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A microservice-based application is composed of multiple self-contained components called microservices, and
controlling inter-service communication is important for enforcing safety properties. Presently, inter-service

communication is configured using microservice deployment tools. However, such tools only support a limited

class of single-hop policies, which can be overly permissive because they ignore the rich service tree structure
of microservice calls. Policies that can express the service tree structure can offer development and security

teams more fine-grained control over communication patterns.

To this end, we design an expressive policy language to specify service tree structures, and we develop

a visibly pushdown automata-based dynamic enforcement mechanism to enforce service tree policies. Our
technique is non-invasive: it does not require any changes to service implementations, and does not require

access to microservice code. To realize our method, we build a runtime monitor on top of a service mesh, an
emerging network infrastructure layer that can control inter-service communication during deployment. In

particular, we employ the programmable network traffic filtering capabilities of Istio, a popular service mesh

implementation, to implement an online and distributed monitor. Our experiments show that our monitor can

enforce rich safety properties while adding minimal latency overhead on the order of milliseconds.

CCS Concepts: • Theory of computation→ Formal languages and automata theory; • Networks→
Cloud computing; Network monitoring; • Security and privacy→ Logic and verification.
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1 Introduction
Large-scale cloud-based applications are often implemented using themicroservice design paradigm,

where the application is decomposed into multiple microservices—that is, services that are loosely

coupled and individually have narrowly-defined roles. This design offers separation of concern

between the services: individual services can be developed by independent teams, exposing their

service’s functionality over well-defined API interfaces. Each service runs in isolation in its own

runtime-environment called a container, listening for incoming traffic on a dedicated port and IP

address. Inter-service communication happens over a communication protocol like HTTP or gRPC.

Controlling inter-service communications is important for enforcing safety properties in mi-

croservice applications. For example, a service deployment team may want to split the flow of

requests to two versions of their service for A/B testing. In a security-critical setting, a team might

∗
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want to restrict communication between certain services to enforce security guidelines of their

company. Similarly, an audit or a data-compliance team may want to enforce data-protection

regulations, like GDPR [1] and HIPAA [28], by controlling inter-service exchange of information.

1.1 Challenges
Limited expressiveness of existing policies. Today, developers can control inter-service commu-

nications with two primary methods: coarse-grained control, and fine-grained control. The first

method is exemplified by Kubernetes, the most widely used container orchestration framework,

which uses a container network interface (CNI) to control which containers (i.e., services) can

communicate with each other. While effective, this kind of policy offers very limited expressivity:

communication between services is either fully unrestricted, or entirely prohibited.

The need to offer more fine-grained control of inter-service communications has motivated

the use of service meshes (e.g., Istio [19]), which handle request-level communications on behalf

of services. The data plane of the service mesh (often realized as the Envoy [13] proxy, with

one instance of Envoy paired with each service instance) essentially forms a layer between the

application and transport protocols, handling incoming and outgoing requests to provide API-level

access control, encryption, visibility, load balancing, etc. Service mesh can be used for monitoring

inter-service communication at the API call granularity and enforcing policies, for instance, allowing

or rejecting a request based on some HTTP source header value.

Both the above methods only support single-hop policies, specifying if a pair of endpoints can

communicate (e.g., if service 𝐴 is allows to call a certain API of another service 𝐵). However, in a

microservice application, a single initial request results in a service tree of requests—services make

API calls to multiple other services, which in turn call other services. Expressing this service tree

structure can offer even more fine-grained control over the communication patterns.

For example, consider a hospital management application where a request for medical test

involves interactions between three services: (1) Test, which receives the request; (2) De-identify,
which de-identifies patient information; and (3) Lab, which sends the patient records to an external

lab. HIPAA’s data-protection regulations mandate that to preserve the privacy of a patient, un-

necessary personal health information must be de-identified [29]. Therefore, a compliance team

might require that the test functionality calls an De-identify service before Lab. However, this
property cannot be specified as a single-hop policy between the Test and the Lab services—it

requires reasoning about intermediate service interactions between these services. In particular,

we need De-identify and Lab services to be invoked by Test, and in that order. Such applications

necessitate policies that can specify the structure of a service tree.

Enforcement requirements. Not only are there challenges in expressing rich policies, enforcing

policies in this setting is also challenging. For example, safety properties are often specified and

maintained by teams, like compliance or deployment, that do not have access to the service

code. Therefore, services in a microservice application will often appear as blackboxes to teams,

and a policy enforcement mechanism should be non-invasive, i.e., not require code changes, and
blackbox, i.e., not require access to code. Furthermore, the inter-service communication patterns of

an application can change due to dynamic updates of service code or due to to elastic scaling of the

application, where service containers can spin up or down in response to the load on the application.

Thus, the enforcement mechanism should be able to cope withmicroservice applications that change

dynamically, rather than being fixed from the outset.

1.2 Our Approach
In this work, we consider the question: “How can we specify and enforce policies over the rich service
tree structure at runtime without invasive changes to the blackbox service implementation?”
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Our solution consists of three parts: a policy language, an automata-based enforcement mecha-

nism, and a distributed runtime monitor. The black-box and non-invasive aspects of our solution

are crucial for usability. For instance, our policies can be fully decoupled from the application code,

enabling them to be written and maintained by teams that do not have access to the service code

(e.g., deployment or compliance teams). Accordingly, our solution supports polyglot applications.

Expressive policy language for service trees. First, we design a policy language called SafeTree for

specifying allowed service tree structure. Our language offers constructs to specify constraints on

the children, siblings, and subtrees of a service in the tree. SafeTree also allows multi-hop policy

over a linear sequence of API calls, without any reference to the tree structure.

An automata-based enforcement mechanism. Second, we design an automata-based distributed

runtime monitor for SafeTree policies. The key idea is that a service tree can be represented as

a nested word [5], so that policies correspond to sets of nested words. Accordingly, we define a

compilation procedure from a policy into a visibly pushdown automaton (VPA) [4] that accepts the

set of valid nested-words described by the policy. Our VPA-based monitor can be implemented in a

fully distributed manner with no need for a centralized authority, by carrying the VPA state in a

custom configuration header along with the requests and simulating the VPA transitions locally at

the services.

A distributed runtime monitor. Lastly, to implement our policy checking mechanism, we develop

a prototype implementation of our monitor on top of the Istio service mesh. In Istio, each service

container is paired with a sidecar container running an Envoy proxy that can be programmed

to specify custom traffic filtering logic involving operations on HTTP headers. We exploit this

customizability to implement a runtime monitor locally at services, simulating the VPA in a

distributed fashion.

Outline. Wefirst motivate a policy language for service trees (section 2) and introduce background

on nested words (section 3). We then introduce our primary technical contributions:

(1) a policy language with constructs to model the service tree structure and a nested-word

semantics of the policies (section 4);

(2) a translation of our policies into VPA and a translation of a VPA into a distributed monitor,

along with a proof of soundness (section 5);

(3) a broad range of case studies demonstrating real-world policies that can be expressed in our

policy language (section 6);

(4) and an implementation and evaluation of an efficient and distributed runtime monitor over

service mesh (sections 7 and 8).

Finally, we survey related work (section 9) and conclude with future directions (section 10).

2 A Tour of Service Tree Policies
This section motivates service tree policies in the context of a hospital management application.

2.1 Running Example: Hospital Management Application
Consider a microservice-based hospital management application offering functionalities to request

(a) a payment of bills, and (b) a medical test from an external lab. These functionalities are imple-

mented using the following services: Frontend, F: requests for an appointment or a medical test;

Test, T: requests for a lab test; De-identify, I: de-identifies personal health information; Lab, L:
sends patient records to an external lab; Payment, P: charges a patient for a service; Database, D:
writes to a payment database; EventLog, E: logs database access events.
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Fig. 1. Service tree for: (a) “lab test” request; (b) “appointment” request; (c) tree with annotated paths.

In a microservice setting, services communicate using API calls over some communication

protocol, like HTTP or gRPC, etc. In this paper, we focus on synchronous HTTP-based APIs, which

follow a request/response pattern. An API request initiates calls to a fleet of services, which may

themselves call further services. The runtime execution trace of the application when serving a

single request to a service can be viewed as an ordered service tree rooted at a node corresponding

to the requested API. Each API invoked in a single execution trace is represented as a node in the

tree; an edge from a parent to a child node implies the parent endpoint called the child endpoint;

the children of a node are ordered according to the order in which they are called by the parent.

Since this runtime behavior can depend on arguments to the call, responses from child calls, local

state at the microservice, etc., a call to a given API might lead to multiple possible service trees.

To illustrate, let us consider possible service trees for two Frontend functionalities: requesting a

medical test, or requesting a payment.

(1) Medical test functionality: the execution trace when Frontend sends a request to Test is
represented as a tree in fig. 1a. First, the Frontend invokes Test: this is represented as the

edge 1 between a node labeled with Frontend and Test. Further API calls invoked by Test
while serving this incoming request are represented as outgoing edges from this Test node. In
this case, Test first calls 2 De-identify and then Test calls 3 Lab. The left-to-right ordering
of the children of Test in this tree reflects the order of children calls.

(2) Payment functionality: the service tree in fig. 1b describes the execution trace when

Frontend requests Payment to charge for two bills: first, 1 Frontend invokes Payment. This
service then invokes 2 Database, which then invokes 3 EventLog. Then Payment invokes
4 Database for the second time, before Database invokes 5 EventLog.

2.2 Safety Properties
In our example application, we can imagine several safety policies motivated by regulatory, business,

and security concerns.

(1) Deployment team: A/B testing. Suppose there are two versions of Payment and EventLog
services, v1 and v2. For A/B testing, a deployment team may want Payment requests from
beta testers to be served by v2 of the Payment service and any direct or indirect EventLog
invoked by v2 of Payment should also be of version v2. The labeling of beta users is specified
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in the Frontend service, while the services undergoing A/B testing can be multiple hops

deeper in the call tree.

(2) Security team: Log database access. If Payment service accesses the Database (as shown
in fig. 1b) to update patient’s payment details, this sensitive update should be logged by

Database calling EventLog.
(3) Data compliance team: HIPAA compliance. In compliance with the HIPAA guidelines

to protect patient privacy from an external lab, the hospital’s data-compliance team might

want to ensure that a request to Test service (as shown in fig. 1a) should be processed by first

calling De-identify and then calling the external Lab .

These safety properties are often specified and maintained by teams that do not have direct

access to the service code. Therefore, services in the application will often appear as blackboxes

to teams, who may only have visibility into an application’s execution by observing inter-service

communication patterns. Since examining application code is outside the scope of service meshes,

we can only specify policies at the granularity of inter-service communication. For example, the

data compliance policy above may not be able to enforce the specific data that is passed from

De-identify to Lab.

Existing microservice frameworks allow control over inter-service communication via single-hop
constraints, which control calls between single pairs of services. However, the above policies

cannot be directly expressed in terms of such policies since they involve constraints on the service

tree structure, e.g., descendants, subtrees, etc. Thus, we need a policy language and enforcement

mechanism that is more expressive than current CNI and service mesh policies.

2.3 Service Tree Policies
To address the above issue, we design SafeTree—a policy language for specifying service trees to

increase the expressiveness of the policies that can be enforced strictly using the inter-service

communication information available at the service mesh layer. To get a flavor of our language,

let us specify the payment database logging policy (2), which requires that any requests from

Payment to Database must call EventLog. In our language, this policy can be specified as:

match Payment︸                ︷︷                ︸
1. root

∀-path
=⇒ ( Database EventLog _) + (!Database)∗︸                                                  ︷︷                                                  ︸

2. path regex

For brevity, we defer some syntactic details to section 4. For now, we will step through the above

specification to understand how different parts of the policy have been expressed:

• Since the property is described with respect to a subtree rooted at Payment (as marked in the

tree in fig. 1c), we need to express the root of the subtree. This is specified as the expression

“match Payment” on the left.

• The condition thatDatabase invoked by Payment should always invoke EventLog is described
in terms of a regular expression over the application endpoints. This is specified as the right-

hand side expression (Database EventLog _) + (!Database)∗. Here, _ denotes any sequence

of the application endpoints and !Database denotes any endpoint besides Database. This
regular expression describes the valid sequence of API calls in a path from Payment’s children
to any leaf node. For instance, in the tree in fig. 1c, this regular expression matches the paths

labeled with 1 , 2 , and 3 .
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startstart 𝑞𝑃 𝑞𝐷 𝑞𝐷𝐸

call P/ 𝑞𝑃 call D/ 𝑞𝐷 call E/ 𝑞𝐷𝐸

ret E, 𝑞𝐷𝐸ret D, 𝑞𝐷ret P, 𝑞𝑃

Fig. 2. Visibly pushdown automaton, which accepts a tree where Payment (P) invokes Database (D) as its
child, and this D invokes EventLog (E) as its children. Omitted transitions are marked in dotted. The initial
and final state is start.

2.4 Policy Enforcement
The blackbox treatment of services calls for a non-invasive enforcement mechanism that does not

require code modification. In our work, the service tree policies are enforced using a distributed

runtime monitor based on visibly pushdown automata (VPA) [4].

Overview: visibly pushdown automata. A VPA is a restricted type of pushdown automaton where

the stack operation is determined by the symbol being read. For instance, the VPA in fig. 2 has

transitions with two kinds of labels: (a) “call service/ push” and (b) “ret service, pop”, where service is
the name of the service endpoint and push and pop are values to be pushed and popped on the

stack respectively. A service symbol tagged with “call” corresponds to an HTTP request to service,
and similarly “ret” tags HTTP responses from service. Intuitively, the VPA reads a string over

call/ret tagged symbols, say “call P; call D; . . . ; ret P”, from left to right. On a “call” symbol, the VPA

pushes a value on the stack wand transitioning to the next state; on a ret symbol, the VPA pops

the top of the stack and moves to the next state. For instance, in fig. 2, the edge labeled “call P/
𝑞𝑃 ” between start and 𝑞𝑃 represents that upon reading call P at start state, 𝑞𝑃 is pushed on stack

and the VPA transitions to state 𝑞𝑃 . Similarly, the transition at state 𝑞𝑃 on symbol “ret P” in fig. 2

indicates that the next state will be start if top of the stack is 𝑞𝑃 while making that transition.

Service tree—a nested-word view. By viewing each node in the service tree as a call and return

to/from the labeled endpoint, the service tree can be modeled as a sequence of nested calls and

returns forming nested word [5]. For instance, each node in fig. 3a corresponds to a call and
ret symbol in its nested-word view described in fig. 3b. The call and ret symbol of a child call is

nested between its parent’s call and ret symbols because a synchronous API waits for the response

from any API that it invokes before resuming its execution. For instance, in fig. 3b, the call and
ret of the two D in fig. 3a are nested between the call and ret symbols of their parent P.

By viewing service trees as nested words, we can view policies as sets of allowed nested words.

By carefully designing our policy language, we can ensure that our policies correspond to languages

accepted by VPA, which can check if a given service tree is permitted. For instance, the service tree

in fig. 3a is accepted by the VPA in fig. 2 because the VPA accepts the nested word view (described

in fig. 3b) of the service tree. After starting the VPA run at the initial state, start, the VPA arrives at

the final state start, which is an accepting state.

Runtime policy checking. To check service tree policies, we develop a compiler to translate Safe-

Tree policies into a VPA that accepts the valid set of nested words, and then we extract a distributed

runtime monitor from this VPA. The motivation behind a distributed design is the lack of a global

view of service trees at services. Section 5 and section 7 will detail the design principle behind

the distributed monitoring, but the key is that instead of a centralized monitor, we employ local

sub-monitors at services to simulate VPA transitions on their respective HTTP requests/responses.

To facilitate local VPA simulation while giving the illusion of having a centralized VPA, the current

VPA configuration is carried in a custom HTTP header.
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Fig. 3. Service tree for an appointment request: (a) tree view; (b) nested-word view.

To implement this distributed monitor without invasive changes to the service implementation,

we build on top of Istio, a popular service mesh implementation [19]. Service mesh is a network

infrastructure layer that abstracts away inter-service communication logic from the service imple-

mentation and offloads it into a sidecar container. Istio pairs each service with a sidecar to manage

the service’s traffic using the Envoy proxy [13] running in the container. The proxy intercepts all

incoming/outgoing HTTP traffic into the service container. The Envoy proxy can be programmed

with custom logic to perform reads and writes to HTTP headers and control access to the service.

Section 7 will detail how we use this programmability to simulate VPA transitions in Envoy.

3 Background: Service Tree as a Nested-Word
We give a refresher on the standard definition of nested words [5] and introduce some custom

notations that will be useful in later sections for encoding service trees as these nested words.

3.1 Nested Words Refresher
We start by recalling basic concepts and notation for nested words.

Definition 3.1 (Call-Return Augmented Alphabet). Σ = Σ𝑐 ∪ Σ𝑟 is a call-return augmented alphabet
for some Σ̃ if Σ𝑐 = {⟨𝑠 | 𝑠 ∈ Σ̃}, and Σ𝑟 = {𝑠⟩ | 𝑠 ∈ Σ̃}.

Intuitively, ⟨𝑠 and 𝑠⟩ correspond to an HTTP request or call to an endpoint 𝑠 and an HTTP

response from an endpoint 𝑠 respectively.

Definition 3.2 (Indexed Symbols). An indexed symbol 𝑎 = (𝑒, 𝑖) is a pair of some symbol 𝑒 ∈ Σ and

an index 𝑖 = 𝜄 (𝑎) ∈ N+
, where 𝜄 is the index projection. Here, Σ is a call-return augmented alphabet

for some Σ̃. The symbol 𝑎 is said to be a call symbol if 𝑒 ∈ Σ𝑐 , and a return symbol if 𝑒 ∈ Σ𝑟 . We

write 𝐶 (𝑎) when 𝑎 is a call symbol and 𝑅(𝑎) when 𝑎 is a return symbol.

Definition 3.3 (Nested Word). A nested word 𝑛 = (𝑤,𝜈) over Σ = Σ𝑐 ∪Σ𝑟 (a call-return augmented

alphabet for some Σ̃ ∋ 𝑠) is a pair of: a word𝑤 = 𝑎1 . . . 𝑎𝑙 = (𝑎𝑖 )1≤𝑖≤𝑙 such that 𝜄 (𝑎1) = 𝑘 for some

𝑘 ∈ N+
and 𝜄 (𝑎𝑖 ) + 1 = 𝜄 (𝑎𝑖+1) for any 1 ≤ 𝑖 < 𝑙 ; and amatching relation 𝜈 ⊆ {−∞, 𝑘, . . . , 𝑘 + 𝑙 − 1} ×

{𝑘, . . . , 𝑘 + 𝑙 − 1, +∞} that associates call symbols with corresponding return symbols and satisfies:

(1) Each symbol occurs in only one pair. For any 𝑎𝑐 = (⟨𝑠, 𝑖) ∈ 𝑤 , there exists a unique 𝑗 ∈
{𝑘, . . . , 𝑘 + 𝑙 − 1, +∞} such that 𝜈 (𝑖, 𝑗) and if 𝑗 ≠ +∞ then there exists a return symbol 𝑎𝑟 ∈ 𝑤

with index 𝜄 (𝑎𝑟 ) = 𝑗 . For any 𝑎𝑟 = (𝑠⟩, 𝑗) ∈ 𝑤 , there is a unique 𝑖 ∈ {−∞, 𝑘, . . . , 𝑘 + 𝑙 − 1}
such that 𝜈 (𝑖, 𝑗) and if 𝑖 ≠ −∞ then there exists a call symbol 𝑎𝑐 ∈ 𝑤 with index 𝜄 (𝑎𝑐 ) = 𝑖 .

(2) Edges go forward. If 𝜈 (𝑖, 𝑗) then 𝑖 < 𝑗 .

(3) Edges do not cross. If 𝜈 (𝑖, 𝑗), 𝜈 (𝑖′, 𝑗 ′) and 𝑖 < 𝑖′ then either the two edges are well-nested (i.e.,
𝑗 ′ < 𝑗 ) or disjoint (i.e., 𝑗 < 𝑖′).
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Let 𝑐 ∈ Σ𝑐 and 𝑟 ∈ Σ𝑟 . A nested word is well-matched if for any 𝑎𝑐 = (𝑐, 𝑖) ∈ 𝑤 , there exists an

𝑎𝑟 = (𝑟, 𝑗) ∈ 𝑤 such that 𝜈 (𝑖, 𝑗); and for any 𝑎𝑟 = (𝑟, 𝑗) ∈ 𝑤 , there exists an 𝑎𝑐 = (𝑐, 𝑖) ∈ 𝑤 such

that 𝜈 (𝑖, 𝑗). Here, 𝑎𝑖 is a call whose matched return is 𝑎 𝑗 .

Example 3.4. Fig. 4 formally describes the well-matched nested word representation for the

service tree in fig. 3a. Here, Σ̃ = {P,D, . . .} is the set of all endpoint names, and the call-return

augmented alphabet for Σ̃ is Σ = {⟨P, ⟨D, . . .} ∪ {P⟩,D⟩, . . .}. In the nested word representation,

each API call in the service tree will be unfolded into a matched call and return pair. In this case,

the nested word is 𝑛 = (𝑎1𝑎2𝑎3𝑎4𝑎6𝑎7𝑎8𝑎9𝑎10, 𝜈), where 𝑎1, . . . , 𝑎10 are indexed symbols; we will

sometimes call the first symbol 𝑎1 the root of the nested word, since it is root of the service tree.

The matching relation 𝜈 is described using the dotted lines. For instance, the first call to the

Payment service or 𝑎2 is matched with the return symbol 𝑎5. Note that the first and the last symbol

in the nested word, i.e., 𝑎1 and 𝑎10 respectively form a matched call-return pair; due to the inherent

request/response protocol, nested words corresponding to service trees in a microservice application

will always be of this form.

A nested word 𝑛 can also be sliced into smaller nested words corresponding to various subtrees

of the service tree.

Definition 3.5 (A sub-nested word). Given𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈) and 𝜄 (𝑎1) ≤ 𝑖 < 𝑖′ ≤ 𝜄 (𝑎𝑙 ), let 𝑎 𝑗 , 𝑎 𝑗 ′ ∈ 𝑛

be such that 𝜄 (𝑎 𝑗 ) = 𝑖 , and 𝜄 (𝑎 𝑗 ′ ) = 𝑖′. We define a sub-nested word 𝑛[𝑖, 𝑖′] = (𝑎 𝑗 . . . 𝑎 𝑗 ′ , 𝜈 [𝑖, 𝑖′]).
Here, 𝜈 [𝑖, 𝑖′] is the restricted matching sub-relation:

𝜈 [𝑖, 𝑖′] = {𝜈 (𝑝, 𝑞) | 𝑖 ≤ 𝑝, 𝑞 ≤ 𝑖′} ∪ {(𝑝, +∞) | 𝜈 (𝑝, 𝑞), 𝑖 ≤ 𝑝 ≤ 𝑖′, 𝑞 > 𝑖′}
∪ {(−∞, 𝑞) | 𝜈 (𝑝, 𝑞), 𝑖 ≤ 𝑞 ≤ 𝑖′, 𝑝 < 𝑖}

Example 3.6. Consider the service tree in fig. 3a. Its first subtree rooted at D consists of the

first D and first E. In terms of the nested word (in fig. 4) for this service tree, the subtree under

consideration is given by the sub-nested word 𝑛[2, 5] = (𝑎2𝑎3𝑎4𝑎5, 𝜈 ′), where 𝜈 ′ = {(2, 5), (3, 4)}.

𝑛 = (𝑎1𝑎2𝑎3𝑎4𝑎6𝑎7𝑎8𝑎9𝑎10, 𝜈)
𝑎1 = (⟨P, 1)

𝑎2 = (⟨D, 2)

𝑎3 = (⟨E, 3) 𝑎4 = (E⟩, 4)

𝑎5 = (D⟩, 5) 𝑎6 = (⟨D, 6)

𝑎7 = (⟨E, 7) 𝑎8 = (E⟩, 8)

𝑎9 = (D⟩, 9)

𝑎10 = (P⟩, 10)

Fig. 4. Well-matched nested word for the service tree in fig. 3a. The dotted line from a node 𝑎𝑖 to 𝑎 𝑗 represents
the match relation 𝜈 (𝜄 (𝑎𝑖 ), 𝜄 (𝑎 𝑗 )). The projection on the second element of any indexed symbol 𝑎𝑖 is 𝜄 (𝑎𝑖 ).

3.2 Service Tree Concepts
To define our policies, we first define nested-word equivalents for different parts of a service tree.

First, we define a set of words that correspond to all paths from the root of the service tree

representation of a nested word. Well-matched nested words are said to be rooted if the first and

the last symbol are matched.
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Definition 3.7 (Set of Paths). For a rooted well-matched nested word 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈) over some

Σ, the set of all call sequences 𝑆𝑒𝑞(𝑛) from the root is given by:

𝑆𝑒𝑞(𝑛) = { 𝜋 (𝑛, 𝑎𝑚) | 𝐶 (𝑎𝑚), 𝑎𝑚 ∈ 𝑛 } ,
where 𝜋 (𝑛, 𝑎𝑚) is a word𝑤 = (𝑎𝑖 )𝑖∈𝐼 and

𝐼 = {𝑖 | 𝑎𝑖 ∈ 𝑛, 𝜄 (𝑎𝑖 ) ≤ 𝜄 (𝑎𝑚), 𝐶 (𝑎𝑖 ), 𝜈 (𝜄 (𝑎𝑖 ), 𝑗), 𝑗 > 𝜄 (𝑎𝑚)}.
The word𝑤 is a path from the root to some subsequent call 𝑎𝑚 ∈ 𝑛.

Example 3.8. In the running example in fig. 4, the set of all paths in the nested word 𝑛 is given by

𝑆𝑒𝑞(𝑛) = {𝑎1𝑎2, 𝑎1𝑎2𝑎3, 𝑎1𝑎6𝑎7, 𝑎1𝑎6}. A leaf node is some call symbol that is immediately followed

by a return symbol. The set of all path to leaves in 𝑛 is given by 𝑆𝑒𝑞𝐿𝑒𝑎𝑓 (𝑛) = {𝑎1𝑎2𝑎3, 𝑎1𝑎6𝑎7}.
To reason about the children of a node in the tree, we define a set of symbols corresponding to

children of a nested word’s root:

Definition 3.9 (Child of a root). For a rooted well-matched nested word 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈), a call
𝑎𝑚 ∈ 𝑛 is a child of root 𝑎1 if 𝑎1𝑎𝑚 ∈ 𝑆𝑒𝑞(𝑛). The set of children 𝐶ℎ𝑖𝑙𝑑 (𝑛) is given by:

𝐶ℎ𝑖𝑙𝑑 (𝑛) =
{
𝑎𝑚

�� 𝑎1𝑎𝑚 ∈ 𝑆𝑒𝑞(𝑛)
}

In the nested word 𝑛 in fig. 4, symbols 𝑎2 and 𝑎6 are the children of the node 𝑎1. Similarly, 𝑎3
is the child of 𝑎2. The sub-nested words 𝑛[2, 5] and 𝑛[6, 9] form a set of sub-trees rooted at 𝑎1’s

children. We formally define the set of child subtrees of the root of a nested word.

Definition 3.10 (Child subtree of a root). Given a rooted well-matched nested word𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈)
with 𝑎𝑚 as one of the children of 𝑎1 and some 𝑥 ∈ N+

such that 𝜈 (𝜄 (𝑎𝑚), 𝑥), a subtree rooted at 𝑎𝑚 is a

rooted well-matched nested word 𝑛′ = ((𝑎 𝑗 ) 𝑗∈𝐼 , 𝜈𝑚), where 𝐼 = {𝜄 (𝑎𝑚), . . . , 𝑥} and 𝜈𝑚 = 𝜈 [𝜄 (𝑎𝑚), 𝑥].
The set of subtrees is given by:

𝑆𝑢𝑏𝑡𝑟𝑒𝑒 (𝑛) =
{
((𝑎 𝑗 ) 𝑗∈𝐼 , 𝜈𝑚)

���� 𝑎𝑚 ∈ 𝐶ℎ𝑖𝑙𝑑 (𝑛),
∃ 𝑥 ∈ N+

such that 𝜈 (𝜄 (𝑎𝑚), 𝑥)

}
4 SafeTree: A Service Tree Policy Language
Now that we have introduced notation for nested words, we describe our policy language SafeTree,

and define an interpretation as sets of nested words.

4.1 Syntax
The policy syntax is presented in fig. 5. SafeTree policies make extensive use of regular expressions

(𝑟𝑒𝑔) defined over the set of endpoints Σ̃.

Top-level SafeTree policies are of the form start 𝑆 : 𝑖𝑛𝑛𝑒𝑟 , where 𝑆 ⊆ Σ̃, and 𝑖𝑛𝑛𝑒𝑟 can be two

kinds of sub-policies: 𝑝 over the hierarchical structure or 𝑠𝑒𝑞 over the linear structure of the tree.

Intuitively, top-level policies specifies that “the 𝑖𝑛𝑛𝑒𝑟 sub-policy is satisfied on any subtree rooted

at an endpoint in 𝑆 that has no ancestor in 𝑆”. For instance, if 𝑆 = {A}, 𝑖𝑛𝑛𝑒𝑟 should be satisfied on

all subtrees whenever A is first encountered. We write start ★ : 𝑖𝑛𝑛𝑒𝑟 as convenient notation for

start Σ̃ : 𝑝; this policy specifies that 𝑖𝑛𝑛𝑒𝑟 should be satisfied at the root of the entire tree.

Inner: Hierarchical Policies. After specifying the starting symbol of a policy, a SafeTree policy

needs to specify a sub-policy to express constraints on hierarchical or the linear structure of a

service tree. All hierarchical policies shown in fig. 5 have “match reg” expression to the left of

the annotated =⇒ symbol. This expression specifies that there exists a path from the root of the

service tree to some descendant 𝑎𝑖 such that the path matches 𝑟𝑒𝑔. (Note that 𝑟𝑒𝑔 in the match
expression should not match the empty string.) We will step through the syntax of hierarchical
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Regular Expressions

𝑎 ∈ Σ̃

𝑆 ⊆ Σ̃

𝑟𝑒𝑔 ::= 𝑎 | 𝜖 | ∅ | 𝑟𝑒𝑔1 + 𝑟𝑒𝑔2 | 𝑟𝑒𝑔1𝑟𝑒𝑔2 | 𝑟𝑒𝑔∗

Service Tree policy
𝑝𝑜𝑙𝑖𝑐𝑦 ::= start 𝑆 : 𝑝 | start 𝑆 : 𝑠𝑒𝑞

Hierarchical Policy

𝑝𝑙 ::= match 𝑟𝑒𝑔1
∀-path
=⇒ 𝑟𝑒𝑔2

𝑝𝑎 ::= match 𝑟𝑒𝑔
∀-child
=⇒ 𝑝

𝑝𝑒 ::= match 𝑟𝑒𝑔
∃-child
=⇒ 𝑝1 then . . . then 𝑝𝑘

𝑝 ::= 𝑝𝑙 | 𝑝𝑎 | 𝑝𝑒

Linear Sequence Policy
𝑠𝑒𝑞 ::= call-sequence 𝑟𝑒𝑔

Fig. 5. SafeTree syntax

policies to understand the purpose of different right side expressions in these policies in terms of

the service tree.

The simplest policy is match 𝑟𝑒𝑔1
∀-path
=⇒ 𝑟𝑒𝑔2, where 𝑟𝑒𝑔1, 𝑟𝑒𝑔2 are regular expressions. It

expresses the existence of a path from the root to some descendant 𝑎𝑖 that matches 𝑟𝑒𝑔1. Also, all

the paths from any of 𝑎𝑖 ’s children to the leaves in the tree match 𝑟𝑒𝑔2. The path between the tree’s

root and 𝑎𝑖 should be the shortest match of 𝑟𝑒𝑔1, i.e., there should be no prefix of the path that

matches 𝑟𝑒𝑔1.

Example. Consider the service tree previously defined in fig. 3a. Suppose _ is a syntactic sugar

for the regular expression notation for Σ̃∗
. This tree satisfies the policy match PD∗ ∀-path

=⇒ _, which

requires existence of a path from the root of the tree, i.e., P that matches exactly one P and any

number of D. If we consider P as both the root and the descendant 𝑎𝑖 , we get a path of length

one that satisfies the requirement. The two paths DE from the children of P satisfy the regular

expression _ on the right. Therefore, the service tree satisfies the policy. Although there are more

paths, like PD in the tree that could have matched the regular expression on the left, we care about

the path which does not have a prefix in the language of the regular expression PD∗
.

To specify that all subtrees of some node in a tree should satisfy a policy 𝑝 , we can use the policy

match 𝑟𝑒𝑔
∀-child
=⇒ 𝑝 . This policy specifies that there exists a node 𝑎𝑖 such that the path from the

root of the tree to 𝑎𝑖 matches 𝑟𝑒𝑔 and all subtrees rooted at children of 𝑎𝑖 satisfy policy 𝑝 . This

policy specifies a universal condition on a node’s subtrees.

To specify existential conditions on the subtrees, the policymatch 𝑟𝑒𝑔
∃-child
=⇒ 𝑝1 then . . . then 𝑝𝑘

can be used. It specifies that there exists a node 𝑎𝑖 such that the path from the root of the tree to 𝑎𝑖
matches 𝑟𝑒𝑔. Also, 𝑎𝑖 has a subtree that satisfies 𝑝1 followed by another subtree somewhere after it

that satisfies 𝑝2, and so on till 𝑝𝑘 . Suppose 𝑐𝑖 and 𝑐𝑖+1 are the root node of the subtrees matching

𝑝𝑖 and 𝑝𝑖+1 respectively, where 1 ≤ 𝑖 < 𝑘 . Let 𝐶 be the parent of 𝑐1 and 𝑐2. The node 𝐶 can have

children older than 𝑐𝑖 and younger than 𝑐𝑖+1.

Inner: Linear Sequence Policy. SafeTree offers a call-sequence construct to specify the desired

sequence of API calls as a regular expression, while disregarding the hierarchical tree structure.

For instance, in a tree starting at P, say, we want to express that D happens after P, without any
specific details about the subtrees or paths in the tree where D should occur. This will be specified
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as call-sequence P_D_, where _ in the regular expression denotes any sequence of symbols. This

policy specifies that the depth-first traversal of the tree should match the given regular expression.

𝑝𝑜𝑙𝑖𝑐𝑦 = start 𝑆 : 𝑠𝑒𝑞

NW⟦𝑝𝑜𝑙𝑖𝑐𝑦⟧ =

 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈)

��������
∀ 𝜋 (𝑛, 𝑎𝑖 ) = 𝑎1 . . . 𝑎𝑖 ∈ 𝑆𝑒𝑞(𝑛),
if 𝜋 (𝑛, 𝑎𝑖 ) ∈ 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, (Σ̃)∗𝑆) then
∃ 𝑥 such that

𝜈 (𝜄 (𝑎𝑖 ), 𝑥) and 𝑛[𝜄 (𝑎𝑖 ), 𝑥] ∈ Sequence⟦𝑠𝑒𝑞⟧


𝑝𝑜𝑙𝑖𝑐𝑦 = start 𝑆 : 𝑝

NW⟦𝑝𝑜𝑙𝑖𝑐𝑦⟧ =

 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈)

������ ∀ 𝜋 (𝑛, 𝑎𝑖 ) = 𝑎1 . . . 𝑎𝑖 ∈ 𝑆𝑒𝑞(𝑛),
if 𝜋 (𝑛, 𝑎𝑖 ) ∈ 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, (Σ̃)∗𝑆) then
∃ 𝑥 such that 𝜈 (𝜄 (𝑎𝑖 ), 𝑥) and 𝑛[𝜄 (𝑎𝑖 ), 𝑥] ∈ Tree⟦𝑝⟧


𝑝𝑙 = match 𝑟𝑒𝑔1

∀-path
=⇒ 𝑟𝑒𝑔2

Tree⟦𝑝𝑙⟧ =


𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈)

����������
∃ 𝜋 (𝑛, 𝑎𝑖 ∈ 𝑛) = 𝑎1 . . . 𝑎𝑖 ∈ 𝑆𝑒𝑞(𝑛) such that

𝜋 (𝑛, 𝑎𝑖 ) ∈ 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, 𝑟𝑒𝑔1),
∃ 𝑥 such that 𝜈 (𝜄 (𝑎𝑖 ), 𝑥) and
∀𝑛𝑠 ∈ 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 (𝑛[𝜄 (𝑎𝑖 ), 𝑥]),
∀𝜋 ′ ∈ 𝑆𝑒𝑞𝐿𝑒𝑎𝑓 (𝑛𝑠 ), 𝐶𝑎𝑙𝑙𝑠 (𝜋 ′) ∈ L(𝑟𝑒𝑔2)


𝑝𝑎 = match 𝑟𝑒𝑔

∀-child
=⇒ 𝑝

Tree⟦𝑝𝑎⟧ =

 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈)

������ ∃ 𝜋 (𝑛, 𝑎𝑖 ∈ 𝑛) = 𝑎1 . . . 𝑎𝑖 ∈ 𝑆𝑒𝑞(𝑛) such that

𝜋 (𝑛, 𝑎𝑖 ) ∈ 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, 𝑟𝑒𝑔),
∃ 𝑥 such that 𝜈 (𝜄 (𝑎𝑖 ), 𝑥) and 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 (𝑛[𝜄 (𝑎𝑖 ), 𝑥]) ⊆ Tree⟦𝑝⟧


𝑝𝑒 = match 𝑟𝑒𝑔

∃-child
=⇒ 𝑝1 then . . . then 𝑝𝑘

Tree⟦𝑝𝑒⟧ =


𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈)

��������������

∃ 𝜋 (𝑛, 𝑎𝑖 ∈ 𝑛) = 𝑎1 . . . 𝑎𝑖 ∈ 𝑆𝑒𝑞(𝑛) such that

𝜋 (𝑛, 𝑎𝑖 ) ∈ 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, 𝑟𝑒𝑔),
∃ 𝑥 such that 𝜈 (𝜄 (𝑎𝑖 ), 𝑥) and
∃ {𝑡1, . . . , 𝑡𝑘 } ⊆ 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 (𝑛[𝜄 (𝑎𝑖 ), 𝑥]) such that

for any 1 ≤ 𝑗 < 𝑘, 𝜄 (𝑎 𝑗
1
) < 𝜄 (𝑎 𝑗+1

1
), and

for any 1 ≤ 𝑗 ≤ 𝑘, 𝑡 𝑗 ∈ Tree⟦𝑝 𝑗⟧,
where ∀1 ≤ 𝑗 ≤ 𝑘, 𝑡𝑦 = (𝑎 𝑗

1
. . . , 𝜈 𝑗 )


𝑠𝑒𝑞 = call-sequence 𝑟𝑒𝑔

Sequence⟦𝑠𝑒𝑞⟧ = {𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈) | 𝐶𝑎𝑙𝑙𝑠 ((𝑎𝑥 )𝑥∈𝐼 ) ∈ L(𝑟𝑒𝑔), where 𝐼 = {𝜄 (𝑎 𝑗 ) | 𝐶 (𝑎 𝑗 ), 𝑎 𝑗 ∈ 𝑛}}

Fig. 6. SafeTree semantics (where 𝑆𝑢𝑏𝑡𝑟𝑒𝑒 is defined in definition 3.10)

4.2 Nested Word Interpretation for Service Trees
Formally, we interpret a SafeTree policy as a set of rooted well-matched nested word. Since matching

paths with regular expressions is common across SafeTree policies, we define a nested word variant

for a set of shortest paths matching some regular expression.
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Definition 4.1 (First or Shortest Match Path). Given a nested word 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈) over Σ, which
is a call-return augmented alphabet for some Σ̃, a path 𝜋 (𝑛, 𝑎𝑚) ∈ 𝑆𝑒𝑞(𝑛) is the first match for

some regular expression 𝑟𝑒𝑔 over Σ̃ (or 𝜋 (𝑛, 𝑎𝑚) ∈ 𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, 𝑟𝑒𝑔)) if 𝑤 = 𝐶𝑎𝑙𝑙𝑠 (𝜋 (𝑛, 𝑎𝑚)) is
matched by 𝑟𝑒𝑔, and there is no smaller prefix of𝑤 that matches 𝑟𝑒𝑔.

𝐹𝑖𝑟𝑠𝑡𝑀𝑎𝑡𝑐ℎ(𝑛, 𝑟𝑒𝑔) =
 𝜋 (𝑛, 𝑎𝑚) ∈ 𝑆𝑒𝑞(𝑛)

������ for all 1 ≤ 𝑗 < 𝑚, the following holds

𝑠1 . . . 𝑠 𝑗 ∉ L(𝑟𝑒𝑔), 𝑤 ∈ L(𝑟𝑒𝑔),
where𝑤 = 𝐶𝑎𝑙𝑙𝑠 (𝜋 (𝑛, 𝑎𝑚)) = 𝑠1 . . . 𝑠𝑚


Here, 𝐶𝑎𝑙𝑙𝑠 of a path rewrites every augmented call symbol with its counterpart in Σ̃.

Definition 4.2 (Calls Projection of a Path). Given a nested word 𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈) over base alphabet
Σ̃ and a path 𝜋 (𝑛, 𝑎𝑚) = 𝑎1 . . . 𝑎𝑚 , we define

𝐶𝑎𝑙𝑙𝑠 (𝑎1 . . . 𝑎𝑚) = 𝑠1 . . . 𝑠𝑚, where 𝑠𝑖 = proj(𝑎𝑖 ) for any 1 ≤ 𝑖 ≤ 𝑚.

Here, proj(𝑎) projects the base symbol of an indexed symbol, i.e., for any 𝑎 = (⟨𝑠, 𝑖) or 𝑎 = (𝑠⟩, 𝑖)
(with some index 𝑖), we define proj(𝑎) = 𝑠 .

The nested word interpretation NW⟦𝑝⟧ ⊆ 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑𝑠 (Σ) for a service tree policiy 𝑝 is

defined in fig. 6. Here, 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑𝑠 (Σ) is the set of all nested words over Σ. For a nested word

𝑛 = (𝑎1 . . . 𝑎𝑙 , 𝜈) to be accepted by a service tree policy start 𝑆 : 𝑖𝑛𝑛𝑒𝑟 , the 𝑖𝑛𝑛𝑒𝑟 policy should be

satisfied on every sub-nested word of 𝑛 that is rooted at some symbol 𝑎𝑖 ∈ 𝑆 and the path from the

root of the nested word to the symbol 𝑎𝑖 should contains no symbol in 𝑆 besides 𝑎𝑖 . In the NW⟦𝑝⟧
definition in fig. 6, this condition is formally expressed by requiring the path between the root and

𝑎𝑖 to be a first match of regular expression (Σ̃)∗𝑆 .
The nested word interpretation Tree⟦𝑝⟧ ⊆ 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑𝑠 (Σ) in fig. 6 for a hierarchical policy

first defines an existential constraint on a path from the root to some node, followed by specific

constraints on either path until the leaves, or on sub-nested words (or subtrees). As defined in fig. 6,

a linear policy accepts a nested word 𝑛 ⊆ Sequence⟦𝑝⟧ if the sequence of call symbols in 𝑛 match

the given regular expression in 𝑝 .

5 Enforcement
The SafeTree policies are enforced by a visibly pushdown automaton (VPA)-based monitor. For

this, we define a compiler from our policy language to a VPA. The VPA is then used to check if

a service tree is valid. Before we detail our VPA-based enforcement mechanism, we first give a

refresher on the standard VPA model:

Definition 5.1 (Visibly pushdown automaton). A (deterministic) visibly pushdown automaton (VPA)
is defined as M = (𝑄,𝑞𝑖𝑛𝑖𝑡 , 𝐹 , Σ, Γ,⊥, 𝛿𝑐 , 𝛿𝑟 ), where:

• 𝑄 is the set of all states, 𝑞𝑖𝑛𝑖𝑡 ∈ 𝑄 is the initial state, and 𝐹 ⊆ 𝑄 is the set of final states,

• Σ is the alphabet, where Σ = Σ𝑐 ∪ Σ𝑟 consists of call symbols Σ𝑐 and return symbols Σ𝑟 ,
• Γ is the set of stack symbols with a special bottom of stack symbol ⊥ ∈ Γ,
• 𝛿

𝑝
𝑐 : 𝑄 × Σ𝑐 → 𝑄 × (Γ − {⊥}) is the call transition function,

• 𝛿
𝑝
𝑟 : 𝑄 × (Γ − {⊥}) × Σ𝑟 → 𝑄 is the return transition function.

Note that we do not need the conventional internal symbols of a VPA to monitor our policies;

extending our policies to use internal symbols is an interesting avenue for future work.

Example 5.2. Fig. 7 shows a two state VPA, which is defined over Σ = {⟨A,A⟩}. In this case,

𝑄 = {𝑞0, 𝑞1}, 𝑞𝑖𝑛𝑖𝑡 = 𝑞0, 𝐹 = {𝑞0}, and Γ = {⊥, 𝑞0}.
A VPA configuration (𝑞, 𝜃 ) is a pair of its current state 𝑞 and the current stack 𝜃 . The stack 𝜃 is a

sequence of stack symbols with only one occurrence of ⊥ at the starting. For instance, a possible
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configuration for the VPA in fig. 7 can be (𝑞1,⊥𝑞0). This configuration denotes that the VPA is at

state 𝑞1 and its stack has only 𝑞0.

𝑞0start 𝑞1

⟨A/ 𝑞0

A⟩, 𝑞0

Nested word: 𝑛 = (𝑎1𝑎2, 𝜈), where
𝑎1 = (⟨A, 1), 𝑎2 = (A⟩, 2), and
𝜈 = {(1, 2)}

Run: (𝑞0,⊥)
⟨A
−−→ (𝑞1,⊥𝑞0)

A⟩
−−→ (𝑞0,⊥)

Fig. 7. (a) A two state VPA over Σ = {⟨A,A⟩} with 𝑄 = {𝑞0, 𝑞1}, 𝑞𝑖𝑛𝑖𝑡 = 𝑞0, 𝐹 = {𝑞0}, and Γ = {⊥, 𝑞0}; (b)
Run of the VPA on 𝑛 = (𝑎1𝑎2, 𝜈).

5.1 Semantics of a VPA
The run 𝜌 (𝑤) = (𝑞1, 𝜃1) . . . (𝑞𝑘 , 𝜃𝑘 ) of a VPAM on some nested word𝑤 is a sequence of configu-

rations. Nested word𝑤 is accepted byM if 𝑞𝑛 is a final state ofM. The nested word𝑤 ∈ L(M)
is in the language ofM if𝑤 is accepted byM. Intuitively, when a VPAM transitions from one

configuration to another on a call symbol, say 𝑎 ∈ Σ𝑐 , it pushes a value on the stack and moves to

the next state. While transitioning on a return symbol 𝑎 ∈ Σ𝑟 , the top of the stack is popped and

the configuration state is updated.

For example in fig. 7, the transition ⟨A/𝑞0 is a call transition that pushes 𝑞0 on the stack upon

reading the symbol ⟨A . The transition labeled with A⟩, 𝑞0 is a return transition on A⟩ and it pops

the top of the stack 𝑞0.

The valid transitions allowed by a VPA can be defined as follows:

Definition 5.3. Let M = (𝑄,𝑞𝑖𝑛𝑖𝑡 , 𝐹 , Σ, Γ,⊥, 𝛿𝑐 , 𝛿𝑟 ) be a deterministic VPA with states 𝑄 , Σ =

Σ𝑐 ∪ Σ𝑟 . Let 𝜇 be the set of all stacks and 𝑎 be some symbol in Σ then

𝑎−→: 𝑄 × 𝜇 → 𝑄 × 𝜇 is defined

as follows:

(1) if 𝑎 ∈ Σ𝑐 then (𝑞′, 𝜃 ′) 𝑎−→ (𝑞, 𝜃 ) if there exists (𝑞′, 𝑎, 𝑞, 𝑠) ∈ 𝛿𝑐 , where 𝑠 ∈ Γ and 𝜃 = 𝜃 ′𝑠 ,

(2) if 𝑎 ∈ Σ𝑟 then (𝑞′, 𝜃 ′) 𝑎−→ (𝑞, 𝜃 ) if there exists (𝑞′, 𝑠, 𝑎, 𝑞) ∈ 𝛿𝑟 , where 𝑠 ∈ Γ and 𝜃𝑠 = 𝜃 ′.

Example 5.4. Let us look at the run of the VPA in fig. 7 on the nested word 𝑛 = ((⟨A, 1) (A⟩, 2), 𝜈),
where 𝜈 = {(1, 2)}. As shown in the figure, on the first symbol, the VPA goes to state 𝑞1 and pushes

𝑞0 on stack. On the next symbol, the top of the stack is 𝑞0, so the VPA goes from the state 𝑞1 to 𝑞0
and the stack value 𝑞0 is popped.

5.2 Compilation Sketch
We define a VPA interpretation VPA⟦.⟧ : 𝑃𝑜𝑙𝑖𝑐𝑦 → 𝑉𝑃𝐴 for SafeTree policies. Here, 𝑃𝑜𝑙𝑖𝑐𝑦 is the

set of all policies and 𝑉𝑃𝐴 is the set of all VPAs. Here, we provide a sketch of the compilation; the

detailed rules and further discussion can be found in the full paper. Below, we write M for the

target policy’s VPA. We first consider sequential policies.

VPA of call-sequence 𝑟𝑒𝑔. M simulates 𝑟𝑒𝑔’s DFAA on all call symbols and ignores the return

symbols. The nested word is accepted if A accepts the sequence of calls.

We now turn to hierarchical policies, which are of the form “match 𝑟𝑒𝑔
. . .
=⇒ 𝑖𝑛𝑛𝑒𝑟”. For such

policies,M first simulates 𝑟𝑒𝑔’s DFA A (on call symbols) to find a path that matches 𝑟𝑒𝑔. During

this phase,M maintains a stack of A’s run on the path. Suppose the above path ends with some

symbol ⟨𝑠 , M checks if 𝑖𝑛𝑛𝑒𝑟 is satisfied on the subtree rooted at ⟨𝑠 . If 𝑖𝑛𝑛𝑒𝑟 is not satisfied, the
policy can still be satisfied if there exists another path from the root that matches 𝑟𝑒𝑔 leading to a
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subtree satisfying 𝑖𝑛𝑛𝑒𝑟 . To implement this behavior, the following retry steps are taken: on return

symbols,M backtracks A’s run using the stack history of the run;M searches for another path

by simulating A to go forward on call symbols; and then running the checks for 𝑖𝑛𝑛𝑒𝑟 .

Now, we detail the other steps of policy checking.

VPA of match 𝑟𝑒𝑔
∀-path
=⇒ 𝑟𝑒𝑔′. While reading the paths in the subtree rooted at ⟨𝑠 , M simulates

the DFA A′
of 𝑟𝑒𝑔′ on the call symbols; and on return symbols, backtracks A’s run using the stack

history. IfA′
accepts each path,M accepts the nested word; otherwise it searches for another path

matching 𝑟𝑒𝑔.

VPA ofmatch 𝑟𝑒𝑔
∀-child
=⇒ 𝑝 . M simulates 𝑝’s VPAM𝑝 on all the subtrees rooted at ⟨𝑠’s children.

If M𝑝 accepts each of ⟨𝑠’s child subtree, M accepts the nested word; otherwise it searches for

another path matching 𝑟𝑒𝑔.

VPA of match 𝑟𝑒𝑔
∃-child
=⇒ 𝑝1 then . . . then 𝑝𝑘 . Let any policy 𝑝𝑖 ’s VPA be M𝑝𝑖 . M simulates

M𝑝1 on ⟨𝑠’s first child subtree; if the subtree is not accepted byM𝑝1 , this simulation is repeated on

the next child subtree of ⟨𝑠 . WhenM𝑝1 accepts such a subtree,M simulatesM𝑝2 on the next child

subtree, and so on. M accepts the word if after repeating these steps, M finds a subtree accepted

by M𝑝𝑘 ; otherwiseM retries starting from the search for a path matching 𝑟𝑒𝑔.

VPA of start 𝑆 : 𝑖𝑛𝑛𝑒𝑟 . First,M simulates the DFA A (on the call symbols) that accepts paths

from the root to some symbol in 𝑆 that does not have any ancestor in 𝑆 . Similar to the hierarchical

policies,M then simulates 𝑖𝑛𝑛𝑒𝑟 ’s VPAM𝑖𝑛 on the subtree rooted at ⟨𝑠 .M continues to apply retry

steps (similar to the hierarchical policies) to the search for other paths matching A and checking if

M𝑖𝑛 accepts the relevant subtrees for each of those paths.

As expected, our compilation is sound with respect to SafeTree’s nested word semantics.

Theorem 5.5 (Soundness). Let 𝑝 be a policy and L(VPA⟦𝑝⟧) be the set of rooted well-matched
nested words accepted by its visibly pushdown automaton VPA⟦𝑝⟧. Then,
(1) NW⟦𝑝⟧ = L(VPA⟦𝑝⟧) if 𝑝 is a service tree policy,
(2) Tree⟦𝑝⟧ = L(VPA⟦𝑝⟧) if 𝑝 is a hierarchical policy, and
(3) Sequence⟦𝑝⟧ = L(VPA⟦𝑝⟧) if 𝑝 is a linear sequence policy.

All three equivalences in the above theorem are proved by induction on the structure of the

policies. The proof is given in the full paper.

Finally, we consider complexity. We can bound the size of the compiled VPA in terms of the size

of the policy as follows:

Theorem 5.6. Suppose the DFA of every regular expression in a policy 𝑝 has at most 𝑅 states; each
sub-policy has at most 𝑘 immediate sub-expressions, i.e., fan-out at most 𝑘 ; and (nesting) depth 𝑑 . Then
the VPA M(𝑝) such that NW⟦𝑝⟧ = L(M) has O((𝑘 + 1)𝑑𝑅) states.
The proof goes by structural induction on the policy 𝑝 . The proof and definitions of depth

and fan-out are given in the full paper. Regarding the quantity 𝑅, note that the worst case size

complexity of a DFA is known to be exponential in the length of the regular expression [31], but in

the common cases this quantity is often much smaller.

5.3 Runtime Monitor for a VPA
We will now formalize the monitor implementation for a VPA. This section first describes the

centralized interpretation, which follows immediately from the standard VPA semantics, and then

introduces a new distributed interpretation. All the compiled VPAs are deterministic and complete,

so we treat the VPA transition relations as functions below.
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Definition 5.7. A VPA M = (𝑄,𝑞𝑖𝑛𝑖𝑡 , 𝐹 , Σ, Γ,⊥, 𝛿𝑐 , 𝛿𝑟 ) can be interpreted as ⟦M⟧𝑐𝑒𝑛𝑡𝑟𝑎𝑙 : (𝑄 ×
𝜇) → 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑 (Σ) → (𝑄 × 𝜇), which takes: (a) an initial VPA configuration (𝑞, 𝜃 )—a pair

of a state and some stack; (b) and a nested word 𝑤 ∈ 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑 (Σ), and returns a final VPA

configuration. We define ⟦M⟧𝑐𝑒𝑛𝑡𝑟𝑎𝑙 inductively on the length of the nested word𝑤 :

(1) Case𝑤 = (𝜖, 𝜙):
⟦M⟧𝑐𝑒𝑛𝑡𝑟𝑎𝑙 (𝑞′, 𝜃 ′) 𝑤 = (𝑞′, 𝜃 ′)

(2) Case𝑤 = (𝑎1 . . . 𝑎𝑘𝑎𝑘+1, 𝜈), where 𝑎𝑘+1 = (𝑒, 𝑖) for some 𝑒 ∈ Σ:

⟦M⟧𝑐𝑒𝑛𝑡𝑟𝑎𝑙 (𝑞′, 𝜃 ′) 𝑤 = (𝑞, 𝜃 ), where ⟦M⟧𝑐𝑒𝑛𝑡𝑟𝑎𝑙 (𝑞′, 𝜃 ′) (𝑎1 . . . 𝑎𝑘 , 𝜈 [𝜄 (𝑎1), 𝜄 (𝑎𝑘 )])
𝑒−→ (𝑞, 𝜃 )

Intuitively, a distributed monitor is a set of call transition functions of the type call : 𝑄 → (𝑄×Γ)
and return transition functions of the type ret : (𝑄 × Γ) → 𝑄 . Here, 𝑄 is a set of states and Γ is a

set of stack elements. In the following definition of the distributed monitor, 𝐶𝑎𝑙𝑙 and 𝑅𝑒𝑡 represent

the set of all call and return functions.

Definition 5.8. A distributed monitor D : Σ → (𝐶𝑎𝑙𝑙 × 𝑅𝑒𝑡) maps symbols in some alphabet Σ
to a pair of call and return transition functions, where 𝐶𝑎𝑙𝑙 and 𝑅𝑒𝑡 represent the set of all call and

return functions of the type call : 𝑄 → (𝑄 × Γ) and ret : (𝑄 × Γ) → 𝑄 . Here, 𝑄 is the set of states

and Γ is a set of stack elements. We write 𝐷𝑖𝑠𝑡𝑀𝑜𝑛 for the set of distributed monitors.

Now, we present a translation function dist_monitor : 𝑉𝑃𝐴 → 𝐷𝑖𝑠𝑡𝑀𝑜𝑛 to convert a VPAM to

a distributed monitor D ∈ 𝐷𝑖𝑠𝑡𝑀𝑜𝑛.

Definition 5.9. The distributed monitor for some VPA M = (𝑄,𝑞𝑖𝑛𝑖𝑡 , 𝐹 , Σ, Γ,⊥, 𝛿𝑐 , 𝛿𝑟 ), where Σ̃ is

the base alphabet that gets call-return augmented into Σ, as:

dist_monitor(M) ≜
 (𝑎, (call, ret))

������ 𝑎 ∈ Σ̃,
if 𝛿𝑐 (𝑞, ⟨𝑎) = (𝑞′, 𝑠) then call(𝑞) = (𝑞′, 𝑠) and
if 𝛿𝑟 (𝑞′, 𝑠, 𝑎⟩) = 𝑞 then ret(𝑞′, 𝑠) = 𝑞


For any 𝑎 ∈ Σ̃, the mappings in the call and return transition functions in D(𝑎) = (call, ret) can

be viewed as the transition rules in 𝛿𝑐 , 𝛿𝑟 on the symbols ⟨𝑎 and 𝑎⟩.

Operationally, a distributed monitor takes a pair of state and stack as an initial configuration,

a nested word and returns a final configuration. Before defining the operational semantics for a

distributed monitor, we introduce a single step transition operator

𝑥−→𝑑𝑖𝑠𝑡 , where 𝑥 is a symbol in

some alphabet Σ.

Definition 5.10 (Single Step Transition). Let D be a distributed monitor defined over a set of base

alphabet Σ̃ such that for any 𝑒 ∈ Σ̃, the pair of call-return transition mapped to 𝑒 isD(𝑒) = (call, ret).
Let Σ be the call-return augmented alphabet of Σ̃ and 𝑥 be some symbol in Σ. Let 𝑄 be the set of

states, 𝜇 be the set of stacks, and the stack 𝜃 ∈ 𝜇. The single step function

𝑥−→𝑑𝑖𝑠𝑡 : 𝑄 × 𝜇 → 𝑄 × 𝜇 is

defined as follows:

(1) if 𝑥 = ⟨𝑒 for some 𝑒 ∈ Σ̃ then (𝑞, 𝜃 ) 𝑥−→𝑑𝑖𝑠𝑡 (𝑞′, 𝜃 ′), where call(𝑞) = (𝑞′, 𝑠) and 𝜃 ′ = 𝜃𝑠 ,

(2) if 𝑥 = 𝑒⟩ for some 𝑒 ∈ Σ̃ then (𝑞, 𝜃 ) 𝑥−→𝑑𝑖𝑠𝑡 (𝑞′, 𝜃 ′) where ret(𝑞, 𝑠) = 𝑞′ and 𝜃 ′𝑠 = 𝜃 .

When a distributedmonitorD reads a symbol𝑎𝑖 = (𝑥, 𝜄 (𝑎𝑖 )) from a nestedword𝑤 = (𝑎1 . . . 𝑎𝑘 , 𝜈),
it selects a pair of call-return transition functions D(𝑒) such that 𝑥 = ⟨𝑒 or 𝑥 = 𝑒⟩. The pair D(𝑒)
is referred as a sub-monitor in the distributed monitor D. Based on the tag of the symbol 𝑥 , the

call or return transition of D(𝑒) is applied to the input configuration of D. Formally:
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Definition 5.11 (Operational Semantics). A VPA M’s distributed monitor D = dist_monitor(M)
can be interpreted as ⟦D⟧𝑑𝑖𝑠𝑡 : (𝑄 × 𝜇) → 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑 (Σ) → (𝑄 × 𝜇), where 𝑁𝑒𝑠𝑡𝑒𝑑𝑊𝑜𝑟𝑑 (Σ) is
the set of nested words on Σ. The run of a distributed monitor D on some nested word𝑤 starting

at some initial state 𝑞 and a distributed stack 𝜇 can be inductively defined on the length of the

nested word𝑤 :

(1) Case𝑤 = (𝜖, 𝜙):
⟦D⟧𝑑𝑖𝑠𝑡 (𝑞, 𝜃 ) 𝑤 = (𝑞, 𝜃 )

(2) Case𝑤 = (𝑎1 . . . 𝑎𝑘𝑎𝑘+1, 𝜈), where 𝑎𝑘+1 = (𝑒, 𝑖) for some 𝑒 ∈ Σ:

⟦D⟧𝑑𝑖𝑠𝑡 (𝑞, 𝜃 ) 𝑤 = (𝑞′, 𝜃 ′), such that ⟦D⟧𝑑𝑖𝑠𝑡 (𝑞, 𝜃 ) (𝑎1 . . . 𝑎𝑘 , 𝜈 [𝜄 (𝑎1), 𝜄 (𝑎𝑘 )])
𝑒−→𝑑𝑖𝑠𝑡 (𝑞′, 𝜃 ′)

Finally, we can show that running the distributed and the centralized variant of a VPA are

equivalent, i.e., they accepted the same nested words:

Theorem 5.12. Given a nested word𝑤 over some call-return augmented alphabet Σ and a VPA M
whose run on𝑤 is 𝜌 (𝑤) = (𝑞1, 𝜃1) . . . (𝑞𝑛, 𝜃𝑛) then:
(1) the run ofM’s centralized monitor is ⟦M⟧𝑐𝑒𝑛𝑡𝑟𝑎𝑙 (𝑞1, 𝜃1) 𝑤 = (𝑞𝑛, 𝜃𝑛), and
(2) the run ofM’s distributed monitor ⟦D⟧𝑑𝑖𝑠𝑡 (𝑞1, 𝜃1) 𝑤 = (𝑞𝑛, 𝜃𝑛).

The proof goes by induction on the length of the nested word𝑤 .

In section 7, we will see how to use these distributed monitors to enforce policies in an im-

plementation. But first, we consider some example policies that can be expressed in our policy

language.

6 Case Studies
This section motivates real-world service tree policies that are relevant to three teams: data-

compliance or audit teams, security teams, and deployment teams. All case studies are presented in

the context of the running example of the hospital management application from section 2.

Notation. We write Endpoint as shorthand for the set {Endpoint}, and 𝑆 = {𝑎1, . . . , 𝑎𝑘 } as

shorthand for the regular expression 𝑎1 + · · · + 𝑎𝑘 . We write Any = Σ̃ and !Endpoint for the set
Σ̃ − {Endpoint}.

6.1 Deployment Team Policies
Thorough testing is a key step in the development process of a microservice application. Therefore,

we describe case-studies about testing scenarios of varying complexities.

Case study 1: A/B testing. Say a deployment team wants to test the interaction of a small subset

of beta testers, labeled as Beta, with a new version v2 of the Database service. For example, the label

Beta might have been assigned to a random subset of users by the frontend, or it could be assigned

to internal users which will test the service before it is released publicly. So the deployment team

requires all traffic coming from Beta to be served by Database-v2 instead of Database-v1.
Let us model requests labeled as Beta to be requests from some endpoint labeled as Beta. The

above A/B testing policy is specified as:

start Beta : call-sequence Beta(!Database-v1)∗ .

Since this policy specifies a constraint on subtrees starting at Beta, the policy is of the form

start Beta : 𝑖𝑛𝑛𝑒𝑟 . The 𝑖𝑛𝑛𝑒𝑟 policy needs to be matched on a subtree starting at Beta. The policy
𝑖𝑛𝑛𝑒𝑟 has to match the sequence of API calls in the subtree rooted at Beta with a regular expression

that prevents calls to v1 of Database.
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Case study 2: Factorial testing. Deployment teams often want to test the interactions between

all recently updated services. For instance, suppose a deployment team wants each request to

either use the old v1 version of all services, or the latest v2 version of all services; this is a factorial
testing scenario. More concretely, consider that the deployment team wants to prevent Test-v2 from
invoking v1 versions of the De-identify and Lab services. This can be expressed as the policy:

start Test-v2 : call-sequence (Any − De-identify-v1 − Lab-v1)∗ .

Here, (Any −De-identify-v1 − Lab-v1) is the set of all endpoints besides v1 of De-identify and Lab.

Case study 3: Regional access control. Sometimes certain services need to have restricted

regional access. For instance, suppose the hospital application wants to prevent EU users from

accessing the main Database service to avoid inadvertent violation of GDPR guidelines. Supposing

EU users are labeled at the frontend as Frontend-EU, we can express this policy as:

start Frontend-EU : call-sequence Frontend-EU(!Database)∗ .

Case study 4: External requirement. A deployment team might want to specify some business

logic involving services with global effects, like a write service that updates the database or an

account creation service that creates a new user. For example, new appointments should be saved

in the appointment database by invoking some Database service. This policy can be expressed as:

start Appointment : call-sequence (Appointment _ Database_ ) .

The pattern _ matches any sequence of API calls. The Database service can be replaced by, say, a

Log service to log admin access to some resource.

6.2 Security Team Policies
Case study 5: Payment logging. Suppose a security team wants all Payment requests to call

payment Database at least once, and Database to send requests only to EventLog. The team can

state this requirement as “Payment invokes at least one Database and this Database invokes

EventLog as all its children,” and specify this policy as:

start Payment : match (Payment Database)
∀-path
=⇒ (EventLog)_ .

Thematch (Payment Database) matches a subtree rooted at Payment that invokes Database as
its child. To specify that all children of this Database are EventLog, the right side sub-expression of

∀-path
=⇒ matches all outgoing paths from Database with the regular expression (EventLog) _, where
the pattern _ matches any sequence of API calls.

Case study 6: Data Vault—no outgoing calls, a constraint on the leaves. Consider that the
hospital application has a data Vault service to store patient records, and a security team wants

to restrict Vault from invoking any endpoints to prevent it from sharing confidential data with

any third-party services. This property can be expressed by requiring the Vault service to have no

children in the service tree:

start Any : match Any
∀-path
=⇒ (!Vault)∗ (Vault + 𝜖) .

This can also be expressed as a singleton sequence policy: start Vault : call-sequence Vault.
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Case study 7: Resource pricing. Suppose that patients can invoke Test service to request a

batch of medical tests. For each medical test, the Test service sends a child request. To ensure

correct billing, a security team might require every child call of Test to directly or indirectly invoke

Payment. This is policy can be specified as:

start Test : match Test
∀-child
=⇒ (match _ Payment

∀-path
=⇒ _ ) .

6.3 Compliance Team Policies
Case study 8: Data compliance. Data protection laws, like HIPAA and GDPR, mandate com-

pliance teams to responsibly handle customer data. For instance, personal health information,

like a patient’s name, should be de-identified for privacy. Since compliance teams do not have

direct insight into the implementation of the application, they would like to check compliance by

monitoring inter-service communications. To encode this kind of requirement as a service tree

policy, they can require that a service sending a request to external parties should have previously

run the de-identification service. This policy can be specified as:

start Test : match Test
∃-child
=⇒ 𝑝1 then 𝑝2 ,

where 𝑝1 = match De-identify
∀-path
=⇒ 𝜖 and 𝑝2 = match Lab

∀-path
=⇒ 𝜖 .

The right sub-expression of

∃-child
=⇒ needs to specify the existence of two subtrees satisfying sub-

policies 𝑝1 and 𝑝2. Here, 𝑝1, 𝑝2 will specify the existence of a call to De-identify and Lab respectively.
The match sub-expression in 𝑝1 and 𝑝2 are “match De-identify” and “match Lab” respectively
because they need to match a subtree rooted at De-identify and Lab. In the above policy, the right

side expression in 𝑝1 and 𝑝2 is an empty string because the team wants De-identify and Lab to not

invoke any APIs. This regular expression prevents the subtrees rooted at De-identify and Lab from

having any calls to children. Note the regular expression on the right of policy 𝑝1 and 𝑝2 could be

replaced by _ if the compliance team wanted to allow De-identify and Lab to invoke other services.

Add-on policy. Suppose the compliance team wants each Test request to send one Lab request.

Additionally, it wants Test to de-identify the patient records before invoking Lab. This property
specifies constraints on the sequence of API calls in subtrees starting at Test, so the policy is:

start Test : call-sequence (!Lab)∗De-identify(!Lab)∗Lab(!Lab)∗ .

The above regular expression specifies that De-identify is called before Lab.

Case study 9: Data Proxy or Middleware. Sometimes the access to a service needs to be

managed by a proxy, such as a firewall to secure a data source, a load balancer, or an authenticator.

Consider the compliance team wants Test to invoke Lab via an authentication service Auth to avoid

creating unauthorized lab requests. More formally, we need to express that the subtree rooted at

Test should have an Auth descendant, and Lab should be directly or indirectly invoked by Auth,
meaning Lab is Auth’s descendant. This requirement can be specified as the following policy:

start Test : match Test
∃-child
=⇒︸︷︷︸
(1)

(match (!Lab)∗Auth ∃-child
=⇒︸︷︷︸
(2)

(match _Lab
∀-path
=⇒︸︷︷︸
(3)

_)) .

First, we specify Test as the start endpoint. Subtrees starting with Test certainly need the root to

be Test. This is described in the regular expression associated withmatch condition of the policy

labeled with (1). The inner policy to the right of (1) checks for the existence of a subtree that has
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a path to Auth. The regular expression (!Lab)∗Auth on the left of (2) permits Auth, but no Lab
in the path. After matching this path, the inner policy of (2) checks for the existence of Lab as a
descendant, which is similarly expressed as the expressionmatch _Lab on the left of (3). Since Lab
can be followed by any endpoint, the regular expression on the right of the label (3) is _.

This policy can be strengthened to require that Auth is called before the only call to Lab, as
follows:

start Test : call-sequence (!Lab)∗Auth(!Lab)∗Lab(!Lab)∗ .

7 Implementation
To demonstrate our design, we developed a prototype implementation in ∼ 2𝑘 lines of Java. Our

tool compiles a policy into a VPA, and then extracts a runtime monitor that runs on top of the

Istio service mesh. At its core, the runtime monitor enforces the policy by simulating a VPA in a

distributed manner, using the distributed monitors in definition 5.9. Here, we discuss aspects of our

monitor’s design that are particular to the Istio [19] service mesh framework.

Istio-based implementation. In the service mesh framework, each microservice container instance

is paired with a sidecar container implemented as an Envoy proxy [13]. The sidecar can intercept

all incoming and outgoing HTTP traffic for its corresponding service container, and the Envoy

proxy running at the sidecar can perform a variety of useful functions orthogonal to our work,

such as load balancing, service discovery, failover, etc. In addition, Envoy can be programmed

with custom logic to inspect HTTP headers and perform actions, like adding/removing/updating

the headers, or allowing/denying HTTP traffic, etc. Envoy proxies maintain an in-memory state

for each request/response pair for the duration of the request’s lifetime. Therefore, any metadata

saved in the in-memory state during the request processing can be retrieved during its response’s

processing. While not a core feature of the framework, this capability turns out to enable some

important optimizations for our enforcement method, which we will discuss below.

Local monitors as Envoy filters. We implement our local monitors as Envoy filters, which are

custom traffic filtering Lua scripts that simulate VPA transitions on the service (symbol) from the

current VPA configuration carried in the HTTP header. Since in our setting, the service trees are

rooted well-matched nested word, the top of the stack symbol read by a response message is the

same as the value pushed by its matched request. Therefore, instead of carrying the stack in the

HTTP header, we save the stack symbol locally in the proxy’s in-memory state. This reduces the

memory overhead of propagating stack information along with requests, which can be significant.

With our design, only the VPA state is carried in the HTTP header.

Extracting local monitors. Given a VPA M and its distributed monitor D = dist_monitor(M) as
defined in definition 5.9, our compiler extracts the filter for a service 𝑠 ∈ Σ̃ from the call and ret
function mapped to 𝑠 , i.e., (call, ret) = D(𝑠). The call and ret functions are essentially the VPA’s

call and return transitions on the service 𝑠 . The filter comprises two callback functions: OnRequest
implements call, while OnReponse implements ret.
For example, the two callbacks for Payment’s (P) local monitor for the VPA in fig. 2 are given

in fig. 8. The OnRequest function implements the call transition on P as a conditional block that

updates the state header and the custom in-memory metadata, local_stack to 𝑞𝑃 if the current state
is 𝑠𝑡𝑎𝑟𝑡 . Similarly, OnResponse implements the return transition on P that updates state to 𝑠𝑡𝑎𝑟𝑡 if
the current state header and local_stack are 𝑞𝑃 .

Local monitor execution. When a request arrives at a service, the service’s co-located proxy

executes the filter’s OnRequest callback to run a call transition. For instance, if the state header
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Payment
callback OnRequest(){

if (state == 𝑠𝑡𝑎𝑟𝑡) then

state = 𝑞𝑃 ; local_stack = 𝑞𝑃
}

callback OnResponse(){

if (state == 𝑞𝑃 && local_stack = 𝑞𝑃 ) then

state = 𝑠𝑡𝑎𝑟𝑡

}

Fig. 8. Payment’s (P) local monitor for the VPA in fig. 2: OnRequest and OnResponse simulate VPA transition
on requests and responses respectively. The top of the stack symbol is locally saved as local_stack metadata
in the in-memory state of P’s proxy and state is carried in the HTTP header. Here, 𝑞𝑝, 𝑠𝑡𝑎𝑟𝑡 are VPA states.

of an incoming request at P is set to 𝑠𝑡𝑎𝑟𝑡 , OnRequest updates state to 𝑞𝑃 and writes 𝑞𝑃 to the

(custom) local_stack metadata in P’s proxy’s in-memory state (corresponding to this request’s

session).

Likewise, the OnResponse callback is executed on intercepting a response. For instance, if the

current state header of an outgoing response from P is 𝑞𝑃 and the in-memory local_stack saved
during its corresponding request’s processing was 𝑞𝑃 , OnResponse updates the state header to
𝑠𝑡𝑎𝑟𝑡 . Thus, the callback implements our distributed monitor’s single-step transition (as defined in

definition 5.10).

Context propagation. We require that the SafeTree header carrying the VPA state is propagated

from an incoming request to any resulting outgoing request. Although Envoy can see requests

entering and leaving the service, the service itself is a black box from its perspective, so Envoy does

not directly know which incoming (parent) requests produced which outgoing (child) requests.

We therefore require that the application copy the header from incoming to outgoing requests.

This functionality is known in the microservice community as context propagation; it is anyway
required for other purposes—in particular, distributed tracing to monitor application behavior and

track the cause of request failures and performance issues—and libraries exist to help implement

it [20, 38]. SafeTree does not assume anything more about microservice applications beyond this

standard requirement.

Rejecting invalid service trees. For simplicity, our implementation logs any policy violation after

the request’s entire service tree has been processed, rather than actively blocking requests. It should

be possible to extend the prototype to block a request as soon as we know the policy must be

violated—depending on the policy this can happen early or later in the service tree. For example,

for policies of the form start 𝑆 : 𝑖𝑛𝑛𝑒𝑟 , which require subtrees starting at the symbols in 𝑆 to

satisfy 𝑖𝑛𝑛𝑒𝑟 , the response from the root of such subtrees can be early blocked if the 𝑖𝑛𝑛𝑒𝑟 policy is

violated on the subtree. For certain policies, it is possible to block a request if transitioning on it

will send the VPA into a state that’s sufficient for it to never accept the service tree. For instance,

for a policy of the form start 𝑆 : call-sequence 𝑟𝑒𝑔, a request can be blocked if transitioning on it

will violate 𝑟𝑒𝑔. Similarly, for policies of the form start 𝑆 : 𝑟𝑒𝑔
∀-path
=⇒ 𝑟𝑒𝑔 and start 𝑆 : 𝑟𝑒𝑔

∀-child
=⇒ 𝑝 ,

a request can be blocked if the start symbol in the start set 𝑆 is not the same as the first symbol of

all the words in the language of 𝑟𝑒𝑔. For instance, start A : B
∀-path
=⇒ B.

8 Evaluation
We evaluate two aspects of the SafeTreemonitor: its performance overhead and its memory footprint

by considering the following research questions:

• RQ1: How much header space is required for the context headers?
• RQ2: How much latency overhead does the monitor add?
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Setup. Our experimental setup consists of two microservice applications written in Go: a hotel

reservation application from the DeathStarBench [14] and a simple hospital application that we

wrote to exhibit the call structure of the application described in section 2. The average number of

nodes in the service trees of both the applications are 4.5 and 6 respectively.

While the service implementations here—especially in the hospital application—are rather simple,

the specific logic inside the application does not affect the overhead of the SafeTree monitor since

SafeTree runs in the service mesh outside the application, so its performance is not affected by

application logic. SafeTree’s overhead does, however, depend on the topology of API calls and the

policies being checked, which we will study in the evaluation.

The microservice applications are deployed on a minikube cluster enabled with Istio sidecar

injection. The cluster runs locally on a machine with 16 GB of RAM, an i7 processor, and Ubuntu

22.04 operating system. The application’s inter-service communication is managed by the Envoy

proxy running in the Istio version 1.23.2. The case study policies used in our experiments are listed

in the full paper.

8.1 RQ1: Header Space Overhead
Maintaining the current state of the VPA-based runtime monitor and its stack configuration is

central to our enforcement mechanism. As described in section 7, the stack configuration is saved

locally at sidecar proxies, but the current state of the VPA is propagated alongside requests in a

custom HTTP header. Table 1 presents the total number of call and return transitions for each

policy’s VPA (in columns #call and #return); total number of VPA states (in #state column); and

the number of bits needed to encode the maximum number of VPA states (in #bits column). The

context headers for all our policies are at most six bits long, which is minimal compared to the

available space in HTTP headers (on the order of kilobytes).

Table 1. Policies prefixed with “Hotel” are evaluated on the hotel application, and the remainder are evaluated
on the hospital application. Main findings: (1) context headers can encode the VPA state in a small number of
bits, and (2) policy checking adds minimal latency, on the order of a millisecond to the application.

VPA transitions VPA states Latency Policy Nesting

Scenario #call #return #states #bits overhead (ms) class #levels

A/B Testing 6 30 6 3 0.700 Linear NA

Factorial Testing 11 80 11 4 0.420 Linear NA

Access Control 12 100 12 4 0.448 Linear NA

Update 25 544 25 5 0.433 Hierarch. 2

Data-compliance 38 1326 38 6 0.958 Hierarch. 2

Data Proxy 36 1184 36 6 1.117 Hierarch. 3

Encryption 23 454 23 5 0.460 Hierarch. 1

Data Vault 20 346 20 5 0.370 Hierarch. 1

Resource pricing 25 562 25 5 0.457 Hierarch. 2

Hotel Encryption 23 454 23 5 0.216 Hierarch. 1

Hotel Data Proxy 36 1184 36 6 0.443 Hierarch. 3

Hotel Compliance 38 1326 38 6 0.278 Hierarch. 2

We can understand how the size of VPAs vary across different classes of policies if we look at the

#states column and the “Policy class” column, which describes if a policy is linear or hierarchical.

We observe that the linear policies compile to a VPA with fewer states than the hierarchical policies.

If we look at the “Nesting #levels” column, we can further observe that among the hierarchical
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policies, more deeply nested policies tend to have more VPA states. The data-compliance policy

appears to be an outlier as it has the greatest number of states even though other policies have

deeper nesting, but this is because the policy specifies multiple existential condition on subtrees.

To summarize, the SafeTree monitor requires only a few bits of extra HTTP header space to
compactly encode contextual information about the service tree structure.

8.2 RQ2: Latency Overhead
Another aspect of the SafeTree monitor’s evaluation is to understand its effect on the application’s

performance. Accordingly, we compare the latency of requests when the application is being

monitored versus when it is not, on a workload of 200 requests for all the user-facing endpoints of

the application. Latency benchmarking in a microservice application is prone to variance due to

several network factors, like congestion, application’s concurrency, elastic scaling, etc. We ensure

that the application is not overloaded by sending the requests at a sufficiently low rate so that

we are measuring per-request processing latency, rather than queuing effects. To minimize the

variation in our results, we average the latency over five such workloads.

Overhead versus Policy. Our experiment involves extracting Envoy filters from the VPAs compiled

in the previous experiment. Then for each policy, latency overhead is measured as the difference

between the average request latency in the above applications when the policy checking enabled

and when it is disabled. The policies in table 1 that are prefixed with “Hotel” were evaluated on the

hotel reservation application, and the remainder were evaluated on the hospital application. The

“Latency overhead” column in table 1 reports the average latency overhead in milliseconds.

Observe that all values are at most 2𝑚𝑠 , which implies low latency overhead of running the

monitor. We found these results to be stable across both of our benchmark applications, which

is expected since the internal details of the services should not affect the latency overhead. To
summarize, SafeTree monitor adds minimal latency overhead—on the order of a millisecond.

Checking multiple policies. To check multiple policies simultaneously, instead of unioning the

VPAs of individual policies, we run each VPA independently. This prevents blowing up the VPA size,

which is essential for maintaining low memory overheads. To understand the latency overhead of

running multiple policies, we run multiple copies of the “Hotel Compliance” monitor from table 1.

Table 2. Overhead for multiple policies.

# Policies Latency overhead (ms)

1 0.278

2 0.510

3 0.610

4 0.676

The column “# Policies” in table 2 describes the number of

simultaneous policies being checked. We can conclude from

the “Latency overhead” column that the latency overhead

increases with the increase in the number of policies. The
results suggest we could feasibly monitor multiple
policies with a reasonable amount of overhead.

Overhead versus topology scale. To evaluate SafeTree monitor’s scalability, we measure the

increase in latency overhead with the scale of the application’s topology, which we measure as the

number of nodes in the application’s service tree. For this experiment, we synthetically generate

applications with different topology shapes—all combinations of depths from 2 to 5 and fan-out from

1 to 4, resulting in the total number of nodes in the service trees ranging from 3 to 1365. We measure

the latency overhead for the same (“Hotel Compliance”) policy across different applications.

Fig. 9a shows that the latency overhead in milliseconds (on the y-axis) linearly increases with

the increase in the number of nodes in the service tree (on the x-axis). Fig. 9a uses log scale on both

the x-axis and y-axis. As a reference point, note that the data collected by Alibaba [25] showed

that in their microservice deployment, the common case depth and fan-out per service is lower
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Fig. 9. Latency overhead vs topology scale, measured as number of nodes in the application’s service tree.

than the median depth of ∼ 4 and the median fan-out of ∼ 2. A binary tree with depth 4 will have

maximum 31 nodes; the common case trees will have fewer nodes.

We zoom into the latency overhead for trees with nodes between 0–40 in fig. 9b, where the

latency overhead in milliseconds is plotted on the y-axis, and the x-axis reports the number of

nodes on a linear scale. Notice that the common case overhead is at most 5 ms and the overhead

for a typical tree with ∼ 31 nodes is at most 2 ms.

We plot the per-hop overhead (latency overhead divided by number of nodes) in milliseconds

on fig. 9c’s y-axis for trees with a range of nodes (plotted on the log scale on the x-axis). We can

see that on an average 0.082 ms of latency overhead is incurred per hop in the service tree. In
summary, SafeTree monitor’s latency overhead is under ∼ 5ms for a typical topology. The
overhead linearly increases with the tree’s size, adding 0.082ms of average overhead per
hop.We expect that a production implementation of SafeTree could achieve significantly better

performance, e.g., by writing filters using C++/WASM instead of Lua.

9 Related Work
Safety in microservice and cloud applications. Today’s microservice systems support policies

that control communication between pairs of microservices. Recent works have explored more

general policies. For instance, Trapeze [2] is a system for dynamic information flow control [34]

in serverless computing. Trapeze can precisely specify how data at different security levels flow

around the application. In contrast, our system can specify properties about the structure of the

API call tree.

Another interesting work in this area is Whip [36], a higher-order contract system for describing

service-level specifications as contracts on blackbox services. Whip policies can describe the

arguments and return values of microservices; however, these policies are focused on individual

API calls, and require a custom network adapter for monitoring. In contrast, our approach can

express policies about trees of API calls using a lightweight monitoring approach that can be

implemented in existing service mesh frameworks.

Our prior work [17] proposed policies for microservices based on a linearization of the service

calls; SafeTree is more general in supporting policies that describe the tree structure of the calls,

which requires a richer automaton (VPA) for monitoring. The Copper [35] system also uses this idea

of linearization to combine several single hop policies. Unlike SafeTree, Copper does not support

tree policies, nor policies over sequences of API calls.

Execution correctness in serverless runtime. A recent line of work aims to make it easier to correctly

execute microservice applications on serverless platforms. For example, serverless operational

semantics were formalized in the 𝜆𝜆 calculus [21]; language primitives were introduced in 𝜇2𝑠𝑙𝑠
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[22] to write microservice code with transaction and asynchrony abstractions without manually

handling failures and execution nuances; durable functions [8] introduced a programming model

for ensuring orchestration correctness of stateful workflows under retries and failures in otherwise

stateless serverless applications. SafeTree assumes that microservices are executed correctly, but

instead checks that the runtime behavior conforms to some desired specification.

Programmable runtime verification in networks. Our work can be seen as a programmable system

for runtime verification in the service mesh layer. Runtime verification has been used at other layers

of the network stack. For instance, DBVal [24] checks for packet forwarding correctness. Hydra [32]

allows the network operator to enforce their desired policy and specify custom telemetry to attach

to packets in a custom high-level language, and synthesizes monitors to enforce polices in the

dataplane. For security policies, Poise [23] converts high-level security and access control policies

into P4 code for enforcement. At a higher level, Aragog [37] is a scalable system for specifying and

enforcing policies about high-level events in networked systems.

Distributed and decentralized runtime verification. Distributed and decentralized monitoring has

been well-studied in the runtime verification community, but most works target distributed systems

and are designed to contend with monitors that may see events out of order [6] or monitors that

may see different views of the global system [27]. We do not face such difficulties in our setting:

the state of our distributed monitors is carried with the request, and so each monitor has the

full information required to enforce the policy. Distributed tracing frameworks [20, 30, 38] used

for observability rely on a centralized collector for recording execution traces, which can then

be analyzed later. In contrast, a key goal of our work is to check policies and detect violations

efficiently at runtime, rather than after the fact.

Automata-theoretic models for hierarchical structure. Our policy specification and enforcement is

based on nested word languages and visibly-pushdown automata [5]. The literature on nested words

and VPAs is too large to survey here; the interested reader should consult Alur and Madhusudan [5].

While tree automata [11, 12] also work on hierarchical input, their inputs must be structured trees.

SafeTree uses VPA because its input is a serialized tree of nodes being incrementally processed, not

the entire service tree structure.

Monitoring context-free properties. SafeTree policies resemble to context-free properties, which

can be captured in extensions of temporal logic. For instance, VLTL [7] supports a more complex

policy language, although monitoring such policies requires Büchi and parity automata, which seem

difficult to realize in a microservice setting. Other examples include CaRet [3] and PTCaRet [33],

temporal logic extensions with call-return matching that can be interpreted using recursive state

machines. Runtime monitoring algorithms that have been considered for context-free properties

specified in temporal logic are include formula rewriting-based pushdown-automata for PtCaRet

[33]; pushdown Mealy machine for CaReT with future fragment [10]; and an LR(1) parsing based

algorithm for parametric properties [26].

In the realm of software verification, PAL [9] is a DSL for writing context-sensitive monitors for

C programs, where the user directly encodes the low-level state transitions of the monitor, and

the framework automatically instruments an existing C program. In contrast, the SafeTree policy

language is high-level, and the monitoring automaton is generated automatically.

10 Conclusion
We have presented SafeTree, a policy language for specifying rich, tree-based safety properties for

microservices. By compiling policies to VPA, we derive an efficient and performant distributed

runtime monitor for enforcing our policies without invasive code changes to microservices.
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We see several possibilities for future work. First, extending our work to the asynchronous

setting, where API calls are processed concurrently, will expand the applications of our work.

However, it is unclear how to specify safety policies where part of the service tree may not be

completed yet, and asynchronous calls may return in a different order than they were originally

issued, leading to service trees that may not be well-matched. Second, it can be useful to support

policies that reason about arguments of API calls. It could also be interesting to support richer

nested word languages—our design uses just call and return symbols, but internal symbols might

be useful for modeling other aspects of microservice behavior. Finally, our monitoring strategy

could be useful beyond microservices; for instance, for network control planes.

Acknowledgements
We thank the reviewers for their constructive feedback. This work is supported by NSF grants

#2152831 and #2312714. This work benefited from discussions with Loris D'Antoni and the HTTP

benchmark tool by Talha Waheed.

Data-Availability Statement
Our artifact [16] consists of the SafeTree policy compiler [15], which takes in a policy, and generates

a VPA followed by emitting a distributed monitor. It also contains the source code of the policy

compiler to generate a monitor; source for the benchmark applications; a list of test policies; and

workload data to reproduce the experiments.

References
[1] Proton AG. 2024. Complete guide to GDPR compliance. https://gdpr.eu/. Accessed: 2024-11-04.

[2] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv, Thomas Schmitz, and Keith Winstein.

2018. Secure serverless computing using dynamic information flow control. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 118:1–118:26. doi:10.1145/3276488

[3] Rajeev Alur, Kousha Etessami, and P. Madhusudan. 2004. A Temporal Logic of Nested Calls and Returns. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Barcelona, Spain (Lecture
Notes in Computer Science, Vol. 2988). Springer-Verlag, 467–481. doi:10.1007/978-3-540-24730-2_35

[4] Rajeev Alur and P. Madhusudan. 2004. Visibly pushdown languages. In ACM SIGACT Symposium on Theory of
Computing (STOC), Chicago, Illinois. ACM, 202–211. doi:10.1145/1007352.1007390

[5] Rajeev Alur and P. Madhusudan. 2006. Adding Nesting Structure to Words. In International Conference on Developments
in Language Theory (DLT), Santa Barbara, California (Lecture Notes in Computer Science, Vol. 4036). Springer-Verlag,
1–13. doi:10.1007/11779148_1

[6] David A. Basin, Felix Klaedtke, and Eugen Zalinescu. 2020. Runtime Verification over Out-of-order Streams. ACM
Trans. Comput. Log. 21, 1 (2020), 5:1–5:43. doi:10.1145/3355609

[7] Laura Bozzelli and César Sánchez. 2018. Visibly Linear Temporal Logic. J. Autom. Reason. 60, 2 (Feb. 2018), 177–220.
doi:10.1007/s10817-017-9410-z

[8] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas, ConnorMcMahon, and Christopher S. Meiklejohn.

2021. Durable functions: semantics for stateful serverless. Proceedings of the ACM on Programming Languages 5,
OOPSLA, Article 133 (Oct. 2021). doi:10.1145/3485510

[9] Swarat Chaudhuri and Rajeev Alur. 2007. Instrumenting C programs with nested word monitors. In International SPIN
Conference on Model Checking Software, Berlin, Germany. Springer-Verlag, 279–283.

[10] Normann Decker, Martin Leucker, and Daniel Thoma. 2013. Impartiality and Anticipation for Monitoring of Visibly

Context-Free Properties. In Runtime Verification (RV), Rennes, France. Springer-Verlag, 183–200.
[11] John Doner. 1970. Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4, 5 (Oct. 1970), 406–451.

doi:10.1016/S0022-0000(70)80041-1

[12] Joost Engelfriet. 2015. Tree Automata and Tree Grammars. CoRR abs/1510.02036 (2015). arXiv:1510.02036 http:

//arxiv.org/abs/1510.02036

[13] Envoy. 2024. Envoy Proxy. https://www.envoyproxy.io/. Accessed: 2024-11-04.

[14] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian

Ritchken, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine

Leung, SiyuanWang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delimitrou.

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 349. Publication date: October 2025.

https://gdpr.eu/
https://doi.org/10.1145/3276488
https://doi.org/10.1007/978-3-540-24730-2_35
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/11779148_1
https://doi.org/10.1145/3355609
https://doi.org/10.1007/s10817-017-9410-z
https://doi.org/10.1145/3485510
https://doi.org/10.1016/S0022-0000(70)80041-1
https://arxiv.org/abs/1510.02036
http://arxiv.org/abs/1510.02036
http://arxiv.org/abs/1510.02036
https://www.envoyproxy.io/


349:26 Karuna Grewal, Brighten Godfrey, and Justin Hsu

2019. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud &

Edge Systems. In International Conference on Architectural Support for Programming Langauages and Operating Systems
(ASPLOS), Providence, Rhode Island. Association for Computing Machinery, New York, NY, USA, 3–18. doi:10.1145/

3297858.3304013

[15] Karuna Grewal. 2025. SafeTree Compiler. https://github.com/aakp10/SafeTree-Compiler.

[16] Karuna Grewal. 2025. SafeTree: Expressive Tree Policies for Microservcies. doi:10.5281/zenodo.15751182
[17] Karuna Grewal, Philip Brighten Godfrey, and Justin Hsu. 2023. Expressive Policies For Microservice Networks. In

USENIX Workshop on Hot Topics in Cloud Computing (HotCloud), Cambridge, Massachusetts. ACM, 280–286. doi:10.

1145/3626111.3628181

[18] Karuna Grewal, P. Brighten Godfrey, and Justin Hsu. 2025. SafeTree: Expressive Tree Policies for Microservices.

arXiv:2508.16746 [cs.PL] https://arxiv.org/abs/2508.16746

[19] Istio. 2024. Istio. https://istio.io/. Accessed: 2024-11-04.

[20] Jaeger. 2024. Jaeger. https://www.jaegertracing.io/. Accessed: 2024-11-04.

[21] Abhinav Jangda, Donald Pinckney, Yuriy Brun, and Arjun Guha. 2019. Formal foundations of serverless computing.

Proceedings of the ACM on Programming Languages 3, OOPSLA, Article 149 (Oct. 2019). doi:10.1145/3360575
[22] Konstantinos Kallas, Haoran Zhang, Rajeev Alur, Sebastian Angel, and Vincent Liu. 2023. Executing Microservice

Applications on Serverless, Correctly. Proceedings of the ACM on Programming Languages 7, POPL, Article 13 (Jan.
2023). doi:10.1145/3571206

[23] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo. 2020. Programmable In-Network

Security for Context-aware BYOD Policies. In USENIX Security Smposium (USENIX). USENIX Association, 595–612.

https://www.usenix.org/conference/usenixsecurity20/presentation/kang

[24] K. Shiv Kumar, Ranjitha K., P. S. Prashanth, Mina Tahmasbi Arashloo, Venkanna U., and Praveen Tammana. 2021.

DBVal: Validating P4 Data Plane Runtime Behavior. In ACM SIGCOMM Symposium on SDN Research (SOSR). ACM,

122–134. doi:10.1145/3482898.3483352

[25] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian He, and Chengzhong Xu.

2021. Characterizing Microservice Dependency and Performance: Alibaba Trace Analysis. In ACM Symposium on
Cloud Computing (SoCC), Seattle, Washington. Association for Computing Machinery, New York, NY, USA, 412–426.

doi:10.1145/3472883.3487003

[26] P. O. Meredith, D. Jin, F. Chen, and G. Rosu. 2008. Efficient Monitoring of Parametric Context-Free Patterns. In

IEEE/ACM International Conference on Automated Software Engineering (ASE), L’Aquila, Italy. IEEE Computer Society,

USA, 148–157. doi:10.1109/ASE.2008.25

[27] MennaMostafa and Borzoo Bonakdarpour. 2015. Decentralized RuntimeVerification of LTL Specifications in Distributed

Systems. In IEEE International Parallel and Distributed Processing Symposium, (IPDPS), Hyderabad, India. IEEE Computer

Society, 494–503. doi:10.1109/IPDPS.2015.95

[28] US Department of Health and Human Services. 2024. Summary of the HIPAA Privacy Rule. https://www.hhs.gov/

hipaa/for-professionals/privacy/laws-regulations/index.html. Accessed: 2024-11-04.

[29] US Department of Health and Human Services. 2024. The De-identification Standard. https://www.hhs.gov/hipaa/for-

professionals/special-topics/de-identification/index.html.

[30] OpenTelemetry. 2024. OpenTelemetry. https://opentelemetry.io/. Accessed: 2024-11-04.

[31] M. O. Rabin and D. Scott. 1959. Finite automata and their decision problems. IBM J. Res. Dev. 3, 2 (April 1959), 114–125.
doi:10.1147/rd.32.0114

[32] Sundararajan Renganathan, Benny Rubin, Hyojoon Kim, Pier Luigi Ventre, Carmelo Cascone, Daniele Moro, Charles

Chan, Nick McKeown, and Nate Foster. 2023. Hydra: Effective Runtime Network Verification. In Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM), New York, New York. ACM, 182–194. doi:10.1145/

3603269.3604856

[33] Grigore Rosu, Feng Chen, and Thomas Ball. 2008. Synthesizing Monitors for Safety Properties: This Time with Calls

and Returns. In International Workshop on Runtime Verification (RV), Budapest, Hungary (Lecture Notes in Computer
Science, Vol. 5289). Springer-Verlag, 51–68. doi:10.1007/978-3-540-89247-2_4

[34] Andrei Sabelfeld and Andrew C. Myers. 2003. Language-based information-flow security. IEEE J. Sel. Areas Commun.
21, 1 (2003), 5–19. doi:10.1109/JSAC.2002.806121

[35] Divyanshu Saxena, William Zhang, Shankara Pailoor, Isil Dillig, and Aditya Akella. 2025. Copper and Wire: Bridging

Expressiveness and Performance for Service Mesh Policies. In International Conference on Architectural Support for
Programming Langauages and Operating Systems (ASPLOS), Rotterdam, The Netherlands. Association for Computing

Machinery, New York, NY, USA, 233–248. doi:10.1145/3669940.3707257

[36] Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. Whip: higher-order contracts for modern services.

Proceedings of the ACM on Programming Languages 1, ICFP, Article 36 (Aug. 2017). doi:10.1145/3110280

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 349. Publication date: October 2025.

https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://github.com/aakp10/SafeTree-Compiler 
https://doi.org/10.5281/zenodo.15751182
https://doi.org/10.1145/3626111.3628181
https://doi.org/10.1145/3626111.3628181
https://arxiv.org/abs/2508.16746
https://arxiv.org/abs/2508.16746
https://istio.io/
https://www.jaegertracing.io/
https://doi.org/10.1145/3360575
https://doi.org/10.1145/3571206
https://www.usenix.org/conference/usenixsecurity20/presentation/kang
https://doi.org/10.1145/3482898.3483352
https://doi.org/10.1145/3472883.3487003
https://doi.org/10.1109/ASE.2008.25
https://doi.org/10.1109/IPDPS.2015.95
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/privacy/laws-regulations/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html
https://opentelemetry.io/
https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1145/3603269.3604856
https://doi.org/10.1145/3603269.3604856
https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/3669940.3707257
https://doi.org/10.1145/3110280


SafeTree: Expressive Tree Policies for Microservices 349:27

[37] Nofel Yaseen, Behnaz Arzani, Ryan Beckett, Selim Ciraci, and Vincent Liu. 2020. Aragog: Scalable Runtime Verification

of Shardable Networked Systems. In USENIX Symposium on Operating Systems Design and Implementation (OSDI),
Virtual Event. USENIX Association, 701–718. https://www.usenix.org/conference/osdi20/presentation/yaseen

[38] Zipkin. 2024. Zipkin. https://zipkin.io/. Accessed: 2024-11-04.

Received 2025-03-26; accepted 2025-08-12

Proc. ACM Program. Lang., Vol. 9, No. OOPSLA2, Article 349. Publication date: October 2025.

https://www.usenix.org/conference/osdi20/presentation/yaseen
https://zipkin.io/

	Abstract
	1 Introduction
	1.1 Challenges
	1.2 Our Approach

	2 A Tour of Service Tree Policies
	2.1 Running Example: Hospital Management Application
	2.2 Safety Properties
	2.3 Service Tree Policies
	2.4 Policy Enforcement

	3 Background: Service Tree as a Nested-Word
	3.1 Nested Words Refresher
	3.2 Service Tree Concepts

	4 SafeTree: A Service Tree Policy Language
	4.1 Syntax
	4.2 Nested Word Interpretation for Service Trees

	5 Enforcement
	5.1 Semantics of a VPA
	5.2 Compilation Sketch
	5.3 Runtime Monitor for a VPA

	6 Case Studies
	6.1 Deployment Team Policies
	6.2 Security Team Policies
	6.3 Compliance Team Policies

	7 Implementation
	8 Evaluation
	8.1 RQ1: Header Space Overhead
	8.2 RQ2: Latency Overhead

	9 Related Work
	10 Conclusion
	References

