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Theoretical models of recursion schemes have been well studied under the names

well-founded coalgebras, recursive coalgebras, corecursive algebras and Elgot algebras.

Much of this work focuses on conditions ensuring unique or canonical solutions, e.g. when

the coalgebra is well founded.

If the coalgebra is not well founded, then there can be multiple solutions. The standard

semantics of recursive programs gives a particular solution, typically the least fixpoint of a

certain monotone map on a domain whose least element is the totally undefined function;

but this solution may not be the desired one. We have recently proposed programming

language constructs to allow the specification of alternative solutions and methods to

compute them. We have implemented these new constructs as an extension of OCaml.

In this paper, we prove some theoretical results characterizing well-founded coalgebras,

along with several examples for which this extension is useful. We also give several examples

that are not well founded but still have a desired solution. In each case, the function would

diverge under the standard semantics of recursion, but can be specified and computed with

the programming language constructs we have proposed.

1. Introduction

Infinite coinductive datatypes and functions on them offer interesting challenges in

the design of programming languages. While most programmers feel comfortable with

inductive datatypes, coinductive datatypes are often considered difficult to handle. Many

programming languages do not even provide constructs to define them. OCaml offers the

possibility of defining coinductive datatypes, but the means to define recursive functions

on them are limited. Often the obvious definitions do not halt or provide the wrong

solution.

Theoretical models of recursion schemes have been well studied under the names

well-founded coalgebras, recursive coalgebras (Adámek et al. 2007), corecursive algeb-

ras (Capretta et al. 2009) and Elgot algebras (Adámek et al. 2006). Much of this work

focuses on conditions ensuring unique or canonical solutions, e.g. when the coalgebra is

well founded.

A prototypical example of a function that fits the well-founded scheme is mergesort.

Given a list, we can sort it by dividing it into identical pieces, sorting the smaller lists, then
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merging the resulting sorted lists. The base case is the empty list or the list containing

a single element. As with most recursive functions, the scheme of definition is: given an

argument, check if it is the base case; if not, prepare the arguments for the recursive calls,

recursively apply the function, then combine the results of the recursive calls into the final

result. For mergesort, this scheme is illustrated in the following diagram:

A∗ A∗

A∗ + A∗ × A∗ A∗ + A∗ × A∗

mergesort

γ

idA∗ + mergesort × mergesort

α

.

The function γ checks whether the list is empty or a singleton, otherwise divides it in two

lists of roughly equal size.

γ(�) = ι0(�), � = [ ] or � = [a],

γ([a1; . . . ; an]) = ι1([a1; . . . ; a�n/2�], [a�n/2�+1; . . . ; an]), n � 2.

Here ι0 and ι1 are the injections into the coproduct. After the function is applied

recursively, the results of the recursive calls are combined by α, which merges the two

sorted lists.

α(ι0(�)) = � α(ι1(�1, �2)) = merge(�1, �2)

The merge function obeys a similar scheme:

A∗ × A∗ A∗

A∗ + A × A∗ × A∗ A∗ + A × A∗

merge

γ

idA∗ + idA × merge

α

,

where

γ([ ], �) = γ(�, [ ]) = ι0(�), α(ι0(�)) = �

γ(a1 :: �1, a2 :: �2) =

{
ι1(a1, �1, a2 :: �2) if a1 � a2

ι1(a2, a1 :: �1, �2) if a1 > a2

α(ι1(a, �)) = a :: �.

The fact that these functions are well-defined and unique follows from the theory of

recursive coalgebras (Adámek et al. 2007).

Abstractly, these definitional schemes are of the form

C A

FC FA

h

γ

Fh

α , (1)

where F is usually a polynomial functor on Set and (C, γ) and (A, α) are a coalgebra

and an algebra, respectively, for the functor F . The function h being defined is called an

F-coalgebra-algebra morphism.
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The standard semantics of recursion, as provided by all modern programming languages,

provides a means of expressing and computing the unique solution of (1), provided the

coalgebra C is well founded; that is, provided there is a basis to the recursion. However,

the diagram (1) can act as a valid definitional scheme even when C is not well founded.

This observation was the starting point of our work on new program constructs for

functions defined by such definitional schemes when C is not well founded (Jeannin et al.

2012, 2013). In the non-well-founded case, there can be multiple solutions. The standard

semantics of recursive programs gives a particular solution, typically the least fixpoint

of a certain monotone map on a domain whose least element is the totally undefined

function, which in the non-well-founded case may not be the desired one. In Jeannin

et al. (2012, 2013), we introduced new programming language constructs to allow the

programmer to specify and compute a desired alternative solution by solving a set of

equations determined by (1).
In the course of our study, we also proved some theoretical results that are connected to

existing research (Adámek et al. 2007). The setting in our paper and the one of Adámek
et al. (2007) is different though: on the one hand, in Adámek et al. (2007) the functor is
required to be finitary, which we do not in the present paper; on the other hand, we do
require functors to be polynomial (albeit multi-sorted) which they do not. In this paper,
we provide some examples where our extension is useful. The simplest example of this
is the case of mutually recursive definitions. For example, consider the even and odd
predicates on natural numbers. In an ML-style language, we would write:

let rec even n = if n = 0 then true else odd (n-1)

and odd n = if n = 0 then false else even (n-1)

Our results extend the results of Adámek et al. (2007) to several patterns of function

definitions, including this one. Mutually recursive functions are also treated in (Adámek

et al. 2006). We want to stress again that the results of Adámek et al. (2007) apply to

a large class of recursive function definitions, but there appear to be cases that are not

covered, at least not in any straightforward way, like the above one.

The main result of this paper is a theoretical result that relates to a result of Adámek

et al. (2007). In particular, we consider multi-sorted polynomial functors instead of finitary

functors. As we shall see, this provides an amenable framework for mutually recursive

functions. Moreover, we clarify that the central notion in the theorem is well-foundedness

and not finiteness. We show:

— Every F-coalgebra C contains a maximal well-founded subcoalgebra wf C .

— If R is a final F-coalgebra, then wf R is the initial F-algebra.

— Let C be an F-coalgebra. The following are equivalent:

– C is well founded; that is, C = wf C .

– There is a valid induction principle for C (defined precisely in Section 3.2).

– There is a unique coalgebra morphism C → wf R.

– There is a unique coalgebra-algebra morphism from C to any F-algebra.

Our constructions are based on the concept of realizations, a concrete representation of

final coalgebras for a wide class of multi-sorted type signatures (Kozen 2011). Realizations

go beyond ordinary polynomial functors on Set in that they handle infinite (countable or
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uncountable) product and sum as well as total and partial functions. They also handle

multi-sorted signatures in a more symmetric way, without relying on any Cartesian

structure or parameterization as in Adámek et al. (2006). Our second contribution is

a variety of well-founded and non-well-founded examples that illustrate the power and

limitations of the theory.

The paper is organized as follows. In Section 2 we review the results of Kozen

(2011) on realizations of coinductive types, which are essential to the understanding of

our main theoretical results in Section 3. In Section 3 we give a new characterization

of well-founded coalgebras in terms of realizations. In Section 4 we present several

examples of well-founded applications. Some of these are already covered by the results

of Adámek et al. (2007), but others, such as mutually recursive functions even/odd and

the Ackermann function, are not. However, each of these exhibits some interesting or

surprising characteristic that attests to the wide applicability of the theory. In Section 5

we present several non-well-founded examples, including an example of Capretta (2007)

involving descending sequences of natural numbers and the semantics of alternating

Turing machines and IND programs (Harel and Kozen 1984). These examples illustrate

the usefulness of (1) as a definitional scheme even in the non-well-founded case. In

Section 6 we briefly describe our experience with bringing these theoretical ideas to

practical fruition in the form of new programming language constructs for specifying

alternative solutions to (1). These practical results are reported more fully in Jeannin

et al. (2012, 2013), but here we are able to put them in the proper theoretical context. We

conclude in Section 7 with a discussion of related theoretical and practical results.

2. Realization of coinductive types

In the proof of Theorem 3.3, we make use of an explicit construction of final coalgebras

from Kozen (2011). To make this paper self-contained, this section recalls the main

definitions and results.

2.1. Directed multigraphs

Type signatures will be represented by directed multigraphs. A directed multigraph is a

structure G = (V , E, src, tgt) with nodes V , edges E, and two maps src, tgt : E → V

giving the source and target of each edge, respectively. We write e : s → t if s = src e and

t = tgt e. When specifying multigraphs, we will sometimes use the notation s
n→ t for the

metastatement, ‘There are exactly n edges from s to t.’

A path is a finite alternating sequence of nodes and edges

s0 e1 s1 e2 s2 · · · sn−1 en sn,

n � 0, such that ei : si−1 → si, 1 � i � n. These are the arrows of the free category

generated by G. The length of a path is the number of edges. A path of length 0 is just a

single node. The first and last nodes of a path p are denoted src p and tgt p, respectively.

As with edges, we write p : s → t if s = src p and t = tgt p.
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Fig. 1. A multigraph representing a single-sorted algebraic signature. Blue diamonds represent

existential nodes and red squares universal nodes.

A multigraph homomorphism � : G1 → G2 is a map � : V1 → V2, � : E1 → E2 such that

if e : s → t then �(e) : �(s) → �(t). This lifts to a functor on the free categories generated

by G1 and G2.

2.2. Type signatures

A type signature is a directed multigraph F along with a designation of each node of F as

either existential or universal. The existential and universal nodes correspond respectively

to coproduct and product constructors. The directed edges of the graph represent the

corresponding destructors.
For example, consider an algebraic signature consisting of a binary function symbol f,

a unary function symbol g, and a constant c. This would ordinarily be represented by the
polynomial endofunctor FX = X2 + X + 1, or in OCaml by

type t = F of t * t | G of t | C

We would represent this signature by a directed multigraph consisting of four nodes

{t, f, g, c}, of which t is existential and f, g, c are universal, along with edges

t
1→ f t

1→ g t
1→ c f

2→ t g
1→ t.

The multigraph is illustrated in Figure 1.

2.3. Coalgebras and realizations

Let F be a type signature with nodes V . An F-coalgebra is a V -indexed collection of pairs

(Cs, γs), where the Cs are sets and the γs are set functions

γs : Cs →
{∑

src e=s Ctgt e, if s is existential,∏
src e=s Ctgt e, if s is universal.

A morphism of F-coalgebras is a V -indexed collection of set maps hs that commute with

the transition maps in the usual way:

Cs Ds

FCs FDs

hs

γs

Fhs

ξs .

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 10 Feb 2016 IP address: 104.229.211.75

J.-B. Jeannin, D. Kozen and A. Silva 6

Similarly, an F-algebra is a V -indexed collection of pairs (As, αs), where the As are sets

and the αs are set functions

αs :

{∑
src e=s Atgt e, if s is existential,∏
src e=s Atgt e, if s is universal

}
→ As.

A morphism of F-algebras is a V -indexed collection of set maps hs that commute with

the transition maps in the usual way:

As Bs

FAs FBs

hs

αs

Fhs

βs . (2)

These definitions correspond to the traditional definition of F-coalgebras and F-algebras

for an endofunctor F on SetV .

Coalgebras are equivalent to realizations. An F-realization is a directed multigraph G

along with a multigraph homomorphism � : G → F , called a typing, with the following

properties.

— If �(u) is existential, then there is exactly one edge of G with source u.

— If �(u) is universal, then � is a bijection between the edges of G with source u and the

edges of F with source �(u).

A homomorphism of F-realizations is a multigraph homomorphism that commutes with

the typings.

Theorem 2.1 (Kozen 2011). The categories of F-coalgebras and F-realizations are equi-

valent (in the sense of Mac Lane (1971, Section IV.4)).

Briefly, one forms a realization from a coalgebra (Cs, γs | s ∈ V ) by connecting each

existential element u ∈ Cs to the unique v such that γs(u) = ine(v) and each universal

element u ∈ Ct to all v forming the tuple γt(u). See Kozen (2011) for a more detailed

exposition.

2.4. Final coalgebras

Realizations allow a concrete construction of final coalgebras that is reminiscent of the

Brzozowski derivative on sets of strings. Here, instead of strings, the derivative acts on

certain sets of paths of the type signature.

Let F be a type signature. Construct a realization R, � as follows. A node of R is a set

A of finite paths in F such that

— A is nonempty and prefix-closed;

— all paths in A have the same first node, which we define to be �(A);

— if p is a path in A of length n and tgt p is existential, then there is exactly one path

of length n + 1 in A extending p;

— if p is a path in A of length n and tgt p is universal, then all paths of length n + 1

extending p are in A.
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The edges of R are defined as follows. Let A be a set of paths in F and e an edge of F .

Define the Brzozowski derivative of A with respect to e to be

De(A) = {p | (src e) e p ∈ A},

the set of paths obtained by removing the initial edge e from paths in A that start with

that edge. If A is a node of R and De(A) is nonempty, we include exactly one edge

〈A, e〉 : A → De(A),

in R and take �(〈A, e〉) = e. It is readily verified that tgt 〈A, e〉 = De(A) satisfies the four

properties above required to be a node of R and that �(De(A)) = tgt e, so � is a typing.

Theorem 2.2 (Kozen 2011). The realization R, � is final in the category of F-realizations.

The corresponding F-coalgebra as constructed in Theorem 2.1 is final in the category of

F-coalgebras.

3. Characterization of well-founded coalgebras

Well-founded coalgebras have a precise characterization in terms of their corresponding

realizations: a coalgebra is well founded if and only if its corresponding realization is

well founded as a graph; that is, if it has no infinite directed paths. The main theorem

of Adámek et al. (2007) characterizes halting in terms of finiteness instead of well-

foundedness, which by König’s lemma is equivalent for the finitary functors considered

in Adámek et al. (2007). However, one should stress that the essential property at play

is really well-foundedness and not finiteness. In the following, we consider coalgebras for

a wider class of functors, namely multi-sorted polynomial functors on SetV , where V

is a set of sorts, with infinite (countable and uncountable) product and sum, as well as

total and partial functions. This is the same class of functors considered in Kozen (2011).

From this point onwards, we will use F to refer to a multi-sorted polynomial functor.

We will be making use of the fact that F-coalgebras and F-realizations are in one-to-one

correspondence, and we will often use the corresponding type signature to represent the

functor F .

When a recursive function is called on a well-founded argument, the solution is unique

and the standard semantics will terminate. Theorem 3.3, which generalizes (Adámek et al.

2007) to the non-finitary case, characterizes the conditions under which this occurs.

The proof of Theorem 3.3 relies on some extra interesting facts which we also prove,

namely that every F-coalgebra C contains a unique maximal well-founded subcoalgebra

wf C and that if R is the final F-coalgebra, then wf R is the initial F-algebra.

3.1. Well-founded coalgebras

Let F be a functor, with corresponding type signature with nodes V . An F-coalgebra-

algebra morphism is a V -indexed collection of set functions hs : Cs → As, where (Cs, γs |
s ∈ V ) is an F-coalgebra and (As, αs | s ∈ V ) is an F-algebra in the sense of Section 2.3,
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such that

hs =

{
αs ◦ [htgt e | src e = s] ◦ γs, if s is existential,

αs ◦ 〈htgt e | src e = s〉 ◦ γs, if s is universal,
(3)

where

[ht | t ∈ I] :
∑
t∈I

Ct →
∑
t∈I

At 〈ht | t ∈ I〉 :
∏
t∈I

Ct →
∏
t∈I

At

are universal arrows for the coproduct and product, respectively, in Set. This condition

can be represented pictorially by the abbreviated diagram

C A

FC FA

h

γ

Fh

α (4)

If C is a realization instead of a coalgebra, the condition (3) becomes

hs(u) =

{
αs(ine(htgt e(v))), if s is existential,

αs(htgt e(ve) | src e = s), if s is universal,

where if s is existential, (u, v) is the unique edge of C with source u and e = �(u, v); and if

s is universal, (u, ve) are the edges of C with source u and e = �(u, ve).

An F-realization G = (U, E, src, tgt, �) is well founded if all directed E-paths are finite.

An F-coalgebra is well founded if its corresponding F-realization is.

Lemma 3.1. Every F-coalgebra contains a unique maximal well-founded subcoalgebra.

Proof. Equivalently, every F-realization G = (U, E, src, tgt, �) contains a unique

maximal well-founded F-subrealization wf G. The nodes of wf G are the nodes of G from

which there are no infinite directed E-paths. The graph wf G is the induced subgraph on

this set of nodes. Equivalently, the set of nodes of wf G is the smallest set of nodes A of

G satisfying the closure condition: if all E-successors of s are in A, then s ∈ A.

The subgraph wf G is a subrealization because if s ∈ wf G, then all E-successors of

s are in wf G: if there are no infinite directed paths out of s, then there cannot be an

infinite directed path out of any successor of s. Moreover, wf G is the unique maximal

well-founded subrealization, because any node s not in wf G must be the starting point

of an infinite directed path by definition, therefore G is not well founded below s.

Lemma 3.2. Let R = (V , E, src, tgt, �) be the final F-realization. Then wf R is an F-

algebra.

Proof. By Lambek’s lemma (Lambek 1968), the structure map (γs | s ∈ V ) of the final

F-coalgebra corresponding to R is invertible, thus forms an F-algebra. Translating back

to the realization R, this means that

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 10 Feb 2016 IP address: 104.229.211.75

Well-founded coalgebras, revisited 9

— for every edge e ∈ E such that src e is existential and every node v of R with

�(v) = tgt e, there exists a unique node u and edge d of R such that src d = u, tgt d = v,

and �(d) = e; and

— for every universal node s ∈ V and tuple (ve | src e = s) of nodes of R such that

�(ve) = tgt e, there exist a unique node u and tuple of edges (de | src e = s) of R such

that src de = u, tgt de = ve, and �(de) = e.

The existence and uniqueness of u in the above two cases assert the closure of R under the

algebraic operations. The subrealization wf R is closed under these operations, because

any node all of whose immediate E-successors are in wf R is also in wf R, therefore wf R

is a subalgebra of R.

We will show in Corollary 3.4 that wf R is in fact the initial F-algebra (up to

isomorphism). To show initiality, we need to show that there is a unique F-algebra

morphism to any other F-algebra. This will follow as a special case of Theorem 3.3(iv)

below.

3.2. Induction principle

The well-founded part of a realization G can be expressed in the modal μ-calculus as

wf G = μX.�X, where the modality � is interpreted in G by the E-successor relation

E(x) = {tgt e | e ∈ E, src e = x}; that is, the modal formula �P holds of x if P holds of

all E-successors of x. Thus, G is well founded if μX.�X is universally valid in G.

The induction principle for a well-founded realization G = (V , E, src, tgt, �) is:

∀x (∀y ∈ E(x) P (y)) → P (x)

∀x P (x)
, (5)

or more concisely,

�P → P

P
.

As we argue in Theorem 3.3, this rule is sound if and only if G is well founded.

3.3. Main theorem

We are now ready to state and prove our main theorem. We include point (v) to align

with (Adámek et al. 2007, Theorem 3.8), although it is not really needed for our work.

We give the definition of a parameterized coalgebra-algebra morphism in the context of the

proof below.

Theorem 3.3. Let (C, γ) be an F-coalgebra and let R be the final F-coalgebra. The

following are equivalent:

i. C is well founded; that is, C = wf C .

ii. The induction principle (5) is valid for C .

iii. There is a unique coalgebra morphism C → wf R.

iv. There is a unique coalgebra-algebra morphism from C to any F-algebra.
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v. There is a unique parameterized coalgebra-algebra morphism from C to any F-

algebra.

Proof. The equivalence of (i) and (ii) is a fundamental property of relational algebra: a

relation R is well founded if and only if the following induction principle holds. To show

that P (x) holds for all x it suffices to show that if x is an element of X and P (y) holds

for all y such that yRx, then P (x) must also be true. In the concrete case of F-coalgebras,

seen as F-realizations, note that R is the edge relation E; then the induction principle (5)

is just the standard one associated with a well-founded relation†.

Assuming (i) and (ii), (iv) can be proved by defining a coalgebra-algebra morphism

by induction, using Equation (5). Let F be a type signature with nodes V and let

(As, αs | s ∈ V ) be an arbitrary F-algebra. Assume the coalgebra C is given in the form of

an F-realization G = (U, E, src, tgt, �). We must define maps hs : �−1(s) → As for s ∈ V

satisfying condition (4). This is equivalent to the following two conditions. Let s ∈ V and

u ∈ U such that �(u) = s.

— If s is existential, let d be the unique edge of G with src d = u, let v = tgt d, and let

e = �(d). Then

hs(u) = αs(ine(htgt e(v))) ∈ As.

— If s is universal, for each e such that src e = s, let de be the unique edge with u = src de
and �(de) = e, and let ve = tgt de. Then

hs(u) = αs(htgt e(ve) | src e = s) ∈ As.

The maps hs are uniquely defined by these equations due to the well-foundedness of the

E-successor relation on G.

Statement (iii) follows as a special case of (iv), since wf R is an F-algebra by Lemma

3.2.

To argue that (iii) implies (i), we observe that under any morphism of F-realizations

C → wf R, an infinite path in C would map to an infinite path in wf R, which cannot exist

by definition, since wf R is well founded. Thus, C must be well founded as well.

For (v) ⇒ (iv), suppose that there is a unique parameterized coalgebra-algebra morphism

from C to any F-algebra. This means simply that for any α′ : FA × C → A, there is a

unique h that makes the following diagram commute:

C A

FC × C FA × C

h

〈γ, id〉

Fh × id

α′ . (6)

We wish to show that that there is a unique coalgebra-algebra morphism from C to any

F-algebra. Let α : A → FA be an arbitrary F-algebra and consider α′ = α◦π1 : FA×C → A.

† It might be interesting to note that the proof of the implication (i) ⇒ (ii) requires the axiom of dependent

choice; see e.g. Dershowitz and Jouannaud (1990); Gries and Schneider (1994).
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From the diagram (6), we know that there exists a unique h : C → A such that

h = α ◦ π1 ◦ (Fh × id) ◦ 〈γ, id〉. (7)

We show that h is a coalgebra-algebra morphism from C to A and that it is unique.

h = α ◦ π1 ◦ (Fh × id) ◦ 〈γ, id〉, diagram (6)

= α ◦ Fh ◦ π1 ◦ 〈γ, id〉, π1 is a natural transformation

= α ◦ Fh ◦ γ π1 ◦ 〈f, g〉 = f.

For uniqueness, note that any other coalgebra-algebra morphism g : C → A satisfies:

g = α ◦ Fg ◦ γ, definition of coalgebra-algebra morphism

= α ◦ Fg ◦ π1 ◦ 〈γ, id〉, π1 ◦ 〈f, g〉 = f

= α ◦ π1 ◦ (Fg × id) ◦ 〈γ, id〉 π1 is a natural transformation.

Hence, using Equation (7), we can conclude g = h.

For (iv) ⇒ (v), we need the following fact. Let γ : C → FC be an F-coalgebra. Define

G(X) = C ×FX. If (C, γ) is a well-founded F-coalgebra, then (C, 〈γ, id〉) is a well-founded

G-coalgebra. If (i) holds for F , then it also holds for G, therefore (iv) holds for G, and

(v) follows trivially for F since the diagram (6) for F is a coalgebra-algebra morphism

diagram for G.

Corollary 3.4. The F-coalgebra wf R is (up to isomorphism) the initial F-algebra.

Proof. The structure wf R is an F-algebra by Lemma 3.2. But it is also a well-founded

F-coalgebra by definition. By the equivalence of Theorem 3.3(i) and (iv), there is a unique

F-algebra morphism from wf R to any F-algebra, thus wf R is initial.

3.4. Non-well-founded coalgebras

In many interesting non-well-founded cases, the diagram (4) does not have a unique

solution h. However, for a large class of applications, the codomain A is ordered, and one

is interested in the least fixpoint of a monotone map specified by the function definition.

This situation was studied in Adámek et al. (2006), in which it was shown that under

certain conditions on the ordered codomain, functions defined by (4) are preserved by

F-coalgebra morphisms. The significance of this property is that a function defined on a

non-well-founded coalgebra can be considered a function on the final coalgebra and is

independent of the input representation. This covers many examples in which the intended

solution is a least fixpoint.

The following result is a minor adaptation of (Adámek et al. 2006, Proposition 3.5) to

our framework and the proof is similar.

Theorem 3.5 (Adámek et al. 2006). Let (A, α) be an ordered F-algebra such that A is a

chain-complete and α order-continuous. Let (S, γ) be an F-coalgebra. The construction

of the least fixpoint of the map h �→ α ◦ Fh ◦ γ is natural in S; that is, if f : S → S ′ is an

F-coalgebra morphism, then hS = hS ′ ◦ f.
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Proof. Let τS be the map h �→ α ◦ Fh ◦ γ on functions S → A. The assumptions on

A and α imply that τS is monotone and order-continuous under the pointwise order on

S → A. Let ⊥ be the bottom element of A. The map λs ∈ S.⊥ is the bottom element of

S → A. If f : S → S ′ is an F-coalgebra morphism, then clearly λs ∈ S.⊥ = (λs ∈ S ′.⊥) ◦ f,

therefore the selection of λs ∈ S.⊥ is natural in S . Moreover, it is easily argued that τS
is also natural in S; that is, for any h : S ′ → A, τS (h ◦ f) = τS ′ (h) ◦ f. By induction,

τnS (λs ∈ S.⊥) is natural in S for all n. By continuity, the least fixpoint is supn τ
n
S (λs ∈ S.⊥).

The result now follows from the observation that, by definition, suprema of chains are

preserved by composition with f on the right. In more detail, recall that the definition of

suprema is given for all y by:

sup
n

gn(y) =

(
sup
n

gn

)
(y). (8)

Using the definition twice, one instantiating y to f(x), gives the needed preservation

property:(
sup
n

(gn ◦ f)

)
(x)

(8)
= sup

n
gn(f(x))

(8)
=

(
sup
n

gn

)
(f(x)) =

((
sup
n

gn

)
◦ f

)
(x).

Although Theorem 3.5 covers many interesting non-well-founded situations, there are

some that it does not cover. For instance, to define substitution on infinitary λ-terms, the

codomain is a coalgebra of infinitary terms, which is not ordered in any natural way. In

this case, the solution is unique because it is the image of a coalgebra under the unique

homomorphism to the final coalgebra.

4. Well-founded examples

In this section, we present examples of recursive functions that are well founded. The first

two, the greatest common divisor of two integers and the towers of Hanoi, already fit the

framework of Adámek et al. (2007). The others are guaranteed to have a unique solution

using the multi-sorted extension to their framework that we have proposed.

4.1. Integer GCD

For integers m, n � 0 but not both 0, we would like to compute a triple (g, s, t) such that g
is the greatest common divisor (gcd) of m and n and sm+ tn = g. A recursive definition is

let rec gcd m n =

if n = 0 then (m,1,0) else

let (q,r) = (m/n, m mod n) in

let (g,s,t) = gcd n r in

(g,t,s-t*q)

In order to recover this definition as an instantiation of (4), we observe that there is one

base case which only needs the value of the first argument – m. There is one recursive call

that uses one of the arguments – n – and takes as second argument m mod n. Moreover,
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for the final answer after the recursive call we also need we need the value m/n. This leads

us to the functor FX = N +X ×N , where the first component of the coproduct will store

m, and the pair in the second component corresponds to the recursive call and the value

m/n. We then have the following instantiation of (4):

N × N N × Z × Z

F(N × N) F(N × Z × Z)

h

γ

Fh

α

.

Here, the functions γ and α are given by:

γ(m, n) =

{
ι0(m) if n = 0 α(ι0(g)) = (g, 1, 0)

ι1((n, m mod n), m/n) if n �= 0 α(ι1((g, s, t), q)) = (g, t, s − q).

The theory of recursive coalgebras (Adámek et al. 2007) guarantees the existence of a

unique function satisfying the diagram.

4.2. Towers of Hanoi

Another classic example of a recursive function is the towers of Hanoi. This mathematical

game consists of three rods A, B and C and a number of disks of different sizes that can

slide on any rod. At the beginning of the game, all disks are on rod A in order of size,

smallest on top. The goal of the game is to find a procedure to move all disks to rod B

while respecting the following rules:

— only one disk at a time can be moved

— a move consists of removing the upper disk from one of the rods and sliding in onto

another rod, on top of other disks that might already be on that rod;

— no disk may be placed on top of a smaller disk.

For n disks, a recursive solution consists in recursively moving n − 1 disks from the
origin rod A to the third rod C , then moving the biggest disk from the origin rod A to
the destination rod B, and finally recursively moving n − 1 disks from the third rod C to
the destination rod B. It is given by the following OCaml implementation, where o, d and
t are the origin, destination and third rod, respectively:

let rec hanoi n o d t =

if n = 0 then [ ] else

(hanoi (n-1) o t d) @ [(o,d)] @ (hanoi (n-1) t d o)

Let R be the set of rods {A,B, C}. A move can be represented as an element of R2

consisting of the origin and the destination of the move. We again have one base case

but now two recursive calls. For the base case the result of the function is the empty

list. For the other cases, we need the result of two recursive calls plus the pair (o,d).

This information is stored in the functor FX = 1 + R2 × X2: the first component of the

coproduct marks the base case (and there is no need to pass on any information since

the function will return the empty list); the second component contains the pair (o,d)

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 10 Feb 2016 IP address: 104.229.211.75

J.-B. Jeannin, D. Kozen and A. Silva 14

plus the two placeholders for the recursive calls – X2. All in all, this gives the following

instantiation of Equation (4):

N × R3
(
R2

)∗

1 + R2 × (N × R3) × (N × R3) 1 + R2 ×
(
R2

)∗ ×
(
R2

)∗

h

γ

Fh

α

.

Here, γ and α are given by:

γ(n, o, d, t) =

{
ι0(), if n = 0,

ι1((o, d), (n − 1, o, t, d), (n − 1, t, d, o)), if n �= 0

α(ι0()) = ε α(ι1((o, d), b, e)) = b · [(o, d)] · e.

The theory of recursive coalgebras (Adámek et al. 2007) guarantees the existence of a

unique function satisfying the diagram.

4.3. Mutually recursive functions: even-odd

This subsection illustrates how our generalization to multi-sorted signatures handles
mutually recursive functions in a symmetric way. A very simple example is the definition
of the even and odd predicates on natural numbers.

let rec even n = if n = 0 then true else odd (n-1)

and odd n = if n = 0 then false else even (n-1)

We can depict the recursion graphically with the following diagram:

N

1 N

1

2

1 2

1

heven

id

hodd

id
.

This can be viewed as an endofunctor F : SetV → SetV , where V = {even, odd}. The

functor is defined by: F(A,B) = (1 + B, 1 + A) and if g : A → A′ and h : B → B′, then

F(g, h) = (id + h, id + g) : F(A,B) → F(A′, B′).

An F-coalgebra is a pair ((C,D), γ), where γ : (C,D) → F(C,D) is a morphism in the

underlying category SetV ; that is,

γ = (γeven, γodd) : (C,D) → (1 + D, 1 + C),

where γeven : C → 1+D and γodd : D → 1+C . Similarly, an F-algebra is a pair ((A,B), α),

where α : F(A,B) → (A,B) is a morphism in SetV ; that is,

α = (αeven, αodd) : (1 + B, 1 + A) → (A,B),
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where αeven : 1 + B → A and αodd : 1 + A → B.

An F-algebra-coalgebra morphism h : ((C,D), γ) → ((A,B), α) is a map h = (heven, hodd) :

(C,D) → (A,B) such that the following diagram commutes:

(C,D) (A,B)

(1 + D, 1 + C) (1 + B, 1 + A)

(heven, hodd)

(γeven, γodd)

(id + hodd, id + heven)

(αeven, αodd)

.

In our application, we have A = B = 2 and C = D = N , with

γeven(n) = γodd(n) =

{
ι0() if n = 0

ι1(n − 1) if n > 0

αeven(ι0()) = 1 αodd(ι0()) = 0 αeven(ι1(b)) = αodd(ι1(b)) = b.

4.4. Ackermann function

The Ackermann function

A(0, n) = n + 1 A(m + 1, 0) = A(m, 1) A(m + 1, n + 1) = A(m,A(m + 1, n)) (9)

is a notoriously fast-growing function that also fits into our general scheme (although one

should not try to compute it!). This example is quite interesting, because at first glance

it seems not to fit the scheme (4) because of the nested recursive call in the third clause.

However, a key insight comes from the termination proof, which is done by induction on

the well-founded lexicographic order on N ×N with m as the more significant parameter.

We see that we can break the definition into two stages, both higher-order.

Rewriting A(m, n) as Am(n), we have that Equation (9) is equivalent to

A0 = λn.n + 1 Am+1 = λn.An+1
m (1),

where fn denotes the n-fold composition of f with itself:

f0 = λn.n fn+1 = f ◦ fn.

The outermost stage computes m �→ Am. The corresponding diagram is

N NN

1 + N 1 + NN

A

γ

id1 + A

α

where

γ(0) = ι0() γ(m + 1) = ι1(m) α(ι0()) = λn.n + 1 α(ι1(f)) = λn.fn+1(1).
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In turn, the function α is defined in terms the iterated composition function comp(n, f) =

fn, defined for functions on a generic domain D by:

N × DD DD

F(N × DD) F(DD)

comp

γ′

F(comp)

α′

where FX = 1 + DD × X and

γ′(0, f) = ι0() γ′(n + 1, f) = ι1(f, (n, f)) α′(ι0()) = idD α′(ι1(f, g)) = f ◦ g.

Hence, the Ackermann function (somewhat surprisingly to us) also fits the scheme (4).

5. Non-well-founded examples

We provided many examples of non-well-founded functions in Jeannin et al. (2012,

2013), including probabilistic protocols, p-adic numbers, and a fairly substantial example

involving abstract interpretation. Here we present a few more. We will also present an

example involving the set of elements in an infinite list in Section 6.

5.1. Descending sequences

As one of the simplest nontrivial coinductive datatypes, streams offer the ideal playground

to test new theories. We present an example on streams of natural numbers Nω . The

following example, taken from a talk by Capretta (Capretta 2007), has a unique solution,

but does not fit the existing theory of well-founded coalgebras (Adámek et al. 2007) or our

generalization presented here, nor does it fit the theory of corecursive algebras (Capretta

et al. 2009).

The goal is to produce from a given stream of natural numbers another stream of

natural numbers containing the lengths of the maximal strictly descending subsequences

of the input stream. An example is shown in the following figure, where the input stream

is depicted in a grid to show the order of elements.

input: 4 3 1 1 3 2 3 5 3 2 0 3 1. . .

output: 3, 1, 2, 1, 4, 2, . . .

Here is a simple recursive definition of the function in CoCaml (see Section 6), where the
constructor solver builds a new stream:

let descending arg =

let corec[constructor] descending_aux (n, i :: j :: t) =

if i > j then descending_aux (n+1, j :: t)

else n :: descending_aux (1, j :: t) in

descending_aux (1, arg)
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This definition corresponds to the following instantiation of Equation (4):

N × Nω Nω

N × Nω + N × (N × Nω) Nω + N × Nω

h

γ

h + idN × h

α

where FX = X + N × X and

γ(n, i :: j :: t) =

{
ι0(n + 1, j :: t) if i > j

ι1(n, (1, j :: t)) otherwise
α(ι0(s)) = s α(ι1(n, s)) = n :: s.

The constructor solver is one of the built-in solvers in CoCaml. It is used to construct

a solution that is an element of a final coalgebra. In such situations, the solution is

unique, but not necessarily the least fixpoint of any monotone map, as the codomain is

not ordered.

5.2. Alternating turing machines and IND programs

Alternating Turing machines (see e.g. Papadimitriou (1993); Sipser (2006)) are like

nondeterministic Turing machines, except they can make universal (∧) branches as well

as existential (∨) branches. An existential configuration is accepting if at least one of its

successor configurations is accepting, whereas a universal configuration is accepting if all

of its successor configurations are accepting.

Formally, the semantics of alternating Turing machines is described in terms of an

inductive labelling of machine configurations C with either 0 (rejecting), 1 (accepting)

or ⊥ (undetermined). In the present framework, the function γ would give the set of

successor configurations and the labelling of the state as either existential or universal,

and α would tell how to label configurations 0, 1, or ⊥ inductively up the computation tree.

Formally, α gives the infimum for universal configurations and supremum for existential

configurations in three-valued Kleene logic 3 = {0,⊥, 1} with ordering 0 � ⊥ � 1.

C 3

2 × Pfin(C) 2 × Pfin(3)

h

γ

id2 + Pfin(h)

α

The canonical solution is defined to be the least fixpoint with respect to a different order,

namely the Scott order ⊥ � 0, ⊥ � 1. This example is interesting, because it is a case

in which α is not strict; for example, a universal configuration can be labelled 0 as soon

as one of its successors is known to be labelled 0, regardless of the labels of the other

successors.

A similar model is the IND programming language for the inductive sets (Harel and

Kozen 1984). An IND program consists of a sequence of labelled statements of three

kinds: universal and existential assignment (x := ∀ and x := ∃, respectively), conditional

test (if s = t then �1 else �2) and halting (accept, reject). The semantics of IND
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programs is very similar to alternating Turing machines. The statement x := ∃ assigns a

nondeterministically chosen element of the domain to the variable x, spawning as many

new processes as the cardinality of the domain. The computation from that point accepts

if at least one of the newly spawned processes accepts. Similarly, the statement x := ∀
accepts if all the newly spawned processes accept. Thus, the semantics is the same as

alternating Turing machines, except that the branching degree is equal to the cardinality

of the domain of computation. IND programs accept exactly the inductively definable sets,

which over N are exactly the Π1
1 sets.

6. CoCaml

Along with our study characterizing the existence and uniqueness of solutions of

diagram (4), we also became interested in situations in which solutions exist but are

not unique. There are many interesting such cases, as our non-well-founded examples

have shown. Often there is a desired solution to (4), but it is not the one computed

by the standard semantics of recursion. We wanted to provide language constructs for

the programmer to specify alternative solutions in those cases. This led to the design of

an extension of OCaml called CoCaml (CoCaml 2012; Jeannin et al. 2012, 2013). The

language is described in more detail there, but we would like to give a flavor of it in this

section.
We provide some motivation using a function over streams, coded in OCaml as infinite

lists. In OCaml, the type of finite and infinite lists is built in. The empty list is written [ ],
and the list with head h and tail t is written h :: t. Infinite objects of this type can be
defined using the let rec construct. For example,

let rec ones = 1 :: ones

let rec alt = 1 :: 2 :: alt

The first example defines the infinite sequence of ones 1, 1, 1, 1, . . . and the second the

sequence 1, 2, 1, 2, . . . .

The let rec construct allows us to build only regular lists, that is, those that are

ultimately periodic. Such lists always have a finite representation in memory. The

coinductive elements we consider are always regular; that is, they have a finite but

possibly cyclic representation. This is different from a setting in which infinite elements

are represented lazily and are computed on the fly.
Although the let rec construct allows us to specify (finite representations of) infinite

structures, further investigation reveals a major shortcoming. For example, suppose we
wanted to define a function that, given an infinite list, returns the set of its elements. For
the lists ones and alt, the function should return the sets {1} and {1, 2}, respectively. One
would like to write a function definition using the obvious equations which pattern-match
on the two constructors of the list datatype:

let set l = match l with

| [ ] -> [ ]

| h :: t -> insert h (set t)

where insert inserts an element in a set, represented say by a sorted finite list without

duplicates. However, this function will not halt in OCaml on the lists ones and alt,
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even though it is clear what the answers should be. Note that this is not a corecursive

definition, as we are not asking for a greatest solution or a unique solution in a final

coalgebra, but rather a least solution in a different ordered domain from the one provided

by the standard semantics of recursive functions. The standard semantics of recursive

functions gives us the least solution in a domain with bottom element ⊥ representing

nontermination, whereas we would like the least solution in a different CPO, namely

(P(Z),⊆) with bottom element �.
The CoCaml language extends OCaml with a construct that allows functions defined

by equations, like the one above, to be supplied with an extra parameter, namely a solver
for the given equations. For instance, the example above would be almost the same in
CoCaml:

let corec[iterator([ ])] set l = match l with

| [ ] -> [ ]

| h :: t -> insert h (set t)

The construct corec with the parameter iterator([ ]) specifies to the compiler that the

equations above should be solved using the built-in iterator solver—in this case a least

fixpoint computation – starting with the initial element [ ]. For the infinite list alt, which

can abstractly be thought of as the circular structure

•

1 •

2

the compiler will generate two equations:

set(x) = insert 1 (set(y))

set(y) = insert 2 (set(x))

then solve them using the specified solver iterator, which will produce the intended set

{1, 2}.
CoCaml has a number of built-in solvers (iterator, constructor and a Gaussian

elimination solver gaussian), as well as an interface for programmers to create their own

solvers; see Jeannin et al. (2012, 2013) and the CoCaml project website (CoCaml 2012) for

details. The solver constructor, which we already mentioned in the descending sequence

example of the previous section, is particularly interesting, since it enables the definition

of functions whose codomain is a given final coalgebra.

7. Discussion

In this paper, we have presented the origins of our work on bringing coinduction to a

functional language in the form of effective language constructs.

The work in the present paper and related implementation papers (Jeannin et al. 2012,

2013) was inspired by work on recursive coalgebras (Adámek et al. 2007) and Elgot

algebras (Adámek et al. 2006). We have extended and clarified the results in Adámek

et al. (2007) by providing a different proof that works on a larger class of functors.

Our generalization handles multi-sorted signatures and mutually recursive functions in a
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symmetric way and is not restricted to finitary functors. We have also provided several

examples of functions defined using this scheme, as well as non-well-founded examples

that do not have a unique solution but still have a canonical solution. Finally, we have

briefly described our work on programming language constructs to allow the programmer

to choose alternative solution methods when the standard semantics of recursion would

not halt.

The theoretical results of Adámek et al. (2007) and the results of this paper are con-

cerned with the properties of the domain C ensuring unique solutions to the diagram (4).

The motivation for recursive coalgebras stems from the seminal work of Osius (1974)

on coalgebras of the powerset functor, generalized in Paul Taylor’s monograph (Taylor

2009). Capretta et al. (2009) studied the dual problem of characterizing properties of

the codomain A ensuring this property. The work of Adámek, Milius, and Velebil on

Elgot algebras (Adámek et al. 2006) is relevant to our work on recursive definitions

that do not have unique solutions. Elgot algebras provide specified canonical solutions

rather than unique ones. The canonical solutions must satisfy two axioms, the first

ensuring that solutions are independent of the representation of the input and are

thus well-defined on a final coalgebra, and the second that allows multiple fixpoints to

be parameterized and computed sequentially. The latter property gives an alternative

approach to mutually recursive functions. There is also some related work of a more

practical nature (Hirschowitz et al. 2003; Sperber and Thiemann 1998; Syme 2006;

Trancón y Widemann 2011) that we discuss in Jeannin et al. (2012, 2013).
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