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Abstract. The Church–Rosser theorem states that the λ-calculus is confluent under β-reductions.
The standard proof of this result is due to Tait and Martin-Löf. In this note, we present an alter-
native proof based on the notion of acceptable orderings. The technique is easily modified to give
confluence of the βη-calculus.
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1. Introduction

A fundamental result in the λ-calculus is confluence: if e
∗
→ e1 and e

∗
→ e2 by some arbitrary sequences

of reductions, then there exists e3 such that e1
∗
→ e3 and e2

∗
→ e3. This is result is originally due to

Alonzo Church and J. Barkley Rosser in 1936 [2] and is known as the Church–Rosser theorem.
The standard proof of this result, as presented by Barendregt [1], is due to Tait and Martin-Löf. The

Tait–Martin-Löf proof is based on an auxiliary reduction relation defined by formal rules and is very
amenable to machine verification. Several implementations in automated deduction systems have been
reported, along with various improvements and simplifications [5, 6, 7].

Besides the Tait–Martin-Löf proof, Barendregt [1, Chp. 11] presents another proof based on the
idea of developments. This proof involves tracing a set of occurrences of redexes in a term through a
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Figure 1: A β-reduction at σ

sequence of reductions. It is somewhat more transparent than the Tait–Martin-Löf proof, but is longer
and unfortunately does not readily generalize to the βη-calculus.

The shortest proof along these lines is perhaps the proof of Takahashi [7] (see also [5, 6]). A good
exposition is given in [5].

The same result in the presence of η-reductions was first proved by Curry and Feys [3] and later
improved and generalized by Hindley [4]. These proofs show that every reduction sequence can be
transformed to one in a special normal form.

In this note we offer a short alternative treatment based on the notion of acceptable orderings. We
prove confluence under β-reductions in Section 3. A slight modification of the proof admits η-reductions
as well, and we present this modification in Section 4.

2. Preliminaries

2.1. λ-Terms as Labeled Trees

We view λ-terms as finite labeled trees. Let ω∗ denote the set of finite-length strings of natural numbers.
A tree is a nonempty prefix-closed subset of ω∗. A λ-term is a partial function e whose domain dom e ⊆
ω∗ is a finite tree such that e(σ) is either an abstraction operator λx, in which case σ has one child σ0;
the application operator, in which case σ has a left child σ0 and a right child σ1; or a variable, in which
case σ is a leaf.

The subterm of e rooted at σ ∈ dom e is the term e�σ = λτ . e(στ) (λ is used here as a meta-
operator). Note that if σ is a prefix of τ , then e�τ is a subterm of e�σ.

We consider α-equivalent terms identical. The β-reduction rule then takes the following form. Sup-
pose σ is a β-redex in e, say e�σ = (λx. c) d. This is replaced at σ by the corresponding contractum
consisting of the term c with d substituted for all free occurrences of x, renaming bound variables as
necessary to avoid capture (Fig. 1).

2.2. Acceptable Orderings

If σ and τ are both β-redexes in e and σ is a proper prefix of τ , then e�τ is a proper subterm of e�σ.
If we reduce σ before reducing τ , then τ will in general no longer be a redex; indeed, it may no longer
even exist in the resulting tree. However, if we reduce τ first, then σ is still a redex in the resulting tree,
although the subterm at σ may have changed.
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More generally, if A ⊆ dom e is a set of β-redexes in e, and we reduce them in some order consistent
with the subterm relation—that is, we reduce σ ∈ A only if all proper extensions στ ∈ A have already
been reduced—then every redex in A will still be available when it is time to reduce it, and it will be
possible to reduce all of them. Moreover, the actual order does not matter, as long as it is consistent with
the subterm relation.

Formally, we say that a linear ordering σ1, . . . , σn of the elements of A is acceptable if σi = σjτ

implies i ≤ j; in other words, the sequence σ1, . . . , σn is a subsequence of some total extension of the
partial order {(στ, σ) | σ, τ ∈ ω∗} (or, if you like, a topological sort of A with respect to the edges
(στ, σ)).

Acceptable orderings of A are not unique, but this does not matter: it is easily proved inductively that
all acceptable orderings give reduction sequences of the same length, namely the cardinality of A, and
the resulting final terms are the same up to α-equivalence. Let us call this final term θA(e), as it depends
only on e and A and not on the order of reductions.

Takahashi’s treatment [7] (see also [5, 6]) is based on the notion of parallel reduction, which is de-
rived from the idea of complete development of Tait and Martin-Löf (see [1]). In her words, “Intuitively,
the property [of confluence] is satisfied by the term e∗ which is obtained from e by contracting all β-
redexes in e simultaneously.” Essentially, e∗ corresponds to θA(e), where A is the set of all redexes in e,
reduced in some canonical acceptable order. Our treatment gives a little more flexibility in that A can be
any set of redexes, not just the set of all redexes, and they can be reduced in any acceptable order. This
flexibility will pay off in the subsequent development, especially in the treatment of the βη-calculus in
Section 4.

e

θB(e) θA(e)

θB(θA(e))

= θA(θB(e))

B A

A B

Figure 2

For σ ∈ ω∗, let σ↓ = {στ | τ ∈ ω∗}, the set of strings of which σ is a prefix. For σ ∈ dom e,
σ↓ ∩ dom e represents the set of (occurrences of) subterms of e�σ.

For A,X ⊆ ω∗, write ABX if there exists σ such that A ⊆ σ↓ and σ↓ ∩X = ∅. If ABX , then A

and X are disjoint, and there exists an acceptable ordering of A ∪X in which all elements of A precede
all elements of X .

3. Confluence under β-Reductions

We start by proving confluence under β-reductions in some special cases, building up to the general
result in Theorem 3.1.
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Lemma 3.1. Let A and B be two sets of redexes of e such that all elements of A are prefix-incomparable
to all elements of B. The terms θB(θA(e)) and θA(θB(e)) exist and are equal. This gives the confluent
diagram illustrated in Fig. 2.

Proof:
Both θB(θA(e)) and θA(θB(e)) represent the reduction of the redexes in A ∪ B in different acceptable
orders, thus both terms are equal to θA∪B(e). ut

Lemma 3.2. Let σ be a redex of e and let A be a set of redexes of e such that A ⊆ σ↓. There exists a
set B of redexes of θσ(e) such that B ⊆ σ↓ and

θC(θA(e)) = θB(θσ(e)),

where C = {σ} if σ 6∈ A and C = ∅ if σ ∈ A. This gives the confluent diagram illustrated in Fig. 3.

Proof:
Suppose first that σ 6∈ A. Let e�σ = (λx. c) d. The set A may contain redexes in c and d. Reducing σ

first, a copy of d replaces each free occurrence of x in c (see Fig. 1). If we then reduce the redexes in

e

θA(e)

θσ(e)

θC(θA(e))

= θB(θσ(e))

A
σ

C
B

Figure 3

these copies of d in some acceptable order, then reduce the remaining redexes in c in some acceptable
order, this yields the same result as reducing the redexes in d and c in some acceptable order before
reducing σ, then reducing σ.

Formally, take

B = {σγi | 1 ≤ i ≤ m} ∪ {σδiτj | 1 ≤ i ≤ k, 1 ≤ j ≤ n},

where

A = {σ00γi | 1 ≤ i ≤ m} ∪ {σ1τj | 1 ≤ j ≤ n}

and the free occurrences of x in c are located at {σ00δ1, . . . , σ00δk}. The elements of A of the form
σ00γi represent the redexes in c, which after reducing σ become the elements of B of the form σγi. The
elements of A of the form σ1τj represent the redexes in d, which after reducing σ become the elements
of B of the form σδiτj representing the corresponding redexes in the copies of d that replaced the free
occurrences of x in c. In Fig. 1, k = 2.

If σ ∈ A, then it must appear last in any acceptable ordering of A. By the previous argument, there
exists B ⊆ σ↓ such that θ∅(θA(e)) = θσ(θA−{σ}(e)) = θB(θσ(e)). ut
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Lemma 3.3. Let A and X be sets of redexes of e such that A BX . There exists a set B of redexes of
θX(e) such that

θX(θA(e)) = θB(θX(e)).

Proof:
This follows by induction on the cardinality of X using Lemmas 3.1 and 3.2. Starting with X0 = X

and B0 = A, construct a sequence of sets Xi and Bi by taking the elements of X one at a time in some
acceptable order τ0, . . . , τn−1, maintaining the invariant Bi BXi. Initially, B0 BX0 by assumption, as
witnessed by some σ0. Lemma 3.1 is used if the next τi ∈ X is prefix-incomparable to all elements of
Bi, in which case Bi+1 = Bi, and σi+1 = σi witnesses Bi+1 B Xi+1; and Lemma 3.2 is used if the
next element τi ∈ X is a prefix of all elements of Bi, in which case Bi+1 is the B of Lemma 3.2, and
σi+1 = τi witnesses Bi+1 B Xi+1. The set Xi+1 is Xi − {τi}. The final set B in the statement of the
lemma is Bn.

Fig. 4 illustrates the case X = {τ0, τ1, τ2}. ut
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Figure 4

Note that the second case of Lemma 3.2 (in which C = ∅) was not used in the proof of Lemma 3.3.
It will be needed in the proof of the next lemma.

Lemma 3.4. Let A be an arbitrary set of redexes of e, and let σ be a redex of e. There exist redex sets
C of θA(e) and B of θσ(e) such that

θC(θA(e)) = θB(θσ(e)).

This gives the confluent diagram of Fig. 3 (the same diagram as for Lemma 3.2, but with a different
interpretation of the symbols).
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Proof:
Partition A into A1 = σ↓ ∩ A and A2 = A − A1. Then A1 B A2. By Lemma 3.2, there exist a set
B1 ⊆ σ↓ of redexes of θσ(e) and C1 ⊆ {σ} such that

θC1
(θA1

(e)) = θB1
(θσ(e)). (1)

Take B = B1 ∪ A2. Since B1 ⊆ σ↓, C1 ⊆ σ↓, and σ↓ ∩A2 = ∅, we have B1 BA2 and C1 BA2. By
Lemma 3.3, there exists a set C of redexes of θA2

(θA1
(e)) = θA(e) such that

θC(θA2
(θA1

(e))) = θA2
(θC1

(θA1
(e))). (2)

Then

θC(θA(e)) = θC(θA2
(θA1

(e))) since A1 BA2

= θA2
(θC1

(θA1
(e))) by (2)

= θA2
(θB1

(θσ(e))) by (1)

= θB(θσ(e)) since B1 BA2.

ut

Lemma 3.5. Let e
∗
→ e′ by some arbitrary sequence of β-reductions, and let A be a set of redexes of e.

There exists a set B of redexes of e′ such that θA(e)
∗
→ θB(e

′).

Proof:
This follows in a straightforward fashion by induction on the length of the reduction sequence e

∗
→ e′ by

composing the reductions of Lemma 3.4. ut

Theorem 3.1. (Church–Rosser Theorem)
Let e

∗
→ e1 and e

∗
→ e2 by some arbitrary sequences of β-reductions. There exists e3 such that e1

∗
→ e3

and e2
∗
→ e3.

Proof:
Lemma 3.5 gives a confluent diagram for each step in the reduction sequence e

∗
→ e1, and these can be

composed to get a confluent diagram for the entire sequence. ut

4. Accommodating η

The η-reduction rule is λx.cx → c, where c contains no free occurrences of x. We show in this section
that a minor modification of the argument of Section 3 gives confluence under β- and η-reductions.

The main concern is that due to overlapping redexes, it is no longer true in general that any set of
redexes A ⊆ dom e can be completely reduced simply by reducing them in acceptable order. There are
two problematic situations, as illustrated in Fig. 5.

Consider the configuration of Fig. 5(a). There is a β-redex at the root whose left child is an η-
redex. If the η-reduction is performed first, the root is no longer a β-redex in general. However, a key
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Figure 5: Overlapping redexes: (a) a β-η overlap; (b) an η-β overlap

observation is that we can perform either the β-reduction at the root or the η-reduction at the left child,
and the resulting contractum is the same, as shown.

Similarly, Fig. 5(b) shows an η-redex at the root whose only child is a β-redex. As with (a), per-
forming the β-reduction at the child may destroy the η-redex at the root. However, if we perform either
reduction, the resulting contractum is the same (up to α-equivalence), as shown.

The solution is simply to disallow redex sets A containing either of these two configurations. Equiv-
alently, A may not contain both σ and σ0 for any σ. We will call a redex set A ⊆ dom e overlap-free if
this property holds. Any overlap-free set of redexes can be fully reduced in acceptable order.

The entire development of Section 3 now goes through with minor modification. The formal state-
ments of Lemmas 3.1–3.5 and Theorem 3.1 are modified as follows:

Lemma 4.1. Let A and B be two overlap-free sets of redexes of e such that all elements of A are prefix-
incomparable to all elements of B. The terms θB(θA(e)) and θA(θB(e)) exist and are equal.

Lemma 4.2. Let σ be a redex of e and let A be an overlap-free set of redexes of e such that A ⊆ σ↓.
There exists an overlap-free set B of redexes of θσ(e) such that B ⊆ σ↓ and θC(θA(e)) = θB(θσ(e)),
where C = {σ} if both σ, σ0 6∈ A and C = ∅ if either σ ∈ A or σ0 ∈ A.

Lemma 4.3. Let A and X be sets of redexes of e such that A B X and A ∪ X is overlap-free. There
exists an overlap-free set B of redexes of θX(e) such that θX(θA(e)) = θB(θX(e)).

Lemma 4.4. Let A be an arbitrary overlap-free set of redexes of e, and let σ be a redex of e. There exist
overlap-free redex sets C of θA(e) and B of θσ(e) such that θC(θA(e)) = θB(θσ(e)).

Lemma 4.5. Let e
∗
→ e′ by some arbitrary sequence of β- and η-reductions, and let A be an overlap-free

set of redexes of e. There exists an overlap-free set B of redexes of e′ such that θA(e)
∗
→ θB(e

′).

Theorem 4.1. (Church–Rosser Theorem for the βη-calculus)
Let e

∗
→ e1 and e

∗
→ e2 by some arbitrary sequences of β- and η-reductions. There exists e3 such that

e1
∗
→ e3 and e2

∗
→ e3.

Lemma 4.2 for the case of σ a β-redex is the same as in Lemma 3.2, with the extra observation that
B cannot contain overlapping redexes if A did not. For the case of σ an η-redex, if A = {σ00γi | 1 ≤
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i ≤ m}, we take B = {σγi | 1 ≤ i ≤ m}. In both cases, if σ ∈ A or σ0 ∈ A, we can take C = ∅,
otherwise C = {σ}.

For Lemma 4.4, we can assume without loss of generality that A ∪ {σ} is overlap-free; for if τ ∈ A

and either τ = σ0 or σ = τ 0, we can just replace σ with τ in the proof, as θσ(e) = θτ (e). We can then
conclude that the B1 ∪A2 and C1 ∪A2 constructed in the proof are overlap-free. All else is the same as
in Lemma 3.4.

The proofs of Lemmas 4.1, 4.3, 4.5, and Theorem 4.1 go through essentially unchanged from Lem-
mas 3.1, 3.3, 3.5, and Theorem 3.1, respectively.
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