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ABSTRACT
Motivation: The efficient and accurate computation of
P -values is an essential requirement for motif-finding and
alignment tools. We show that the approximation algorithms
used in two popular motif-finding programs, MEME and Con-
sensus, can fail to accurately compute the P -value.
Results: We present two new algorithms: one for the evalu-
ation of the P -values of a range of motif scores, and a faster
one for the evaluation of the P -value of a single motif score.
Both exhibit more reliability than existing algorithms, and the
latter algorithm is comparable in speed to the fastest existing
method.
Availability: The algorithms described in this paper are
available from http://www.cs.cornell.edu/˜keich
Contact: keich@cs.cornell.edu

1 INTRODUCTION
Finding local similarities among a set of sequences is a com-
mon task in computational biology. For example, by finding
similarities within a set of promoters from co-regulated genes,
one hopes to recover transcription factor binding sites that
guide the genes’ expression patterns in vivo. Given a set of
sequences, motif-finding algorithms such as MEME (Bailey
and Elkan, 1994) and Consensus (Hertz and Stormo, 1999)
return a number of possible alignments in some order of poten-
tial biological relevance. A critical part of any such study is for
a researcher to discriminate between local alignments that are
simply random artifacts of the sample and local alignments
that are so improbable by chance that they are likely to be
biologically relevant.

An ungapped local alignment of length L of sequences
from an alphabet with A letters is typically summarized by
its information content, or entropy (Stormo, 2000), as fol-
lows. Let nij denote the number of occurrences of the j -th
letter in the i-th column of the alignment, and let n be the
number of sequences in the alignment. The entropy score, or
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information content, of the alignment is defined as

I :=
L∑

i=1

A∑
j=1

nij log
nij /n

bj

,

where bj is the background frequency of the j -th letter (typic-
ally, bj is the frequency of the j -th letter in the entire sample).1

The entropy score for a given column i of the alignment is
defined, similarly, as

I (i) :=
A∑

j=1

nij log
nij /n

bj

.

While this score can be used to rank more than one alignment
in a given sample, it cannot provide any direct information
about an alignment’s significance, and in particular cannot be
used to compare two alignments of varying L and n. To assess
the significance of an alignment with entropy score s0, we rely
on the alignment’s P -value, which is the probability of seeing
an entropy score of s0 or better under the assumption that
each of the L columns has n letters independently sampled
according to the background distribution {b1, . . . , bA}. If the
P -value is near 1, the columns in the alignment are too similar
to the background for the pattern to be interesting, but if the
P -value is near 0, the alignment suggests a functional site.

Let p denote the probability mass function (pmf) of the
column score I (i) under the hypothesis that the column is
noise—in the sense that it was sampled from the multino-
mial distribution described by the background probabilities
{b1, . . . , bA}. Assuming that the entropy score for each of the
L columns in the alignment is an independent random vari-
able, the pmf of the alignment’s total entropy score I is given
by the L-fold convolution of p:

p∗L(s) := p ∗ · · · ∗ p︸ ︷︷ ︸
L

:=
∑

(s1,...,sL):
s1+···+sL=s

p(s1) . . . p(sL). (1)

The P -value of an alignment with score s0 is therefore
F̄ ∗L(s0) := ∑

s≥s0
p∗L(s). Unfortunately, to naively com-

pute this requires traversing all s ≥ s0, which is prohibitively

1Strictly speaking, relative entropy is defined as I/n.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i311

http://www.cs.cornell.edu/�keich


“bti1044” — 2005/6/10 — page 312 — #2

N.Nagarajan et al.

-4 -2 0 2 4 6 8  10  12

lo
g 10

(M
E

M
E

 E
-v

al
ue

)

log10(Consensus E-value)

y=x

-4

-2

0

2

4

6

8

 10

 12

Fig. 1. A comparison of the MEME E-values and Consensus
E-values for a number of alignments with L = 15 in n = 20
sequences of length 1000 each. Since the Consensus E-values are
accurate over the range of scores considered here, MEME clearly
overestimates the E-value in nearly every case; for alignments with
E-values ≤1 according to Consensus, MEME may report an E-value
as large as 100.

expensive in practice because of the large number of possible
values of s. As a result, multiple alignment programs rely on
approximations to compute the P -value, striving for a bal-
ance between the time spent computing and the accuracy of
the result.

To determine whether approximating the P -value compu-
tation introduces errors in practice, we modified the source
code of MEME (version 3.0.3) and Consensus (version 6c,
April 2001) to score arbitrary alignments, bypassing each
algorithm’s motif-finding step. In this way we are able to com-
pare P -value estimates from different algorithms on a variety
of different alignments. Figure 1 shows the result if we plot a
point at (x, y) for an alignment with a Consensus E-value of x

and a MEME E-value of y. The E-value of an alignment with
score s0 is the expected number of alignments in the sample
with the same n and L and with entropy score ≥s0. It can
be obtained from the P -value by multiplying by the number
of possible alignments in the sample. The MEME E-value
is consistently larger than the Consensus E-value (which is
reliable in this region) by roughly two orders of magnitude.
In at least one case, the true E-value indicates an expecta-
tion of 10 alignments with comparable score existing in the
sample, while MEME reports an expectation of 5000 align-
ments; it is conceivable that a researcher would arrive at two
different conclusions about the significance of the same align-
ment by relying on the two estimates. Furthermore, we found
at least two alignments of the same size that had inconsist-
ent E-values according to MEME: one alignment had a lower
entropy and also a lower E-value than the other (entropy of
13.583, E-value of 1.725 × 107 compared with entropy of
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Fig. 2. The graph of log10(LD(s)/NC(s)) demonstrates how far off
the Consensus-reported P -value may be from the value it estimates.
The parameters for this graph are n = 20, A = 4, L = 10 and
b = [0.2497, 0.2499, 0.2501, 0.2503]. The gaps in the graph indicate
areas of unattainable entropy values.

13.617, E-value of 4.1716 × 107), which is clearly a contra-
diction. Neither the approximation methods discussed in this
paper, nor the methods proposed in Hertz and Stormo (1999),
demonstrate this instability.

It is important to note that the E-values from Consensus
were calculated using an algorithm (LD; see below) that is fast
but at times inaccurate. An example of the ratio of Consensus
P -values to the true P -values (as calculated by the slower but
accurate NC algorithm; see below) is shown in Figure 2. Since
the Consensus-reported estimates can be up to two orders
of magnitude off, this work introduces a compromise that
achieves nearly the accuracy of NC, but at speeds comparable
to LD.

Hertz and Stormo (1999) suggest two possible approxim-
ation techniques for calculating the P -value. The first, NC,
replaces I with its latticed cousin Iδ := �I/δ� · δ. In this case,
the pmf of the single column score Iδ(i), or pδ , is therefore
also latticed, so the L-fold convolution of pδ can be done more
efficiently than the L-fold convolution of p. A naive algorithm
for computing the L-fold convolution on a lattice requires
O(L2M2) time, where M is the size of the lattice. Hertz and
Stormo (1999) note that using the fast Fourier transform (FFT)
to perform the convolution would decrease the running time
to O(LM log(LM)); however, the numerical instability of
the FFT algorithm tends to wreak havoc on the computation’s
accuracy for small values, which is exactly the region we
are most interested in when searching for motifs. The second
method they suggest, LD, uses large deviation theory to estim-
ate the tail of an exponentially shifted probability distribution.
In practice this approximation scheme works quite well except
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for a range of values near the maximal (or minimal) score,
where it may be off by an order of magnitude or more. Never-
theless, LD is nearly 200 times faster to compute than NC for
L = 10, A = 4, n = 100 and M = 16 384 and is therefore
the method used in the popular Consensus tool.

Building on the idea of NC, Keich (2005) proposes the sFFT
algorithm to overcome the numerical instability of the FFT for
the L-fold convolution step and also delineates explicit bounds
on the accuracy of the result. Although this method has lower
complexity than NC, it is still somewhat time consuming on
large sample sizes. In Section 2, we present improvements
to sFFT that give rise to the fastest known algorithm that
has accuracy comparable to that of NC. We then describe an
optimization, the cyclic shifted FFT technique, to produce the
csFFT algorithm, which is more efficient for the computation
of a single P -value, with speed comparable to LD.

2 APPROACH
We introduce the shifted-FFT (sFFT) algorithm following
the treatment in Keich (2005). The primary bottleneck of the
algorithm presented in that paper is the computation of the
pmf of one column’s entropy score, which we show here can
be done much more efficiently.

2.1 The sFFT algorithm
The L-fold convolution of an arbitrary vector v ∈ C

M , written
v∗L, can be computed as follows. Let N = ML and extend v

to N dimensions by padding it with zeros. The discrete Fourier
transform, or DFT, of v is defined as (Press et al., 1992)

(Dv)(k) :=
N−1∑
j=0

eijkωv(j),

where ω = 2π/N and i = √−1. Define w ∈ C
N as w(k) =

[(Dv)(k)]L. Then v∗L is given by the inverse DFT of w:

v∗L(l) := (D−1w)(l) := 1

N

N−1∑
j=0

e−ij lωw(j).

The straightforward implementations of D and D−1 require
O(N2) time, but using a recursive divide-and-conquer
strategy results in the FFT which takes O(N log N) time. If
D̃ and D̃−1 are the respective implementations of D and D−1,
then, owing to numerical errors, D̃ and D̃−1 are not exactly
the linear and mutually inverse operators that D and D−1 are.
The DFT of a vector v produces a weighted sum of the entries
of v whose magnitudes can span from 10−5 to 10−70 in a typ-
ical application. Since ε∗, the relative machine precision for
double-precision arithmetic, is only 10−16, the precision of
entries of v with values <ε∗ maxj v(j) is not preserved for
such a sum. Correspondingly, we cannot recover these values
by applying D̃−1.

To avoid the problem of roundoff errors that dominate the
smaller P -values, we can emphasize the values of pδ in the
region surrounding s0 by applying an appropriate exponential
shift prior to performing the L-fold convolution. Let

pθ ,δ(s) := pδ(s)e
θs/Mδ(θ), (2)

where Mδ(θ) = E
[
eθIδ(i)

]
is the moment-generating func-

tion of the lattice score for one column. This particular form
of shifting commutes with the convolution operator, which
makes it easy to convert between p∗L

θ ,δ and p∗L
δ . Note that, as

s is latticed, pθ ,δ is an M-dimensional vector. We will use the
notation pθ ,δ(j) to refer to the j -th entry in that vector, and
pθ ,δ(s) to refer to the value of pθ ,δ for entropy score s.

Since θ is a parameter, we can choose it in such a way that
for a given alignment score s0 we get the maximal ‘resolv-
ing power’ relative to noise resulting from numerical error in
the DFT. Intuitively, the most significant contributions to the
P -value should come from values of p∗L

δ close to s0, so we
choose to center the mean of the shifted pmf for one column
at s0/L so that p∗L

θ ,δ is centered about s0. This can be satisfied,
based on a standard large deviation procedure (Dembo and
Zeitouni, 1998), by setting

θ0 = arg min
θ

[
log Mδ(θ) − θs0/L

]
. (3)

Of course, in order to proceed with the convolution, we
need an estimate for the pmf of a single column. This could
be performed by naively enumerating all possible empirical
distributions for a column. Although this approach has the
advantage of being the most accurate, it requires O(nA−1)

time. For small values of A (as is the case for nucleotide
sequences) this algorithm is still computationally tractable.
However, in our experiments we found that even for small
values of n, with A = 4, this stage tends to dominate the
runtime of the algorithm.

An algorithm with runtime O(AMn2) to calculate the
pmf on a lattice was proposed by Hirji (1997), and later
rediscovered by Hertz and Stormo (1999). This particular
algorithm produces the pmf over the entire range of possible
values in one execution by using dynamic programming. An
improvement to the runtime of the algorithm can be obtained
by noting that, for small values of n, the number of non-zero
lattice points in the intermediate stages of the calculation is
small, which allows one to employ a list-based data structure
to reduce the runtime to O(AM ′n log (n)), where M ′ is sig-
nificantly smaller than M in practice (<10 for the parameters
in Table 1). The resulting algorithm is more efficient than the
original but it still suffers from the overhead of computing
with log-values in order to avoid underflows. (Addition of
log-values in a C program, for example, was found to be more
than 10 times slower than regular addition.)

The underflow conditions in Hirji’s algorithm arise because
it multiplies and adds terms of the form ra(n

′) = ba
n′
/n′!

(where ba is the background distribution for a ∈ [1..A] and
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n′ ∈ [0..n]) that are exponentially small in n′. These terms are
used to recursively compute the vector pδ,a,n′ , where

pδ,a,n′(j) =
n′∑

n′′=0

ra(n
′′) · pδ,a−1,n′−n′′(j − ja(n

′′)) (4)

pδ,1,n′(j) =
{

n! · r1(n
′) if j = ja(n

′) and n′ ∈ [0..n]
0 otherwise

and ja(n
′) = round

(
δ−1n′ log

(
n′/n
ba

))
. As is shown in Hertz

and Stormo (1999), pδ(j) = pδ,A,n(j) and so this procedure
recovers the pmf pδ .

In order to avoid the use of logarithms in these computations
we design the following procedure: instead of computing with
the ra we shift them to get

r ′
a(n

′) = ra(n
′)eδja(n

′)+n′(log(n)−1)

and perform the recursion in Equation (4) using r ′
a . Let the

corresponding result be p′
δ . We can then recover pδ based on

the following claim.

Claim 1. pδ(j) = p′
δ(j)e−δj−n(log(n)−1).

The proof of this claim is based on simple induction using
Equation (4) and is therefore omitted.

The shifted computation described above avoids the under-
flow conditions of Hirji’s original algorithm. This is because,
even though ra(n

′) decreases exponentially with respect to n′,
r ′
a(n

′) remains approximately 1/
√

2πn′. For practical values
of n this improvement to Hirji’s algorithm does not introduce
any numerical errors into the result, and in some cases it may
be more accurate than relying on logarithms. As can be seen
from Figure 3, it also substantially improves the runtime (by
more than a factor of 10, on average).

The modified sFFT algorithm is shown in Figure 4. It is
important to note that the proof of correctness for the original
sFFT algorithm (Keich, 2005) is trivially extended to this case
where the complete enumeration of the pmf is replaced with
the shifted-Hirji algorithm. Thus, this version of the sFFT
algorithm is faster than the original, yet just as reliable.

2.2 The cyclic shifted FFT (csFFT) algorithm
The sFFT algorithm above computes P -values for a range of
possible alignment scores, which is wasteful when all we need
is a single P -value. Fortunately, most of the mass of the shifted
pmf p∗L

θ ,δ arises from a restricted range of possible s-values,
as Figure 5a suggests. We would like to avoid computing p∗L

θ ,δ
on those large intervals where it is practically zero. To that
end, consider the following cyclic sum of p∗L

θ ,δ :

q(i) =
∑

{j :j mod M=i}
p∗L

θ ,δ(j). (5)

In the example described in Figure 5a, p∗L
θ ,δ ≈ 0 for

j /∈ [(L − 1)M , LM]; therefore, it follows that q(i) (where
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Fig. 3. A comparison of the running times of Hirji’s algorithm imple-
mented using log-calculations (log-Hirji) and the shifted ‘logless’
version described in the text. Here M = 1024 and the background
distribution is uniform.

The input to sFFT is

• n, the number of sequences

• L, the number of columns in the alignment

• b1, . . . , bA, the background frequencies of the A letters

• M , the size of the lattice

• s0, the observed score.

Given the input, sFFT

1. Computes p̃δ , an estimate of pδ , by using the shifted
(logless) Hirji algorithm.

2. Finds θ0 by numerically solving Equation (3).

3. Computes p̃θ0,δ(s) according to Equation (2).

4. Computes p̃∗L
θ0,δ by applying the FFT-based convolution

to p̃θ0,δ(s).

5. Computes p̃∗L
δ (j) = p̃∗L

θ0,δ(j)e−θ0jδ+L log M̃δ(θ0) for j0 ≤
j ≤ jmax, where j0 and jmax are the lattice indices
corresponding to s0 and the maximum score smax.

6. Returns sFFT(s0) := ∑jmax
j=j0

p̃∗L
δ (j).

Fig. 4. The sFFT algorithm.

i = j mod M) approximates p∗L
θ ,δ(j) on the interval j ∈

[(L − 1)M , LM]. Since q is defined on a lattice of size M

rather than on a lattice of size LM , we can immediately save
a factor of L, provided q is efficiently computable. Since q is
the cyclic convolution of pθ ,δ it can be efficiently computed by

Claim 2. q = D−1
M w, where w(k) = [(

DM pθ ,δ
)
(k)

]L
.

The proof of this claim can be found in Press et al. (1992).
The difference between the formula above and its non-cyclic
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Fig. 5. The convoluted pmf is 0 over much of the range of valid values for s. Here, M = 10 000, n = 20, L = 15, b =
[0.2499, 0.2501, 0.2497, 0.2503]. The ‘essential support’ intervals here are described by indices for the latticed pmf. (a) An example where
p∗L

θ ,δ has its essential support in a narrow interval defined by [(L − 1)M , LM]; s0 = 405. (b) Here, p∗L
θ ,δ has its essential support in an interval

larger than M , defined by [(L − 4)M , LM]; s0 = 350. (c) The support for p∗L
θ ,δ is mainly in an interval of sizes L′M for L′ = 5, but not of the

form [(L − L′)M , LM]; s0 = 350.

analog is the dimensionality of the DFT operator: here it is
M , whereas the DFT operator previously had dimensionality
LM with pθ ,δ appropriately padded with (L − 1)M zeros.

More generally, the essential support interval of p∗L
θ ,δ may

be of size L′M (e.g. Fig. 5b). Such an interval may also
not be strictly of the form [(L − L′)M , LM]; instead it may
be centered about s0 (e.g. Fig. 5c). In this case, rather than
directly calculating

F̄ ∗L
δ (j0) :=

∑
j≥j0

p∗L
δ (j),

we approximate it with

F̂ ∗L
θ (j0) :=

∑
j0≤j≤J

q(j)e−θ0jδ+L log M(θ0),

where J = min(j0 + L′M/2, jmax). This is justified by∑
j0≤j≤J

q(j)e−θ0jδ+L log M(θ0)

≈
∑

j0≤j≤J

p∗L
θ ,δ(j)e−θ0jδ+L log M(θ0)

≈
∑
j≥j0

p∗L
θ ,δ(j)e−θ0jδ+L log M(θ0).

An appropriate choice of L′ would ensure that, say, 95%
of the mass of p∗L

θ ,δ lies in the interval of size L′M centered
about j0. This would be relatively easy if we had an explicit
function for p∗L

θ ,δ , but this is exactly the function we are trying
to estimate. Instead, we rely on the following formula for L′,
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under the assumption that p∗L
θ ,δ is roughly normally distributed

(an assumption made by the LD algorithm):

L′ :=
⌈

kσ

√
Lσθ

M

⌉
. (6)

Here, σ 2
θ := Var pθ ,δ , where pθ ,δ is the integer lattice version

of Equation (2) and the variance is computed on the lattice

indices. Note that kσ

√
Lσθ = kσ

√
Var(p∗L

θ ,δ), so an interval

of size L′M centered about j0 extends roughly kσ /2 standard
deviations on each side. Thus, if we arbitrarily set kσ := 4,
then Equation (6) roughly ensures the desired 95% condition
under the assumption of normality.

2.3 Boosting θ when s0 → smax

As observed in Hertz and Stormo (1999), when s approaches
smax, θ increases while σθ decreases. Thus, for s0 close to smax,
if we increase or boost θ beyond the computed θ0 = θ(s0)

from Equation (3), we reduce σθ . Since L′ depends linearly
on σθ [from Equation (6)], such boosting can effectively
decrease the runtime by reducing L′. Another reason to boost
θ for s near smax is that it reduces the error introduced by
approximating sFFT with the cyclic sum in csFFT, as shown
next.

Claim 3. Letd = L′M andj ′ ≡ j mod d. Then

F̂ ∗L
θ (j0) − F̄ ∗L

δ (j0) ≤
∑

j0≤j≤J

∑
j ′<j

p∗L
δ (j ′)e−θ0(j−j ′)δ (7)

+
∑

j0≤j≤J

∑
j ′>j

p∗L
δ (j ′)(e−θ0(j−j ′)δ − 1)

(8)

F̄ ∗L
δ (j0) − F̂ ∗L

θ (j0) ≤
∑

j0+d/2<j≤J

∑
j ′>j

p∗L
δ (j ′). (9)

The proof of the claim is straightforward from the definitions
and is thus omitted.

Suppose s is sufficiently close to smax that j0 + d/2 >

jmax. In that case the right-hand side of Equation (9) vanishes,
leaving F̂ ∗L

θ (j0) as an upper bound of the P -value, F̄ ∗L
δ (j0).

Moreover, term (8) vanishes as well, and we are left with

0 ≤ F̂ ∗L
θ (j0) − F̄ ∗L

δ (j0) (10)

≤
∑

j0≤j≤jmax

∑
j ′<j

p∗L
δ (j ′)e−θ0(j−j ′)δ . (11)

This upper bound on the error decreases as θ0 increases, which
supports our assertion that boosting θ is beneficial for s close
to smax. One might be tempted to boost θ by a large amount, but
although this would indeed reduce the error in Equation (11)
it would have the unfortunate side-effect of increasing the
numerical errors in the FFT [discussed at length in Keich
(2005)].

An intermediate solution is to boost θ by adding

θboost = log(109)/[(jmax − j0)δ].
This solution can boost θ significantly and bring corres-
ponding savings in runtime, as well as reduce the error in
Equation (11). It is also designed (based on some assump-
tions about p∗L

θ ,δ) to still preserve the important entries of p∗L
θ ,δ

(for computing the P -value) during the FFT. Finally, although
this solution is heuristic, it works well in practice, as is shown
in Sections 3.1 and 3.2.

The csFFT algorithm with boosting is shown in Figure 6.
For typical values of L, the csFFT algorithm is simultaneously
more accurate than and comparable in speed to LD.

3 ANALYSIS
3.1 Runtime characterization
Assuming that the time-limiting step of sFFT is the calcu-
lation of the FFT itself, csFFT is roughly L/L′ times faster
than the sFFT algorithm described in the previous section.
Interestingly, the saving of L/L′ varies with s0: the speed-up
for values of s0 near the center of the distribution is modest,
wheras the best gains occur near the ends of the range of pos-
sible s-values. This follows from the fact that as s0 approaches
smax (or smin), the corresponding σθ goes to 0, yielding a smal-
ler L′ in Equation (6). In any case, the complexity of csFFT
is lower than that of sFFT: by Equation (6) the complexity of
the FFT step is now O(

√
LM log(

√
LM)).

We conducted tests to verify that csFFT is indeed more effi-
cient than sFFT. Since sFFT and csFFT differ mainly in the
convolution step of the algorithm, where the running times
are roughly linear in L and L′, respectively, we focus on
the growth of L′ in terms of L. Figure 7a demonstrates that,
if we take the average value of L′ over the range of s val-
ues, it grows roughly as

√
L when all other parameters are

fixed. In addition, the average value of L′ is roughly constant
for different ba from Table 1 (based on a test with L = 10
and n = 10) and decreases as n increases2 (see Figure 7b).
Furthermore, we found that boosting, when it is applicable,
gives substantial runtime gains, halving the runtime in many
cases. Finally, since csFFT relies on a substantially faster
convolution than sFFT, we found that for tests with large n,
small L and s close to smax the runtime of the algorithm is
no longer dominated by the time for the convolution. For
example, in a test case with n = 20, L = 15, ba = uniform,
M = 16 384 and s = 380, csFFT takes 0.09 s to com-
pute the answer, of which 0.01 s is spent in the shifted-Hirji
step, 0.07 s is spent computing the shift and 0.01s is required
for the FFT (L′ = 2). We are currently working on tech-
niques to reduce the time spent in computing the shift for such
examples.

2In practice the runtime increases with n as we have to increase M

proportionally to maintain the granularity of the lattice.

i316



“bti1044” — 2005/6/10 — page 317 — #7

Computing the P-value of an ungapped local alignment

Table 1. Range of test parameters

Parameter Values

L 5, 10, 15, 30
n 2, 5, 10, 15, 20, 50
ba Uniform, sloped, blocked, perturbed uniform

Uniform refers to the case where b = [0.25, 0.25, 0.25, 0.25], sloped refers to b =
[0.1, 0.2, 0.3, 0.4], blocked refers to b = [0.2, 0.2, 0.3, 0.3] and perturbed uniform refers
to b = [0.2497, 0.2499, 0.2501, 0.2503].

The input to csFFT is

• n, the number of sequences

• L, the number of columns in the alignment

• b1, . . . , bA, the background frequencies of the A letters

• M , the size of the lattice

• s0, the observed score

Given the input, csFFT

1. Computes p̃δ , an estimate of pδ , by using the shifted
(logless) Hirji algorithm.

2. Finds θ0 by numerically solving Equation (3).

3. Computes L′ according to Equation (6) and using the
default kσ = 4.

4. Boosts θ0 if j0 + L′M/2 > jmax.

5. Computes p̃θ0,δ(s) according to Equation (2).

6. Computes p̃∗L
θ0,δ by applying the FFT-based cyclic-

convolution to p̃θ0,δ(s) with period L′M .

7. Computes p̃∗L
δ (j) = p̃∗L

θ0,δ(j)e−θ0jδ+L log M̃δ(θ0) for j0 ≤
j ≤ J .

8. Returns csFFT(s0) := ∑J
j=j0

p̃∗L
δ (j).

Fig. 6. The csFFT algorithm for computing the P -value of an
entropy score s0.

3.2 Error analysis
For each combination of parameter values in Table 1 we

tested >100 roughly evenly spaced values for s, and separ-
ately another set of 100 points lying in the tail of the pmf.
Because we have latticed s, the P -value of s has an inher-
ent lattice error, as discussed in Keich (2005). For any given
value of s, sFFT(s) and csFFT(s) fall within a small range;
the true value falls somewhere in between the minimum and
maximum values in that range. The bounding interval for the
P -values computed by csFFT (compmin, compmax) was then
compared with the provably reliable bounding interval from
sFFT (realmin, realmax). In the cases where these intervals do

Table 2. Runtime comparison between csFFT and LD

n L s Runtime for csFFT (s) Runtime for LD (s)

40 5 200 0.04 0.06
15 5 100 0.01 0.01
15 30 600 0.05 0.01
40 30 600 0.12 0.06
40 5 260 0.02 0.06

The comparisons were made using the uniform ba (Table 1) and with Q set to
16 384

not overlap we report an error ratio of

min(|compmax/realmin|, |realmax/compmin|).

In all cases that we tested, we found that the error ratio is
at most 1.1, corresponding to at most 10% error. The cases
with the worst error ratios were usually found to be for values
of s close to the average of the pmf, where the P -values are
large and therefore not very relevant in most applications. In
addition, for the values tested in the tail of the pmf, the error
ratio indicated that the numerical error in the method was
smaller than the lattice error.

3.3 Stitching LD and csFFT
The csFFT algorithm is simultaneously more accurate than
and comparable in speed to LD. For example, for L = 10,
n = 100, ba = uniform, M = 16 384 and s = 380, Con-
sensus’s P -value computation required 0.32 s, while csFFT
required 0.20 s with L′ = 3. Admittedly, this is a somewhat
biased example as n = 100 is probably larger than typical
problems. For the example in the previous section, on the
other hand, LD is faster by a factor of 4. We present a few more
examples in Table 2. In general, LD is faster than csFFT for
small n and large L and also for values of s that are away from
the tail with larger L′. We can exploit this by designing a heur-
istic rule that switches to LD for appropriate values of n and
L. In designing a switching criterion we also need to consider
the approximation errors inherent to LD; an example is given
in the introduction in which LD gives a very poor approxim-
ation. Hertz and Stormo (1999) present an empirical test that
can be used to gauge the reliability of the LD-based normal
approximation. Essentially, if s is <3σ (σ is SD (of the shifted
pmf)) from the tail of the pmf, then the normal approxima-
tion is no longer reliable. We calculated the observed error of
the LD method in the range defined by this test for the set of
parameters in Table 1 and found that in all cases the error ratio
was <1.24, corresponding to <24% error. We can therefore
use this test in conjunction with csFFT to yield an algorithm
that is efficient and accurate over a larger range of n and L

values.
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Fig. 7. Average values of L′ versus (a) L and (b) N using the perturbed uniform ba (Table 1). (a) n = 10 and M = 16384 and (b) L = 10 and
M = 16384.

4 CONCLUSION
Accurate methods for estimating the P -value of an align-
ment score are critical in aiding the discovery of biologically
meaningful signals from sets of related sequences. Although
existing tools provide estimates, it is clear that some estim-
ates are better than others. The method employed by MEME
is overly pessimistic about an alignment, which could con-
ceivably lead to missed signals. Although the method used by
Consensus is more accurate, it can still improperly estimate
the P -value.

Two methods were presented in this paper. Althogh the first
(sFFT) is not quite as fast as LD, it is significantly faster than
NC, has bounded error estimates and returns P -values for a
range of entropy scores. The second (csFFT) is comparable
in speed to LD and is empirically more accurate, but like LD
returns a P -value for only a single entropy score.

The algorithms described in this paper are available from
http://www.cs.cornell.edu/˜keich. They provide a general
method for the computation of P -values and we believe that
it is possible for a researcher to use these algorithms as either
an integral part of, or as a post-processing step, to currently
existing motif-finding algorithms. Extending these methods
to account for gapped alignments is, however, an import-
ant and interesting topic for future research. The methods
described in this paper can also be used for applications other
than motif-finding. These tools may be helpful wherever a
statistical significance of a multiple alignment is desired, for
example in the problem of profile–profile alignment or in the
analysis of protein families.
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