except for a
minor misstatement in the formulation of 
	�� the two constraint systems are
equivalent�

� From Types to Trees

Partial types are essentially binary trees� which can be represented as as
certain sets of strings over the binary alphabet fL�Rg� In this section we
develop some elementary properties of this representation and generalize to
in�nite trees�

De�nition � Let �� �� � � � denote elements of fL�Rg�� The parity of � is
the number mod � of L�s in �� The parity of � is denoted ��� A string � is
said to be even �respectively� odd� if �� � 
 �respectively� ���

A tree is a subset � � fL�Rg� that is

� nonempty�

� closed under pre�x� and

� binary� in the sense that for all �� �R 	 � i� �L 	 ��

We use �� �� � � � to denote trees� The set of all trees is denoted bT �
A tree is �nite if it is �nite as a set of strings� A path in a tree � is

a maximal subset of � linearly ordered by the pre�x relation� By K�onig�s
Lemma� a tree is �nite i� it has no in�nite paths�

An element � 	 � is a leaf of � if it is not a proper pre�x of any other
element of �� �

For A�B � fL�Rg� and � 	 fL�Rg�� de�ne

A 
B � f	g � fL� j � 	 Ag � fR� j � 	 Bg

A�� � f� j �� 	 Ag �

For trees �� � � � 
 � is the tree with left subtree � and right subtree � � and
��� is the subtree of � at � if � 	 �� � if not�

The following lemma establishes some elementary properties of the oper�
ators 
 and � on trees�

�



Lemma �

�i� �� 
 � ��L � � and �� 
 � ��R � �

�ii� � � ��L 
 ��R

�iii� ������� � ����

�iv� � is a leaf of � i� ��� � f	g�

Proof� All properties are immediate consequences of the de�nitions� �

The types T are in a natural one�to�one correspondence with the �nite
trees in bT under the embedding e � T � bT given by

e��� � f	g

e�s� t� � e�s� 
 e�t� �

Under this embedding� an occurrence of � at the fringe of a type s corre�
sponds to a leaf of e�s��

We now wish to de�ne a partial order on bT that agrees with the order �
on T under the embedding e�

De�nition � For �� � 	 bT � de�ne � � � if both of the following conditions
hold for any ��

�i� if � is an even leaf of �� then �R 
	 � �

�ii� if � is an odd leaf of � � then �R 
	 ��

�

Lemma � The relation � is a partial order on trees� and agrees with the
order � on types under the embedding e� In particular� for any �� � � �i� �i�

�i� � � f	g	

�ii� f	g � � if and only if � � f	g	

�iii� �� 
 �� � �� 
 �� if and only if �� � �� and �� � ���

�




Proof� We �rst show that � is a partial order� It is trivially re�exive�
To show transitivity� let � � � � 
 and assume for a contradiction that �
is an even leaf of � and �R 	 
� Let � be the longest pre�x of �R in � � If
� � �R� then De�nition ��i� is violated for �� � � Otherwise � is a pre�x of �
and a leaf of � � If � is even� then De�nition ��i� is violated for �� 
� If � is
odd� then De�nition ��ii� is violated for �� � � In all three cases we contradict
the assumption � � � � 
� A symmetric argument under the assumption
that � is an odd leaf of 
 and �R 	 � likewise leads to a contradiction�

For antisymmetry� assume � � � � �� Let � 	 � and let � be the longest
pre�x of � in � � If � 
� �� then � is a leaf of � � but then either � is even�
which contradicts � � �� or � is odd� which contradicts � � � � Thus � � �

and � 	 � � Since � 	 � was arbitrary� � � � � A symmetric argument shows
that � � ��

We next establish the properties �i���iii� in turn�
�i� If � is an even leaf in �� then clearly �R 
	 f	g� There are no odd

leaves in f	g�
�ii� The if follows by re�exivity� only if follows by �i� and antisymmetry�
�iii� Let � � �� 
 �� and � � �� 
 ��� For if� assume that � is an even leaf

in �� We proceed by induction on the length of �� The case � � 	 is not
possible� If � � L� then � is an odd leaf in ��� so �R 
	 ��� so L�R 
	 ��
��� so
�R 
	 � � If � � R� then � is an even leaf in ��� so �R 
	 ��� so R�R 
	 �� 
 ���
so �R 
	 � � Assume now that � is an odd leaf in � � We proceed by induction
on the length of �� The case � � 	 is not possible� If � � L� then � is an
even leaf in ��� so �R 
	 ��� so L�R 
	 �� 
 ��� so �R 
	 �� If � � R� then �

is an odd leaf in ��� so �R 
	 ��� so R�R 
	 �� 
 ��� so �R 
	 ��
For only if� assume that � is an even leaf in ��� then L� is an odd leaf in

� � so L�R 
	 �� so �R 
	 ��� If � is an odd leaf in ��� then L� is an even leaf
in �� so L�R 
	 � � so �R 
	 ��� If � is an even leaf in ��� then R� is an even
leaf in �� so R�R 
	 � � so �R 
	 ��� If � is an odd leaf in ��� then R� is an
odd leaf in � � so R�R 
	 �� so �R 
	 ���

Finally� we show that the order on types agrees with the order on trees
under the embedding e� i�e�� s � t if and only if e�s� � e�t�� We proceed
by induction on the structure of s and t� If t � � then the result follows
from �i�� If s � � then the result is immediate from �ii�� If s � s� � s� and
t � t� � t� then the induction hypothesis tells us that t� � s� if and only if
e�t�� � e�s�� and s� � t� if and only if e�s�� � e�t��� The result now follows
from �iii� and the de�nitions of e and � on types� �

��



Amadio and Cardelli 
�� give an alternative de�nition of a partial order on
recursive types involving in�nite chains of �nite approximations� De�nition
� is equivalent to theirs 
���

Lemma � The following properties hold for all �� � �

�i� �R 	 � � R 	 � � � � � � � ���L � � �L� � ���R � � �R�	

�ii� �� � � � R 	 � � � R 	 ��

Proof� Property �i� follows immediately from Lemma ��iii�� and �ii� fol�
lows immediately from Lemma ��ii�� �

� From Constraints to Graphs

Instead of systems of type constraints involving type variables� we consider
a more general notion of a constraint graph�

De�nition 	 A constraint graph is a directed graph G � �S�L�R��� con�
sisting of a set of nodes S and three sets of directed edges L�R��� We write

s
L
� t to indicate that the pair �s� t� is in the edge set L� and similarly s

R
� t�

s
�
� t� A constraint graph must satisfy the properties�

� any node has at most one outgoing L edge and at most one outgoing
R edge�

� a node has an outgoing L edge if and only if it has an outgoing R edge�

A solution for G is any map h � S � bT such that

�i� if u
L
� v and u

R
� w� then h�u� � h�v� 
 h�w��

�ii� if u
�
� v� then h�u� � h�v��

The solution h is �nite if h�s� is a �nite set for all s� �

A system of type constraints as described in x� gives rise to a constraint
graph by associating a unique node with every subexpression occurring in
the system of constraints� de�ning L and R edges from an occurrence of an
expression to its left and right subexpressions� and de�ning � edges for the
inequalities�

��



De�nition 
 A constraint graph is closed if the edge relation � is re�exive�
transitive� and closed under the following two rules which say that the dashed
edges exist whenever the solid ones do�

�
�

�
B
B
B
BBN

�
�
�
�
���

B
B
B
BBN

�
�
�
�
���

�

�

�

RLRL

�
�

�
B
B
B
BBN

�
�
�
�
���

B
B
B
BBN

�
�
�
�
���

�

�

�

RLRL

Note that these two rules resemble the two implications of Lemma ��iii�� The
closure of a constraint graph G is the smallest closed graph containing G as
a subgraph� �

Lemma � A constraint graph and its closure have the same set of solutions�

Proof� Any solution of the closure of G is also a solution of G� since G
has fewer constraints� Conversely� the closure of G can be constructed from
G by iterating the closure rules� and it follows inductively by Lemma � that
any solution of G satis�es the additional constraints added by this process�

�

� From Graphs to Automata

In this section we de�ne two automataM and N and describe their relation�
ship� These automata will be used to characterize the canonical solution of a
given constraint graph G� An intuitive account follows the formal de�nitions�

De�nition �� Let a closed constraint graph G � �S�L�R��� be given� The
automatonM is de�ned as follows� The input alphabet ofM is fL�Rg� The
states of M are S� � S� � S�� States in S� are written �s� t�� those in S� are
written �s�� and the unique state in S� is written � �� The transitions are

��



de�ned as follows�

�u� v�
�
� �u� v�� if v

�
� v� in G

�u� v�
�
� �u�� v� if u�

�
� u in G

�u� v�
R
� �u�� v�� if u

R
� u� and v

R
� v� in G

�u� v�
L
� �v�� u�� if u

L
� u� and v

L
� v� in G

�u� v�
�
� �v� always

�v�
�
� �v�� if v

�
� v� in G

�v�
R
� �v�� if v

R
� v� in G

�v�
L
� � � if v

L
� v� in G

If p and q are states of M and � 	 fL�Rg�� we write p
�
� q if the au�

tomaton can move from state p to state q under input �� including possible
	�transitions�

The automatonMs is the automatonM with start state �s� s�� All states
are accept states� thus the language accepted by Ms is the set of strings �
for which there exists a state p such that �s� s�

�
� p� We denote this language

by L�s�� �

Informally� we can think of the automaton Ms as follows� We start with
two pebbles� one green and one red� on the node s of the constraint graph
G� We can move the green pebble forward along a � edge at any time� and
we can move the red pebble backward along a � edge at any time� We can
move both pebbles simultaneously along R edges leading out of the nodes
they occupy� We can also move them simultaneously along outgoing L edges�
but in the latter case we switch their colors� At any time� we can elect to
remove the red pebble� thereafter� we can move the green pebble forward
along � or R edges as often as we like� and forward along an L edge once� at
which point the pebble must be removed� The sequence of L�s and R�s that
were seen gives a string in L�s�� and all strings in L�s� are obtained in this
way�

The intuition motivating the de�nition of M is that we want to identify
the conditions that require a path to exist in any solution� Thus L�s� is the
set of � that must be there� this intuition is made manifest in Lemma ���
It turns out that once we identify this set� we are able to show that it is a
solution itself�

We now show that M accepts only essential strings�

��



Lemma �� If h � S � bT is any solution and �s� s�
�
� p� then � 	 h�s��

Moreover�

�i� if p � �u� v� then h�u� � h�s��� � h�v�	

�ii� if p � �v� then h�s��� � h�v��

Proof� We proceed by induction on the number of transitions� If this is
zero� then p � �s� s� and � � 	� and the result is immediate� Otherwise�
assume that �s� s�

�
� p and the lemma holds for this sequence of transitions�

We argue by cases� depending on the form of the next transition out of p�
If p if of the form �u� v�� then the induction hypothesis says that � 	 h�s�

and h�u� � h�s��� � h�v��

If �u� v�
�
� �u�� v��� then u�

�
� u and v

�
� v�� so �	 � � 	 h�s� and

h�u�� � h�u� � h�s��� � h�v� � h�v�� �

If �u� v�
R
� �u�� v��� then u

R
� u� and v

R
� v�� so h�u�� � h�u� � R and

h�v�� � h�v� �R� Then R 	 h�v�� so by Lemmas � and �� R 	 h�s� �� and
�R 	 h�s�� and

h�u�� � h�u��R � h�s���R � h�v��R � h�v�� �

If �u� v�
L
� �v�� u��� then u

L
� u� and v

L
� v�� so h�u�� � h�u� � L and

h�v�� � h�v� �L� Then L 	 h�v�� so by Lemmas � and �� L 	 h�s� �� and
�L 	 h�s�� and

h�u�� � h�u��L � h�s���L � h�v��L � h�v�� �

If �u� v�
�
� �v� then �	 � � 	 h�s� and h�s��� � h�v��

If p if of the form �v�� then the induction hypothesis says that � 	 h�s�
and h�s��� � h�v��

If �v�
�
� �v��� then v

�
� v�� so �	 � � 	 h�s� and

h�s��� � h�v� � h�v�� �

If �v�
R
� �v��� then v

R
� v�� so h�v�� � h�v� �R� Then R 	 h�v�� so by

Lemmas � and �� R 	 h�s��� and �R 	 h�s�� and

h�s���R � h�v��R � h�v�� �

Finally� if �v�
L
� � �� then v

L
� v�� so h�v�� � h�v��L� Then L 	 h�v�� so

by Lemmas � and �� L 	 h�s��� and �L 	 h�s�� �

��



Here we give a useful alternative characterization of L�s� in terms of a
di�erent automaton N �

De�nition �� Let G � �S�L�R��� be given as above� We de�ne the au�
tomaton N over the input alphabet fL�Rg as follows� The states of N are
S � f
� �g� we use square brackets for states of N to distinguish them from
states of M� The transitions are


s� 
�
�
� 
t� 
� if s

�
� t in G


s� ��
�
� 
t� �� if t

�
� s in G


s� b�
R
� 
t� b� if s

R
� t in G


s� b�
L
� 
t� b� if s

L
� t in G�

As above� we write 
s� b�
�
� 
t� c� if 
s� b� can go to 
t� c� under �� including

possible 	�transitions� �

The automaton N has states 
s� b� where b is a Boolean value� The second
component is used to keep track of the parity of the scanned string� We can
think of 
s� b� as a pebble on s� the second component gives the color of the
pebble� If the pebble is green �b � 
�� we can move it forward along � edges�
If the pebble is red �b � ��� we can move it backward along � edges� We can
move the pebble forward along R or L edges at any time� but if we move it
along an L edge� then we switch the color�

The following lemmas relateM and N �

Lemma ��

�i� �s� s�
�
� �u� v� if and only if both

�a� 
s� ���
�
� 
v� 
�

�b� 
s� ���
�
� 
u� ���

�ii� �s�
�
� �t� if and only if � � Rk for some k and 
s� 
�

�
� 
t� 
��

�iii� �s�
�
� � � if and only if � � RkL for some k and 
s� 
�

�
� 
t� �� for some

t�

Proof� We prove the three parts in turn� In each case we proceed by
induction on ��

��



�i� If � � 	 then

�s� s�
�
� �u� v� � u

�
� s � s

�
� v

� 
s� 
�
�
� 
v� 
� � 
s� ��

�
� 
u� ��

� 
s� �	�
�
� 
v� 
� � 
s� �	�

�
� 
u� �� �

If � � �L then

�s� s�
�
� �p� q�

L
� �q�� p��

�
� �u� v� �

By the induction hypothesis� this is equivalent to


s� ���
�
� 
q� 
� � 
s� ���

�
� 
p� �� �

p
L
� p� � q

L
� q� � u

�
� q� � p�

�
� v

� 
s� ���
�
� 
q� 
�

L
� 
q�� ��

�
� 
u� �� �


s� ���
�
� 
p� ��

L
� 
p�� 
�

�
� 
v� 
�

� 
s� ���
�L
� 
v� 
� � 
s� ���

�L
� 
u� ��

� 
s� ��L�
�L
� 
v� 
� � 
s� ��L�

�L
� 
u� �� �

If � � �R then

�s� s�
�
� �p� q�

R
� �p�� q��

�
� �u� v� �

By the induction hypothesis� this is equivalent to


s� ���
�
� 
q� 
� � 
s� ���

�
� 
p� �� �

p
R
� p� � q

R
� q� � u

�
� p� � q�

�
� v

� 
s� ���
�
� 
q� 
�

R
� 
q�� 
�

�
� 
v� 
� �


s� ���
�
� 
p� ��

R
� 
p�� ��

�
� 
u� ��

� 
s� ���
�R
� 
v� 
� � 
s� ���

�R
� 
u� ��

� 
s� ��R�
�R
� 
v� 
� � 
s� ��R�

�R
� 
u� �� �

�ii� If � � 	 then

�s�
�
� �t� � s

�
� t

� 	 � R� � 
s� 
�
�
� 
t� 
� �

�	



If � � �R then

�s�
�
� �p�

R
� �p��

�
� �t� �

By the induction hypothesis� this is equivalent to

� � Rk � 
s� 
�
�
� 
p� 
� � p

R
� p� � p�

�
� t

� �R � Rk�� � 
s� 
�
�R
� 
t� 
� �

The case � � �L is not possible�
�iii� The cases � � 	 and � � �R are not possible� If � � �L then

�s�
�
� �p�

L
� � � �

Using �ii�� this is equivalent to

� � Rk � 
s� 
�
�
� 
p� 
� � p

L
� t

� � � RkL � 
s� 
�
�L
� 
t� �� �

�

Lemma �� For any string �� � 	 L�s� if and only if there exist �� k� u� v
such that

�i� � � �Rk or � � �RkL�

�ii� 
s� ���
�
� 
v� ��� ���� and

�iii� 
s� ���
�
� 
u� ���

Here � denotes addition mod 
�

Proof� First assume � 	 L�s�� Then �s� s�
�
� p for some state p� If

p � �u� v� then �s� s�
�
� �u� v�� so by Lemma �� we have


s� ���
�
� 
v� 
� � 
s� ���

�
� 
u� �� �

But then we can choose � � � and k � 
� If p � �v� then for some �� � we
have

�s� s�
�
� �u� q�

�
� �q�

�
� �v�

��



so by Lemma �� we have

� � Rk � 
s� ���
�
� 
q� 
�

�
� 
v� 
� � 
s� ���

�
� 
u� �� �

Since �� � ��� this is equivalent to

� � �Rk � 
s� ���
�
� 
v� ��� ��� � 
s� ���

�
� 
u� ��

and we are done� If p � � � then for some �� � we have

�s� s�
�
� �u� q�

�
� �q�

�
� � �

so by Lemma �� we have

� � RkL � 
s� ���
�
� 
q� 
�

�
� 
v� �� � 
s� ���

�
� 
u� �� �

Since �� 
� ��� this is equivalent to

� � �RkL � 
s� ���
�
� 
v� ��� ��� � 
s� ���

�
� 
u� ��

and we are done�
Conversely� assume �i���iii�� We have � � �� where � � Rk or RkL� and


s� ���
�
� 
v� ���


s� ���
�
� 
u� �� �

We must have


s� ���
�
� 
p� 
�

�
� 
v� ���

for some p� From Lemma �� we have

�s� s�
�
� �u� p�

�
� �p�

and either �p�
�
� �v� or �p�

�
� � �� depending on whether � � Rk or RkL� In

either case � 	 L�s�� �

��



� Main Result

In this section we prove the main result� that L�s� gives the canonical solution
of G�

Theorem �� The sets L�s� are trees� and the function L � S � bT is a
solution of G� Moreover� if h � S � bT is any other solution� then L�s� �
h�s� for any s�

Proof� We �rst show that L�s� 	 bT � It is clearly nonempty� since �s� s�
�
�

�s� s�� it is pre�x closed by de�nition� and it is binary because G always has
L and R edges in pairs�

In order to show that L is a solution of G� we need to show

�i� if u
L
� v and u

R
� w� then L�u� � L�v� 
 L�w��

�ii� if u
�
� v� then L�u� � L�v��

First� we show �i� as two inclusions� Assume that � 	 L�v� 
 L�w�� We
proceed by induction on �� If � � 	 then we are done� since 	 	 L�u�� If

� � L� then � 	 L�v�� so �v� v�
�
� p for some p� From

�u� u�
L
� �v� v�

�
� p

we conclude that L� 	 L�u�� If � � R� then � 	 L�w�� so �w�w�
�
� p for

some p� From

�u� u�
R
� �w�w�

�
� p

we conclude that R� 	 L�u��
Assume that � 	 L�u�� We proceed by induction on �� If � � 	 then we

are done� since 	 	 L�v� 
 L�w�� If � � L� then from Lemma �� there exist
�� k� p� and q such that � � �Rk or � � �RkL and


u� �L��
�
� 
p� ��� �L�� � 
u� �L��

L�
� 
q� ��

Since 
u� �L��
L
� 
v� ���� 
u� �L��

L
� 
v� ���� and �� � �L� � �� � �� it

follows that

v� ���

�
� 
p� �� � ��� � 
v� ���

�
� 
q� ��

�




so � 	 L�v� and � 	 L�v� 
L�w�� If � � R� then from Lemma �� there exist
�� k� p� and q such that � � �Rk or � � �RkL and


u� �R��
�
� 
p� ��� �R�� � 
u� �R��

R�
� 
q� ��

Since 
u� �R��
R
� 
w� ���� 
u� �R��

R
� 
w� ���� and �� � �R� � �� � �� it

follows that

w� ���

�
� 
p� �� � ��� � 
w� ���

�
� 
q� ��

so � 	 L�w� and � 	 L�v� 
 L�w��

Second� we show �ii�� We need to show that for any u� v� ��

� if u
�
� v� � even� � 	 L�u�� and �R 	 L�v�� then �R 	 L�u��

� if u
�
� v� � odd� � 	 L�v�� and �R 	 L�u�� then �R 	 L�v��

Using the characterization in terms of N � these two cases can be rolled into
one� it su�ces to show for any s� t� ��

� if 
s� ���
�
� 
t� ���� � 	 L�s�� and �R 	 L�t�� then �R 	 L�s��

By Lemma ��� we have


s� ���
�
� 
u� ��� ��� ���


s� ���
�
� 
v� �� �	�


t� ����
�R
� 
u�� ��R� ���� ���


t� ����
��

� 
v�� �� �

Since �R ends with R� we must have �R � � �Rk for some k and ��R � ����
thus from ��� and 
s� ���

�
� 
t� ��� we get


s� ���
�R
� 
u�� 
� � ���

If �� � ��� we use ��� and �	� to get


s� ���
�R
� 
u�� ��� ���


s� ���
�
� 
v� �� �

��



If �� 
� ��� we use ��� and ��� to get


s� ���
�R
� 
u�� ��R� ���


s� ���
�
� 
u� �� �

In either case we have �R 	 L�s� by Lemma ���
To show that L is minimal� we need to show that for any other solution

h � S � bT � L�s� � h�s� for all s� This follows directly from Lemma ��� �

Recursive types are just regular trees 
��� The canonical solution we have
constructed� although possibly in�nite� is a regular tree� Thus we have solved
the type inference problem for recursive types left open in 
��� Speci�cally�
given a ��term� we construct the corresponding constraint graph and automa�
tonM� Every subterm corresponds to a node s in the constraint graph� and
its B�ohm�minimal type annotation is represented by the language L�s��

Note that the B�ohm�minimal type of any typable ��term trivially is ��
What we compute is the unique minimal Church�style explicit type annota�
tion� For simple types we have that types and type annotations are isomor�
phic� This is not so for partial types� For example� the B�ohm�minimal type
of �f��fK�fI�� is just �� but its B�ohm�minimal type annotation� which our
algorithm computes� is

�f � ��� ��� �����f��x � ���y � ��x��f��z � ��z���

In the following section we give an e�cient decision procedure for the exis�
tence of a �nite type�

� An Algorithm

We have argued that the type inference problem studied in 
�� �� is equivalent
to the following� given a �nite constraint graph G� does G have a �nite
solution� Using the characterization of the previous section� we can answer
this question easily�

Theorem �� One can decide in time O�n�� whether a constraint graph of
size n has a �nite solution�

��



Proof� By Theorem ��� there exists a �nite solution if and only if the
canonical solution is �nite� To determine this� we need only check whether
any L�s� contains an in�nite path� We �rst form the constraint graph� then
close it� this gives a graph with n vertices and O�n�� edges� This can be done
in time O�n��� We then form the automatonM� which has n��n�� states
but only O�n�� transitions� at most O�n� from each state� We then check for
a cycle with at least one non�	 transition reachable from some �s� s�� This
can be done in linear time in the size of the graph using depth��rst search�
The entire algorithm requires time O�n��� �

A ��term of size n yields a constraint graph with O�n� nodes and O�n�
edges� Allowing types to be represented succinctly by the automata Ms� we
have

Corollary �	 The type inference problem for partial types with or without
recursive types is solvable in time O�n���

� A Characterization of All Solutions

We have shown that any solution h � S � bT of a constraint graph G �
�S�L�R��� contains the canonical solution L in the sense that L�s� � h�s�
for all s 	 S� However� there certainly exist functions h � S � bT containing
L in this sense that are not solutions� In this section we give a precise
characterization of the set of all solutions of G�

In the following� we write LG for L to denote the dependence on G�

Theorem �
 Let G � �S�L�R��� be a constraint graph� A function h �
S � bT is a solution of G if and only if there exists a �possibly in�nite�
constraint graph G� � �S�� L�� R����� containing G as a subgraph such that
h � LG� on S�

Proof� First we show that if G is a subgraph of G�� then LG� gives a

solution of G� Suppose u� v� w 	 S� u
L
� v� and u

R
� w� Since G is a

subgraph of G�� u
L�

� v and u
R�

� w� By Theorem ��� LG� is a solution of G��

therefore LG��u� � LG��v� 
 LG��w�� Similarly� if u� v 	 S and u
�
� v� then

u
��

� v� therefore LG��u� � LG��v�� The two conditions of De�nition 	 are
met�

��



Conversely� let h � S � bT be any solution of G� We construct a constraint
graph G� from h containing G as a subgraph and show that h and LG� agree
on S� De�ne

S� � S � f�s� �� j s 	 S� � 	 h�s�g

L� � L � f��s� ��� �s� �L�� j s 	 S� �L 	 h�s�g

R� � R � f��s� ��� �s� �R�� j s 	 S� �R 	 h�s�g

�� � � �f��s� 	�� s� j s 	 Sg � f�s� �s� 	�� j s 	 Sg �

The graph G� � �S�� L�� R����� is a constraint graph� since each node has an
L� successor i� it has an R� successor� and L� and R� successors are unique�

We show now that h agrees with LG� on S� If � 	 h�s�� then �s� �� 	 S��
and there is a path from �s� 	� to �s� �� in G� with label �� In the automaton
M� constructed from G�� �s� s�

�
� ��s� ��� �s� ���� thus � 	 LG� �s��

To show the reverse inclusion� we extend h in a natural way to a solution
h� of G�� and then appeal to Theorem �� to conclude that h� contains LG� �
De�ne

h��s� � h�s�

h��s� �� � h�s� � � �

It remains to show that h� is a solution of G�� If s� t� u 	 S� s
L
� t� and

s
R
� u� then

h��s� � h�s� � h�t� 
 h�u� � h��t� 
 h��u� �

If �L� �R 	 h�s�� then by Lemma ��

h��s� �� � h�s� � �

� �h�s� � �� � L 
 �h�s� � �� � R

� h�s� � �L 
 h�s� � �R

� h��s� �L� 
 h��s� �R� �

Finally� if s� t 	 S and s
�
� t� then

h��s� � h�s� � h�t� � h��t� �

and to satisfy the inequalities s �� �s� 	� �� s we have

h�s� � h�s� � 	 � h��s� 	� �

�

��



Acknowledgments

The �rst author gratefully acknowledges support from the Danish Research
Academy� the National Science Foundation� the John Simon Guggenheim
Foundation� and the U�S� Army Research O�ce through ACSyAM� Mathe�
matical Sciences Institute� Cornell University� contract DAAL
�����C�

�	�
These results were obtained while he was on sabbatical at Aarhus University�
Denmark�

A preliminary version of this paper appeared as 
���

References

��� Roberto M	 Amadio and Luca Cardelli	 Subtyping recursive types	 In Proc�

��th Symp� Princip� Programming Lang�� pages �������	 ACM� January ����	

��� Fritz Henglein	 Personal communication� ����	

��� Dexter Kozen� Jens Palsberg� and Michael I	 Schwartzbach	 E�cient inference
of partial types	 In Proc� ��rd Symp� Found� Comput� Sci�� pages �������	
IEEE� October ����	

��� Dexter Kozen� Jens Palsberg� and Michael I	 Schwartzbach	 E�cient recursive
subtyping	 In Proc� ��th ACM Symp� Princip� Programming Lang�� pages ����
���	 ACM� January ����	

��� Patrick M	 O
Keefe and Mitchell Wand	 Type inference for partial types is
decidable	 In Proc� ESOP�	�
 European Symposium on Programming� volume
��� of Lect� Notes in Comput� Sci�� pages �������	 Springer�Verlag� ����	

��� Jens Palsberg	 Normal forms have partial types	 Information Processing Let�

ters� ����
����� January ����	

��� Jens Palsberg and Michael I	 Schwartzbach	 Safety analysis versus type in�
ference for partial types	 Infor� Processing Letters� ����
��������� September
����	

��� Satish Thatte	 Type inference with partial types	 In Proc� International Col�

loquium on Automata
 Languages
 and Programming �	��� volume ��� of Lect�
Notes in Comput� Sci�� pages �������	 Springer�Verlag� ����	

��



��� Mitchell Wand and Patrick M	 O
Keefe	 Partially typed terms are strongly
normalizing	 Manuscript� December ����	

��


