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A microservice-based application is composed of multiple self-contained components called microservices, and
controlling inter-service communication is important for enforcing safety properties. Presently, inter-service
communication is configured using microservice deployment tools. However, such tools only support a limited
class of single-hop policies, which can be overly permissive because they ignore the rich service tree structure
of microservice calls. Policies that can express the service tree structure can offer development and security
teams more fine-grained control over communication patterns.

To this end, we design an expressive policy language to specify service tree structures, and we develop
a visibly pushdown automata-based dynamic enforcement mechanism to enforce service tree policies. Our
technique is non-invasive: it does not require any changes to service implementations, and does not require
access to microservice code. To realize our method, we build a runtime monitor on top of a service mesh, an
emerging network infrastructure layer that can control inter-service communication during deployment. In
particular, we employ the programmable network traffic filtering capabilities of Istio, a popular service mesh
implementation, to implement an online and distributed monitor. Our experiments show that our monitor can
enforce rich safety properties while adding minimal latency overhead on the order of milliseconds.
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1 Introduction

Large-scale cloud-based applications are often implemented using the microservice design paradigm,
where the application is decomposed into multiple microservices—that is, services that are loosely
coupled and individually have narrowly-defined roles. This design offers separation of concern
between the services: individual services can be developed by independent teams, exposing their
service’s functionality over well-defined API interfaces. Each service runs in isolation in its own
runtime-environment called a container, listening for incoming traffic on a dedicated port and IP
address. Inter-service communication happens over a communication protocol like HTTP or gRPC.

Controlling inter-service communications is important for enforcing safety properties in mi-
croservice applications. For example, a service deployment team may want to split the flow of
requests to two versions of their service for A/B testing. In a security-critical setting, a team might
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want to restrict communication between certain services to enforce security guidelines of their
company. Similarly, an audit or a data-compliance team may want to enforce data-protection
regulations, like GDPR [1] and HIPAA [28], by controlling inter-service exchange of information.

1.1 Challenges

Limited expressiveness of existing policies. Today, developers can control inter-service commu-
nications with two primary methods: coarse-grained control, and fine-grained control. The first
method is exemplified by Kubernetes, the most widely used container orchestration framework,
which uses a container network interface (CNI) to control which containers (i.e., services) can
communicate with each other. While effective, this kind of policy offers very limited expressivity:
communication between services is either fully unrestricted, or entirely prohibited.

The need to offer more fine-grained control of inter-service communications has motivated
the use of service meshes (e.g., Istio [19]), which handle request-level communications on behalf
of services. The data plane of the service mesh (often realized as the Envoy [13] proxy, with
one instance of Envoy paired with each service instance) essentially forms a layer between the
application and transport protocols, handling incoming and outgoing requests to provide API-level
access control, encryption, visibility, load balancing, etc. Service mesh can be used for monitoring
inter-service communication at the API call granularity and enforcing policies, for instance, allowing
or rejecting a request based on some HTTP source header value.

Both the above methods only support single-hop policies, specifying if a pair of endpoints can
communicate (e.g., if service A is allows to call a certain API of another service B). However, in a
microservice application, a single initial request results in a service tree of requests—services make
API calls to multiple other services, which in turn call other services. Expressing this service tree
structure can offer even more fine-grained control over the communication patterns.

For example, consider a hospital management application where a request for medical test
involves interactions between three services: (1) Test, which receives the request; (2) De-identify,
which de-identifies patient information; and (3) Lab, which sends the patient records to an external
lab. HIPAA’s data-protection regulations mandate that to preserve the privacy of a patient, un-
necessary personal health information must be de-identified [29]. Therefore, a compliance team
might require that the test functionality calls an De-identify service before Lab. However, this
property cannot be specified as a single-hop policy between the Test and the Lab services—it
requires reasoning about intermediate service interactions between these services. In particular,
we need De-identify and Lab services to be invoked by Test, and in that order. Such applications
necessitate policies that can specify the structure of a service tree.

Enforcement requirements. Not only are there challenges in expressing rich policies, enforcing
policies in this setting is also challenging. For example, safety properties are often specified and
maintained by teams, like compliance or deployment, that do not have access to the service
code. Therefore, services in a microservice application will often appear as blackboxes to teams,
and a policy enforcement mechanism should be non-invasive, i.e., not require code changes, and
blackbox, i.e., not require access to code. Furthermore, the inter-service communication patterns of
an application can change due to dynamic updates of service code or due to to elastic scaling of the
application, where service containers can spin up or down in response to the load on the application.
Thus, the enforcement mechanism should be able to cope with microservice applications that change
dynamically, rather than being fixed from the outset.

1.2 Our Approach

In this work, we consider the question: “How can we specify and enforce policies over the rich service
tree structure at runtime without invasive changes to the blackbox service implementation?”
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Our solution consists of three parts: a policy language, an automata-based enforcement mecha-
nism, and a distributed runtime monitor. The black-box and non-invasive aspects of our solution
are crucial for usability. For instance, our policies can be fully decoupled from the application code,
enabling them to be written and maintained by teams that do not have access to the service code
(e.g., deployment or compliance teams). Accordingly, our solution supports polyglot applications.

Expressive policy language for service trees. First, we design a policy language called SafeTree for
specifying allowed service tree structure. Our language offers constructs to specify constraints on
the children, siblings, and subtrees of a service in the tree. SafeTree also allows multi-hop policy
over a linear sequence of API calls, without any reference to the tree structure.

An automata-based enforcement mechanism. Second, we design an automata-based distributed
runtime monitor for SafeTree policies. The key idea is that a service tree can be represented as
a nested word [5], so that policies correspond to sets of nested words. Accordingly, we define a
compilation procedure from a policy into a visibly pushdown automaton (VPA) [4] that accepts the
set of valid nested-words described by the policy. Our VPA-based monitor can be implemented in a
fully distributed manner with no need for a centralized authority, by carrying the VPA state in a
custom configuration header along with the requests and simulating the VPA transitions locally at
the services.

A distributed runtime monitor. Lastly, to implement our policy checking mechanism, we develop
a prototype implementation of our monitor on top of the Istio service mesh. In Istio, each service
container is paired with a sidecar container running an Envoy proxy that can be programmed
to specify custom traffic filtering logic involving operations on HTTP headers. We exploit this
customizability to implement a runtime monitor locally at services, simulating the VPA in a
distributed fashion.

Outline. We first motivate a policy language for service trees (section 2) and introduce background
on nested words (section 3). We then introduce our primary technical contributions:

(1) a policy language with constructs to model the service tree structure and a nested-word
semantics of the policies (section 4);

(2) a translation of our policies into VPA and a translation of a VPA into a distributed monitor,
along with a proof of soundness (section 5);

(3) a broad range of case studies demonstrating real-world policies that can be expressed in our
policy language (section 6);

(4) and an implementation and evaluation of an efficient and distributed runtime monitor over
service mesh (sections 7 and 8).

Finally, we survey related work (section 9) and conclude with future directions (section 10).

2 A Tour of Service Tree Policies

This section motivates service tree policies in the context of a hospital management application.

2.1 Running Example: Hospital Management Application

Consider a microservice-based hospital management application offering functionalities to request
(a) a payment of bills, and (b) a medical test from an external lab. These functionalities are imple-
mented using the following services: Frontend, F: requests for an appointment or a medical test;
Test, T: requests for a lab test; De-identify, I: de-identifies personal health information; Lab, L:
sends patient records to an external lab; Payment, P: charges a patient for a service; Database, D:
writes to a payment database; EventLog, E: logs database access events.
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Fig. 1. Service tree for: (a) “lab test” request; (b) “appointment” request; (c) tree with annotated paths.

In a microservice setting, services communicate using API calls over some communication
protocol, like HTTP or gRPC, etc. In this paper, we focus on synchronous HTTP-based APIs, which
follow a request/response pattern. An API request initiates calls to a fleet of services, which may
themselves call further services. The runtime execution trace of the application when serving a
single request to a service can be viewed as an ordered service tree rooted at a node corresponding
to the requested API. Each API invoked in a single execution trace is represented as a node in the
tree; an edge from a parent to a child node implies the parent endpoint called the child endpoint;
the children of a node are ordered according to the order in which they are called by the parent.
Since this runtime behavior can depend on arguments to the call, responses from child calls, local
state at the microservice, etc., a call to a given API might lead to multiple possible service trees.

To illustrate, let us consider possible service trees for two Frontend functionalities: requesting a
medical test, or requesting a payment.

(1) Medical test functionality: the execution trace when Frontend sends a request to Test is
represented as a tree in fig. 1a. First, the Frontend invokes Test: this is represented as the
edge o between a node labeled with Frontend and Test. Further API calls invoked by Test
while serving this incoming request are represented as outgoing edges from this Test node. In
this case, Test first calls @) De-identify and then Test calls @) Lab. The left-to-right ordering
of the children of Test in this tree reflects the order of children calls.

(2) Payment functionality: the service tree in fig. 1b describes the execution trace when
Frontend requests Payment to charge for two bills: first, 0 Frontend invokes Payment. This
service then invokes 9 Database, which then invokes e EventLog. Then Payment invokes
o Database for the second time, before Database invokes e EventLog.

2.2 Safety Properties
In our example application, we can imagine several safety policies motivated by regulatory, business,
and security concerns.

(1) Deployment team: A/B testing. Suppose there are two versions of Payment and EventLog
services, v1 and v2. For A/B testing, a deployment team may want Payment requests from
beta testers to be served by v2 of the Payment service and any direct or indirect EventLog
invoked by v2 of Payment should also be of version v2. The labeling of beta users is specified
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in the Frontend service, while the services undergoing A/B testing can be multiple hops
deeper in the call tree.

(2) Security team: Log database access. If Payment service accesses the Database (as shown
in fig. 1b) to update patient’s payment details, this sensitive update should be logged by
Database calling EventLog.

(3) Data compliance team: HIPAA compliance. In compliance with the HIPAA guidelines
to protect patient privacy from an external lab, the hospital’s data-compliance team might
want to ensure that a request to Test service (as shown in fig. 1a) should be processed by first
calling De-identify and then calling the external Lab .

These safety properties are often specified and maintained by teams that do not have direct
access to the service code. Therefore, services in the application will often appear as blackboxes
to teams, who may only have visibility into an application’s execution by observing inter-service
communication patterns. Since examining application code is outside the scope of service meshes,
we can only specify policies at the granularity of inter-service communication. For example, the
data compliance policy above may not be able to enforce the specific data that is passed from
De-identify to Lab.

Existing microservice frameworks allow control over inter-service communication via single-hop
constraints, which control calls between single pairs of services. However, the above policies
cannot be directly expressed in terms of such policies since they involve constraints on the service
tree structure, e.g., descendants, subtrees, etc. Thus, we need a policy language and enforcement
mechanism that is more expressive than current CNI and service mesh policies.

2.3 Service Tree Policies

To address the above issue, we design SafeTree—a policy language for specifying service trees to
increase the expressiveness of the policies that can be enforced strictly using the inter-service
communication information available at the service mesh layer. To get a flavor of our language,
let us specify the payment database logging policy (2), which requires that any requests from
Payment to Database must call EventLog. In our language, this policy can be specified as:

V-path
match Payment = ( Database EventLog _) + (!Database)”

1. root 2. path regex

For brevity, we defer some syntactic details to section 4. For now, we will step through the above
specification to understand how different parts of the policy have been expressed:

e Since the property is described with respect to a subtree rooted at Payment (as marked in the
tree in fig. 1c), we need to express the root of the subtree. This is specified as the expression
“match Payment” on the left.

e The condition that Database invoked by Payment should always invoke EventLog is described
in terms of a regular expression over the application endpoints. This is specified as the right-
hand side expression (Database EventLog _) + (!Database)”. Here, _ denotes any sequence
of the application endpoints and !Database denotes any endpoint besides Database. This
regular expression describes the valid sequence of API calls in a path from Payment’s children
to any leaf node. For instance, in the tree in fig. 1c, this regular expression matches the paths

labeled with 0, 9, and e
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call P/ gp a call D/ gp callE/ gpE

start —|

ret P, gp ret D, gp ret E, gpE

Fig. 2. Visibly pushdown automaton, which accepts a tree where Payment (P) invokes Database (D) as its
child, and this D invokes EventLog (E) as its children. Omitted transitions are marked in dotted. The initial
and final state is start.

2.4 Policy Enforcement

The blackbox treatment of services calls for a non-invasive enforcement mechanism that does not
require code modification. In our work, the service tree policies are enforced using a distributed
runtime monitor based on visibly pushdown automata (VPA) [4].

Overview: visibly pushdown automata. A VPA is a restricted type of pushdown automaton where
the stack operation is determined by the symbol being read. For instance, the VPA in fig. 2 has
transitions with two kinds of labels: (a) “call service/ push” and (b) “ret service, pop”, where service is
the name of the service endpoint and push and pop are values to be pushed and popped on the
stack respectively. A service symbol tagged with “call” corresponds to an HTTP request to service,
and similarly “ret” tags HTTP responses from service. Intuitively, the VPA reads a string over
call/ret tagged symbols, say “call P;call D;. .. ;ret P, from left to right. On a “call” symbol, the VPA
pushes a value on the stack wand transitioning to the next state; on a ret symbol, the VPA pops
the top of the stack and moves to the next state. For instance, in fig. 2, the edge labeled “call P/
qp” between start and gp represents that upon reading call P at start state, gp is pushed on stack
and the VPA transitions to state gp. Similarly, the transition at state gp on symbol “ret P” in fig. 2
indicates that the next state will be start if top of the stack is gp while making that transition.

Service tree—a nested-word view. By viewing each node in the service tree as a call and return
to/from the labeled endpoint, the service tree can be modeled as a sequence of nested calls and
returns forming nested word [5]. For instance, each node in fig. 3a corresponds to a call and
ret symbol in its nested-word view described in fig. 3b. The call and ret symbol of a child call is
nested between its parent’s call and ret symbols because a synchronous API waits for the response
from any API that it invokes before resuming its execution. For instance, in fig. 3b, the call and
ret of the two D in fig. 3a are nested between the call and ret symbols of their parent P.

By viewing service trees as nested words, we can view policies as sets of allowed nested words.
By carefully designing our policy language, we can ensure that our policies correspond to languages
accepted by VPA, which can check if a given service tree is permitted. For instance, the service tree
in fig. 3a is accepted by the VPA in fig. 2 because the VPA accepts the nested word view (described
in fig. 3b) of the service tree. After starting the VPA run at the initial state, start, the VPA arrives at
the final state start, which is an accepting state.

Runtime policy checking. To check service tree policies, we develop a compiler to translate Safe-
Tree policies into a VPA that accepts the valid set of nested words, and then we extract a distributed
runtime monitor from this VPA. The motivation behind a distributed design is the lack of a global
view of service trees at services. Section 5 and section 7 will detail the design principle behind
the distributed monitoring, but the key is that instead of a centralized monitor, we employ local
sub-monitors at services to simulate VPA transitions on their respective HTTP requests/responses.
To facilitate local VPA simulation while giving the illusion of having a centralized VPA, the current
VPA configuration is carried in a custom HTTP header.
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call P *@ ret P
P
retD callD
/ \ call D g———> *@ ret D
E E callE " retE callE " retE
(@) (b)

Fig. 3. Service tree for an appointment request: (a) tree view; (b) nested-word view.

To implement this distributed monitor without invasive changes to the service implementation,
we build on top of Istio, a popular service mesh implementation [19]. Service mesh is a network
infrastructure layer that abstracts away inter-service communication logic from the service imple-
mentation and offloads it into a sidecar container. Istio pairs each service with a sidecar to manage
the service’s traffic using the Envoy proxy [13] running in the container. The proxy intercepts all
incoming/outgoing HTTP traffic into the service container. The Envoy proxy can be programmed
with custom logic to perform reads and writes to HTTP headers and control access to the service.
Section 7 will detail how we use this programmability to simulate VPA transitions in Envoy.

3 Background: Service Tree as a Nested-Word

We give a refresher on the standard definition of nested words [5] and introduce some custom
notations that will be useful in later sections for encoding service trees as these nested words.

3.1 Nested Words Refresher

We start by recalling basic concepts and notation for nested words.

Definition 3.1 (Call-Return Augmented Alphabet). ¥ = ¥, UZ, is a call-return augmented alphabet
forsome X if 2. ={{s|se€X},and X, = {s) | s € X}.

Intuitively, (s and s) correspond to an HTTP request or call to an endpoint s and an HTTP
response from an endpoint s respectively.

Definition 3.2 (Indexed Symbols). An indexed symbol a = (e, i) is a pair of some symbol e € ¥ and
an index i = 1(a) € N*, where 1 is the index projection. Here, ¥ is a call-return augmented alphabet
for some 3. The symbol a is said to be a call symbol if e € 3, and a return symbol if e € 3,. We
write C(a) when a is a call symbol and R(a) when a is a return symbol.

Definition 3.3 (Nested Word). A nested word n = (w, v) over X = 2, UZ, (a call-return augmented
alphabet for some 3. 5 s) is a pair of: a word w = a; ... a; = (a;)1<i<; such that 1(a;) = k for some
k € N*and 1(a;) +1 = 1(ajy1) for any 1 < i < I; and a matching relation v C {—oo,k, ..., k+1—1} X
{k,...,k+1—1,+00} that associates call symbols with corresponding return symbols and satisfies:

(1) Each symbol occurs in only one pair. For any a. = ({s,i) € w, there exists a unique j €

{k,...,k+1—1,400} such that v(i, j) and if j # +oo then there exists a return symbol a, € w
with index i(a,) = j. For any a, = (s),j) € w, there is a unique i € {—o0,k,...,k+1— 1}
such that v(i, j) and if i # —oo then there exists a call symbol a, € w with index ((a;) = i.

(2) Edges go forward. If v(i, j) theni < j.

(3) Edges do not cross. If v(i, j), v(i’, j') and i < i’ then either the two edges are well-nested (i.e.,

j’ < j) or disjoint (i.e, j < i’).
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Letc € 3. and r € 3,. A nested word is well-matched if for any a. = (c,i) € w, there exists an
ar = (r, j) € wsuch that v(i, j); and for any a, = (r, j) € w, there exists an a. = (c,i) € w such
that v(i, j). Here, a; is a call whose matched returnis a;.

Example 3.4. Fig. 4 formally describes the well-matched nested word representation for the
service tree in fig. 3a. Here, 3 = {P,D,...} is the set of all endpoint names, and the call-return
augmented alphabet for 3 is X = {(P, (D, ...} U {P),D), ...}. In the nested word representation,
each API call in the service tree will be unfolded into a matched call and return pair. In this case,
the nested word is n = (ajazasasagazasasas, v), where ay, ..., aso are indexed symbols; we will
sometimes call the first symbol a; the root of the nested word, since it is root of the service tree.

The matching relation v is described using the dotted lines. For instance, the first call to the
Payment service or a; is matched with the return symbol as. Note that the first and the last symbol
in the nested word, i.e., a; and ajo respectively form a matched call-return pair; due to the inherent
request/response protocol, nested words corresponding to service trees in a microservice application
will always be of this form.

A nested word n can also be sliced into smaller nested words corresponding to various subtrees
of the service tree.

Definition 3.5 (A sub-nested word). Givenn = (a;...a;,v)andi(a;) <i<i’ <i(a;),letaj,ay €n
be such that i(a;) = i, and i(aj) = i’. We define a sub-nested word n[i,i'] = (a;...ay,v[i,i']).
Here, v[i, i’] is the restricted matching sub-relation:

v[i,i'] ={v(p, @) i <p.g <i'}U{(p,+o0) [v(p, q), i<p <P, g>i'}
U{(=c0,q) | v(p. @) i<qg<i,p<i}
Example 3.6. Consider the service tree in fig. 3a. Its first subtree rooted at D consists of the

first D and first E. In terms of the nested word (in fig. 4) for this service tree, the subtree under
consideration is given by the sub-nested word n[2, 5] = (azasasas, v'), where v/ = {(2,5), (3,4)}.

n = (a1a2a3a4a6a7agagaio, v)

a;=((P,1) aio = (P), 10)

as = (D),5)  as = ({D,6)
az = ((D,2)

se
% as = (D), 9)

.;;.. S
a3 =((E3) as=(E),4) a7=(E7) as=(E),8)

Fig. 4. Well-matched nested word for the service tree in fig. 3a. The dotted line from a node a; to a; represents
the match relation v(:(a;), t(a;)). The projection on the second element of any indexed symbol a; is 1(a;).

3.2 Service Tree Concepts

To define our policies, we first define nested-word equivalents for different parts of a service tree.

First, we define a set of words that correspond to all paths from the root of the service tree
representation of a nested word. Well-matched nested words are said to be rooted if the first and
the last symbol are matched.
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Definition 3.7 (Set of Paths). For a rooted well-matched nested word n = (a; .. . a;, v) over some
%, the set of all call sequences Seq(n) from the root is given by:
Seq(n) ={n(n,am) | C(am), am € n},
where 7(n, an,) is a word w = (a;);c; and
I={i|a; €n, i(a;) < 1lam), Cla;), v(i(a;), j), j > tlam)}.
The word w is a path from the root to some subsequent call g, € n.
Example 3.8. In the running example in fig. 4, the set of all paths in the nested word n is given by

Seq(n) = {a1az, a1azas, a1a¢a;7, aiae}. Aleaf node is some call symbol that is immediately followed
by a return symbol. The set of all path to leaves in n is given by SeqLeaf (n) = {aiazas, aiacas}.

To reason about the children of a node in the tree, we define a set of symbols corresponding to
children of a nested word’s root:

Definition 3.9 (Child of a root). For a rooted well-matched nested word n = (a; ...a; v), a call
am € nis a child of root a; if aja, € Seq(n). The set of children Child(n) is given by:

Child(n) = {am | aiam € Seq(n) }

In the nested word n in fig. 4, symbols a; and a4 are the children of the node a;. Similarly, a;
is the child of a,. The sub-nested words n[2,5] and n[6,9] form a set of sub-trees rooted at a;’s
children. We formally define the set of child subtrees of the root of a nested word.

Definition 3.10 (Child subtree of a root). Given arooted well-matched nested wordn = (a; ...ay, v)
with a,, as one of the children of a; and some x € N* such that v(:(an,), x), a subtree rooted at a,, is a
rooted well-matched nested word n” = ((a;)jer, Vi), Where I = {1(am), ..., x} and vy, = v[i(am), x].
The set of subtrees is given by:

Subtree(n) = { ((aj)jer, vm)

am € Child(n),
d x € N* such that v(i(ay,), x)

4 SafeTree: A Service Tree Policy Language

Now that we have introduced notation for nested words, we describe our policy language SafeTree,
and define an interpretation as sets of nested words.

4.1 Syntax

The policy syntax is presented in fig. 5. SafeTree policies make extensive use of regular expressions
(reg) defined over the set of endpoints 3.

Top-level SafeTree policies are of the form , where S C 3, and inner can be two
kinds of sub-policies: p over the hierarchical structure or seq over the linear structure of the tree.
Intuitively, top-level policies specifies that “the inner sub-policy is satisfied on any subtree rooted
at an endpoint in S that has no ancestor in S”. For instance, if S = {A}, inner should be satisfied on
all subtrees whenever A is first encountered. We write start % : inner as convenient notation for
start 3 : p; this policy specifies that inner should be satisfied at the root of the entire tree.

Inner: Hierarchical Policies. After specifying the starting symbol of a policy, a SafeTree policy
needs to specify a sub-policy to express constraints on hierarchical or the linear structure of a
service tree. All hierarchical policies shown in fig. 5 have “match reg” expression to the left of
the annotated = symbol. This expression specifies that there exists a path from the root of the
service tree to some descendant a; such that the path matches reg. (Note that reg in the match
expression should not match the empty string.) We will step through the syntax of hierarchical

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 349. Publication date: October 2025.



349:10 Karuna Grewal, Brighten Godfrey, and Justin Hsu

Regular Expressions Hierarchical Policy
acs V-path

) p1 = match regy = reg,
ScX V-child

regu=ale|0|reg, +regs | regiregs | reg* pa = match reg p
3-child
pe := matchreg = p; then...then p;

Service Tree policy P =1 | palpe
policy = start S : p | start S : seq
Linear Sequence Policy

seq == call-sequence reg

Fig. 5. SafeTree syntax

policies to understand the purpose of different right side expressions in these policies in terms of

the service tree.
. L V-path .
The simplest policy is match regy = reg,, where regy, reg, are regular expressions. It

expresses the existence of a path from the root to some descendant g; that matches reg;. Also, all
the paths from any of a;’s children to the leaves in the tree match reg,. The path between the tree’s
root and a; should be the shortest match of reg, i.e., there should be no prefix of the path that
matches reg;.

Example. Consider the service tree previously defined in fig. 3a. Suppose _ is a syntactic sugar

for the regular expression notation for 3*. This tree satisfies the policy match PD* Vgh _, which
requires existence of a path from the root of the tree, i.e., P that matches exactly one P and any
number of D. If we consider P as both the root and the descendant a;, we get a path of length
one that satisfies the requirement. The two paths DE from the children of P satisfy the regular
expression _ on the right. Therefore, the service tree satisfies the policy. Although there are more
paths, like PD in the tree that could have matched the regular expression on the left, we care about
the path which does not have a prefix in the language of the regular expression PD*.

To specify that all subtrees of some node in a tree should satisfy a policy p, we can use the policy
V-child
match reg = p. This policy specifies that there exists a node a; such that the path from the

root of the tree to a; matches reg and all subtrees rooted at children of a; satisfy policy p. This

policy specifies a universal condition on a node’s subtrees.
3-child
To specify existential conditions on the subtrees, the policy match reg = p1 then ... then p;

can be used. It specifies that there exists a node a; such that the path from the root of the tree to g;
matches reg. Also, a; has a subtree that satisfies p; followed by another subtree somewhere after it
that satisfies p,, and so on till px. Suppose c; and c;41 are the root node of the subtrees matching
p; and p;4q respectively, where 1 < i < k. Let C be the parent of ¢; and c;. The node C can have
children older than ¢; and younger than c;;1.

Inner: Linear Sequence Policy. SafeTree offers a call-sequence construct to specify the desired
sequence of API calls as a regular expression, while disregarding the hierarchical tree structure.
For instance, in a tree starting at P, say, we want to express that D happens after P, without any
specific details about the subtrees or paths in the tree where D should occur. This will be specified
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as call-sequence P_D_, where _ in the regular expression denotes any sequence of symbols. This
policy specifies that the depth-first traversal of the tree should match the given regular expression.

‘policy = start S : seq ‘

Vr(na;) =as...a € Seq(n),

if 7(n, a;) € FirstMatch(n, (£)*S) then

3 x such that

v(1(a;), x) and n[i(a;), x] € Sequence[seq]

NW[policy] =3 n=1(a;...a;v)

‘policy =startS:p ‘

V z(n,a;) = ay...a; € Seq(n),
NW([policy]] =4 n=(ay...a,v) | if 7(n a;) € FirstMatch(n, (£)*S) then
3 x such that v(1(a;), x) and n[i(a;), x] € Tree[p]

V-path
p1 = match regy = reg;

I n(n,a; € n) =ay...a; € Seq(n) such that
n(n, a;) € FirstMatch(n,reg,),
Tree[pi] =4 n=(a;...a;,v) | 3 xsuchthat v(i(a;), x) and
Vns € Subtree(n[i(a;), x]),
Vr' € SeqLeaf (ns), Calls(n’) € L(regy)

V-child
pa = matchreg — p

dx(n,a; € n) =ay...a; € Seq(n) such that
Tree[pa| =4 n=(a1...a;,v) | n(n a;) € FirstMatch(n,reg),
3 x such that v(i(a;), x) and Subtree(n[i(a;), x]) C Tree[p]

3-child
pe = match reg o p1 then .. .then pg

I n(n,a; € n) =ay...a; € Seq(n) such that
n(n,a;) € FirstMatch(n,reg),

3 x such that v(:(a;), x) and

Tree[pe] =4 n=(ai...a,v) A{t,...,tx} C Subtree((z[t(ai),?c]) such that
forany 1 < j <k, 1(a]) < L(afl),and
forany 1 < j <k, t; € Tree[p;],

where V1 Sjsk,tyz(a{...,vj)

‘ seq = call-sequence reg ‘

Sequence[[seq]l = {n = (a1 ...a;,v) | Calls((ax)xer) € L(reg), where I = {i(a;) | C(a;), a; € n}}

Fig. 6. SafeTree semantics (where Subtree is defined in definition 3.10)

4.2 Nested Word Interpretation for Service Trees

Formally, we interpret a SafeTree policy as a set of rooted well-matched nested word. Since matching
paths with regular expressions is common across SafeTree policies, we define a nested word variant
for a set of shortest paths matching some regular expression.
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Definition 4.1 (First or Shortest Match Path). Given a nested word n = (a; ... a;, v) over X, which
is a call-return augmented alphabet for some ¥, a path 7(n, a,) € Seq(n) is the first match for
some regular expression reg over % (or z(n, ap) € FirstMatch(n, req)) if w = Calls(x(n, an)) is
matched by reg, and there is no smaller prefix of w that matches reg.

for all 1 < j < m, the following holds
FirstMatch(n,reg) = { n(n,am) € Seq(n) | s1...s; € L(reg), w e L(reg),
where w = Calls(n(n,a;m)) =S1...5m

Here, Calls of a path rewrites every augmented call symbol with its counterpart in 3.

Definition 4.2 (Calls Projection of a Path). Given a nested word n = (ay ... aj, v) over base alphabet
> and a path 7(n, a,) = a; .. . am,, we define

Calls(ay ...am) = $1...Sm, Wheres; = proj(a;) forany 1 <i < m.

Here, proj(a) projects the base symbol of an indexed symbol, i.e., for any a = ({s,i) or a = (s), i)
(with some index i), we define proj(a) = s.
The nested word interpretation NW[[p] < NestedWords(Z) for a service tree policiy p is

defined in fig. 6. Here, NestedWords(Z) is the set of all nested words over X. For a nested word
n = (aj...a;v) to be accepted by a service tree policy start S : inner, the inner policy should be
satisfied on every sub-nested word of n that is rooted at some symbol a; € S and the path from the
root of the nested word to the symbol a; should contains no symbol in S besides a;. In the NW[p]|
definition in fig. 6, this condition is formally expressed by requiring the path between the root and
a; to be a first match of regular expression (2)*S.

The nested word interpretation Tree[[p]] € NestedWords(Z) in fig. 6 for a hierarchical policy
first defines an existential constraint on a path from the root to some node, followed by specific
constraints on either path until the leaves, or on sub-nested words (or subtrees). As defined in fig. 6,
a linear policy accepts a nested word n C Sequence[ p] if the sequence of call symbols in n match
the given regular expression in p.

5 Enforcement

The SafeTree policies are enforced by a visibly pushdown automaton (VPA)-based monitor. For
this, we define a compiler from our policy language to a VPA. The VPA is then used to check if
a service tree is valid. Before we detail our VPA-based enforcement mechanism, we first give a
refresher on the standard VPA model:

Definition 5.1 (Visibly pushdown automaton). A (deterministic) visibly pushdown automaton (VPA)
is defined as M = (Q, qinis, F, 2, T, L, 8, &), where:
e Q is the set of all states, g;;; € Q is the initial state, and F C Q is the set of final states,
e Y is the alphabet, where ¥ = 3. U 3, consists of call symbols 2. and return symbols %,,
e T is the set of stack symbols with a special bottom of stack symbol L € T,
e 870 x3, — Qx (I —{L}) is the call transition function,
e 87 : O x (I - {L1}) X =, — Qs the return transition function.

Note that we do not need the conventional internal symbols of a VPA to monitor our policies;
extending our policies to use internal symbols is an interesting avenue for future work.

Example 5.2. Fig. 7 shows a two state VPA, which is defined over ¥ = {(A, A)}. In this case,
Q ={q0, 91}, qinit = qo, F = {qo}, and T = {L, qo}.

A VPA configuration (g, 0) is a pair of its current state ¢ and the current stack 6. The stack 0 is a
sequence of stack symbols with only one occurrence of L at the starting. For instance, a possible
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configuration for the VPA in fig. 7 can be (g1, Lqo). This configuration denotes that the VPA is at
state q; and its stack has only qj.

(A g Nested word:  n = (ayas, v), where

a; = ({(A, 1), a; = (A),2), and
start —>{ L = {(1, 2)}

A). o (A A)
Run: (qo: L) - (qls J—qo) — (qu J—)

Fig. 7. (a) A two state VPA over = = {(A, A)} with O = {qo, 91}, qinir = 90, F = {qo}, and T = {1, qo}; (b)
Run of the VPA on n = (ajaz, v).

5.1 Semantics of a VPA

The run p(w) = (¢1,601) - .. (qk, Ox) of a VPA M on some nested word w is a sequence of configu-
rations. Nested word w is accepted by M if g, is a final state of M. The nested word w € L(M)
is in the language of M if w is accepted by M. Intuitively, when a VPA M transitions from one
configuration to another on a call symbol, say a € X, it pushes a value on the stack and moves to
the next state. While transitioning on a return symbol a € ¥,, the top of the stack is popped and
the configuration state is updated.

For example in fig. 7, the transition (A/qq is a call transition that pushes gy on the stack upon
reading the symbol (A . The transition labeled with A), q is a return transition on A) and it pops
the top of the stack qq.

The valid transitions allowed by a VPA can be defined as follows:

Definition 5.3. Let M = (Q, qinit, F, 2, T, L, ., §,) be a deterministic VPA with states Q, X =
3¢ UZ,. Let u be the set of all stacks and a be some symbol in ¥ then 5 QX u— QX pis defined
as follows:

(1) if a € 3, then (¢, 0") 5 (g, 9) if there exists (¢’,a,q,s) € S., wheres € T and 0 = ¢’s,

(2) ifa € 3, then (¢',0") N (g, 9) if there exists (¢’,s,a,q) € 5y, where s € T"and 0s = §".

Example 5.4. Let us look at the run of the VPA in fig. 7 on the nested word n = (((A, 1)(A), 2),v),
where v = {(1, 2)}. As shown in the figure, on the first symbol, the VPA goes to state q; and pushes
qo on stack. On the next symbol, the top of the stack is g, so the VPA goes from the state ¢; to g
and the stack value qq is popped.

5.2 Compilation Sketch

We define a VPA interpretation VPA[.] : Policy — VPA for SafeTree policies. Here, Policy is the
set of all policies and VPA is the set of all VPAs. Here, we provide a sketch of the compilation; the
detailed rules and further discussion can be found in the full paper. Below, we write M for the
target policy’s VPA. We first consider sequential policies.

VPA of call-sequence reg. M simulates reg’s DFA A on all call symbols and ignores the return
symbols. The nested word is accepted if A accepts the sequence of calls.

We now turn to hierarchical policies, which are of the form “match reg = inner”. For such
policies, M first simulates reg’s DFA A (on call symbols) to find a path that matches reg. During
this phase, M maintains a stack of A’s run on the path. Suppose the above path ends with some
symbol (s, M checks if inner is satisfied on the subtree rooted at (s. If inner is not satisfied, the
policy can still be satisfied if there exists another path from the root that matches reg leading to a
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subtree satisfying inner. To implement this behavior, the following retry steps are taken: on return
symbols, M backtracks A’s run using the stack history of the run; M searches for another path
by simulating A to go forward on call symbols; and then running the checks for inner.

Now, we detail the other steps of policy checking.

VPA of match reg Vgh reg’. While reading the paths in the subtree rooted at (s, M simulates
the DFA A’ of reg’ on the call symbols; and on return symbols, backtracks A’s run using the stack
history. If A’ accepts each path, M accepts the nested word; otherwise it searches for another path
matching reg.

V-child

VPA of match reg = p. M simulates p’s VPA M, on all the subtrees rooted at (s’s children.

If M,, accepts each of (s’s child subtree, M accepts the nested word; otherwise it searches for
another path matching reg.

3-child
VPA of match reg = p1 then .. then py. Let any policy p;’s VPA be M,,,. M simulates

M, on (s’s first child subtree; if the subtree is not accepted by M, this simulation is repeated on
the next child subtree of {(s. When My, accepts such a subtree, M simulates M,,, on the next child
subtree, and so on. M accepts the word if after repeating these steps, M finds a subtree accepted
by My, ; otherwise M retries starting from the search for a path matching reg.

VPA of start S : inner. First, M simulates the DFA A (on the call symbols) that accepts paths
from the root to some symbol in S that does not have any ancestor in S. Similar to the hierarchical
policies, M then simulates inner’s VPA M;,, on the subtree rooted at (s. M continues to apply retry
steps (similar to the hierarchical policies) to the search for other paths matching A and checking if
M;n accepts the relevant subtrees for each of those paths.

As expected, our compilation is sound with respect to SafeTree’s nested word semantics.

THEOREM 5.5 (SOUNDNESS). Let p be a policy and L(VPA[p]]) be the set of rooted well-matched
nested words accepted by its visibly pushdown automaton VPA[p]. Then,

(1) NMp]l = L(VPA[p]) if p is a service tree policy,

(2) Tree[[p]] = L(VPA[p]) if p is a hierarchical policy, and

(3) Sequence[p]] = L(VPA[p]) ifp is a linear sequence policy.

All three equivalences in the above theorem are proved by induction on the structure of the
policies. The proof is given in the full paper.

Finally, we consider complexity. We can bound the size of the compiled VPA in terms of the size
of the policy as follows:

THEOREM 5.6. Suppose the DFA of every regular expression in a policy p has at most R states; each
sub-policy has at most k immediate sub-expressions, i.e., fan-out at most k; and (nesting) depth d. Then

the VPA M(F) such that NW[[p]J = L(M) has O((k + 1)?R) states.
The proof goes by structural induction on the policy p. The proof and definitions of depth

and fan-out are given in the full paper. Regarding the quantity R, note that the worst case size
complexity of a DFA is known to be exponential in the length of the regular expression [31], but in
the common cases this quantity is often much smaller.

5.3 Runtime Monitor for a VPA

We will now formalize the monitor implementation for a VPA. This section first describes the
centralized interpretation, which follows immediately from the standard VPA semantics, and then
introduces a new distributed interpretation. All the compiled VPAs are deterministic and complete,
so we treat the VPA transition relations as functions below.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLAZ2, Article 349. Publication date: October 2025.



SafeTree: Expressive Tree Policies for Microservices 349:15

Definition 5.7. A VPA M = (Q, qinit, F, %, T, L, 8, 8,;) can be interpreted as [ M ] censra = (Q X
1) — NestedWord(X) — (Q X p), which takes: (a) an initial VPA configuration (g, #)—a pair
of a state and some stack; (b) and a nested word w € NestedWord(X), and returns a final VPA
configuration. We define [ M]|censrar inductively on the length of the nested word w:

(1) Case w = (€, ¢):

[[M]]Ce‘ntral (q/’ 6,) w = (q’, 9,)

(2) Case w = (ay ...araks1, v), where ary; = (e, i) for some e € X:

[[M]]central (Q’, 9/) w= (q> 9)’ where [[M]]wntml (qls 9,) (al o Af,s V[[(al)» l(ak)]) i (CL 9)

Intuitively, a distributed monitor is a set of call transition functions of the type call : Q — (QxT)
and return transition functions of the type ret : (Q X T') — Q. Here, Q is a set of states and T is a
set of stack elements. In the following definition of the distributed monitor, Call and Ret represent
the set of all call and return functions.

Definition 5.8. A distributed monitor D : ¥ — (Call X Ret) maps symbols in some alphabet 3
to a pair of call and return transition functions, where Call and Ret represent the set of all call and
return functions of the type call : Q — (Q xT') and ret : (Q X I') — Q. Here, Q is the set of states
and T is a set of stack elements. We write DistMon for the set of distributed monitors.

Now, we present a translation function dist_monitor : VPA — DistMon to convert a VPA M to
a distributed monitor D € DistMon.

Definition 5.9. The distributed monitor for some VPA M = (Q, qinis, F, 2, T, L, 8, 6,), where S is
the base alphabet that gets call-return augmented into %, as:

acy,
dist_monitor(M) = { (a, (call,ret)) | if 8.(q,{a) = (¢’,s) then call(g) = (¢’,s) and
if 6,(q’,s,a)) = q then ret(q’,s) = q

For any a € 3, the mappings in the call and return transition functions in D (a) = (call, ret) can
be viewed as the transition rules in ., J, on the symbols {(a and a).

Operationally, a distributed monitor takes a pair of state and stack as an initial configuration,
a nested word and returns a final configuration. Before defining the operational semantics for a

distributed monitor, we introduce a single step transition operator Ldist, where x is a symbol in
some alphabet 3.

Definition 5.10 (Single Step Transition). Let D be a distributed monitor defined over a set of base
alphabet X such that for any e € ¥, the pair of call-return transition mapped to e is D (e) = (call, ret).
Let ¥ be the call-return augmented alphabet of ¥ and x be some symbol in ¥. Let Q be the set of

states, i be the set of stacks, and the stack 6 € p. The single step function Ldist: OXpu—QxXuis
defined as follows:

(1) if x = (e for some e € 3 then (q.9) idist (4, 0"), where call(q) = (¢, s) and 6" = s,

(2) if x = e) for some e € 3 then (g, ) idist (q’,0") where ret(q,s) =q’ and 0’s = 0.

When a distributed monitor D reads a symbol a; = (x, t(a;)) from anested word w = (a; ... ak, v),
it selects a pair of call-return transition functions D (e) such that x = (e or x = ). The pair D(e)

is referred as a sub-monitor in the distributed monitor D. Based on the tag of the symbol x, the
call or return transition of D (e) is applied to the input configuration of D. Formally:
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Definition 5.11 (Operational Semantics). A VPA M’s distributed monitor D = dist_monitor(M)
can be interpreted as [ D] aisr : (O X 1) — NestedWord(3) — (Q X p), where NestedWord(Z) is
the set of nested words on X. The run of a distributed monitor 9 on some nested word w starting
at some initial state g and a distributed stack y can be inductively defined on the length of the
nested word w:

(1) Case w = (€, ¢):
[D]lais: (¢.0) w=(q,0)

(2) Case w = (ay ... araxs1, v), where ary; = (e, i) for some e € X:

[Daist (g.6) w = (g, 0), such that [ D]aist (q,0) (ar ... ax, v[1(a1), (@)]) aise (q,6")

Finally, we can show that running the distributed and the centralized variant of a VPA are
equivalent, i.e., they accepted the same nested words:

THEOREM 5.12. Given a nested word w over some call-return augmented alphabet 3 and a VPA M
whose run onw is p(w) = (q1,01) - - . (qn, 60,,) then:

(1) the run of M’s centralized monitor is [ M] centrai(q1, 61) w = (qn, 6,), and
(2) the run of M’s distributed monitor [ D] aist (g1, 61) W = (qn, 0n)-

The proof goes by induction on the length of the nested word w.

In section 7, we will see how to use these distributed monitors to enforce policies in an im-
plementation. But first, we consider some example policies that can be expressed in our policy
language.

6 Case Studies

This section motivates real-world service tree policies that are relevant to three teams: data-
compliance or audit teams, security teams, and deployment teams. All case studies are presented in
the context of the running example of the hospital management application from section 2.

Notation. We write Endpoint as shorthand for the set {Endpoint}, and S = {ay,...,ax} as
shorthand for the regular expression a; + - - - + ax. We write Any = X and !Endpoint for the set
> — {Endpoint}.

6.1 Deployment Team Policies

Thorough testing is a key step in the development process of a microservice application. Therefore,
we describe case-studies about testing scenarios of varying complexities.

Case study 1: A/B testing. Say a deployment team wants to test the interaction of a small subset
of beta testers, labeled as Beta, with a new version v2 of the Database service. For example, the label
Beta might have been assigned to a random subset of users by the frontend, or it could be assigned
to internal users which will test the service before it is released publicly. So the deployment team
requires all traffic coming from Beta to be served by Database-v2 instead of Database-v1.

Let us model requests labeled as Beta to be requests from some endpoint labeled as Beta. The
above A/B testing policy is specified as:

start Beta : call-sequence Beta(!Database-v1)*

Since this policy specifies a constraint on subtrees starting at Beta, the policy is of the form
start Beta : inner. The inner policy needs to be matched on a subtree starting at Beta. The policy
inner has to match the sequence of API calls in the subtree rooted at Beta with a regular expression
that prevents calls to v1 of Database.
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Case study 2: Factorial testing. Deployment teams often want to test the interactions between
all recently updated services. For instance, suppose a deployment team wants each request to
either use the old v1 version of all services, or the latest v2 version of all services; this is a factorial
testing scenario. More concretely, consider that the deployment team wants to prevent Test-v2 from
invoking v1 versions of the De-identify and Lab services. This can be expressed as the policy:

‘ start Test-v2 : call-sequence (Any — De-identify-v1 — Lab-v1)*

Here, (Any — De-identify-v1 — Lab-v1) is the set of all endpoints besides v1 of De-identify and Lab.

Case study 3: Regional access control. Sometimes certain services need to have restricted
regional access. For instance, suppose the hospital application wants to prevent EU users from
accessing the main Database service to avoid inadvertent violation of GDPR guidelines. Supposing
EU users are labeled at the frontend as Frontend-EU, we can express this policy as:

start Frontend-EU : call-sequence Frontend-EU(!Database)” |.

Case study 4: External requirement. A deployment team might want to specify some business
logic involving services with global effects, like a write service that updates the database or an
account creation service that creates a new user. For example, new appointments should be saved
in the appointment database by invoking some Database service. This policy can be expressed as:

start Appointment : call-sequence (Appointment _ Database_ ) ‘

The pattern _ matches any sequence of API calls. The Database service can be replaced by, say, a
Log service to log admin access to some resource.

6.2 Security Team Policies

Case study 5: Payment logging. Suppose a security team wants all Payment requests to call
payment Database at least once, and Database to send requests only to EventLog. The team can
state this requirement as “Payment invokes at least one Database and this Database invokes
EventLog as all its children,” and specify this policy as:

V-path
start Payment : match (Payment Database) L (EventLog)_ |.

The match (Payment Database) matches a subtree rooted at Payment that invokes Database as

its child. To specify that all children of this Database are EventLog, the right side sub-expression of
V-path
25" matches all outgoing paths from Database with the regular expression (EventLog) _, where

the pattern _ matches any sequence of API calls.

Case study 6: Data Vault—no outgoing calls, a constraint on the leaves. Consider that the
hospital application has a data Vault service to store patient records, and a security team wants
to restrict Vault from invoking any endpoints to prevent it from sharing confidential data with
any third-party services. This property can be expressed by requiring the Vault service to have no
children in the service tree:

V-path
start Any : match Any = (Vault)*(Vault +¢) |

This can also be expressed as a singleton sequence policy: start Vault : call-sequence Vault.
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Case study 7: Resource pricing. Suppose that patients can invoke Test service to request a
batch of medical tests. For each medical test, the Test service sends a child request. To ensure
correct billing, a security team might require every child call of Test to directly or indirectly invoke
Payment. This is policy can be specified as:

V-child V-path
start Test : match Test — (match _Payment — _

6.3 Compliance Team Policies

Case study 8: Data compliance. Data protection laws, like HIPAA and GDPR, mandate com-
pliance teams to responsibly handle customer data. For instance, personal health information,
like a patient’s name, should be de-identified for privacy. Since compliance teams do not have
direct insight into the implementation of the application, they would like to check compliance by
monitoring inter-service communications. To encode this kind of requirement as a service tree
policy, they can require that a service sending a request to external parties should have previously
run the de-identification service. This policy can be specified as:

3-child
start Test : match Test = p; then py |,

V-path V-path
where p; = match De-identify = € and p, = match Lab — e.

The right sub-expression of Héhgd needs to specify the existence of two subtrees satisfying sub-
policies p; and p,. Here, p;, p, will specify the existence of a call to De-identify and Lab respectively.
The match sub-expression in p; and p, are “match De-identify” and “match Lab” respectively
because they need to match a subtree rooted at De-identify and Lab. In the above policy, the right
side expression in p; and p, is an empty string because the team wants De-identify and Lab to not
invoke any APIs. This regular expression prevents the subtrees rooted at De-identify and Lab from
having any calls to children. Note the regular expression on the right of policy p; and p, could be
replaced by _ if the compliance team wanted to allow De-identify and Lab to invoke other services.

Add-on policy. Suppose the compliance team wants each Test request to send one Lab request.
Additionally, it wants Test to de-identify the patient records before invoking Lab. This property
specifies constraints on the sequence of API calls in subtrees starting at Test, so the policy is:

start Test : call-sequence (!Lab)*De-identify(!Lab)*Lab(!Lab)*

The above regular expression specifies that De-identify is called before Lab.

Case study 9: Data Proxy or Middleware. Sometimes the access to a service needs to be
managed by a proxy, such as a firewall to secure a data source, a load balancer, or an authenticator.
Consider the compliance team wants Test to invoke Lab via an authentication service Auth to avoid
creating unauthorized lab requests. More formally, we need to express that the subtree rooted at
Test should have an Auth descendant, and Lab should be directly or indirectly invoked by Auth,
meaning Lab is Auth’s descendant. This requirement can be specified as the following policy:

3-child 3-child V-path
start Test : match Test — (match (!Lab)*Auth = (match _Lab = )L
S~—— S~—— S~——

(1) (2) (3)

First, we specify Test as the start endpoint. Subtrees starting with Test certainly need the root to
be Test. This is described in the regular expression associated with match condition of the policy
labeled with (1). The inner policy to the right of (1) checks for the existence of a subtree that has
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a path to Auth. The regular expression (!Lab)*Auth on the left of (2) permits Auth, but no Lab
in the path. After matching this path, the inner policy of (2) checks for the existence of Lab as a
descendant, which is similarly expressed as the expression match _Lab on the left of (3). Since Lab
can be followed by any endpoint, the regular expression on the right of the label (3) is _.

This policy can be strengthened to require that Auth is called before the only call to Lab, as
follows:

start Test : call-sequence (!Lab)*Auth(!Lab)*Lab(!Lab)*

7 Implementation

To demonstrate our design, we developed a prototype implementation in ~ 2k lines of Java. Our
tool compiles a policy into a VPA, and then extracts a runtime monitor that runs on top of the
Istio service mesh. At its core, the runtime monitor enforces the policy by simulating a VPA in a
distributed manner, using the distributed monitors in definition 5.9. Here, we discuss aspects of our
monitor’s design that are particular to the Istio [19] service mesh framework.

Istio-based implementation. In the service mesh framework, each microservice container instance
is paired with a sidecar container implemented as an Envoy proxy [13]. The sidecar can intercept
all incoming and outgoing HTTP traffic for its corresponding service container, and the Envoy
proxy running at the sidecar can perform a variety of useful functions orthogonal to our work,
such as load balancing, service discovery, failover, etc. In addition, Envoy can be programmed
with custom logic to inspect HT'TP headers and perform actions, like adding/removing/updating
the headers, or allowing/denying HTTP traffic, etc. Envoy proxies maintain an in-memory state
for each request/response pair for the duration of the request’s lifetime. Therefore, any metadata
saved in the in-memory state during the request processing can be retrieved during its response’s
processing. While not a core feature of the framework, this capability turns out to enable some
important optimizations for our enforcement method, which we will discuss below.

Local monitors as Envoy filters. We implement our local monitors as Envoy filters, which are
custom traffic filtering Lua scripts that simulate VPA transitions on the service (symbol) from the
current VPA configuration carried in the HTTP header. Since in our setting, the service trees are
rooted well-matched nested word, the top of the stack symbol read by a response message is the
same as the value pushed by its matched request. Therefore, instead of carrying the stack in the
HTTP header, we save the stack symbol locally in the proxy’s in-memory state. This reduces the
memory overhead of propagating stack information along with requests, which can be significant.
With our design, only the VPA state is carried in the HTTP header.

Extracting local monitors. Given a VPA M and its distributed monitor D = dist_monitor(M) as
defined in definition 5.9, our compiler extracts the filter for a service s € ¥ from the call and ret
function mapped to s, i.e, (call, ret) = D(s). The call and ret functions are essentially the VPA’s
call and return transitions on the service s. The filter comprises two callback functions: OnRequest
implements call, while OnReponse implements ret.

For example, the two callbacks for Payment’s (P) local monitor for the VPA in fig. 2 are given
in fig. 8. The OnRequest function implements the call transition on P as a conditional block that
updates the state header and the custom in-memory metadata, local_stack to gp if the current state
is start. Similarly, OnResponse implements the return transition on P that updates state to start if
the current state header and local_stack are gp.

Local monitor execution. When a request arrives at a service, the service’s co-located proxy
executes the filter’s OnRequest callback to run a call transition. For instance, if the state header
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callback OnRequest(){ callback OnResponse(){
Pavment if (state == start) then if (state == gp 8& local_stack = gp) then
Y state = gp; local_stack = gp state = start

Fig. 8. Payment’s (P) local monitor for the VPA in fig. 2: OnRequest and OnResponse simulate VPA transition
on requests and responses respectively. The top of the stack symbol is locally saved as local_stack metadata
in the in-memory state of P’s proxy and state is carried in the HTTP header. Here, gp, start are VPA states.

of an incoming request at P is set to start, OnRequest updates state to qp and writes gp to the
(custom) local_stack metadata in P’s proxy’s in-memory state (corresponding to this request’s
session).

Likewise, the OnResponse callback is executed on intercepting a response. For instance, if the
current state header of an outgoing response from P is gp and the in-memory local_stack saved
during its corresponding request’s processing was gqp, OnResponse updates the state header to
start. Thus, the callback implements our distributed monitor’s single-step transition (as defined in
definition 5.10).

Context propagation. We require that the SafeTree header carrying the VPA state is propagated
from an incoming request to any resulting outgoing request. Although Envoy can see requests
entering and leaving the service, the service itself is a black box from its perspective, so Envoy does
not directly know which incoming (parent) requests produced which outgoing (child) requests.
We therefore require that the application copy the header from incoming to outgoing requests.
This functionality is known in the microservice community as context propagation; it is anyway
required for other purposes—in particular, distributed tracing to monitor application behavior and
track the cause of request failures and performance issues—and libraries exist to help implement
it [20, 38]. SafeTree does not assume anything more about microservice applications beyond this
standard requirement.

Rejecting invalid service trees. For simplicity, our implementation logs any policy violation after
the request’s entire service tree has been processed, rather than actively blocking requests. It should
be possible to extend the prototype to block a request as soon as we know the policy must be
violated—depending on the policy this can happen early or later in the service tree. For example,
for policies of the form start S : inner, which require subtrees starting at the symbols in S to
satisfy inner, the response from the root of such subtrees can be early blocked if the inner policy is
violated on the subtree. For certain policies, it is possible to block a request if transitioning on it
will send the VPA into a state that’s sufficient for it to never accept the service tree. For instance,

for a policy of the form start S : call-sequence reg, a request can be blocked if transitioning on it
V-path V-child
will violate reg. Similarly, for policies of the form start S : reg = reg and start S : reg = D,

a request can be blocked if the start symbol in the start set S is not the same as the first symbol of
V-path

all the words in the language of reg. For instance, start A: B = B.

8 Evaluation

We evaluate two aspects of the SafeTree monitor: its performance overhead and its memory footprint
by considering the following research questions:

e RQ1: How much header space is required for the context headers?
e RQ2: How much latency overhead does the monitor add?
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Setup. Our experimental setup consists of two microservice applications written in Go: a hotel
reservation application from the DeathStarBench [14] and a simple hospital application that we
wrote to exhibit the call structure of the application described in section 2. The average number of
nodes in the service trees of both the applications are 4.5 and 6 respectively.

While the service implementations here—especially in the hospital application—are rather simple,
the specific logic inside the application does not affect the overhead of the SafeTree monitor since
SafeTree runs in the service mesh outside the application, so its performance is not affected by
application logic. SafeTree’s overhead does, however, depend on the topology of API calls and the
policies being checked, which we will study in the evaluation.

The microservice applications are deployed on a minikube cluster enabled with Istio sidecar
injection. The cluster runs locally on a machine with 16 GB of RAM, an i7 processor, and Ubuntu
22.04 operating system. The application’s inter-service communication is managed by the Envoy
proxy running in the Istio version 1.23.2. The case study policies used in our experiments are listed
in the full paper.

8.1 RAQ1: Header Space Overhead

Maintaining the current state of the VPA-based runtime monitor and its stack configuration is
central to our enforcement mechanism. As described in section 7, the stack configuration is saved
locally at sidecar proxies, but the current state of the VPA is propagated alongside requests in a
custom HTTP header. Table 1 presents the total number of call and return transitions for each
policy’s VPA (in columns #call and #return); total number of VPA states (in #state column); and
the number of bits needed to encode the maximum number of VPA states (in #bits column). The
context headers for all our policies are at most six bits long, which is minimal compared to the
available space in HTTP headers (on the order of kilobytes).

Table 1. Policies prefixed with “Hotel” are evaluated on the hotel application, and the remainder are evaluated
on the hospital application. Main findings: (1) context headers can encode the VPA state in a small number of
bits, and (2) policy checking adds minimal latency, on the order of a millisecond to the application.

VPA transitions ~ VPA states Latency Policy = Nesting
Scenario #call #return #states #bits overhead (ms) class #levels
A/B Testing 6 30 6 3 0.700 Linear NA
Factorial Testing 11 80 11 4 0.420 Linear NA
Access Control 12 100 12 4 0.448 Linear NA
Update 25 544 25 5 0.433 Hierarch. 2
Data-compliance 38 1326 38 6 0.958 Hierarch. 2
Data Proxy 36 1184 36 6 1.117 Hierarch. 3
Encryption 23 454 23 5 0.460 Hierarch. 1
Data Vault 20 346 20 5 0.370 Hierarch. 1
Resource pricing 25 562 25 5 0.457 Hierarch. 2
Hotel Encryption 23 454 23 5 0.216 Hierarch. 1
Hotel Data Proxy 36 1184 36 6 0.443 Hierarch. 3
Hotel Compliance 38 1326 38 6 0.278 Hierarch. 2

We can understand how the size of VPAs vary across different classes of policies if we look at the
#states column and the “Policy class” column, which describes if a policy is linear or hierarchical.
We observe that the linear policies compile to a VPA with fewer states than the hierarchical policies.
If we look at the “Nesting #levels” column, we can further observe that among the hierarchical
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policies, more deeply nested policies tend to have more VPA states. The data-compliance policy
appears to be an outlier as it has the greatest number of states even though other policies have
deeper nesting, but this is because the policy specifies multiple existential condition on subtrees.
To summarize, the SafeTree monitor requires only a few bits of extra HT TP header space to
compactly encode contextual information about the service tree structure.

8.2 RAQ2: Latency Overhead

Another aspect of the SafeTree monitor’s evaluation is to understand its effect on the application’s
performance. Accordingly, we compare the latency of requests when the application is being
monitored versus when it is not, on a workload of 200 requests for all the user-facing endpoints of
the application. Latency benchmarking in a microservice application is prone to variance due to
several network factors, like congestion, application’s concurrency, elastic scaling, etc. We ensure
that the application is not overloaded by sending the requests at a sufficiently low rate so that
we are measuring per-request processing latency, rather than queuing effects. To minimize the
variation in our results, we average the latency over five such workloads.

Overhead versus Policy. Our experiment involves extracting Envoy filters from the VPAs compiled
in the previous experiment. Then for each policy, latency overhead is measured as the difference
between the average request latency in the above applications when the policy checking enabled
and when it is disabled. The policies in table 1 that are prefixed with “Hotel” were evaluated on the
hotel reservation application, and the remainder were evaluated on the hospital application. The
“Latency overhead” column in table 1 reports the average latency overhead in milliseconds.

Observe that all values are at most 2ms, which implies low latency overhead of running the
monitor. We found these results to be stable across both of our benchmark applications, which
is expected since the internal details of the services should not affect the latency overhead. To
summarize, SafeTree monitor adds minimal latency overhead—on the order of a millisecond.

Checking multiple policies. To check multiple policies simultaneously, instead of unioning the
VPAs of individual policies, we run each VPA independently. This prevents blowing up the VPA size,
which is essential for maintaining low memory overheads. To understand the latency overhead of

running multiple policies, we run multiple copies of the “Hotel Compliance” monitor from table 1.
The column “# Policies” in table 2 describes the number of

Table 2. Overhead for multiple policies.  gjmyjtaneous policies being checked. We can conclude from
the “Latency overhead” column that the latency overhead
increases with the increase in the number of policies. The

# Policies Latency overhead (ms)

1 2 . . .

9 8 5Z§ results suggest we could feasibly monitor multiple
3 0.610 policies with a reasonable amount of overhead.

4 0.676

Overhead versus topology scale. To evaluate SafeTree monitor’s scalability, we measure the
increase in latency overhead with the scale of the application’s topology, which we measure as the
number of nodes in the application’s service tree. For this experiment, we synthetically generate
applications with different topology shapes—all combinations of depths from 2 to 5 and fan-out from
1 to 4, resulting in the total number of nodes in the service trees ranging from 3 to 1365. We measure
the latency overhead for the same (“Hotel Compliance”) policy across different applications.

Fig. 9a shows that the latency overhead in milliseconds (on the y-axis) linearly increases with
the increase in the number of nodes in the service tree (on the x-axis). Fig. 9a uses log scale on both
the x-axis and y-axis. As a reference point, note that the data collected by Alibaba [25] showed
that in their microservice deployment, the common case depth and fan-out per service is lower
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Fig. 9. Latency overhead vs topology scale, measured as number of nodes in the application’s service tree.

than the median depth of ~ 4 and the median fan-out of ~ 2. A binary tree with depth 4 will have
maximum 31 nodes; the common case trees will have fewer nodes.

We zoom into the latency overhead for trees with nodes between 0-40 in fig. 9b, where the
latency overhead in milliseconds is plotted on the y-axis, and the x-axis reports the number of
nodes on a linear scale. Notice that the common case overhead is at most 5 ms and the overhead
for a typical tree with ~ 31 nodes is at most 2 ms.

We plot the per-hop overhead (latency overhead divided by number of nodes) in milliseconds
on fig. 9¢’s y-axis for trees with a range of nodes (plotted on the log scale on the x-axis). We can
see that on an average 0.082 ms of latency overhead is incurred per hop in the service tree. In
summary, SafeTree monitor’s latency overhead is under ~ 5ms for a typical topology. The
overhead linearly increases with the tree’s size, adding 0.082ms of average overhead per
hop. We expect that a production implementation of SafeTree could achieve significantly better
performance, e.g., by writing filters using C++/WASM instead of Lua.

9 Related Work

Safety in microservice and cloud applications. Today’s microservice systems support policies
that control communication between pairs of microservices. Recent works have explored more
general policies. For instance, Trapeze [2] is a system for dynamic information flow control [34]
in serverless computing. Trapeze can precisely specify how data at different security levels flow
around the application. In contrast, our system can specify properties about the structure of the
API call tree.

Another interesting work in this area is Whip [36], a higher-order contract system for describing
service-level specifications as contracts on blackbox services. Whip policies can describe the
arguments and return values of microservices; however, these policies are focused on individual
API calls, and require a custom network adapter for monitoring. In contrast, our approach can
express policies about trees of API calls using a lightweight monitoring approach that can be
implemented in existing service mesh frameworks.

Our prior work [17] proposed policies for microservices based on a linearization of the service
calls; SafeTree is more general in supporting policies that describe the tree structure of the calls,
which requires a richer automaton (VPA) for monitoring. The Copper [35] system also uses this idea
of linearization to combine several single hop policies. Unlike SafeTree, Copper does not support
tree policies, nor policies over sequences of API calls.

Execution correctness in serverless runtime. A recent line of work aims to make it easier to correctly
execute microservice applications on serverless platforms. For example, serverless operational
semantics were formalized in the A, calculus [21]; language primitives were introduced in p2sis
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[22] to write microservice code with transaction and asynchrony abstractions without manually
handling failures and execution nuances; durable functions [8] introduced a programming model
for ensuring orchestration correctness of stateful workflows under retries and failures in otherwise
stateless serverless applications. SafeTree assumes that microservices are executed correctly, but
instead checks that the runtime behavior conforms to some desired specification.

Programmable runtime verification in networks. Our work can be seen as a programmable system
for runtime verification in the service mesh layer. Runtime verification has been used at other layers
of the network stack. For instance, DBVal [24] checks for packet forwarding correctness. Hydra [32]
allows the network operator to enforce their desired policy and specify custom telemetry to attach
to packets in a custom high-level language, and synthesizes monitors to enforce polices in the
dataplane. For security policies, Poise [23] converts high-level security and access control policies
into P4 code for enforcement. At a higher level, Aragog [37] is a scalable system for specifying and
enforcing policies about high-level events in networked systems.

Distributed and decentralized runtime verification. Distributed and decentralized monitoring has
been well-studied in the runtime verification community, but most works target distributed systems
and are designed to contend with monitors that may see events out of order [6] or monitors that
may see different views of the global system [27]. We do not face such difficulties in our setting:
the state of our distributed monitors is carried with the request, and so each monitor has the
full information required to enforce the policy. Distributed tracing frameworks [20, 30, 38] used
for observability rely on a centralized collector for recording execution traces, which can then
be analyzed later. In contrast, a key goal of our work is to check policies and detect violations
efficiently at runtime, rather than after the fact.

Automata-theoretic models for hierarchical structure. Our policy specification and enforcement is
based on nested word languages and visibly-pushdown automata [5]. The literature on nested words
and VPAs is too large to survey here; the interested reader should consult Alur and Madhusudan [5].
While tree automata [11, 12] also work on hierarchical input, their inputs must be structured trees.
SafeTree uses VPA because its input is a serialized tree of nodes being incrementally processed, not
the entire service tree structure.

Monitoring context-free properties. SafeTree policies resemble to context-free properties, which
can be captured in extensions of temporal logic. For instance, VLTL [7] supports a more complex
policy language, although monitoring such policies requires Biichi and parity automata, which seem
difficult to realize in a microservice setting. Other examples include CaRet [3] and PTCaRet [33],
temporal logic extensions with call-return matching that can be interpreted using recursive state
machines. Runtime monitoring algorithms that have been considered for context-free properties
specified in temporal logic are include formula rewriting-based pushdown-automata for PtCaRet
[33]; pushdown Mealy machine for CaReT with future fragment [10]; and an LR(1) parsing based
algorithm for parametric properties [26].

In the realm of software verification, PAL [9] is a DSL for writing context-sensitive monitors for
C programs, where the user directly encodes the low-level state transitions of the monitor, and
the framework automatically instruments an existing C program. In contrast, the SafeTree policy
language is high-level, and the monitoring automaton is generated automatically.

10 Conclusion

We have presented SafeTree, a policy language for specifying rich, tree-based safety properties for
microservices. By compiling policies to VPA, we derive an efficient and performant distributed
runtime monitor for enforcing our policies without invasive code changes to microservices.
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We see several possibilities for future work. First, extending our work to the asynchronous
setting, where API calls are processed concurrently, will expand the applications of our work.
However, it is unclear how to specify safety policies where part of the service tree may not be
completed yet, and asynchronous calls may return in a different order than they were originally
issued, leading to service trees that may not be well-matched. Second, it can be useful to support
policies that reason about arguments of API calls. It could also be interesting to support richer
nested word languages—our design uses just call and return symbols, but internal symbols might
be useful for modeling other aspects of microservice behavior. Finally, our monitoring strategy
could be useful beyond microservices; for instance, for network control planes.
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