Vol. 21 Suppl. 1 2005, pages i311-i318
doi:10.1093/bioinformatics/bti1044

o

X
1101®
R

Computing the P-value of the information content
from an alignment of multiple sequences

Niranjan Nagarajan’, Neil Jones® and Uri Keich'"*

TComputer Science Department, 4130 Upson Hall, Cornell University, Ithaca,

NY 14853, USA and °Department of Computer Science and Engineering,
University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA

Received on January 15, 2005; accepted on March 27, 2005

ABSTRACT

Motivation: The efficient and accurate computation of
P-values is an essential requirement for motif-finding and
alignment tools. We show that the approximation algorithms
used in two popular motif-finding programs, MEME and Con-
sensus, can fail to accurately compute the P-value.

Results: We present two new algorithms: one for the evalu-
ation of the P-values of a range of motif scores, and a faster
one for the evaluation of the P-value of a single motif score.
Both exhibit more reliability than existing algorithms, and the
latter algorithm is comparable in speed to the fastest existing
method.

Availability: The algorithms described in this paper are
available from http://www.cs.cornell.edu/"keich

Contact: keich@cs.cornell.edu

1 INTRODUCTION

Finding local similarities among a set of sequencesisacom-
mon task in computational biology. For example, by finding
similaritieswithin aset of promotersfrom co-regulated genes,
one hopes to recover transcription factor binding sites that
guide the genes' expression patterns in vivo. Given a set of
sequences, motif-finding algorithms such as MEME (Bailey
and Elkan, 1994) and Consensus (Hertz and Stormo, 1999)
return anumber of possiblealignmentsin someorder of poten-
tial biological relevance. A critical part of any such study isfor
aresearcher to discriminate between local alignmentsthat are
simply random artifacts of the sample and local alignments
that are so improbable by chance that they are likely to be
biologically relevant.

An ungapped local alignment of length L of sequences
from an alphabet with A letters is typically summarized by
its information content, or entropy (Stormo, 2000), as fol-
lows. Let njj denote the number of occurrences of the j-th
letter in the i-th column of the alignment, and let n be the
number of sequences in the alignment. The entropy score, or

information content, of the alignment is defined as

L A nij/n
1= 30 mylog "8I,
J

i=1 j=1

whereb; isthe background frequency of the j-th letter (typic-
aly, b; isthefrequency of the j-thletter intheentiresample).
The entropy score for a given column i of the alignment is
defined, similarly, as

. A nij /n
1) = Znij log —
J

j=1
While this score can be used to rank more than one alignment
in a given sample, it cannot provide any direct information
about an alignment’s significance, and in particular cannot be
used to comparetwo alignments of varying L and n. To assess
the significance of an alignment with entropy score sg, werely
onthealignment’s P-value, which isthe probability of seeing
an entropy score of so or better under the assumption that
each of the L columns has n letters independently sampled
according to the background distribution {b1,...,ba}. If the
P-valueisnear 1, the columnsinthealignment aretoo similar
to the background for the pattern to be interesting, but if the
P-valueis near O, the alignment suggests a functional site.

Let p denote the probability mass function (pmf) of the
column score (i) under the hypothesis that the column is
noise—in the sense that it was sampled from the multino-
mial distribution described by the background probabilities
{b1,...,ba}. Assuming that the entropy score for each of the
L columns in the alignment is an independent random vari-
able, the pmf of the alignment’stotal entropy score I isgiven
by the L-fold convolution of p:

prs) =px-xpi= Y

(S14000S1)"
L S1+-+sp=s

p(sy)...pGsp). (1)

The P-value of an alignment with score s is therefore
F*L(so) 1= Y-, P*"(s). Unfortunately, to naively com-
pute thisrequirestraversing al s > so, which is prohibitively

*To whom correspondence should be addressed.

Lstrictly speaking, relative entropy is defined as I/n.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org i311

http://www.cs.cornell.edu/�keich

N.Nagarajan et al.

12

[T=rE—
7
10} N /
H -
. -
8t —_—
+ . +
™ A
% 6 e
L ¥
> S F e
w 4 %ﬁﬂ_ﬁi +
Ly Y
- -
: et T
= ol .
o
S Ny
o

0 -

2K

-4 - 1 1 1 1 1 1 1

-4 -2 0 2 4 6 8 10 12

IoglO(Consensus E-value)

Fig. 1. A comparison of the MEME E-values and Consensus
E-values for a number of aignments with L = 15inn = 20
sequences of length 1000 each. Since the Consensus E-values are
accurate over the range of scores considered here, MEME clearly
overestimates the E-value in nearly every case; for alignments with
E-values <1 according to Consensus, MEME may report an E-value
aslarge as 100.

expensive in practice because of the large number of possible
values of 5. Asaresult, multiple alignment programs rely on
approximations to compute the P-value, striving for a bal-
ance between the time spent computing and the accuracy of
the result.

To determine whether approximating the P-value compu-
tation introduces errors in practice, we modified the source
code of MEME (version 3.0.3) and Consensus (version 6c,
April 2001) to score arbitrary alignments, bypassing each
algorithm’smotif-finding step. Inthisway weare ableto com-
pare P-vaue estimates from different algorithms on avariety
of different alignments. Figure 1 showsthe result if we plot a
point at (x, y) for analignment with aConsensus E-value of x
andaMEME E-valueof y. The E-value of an alignment with
score sg is the expected number of alignments in the sample
with the same n and L and with entropy score >sq. It can
be obtained from the P-value by multiplying by the number
of possible aignments in the sample. The MEME E-value
is consistently larger than the Consensus E-vaue (which is
reliable in this region) by roughly two orders of magnitude.
In at least one case, the true E-value indicates an expecta-
tion of 10 alignments with comparable score existing in the
sample, while MEME reports an expectation of 5000 align-
ments; it is conceivable that a researcher would arrive at two
different conclusions about the significance of the samealign-
ment by relying on the two estimates. Furthermore, we found
at least two alignments of the same size that had inconsist-
ent E-values according to MEME: one alignment had alower
entropy and also a lower E-value than the other (entropy of
13.583, E-value of 1.725 x 10’ compared with entropy of

15

05 |

<"—"""‘"—'>

log, ((LD(s)/NC(s))

05 |

398 400 402 404 406 408 410 412 414 416 418
Score (s)

Fig. 2. Thegraph of 10g;o(LD(s)/NC(s)) demonstrates how far off
the Consensus-reported P-value may be from the value it estimates.
The parameters for thisgraph aren = 20, A = 4, L = 10 and
b = [0.2497,0.2499, 0.2501, 0.2503]. The gapsin the graph indicate
areas of unattainable entropy values.

13.617, E-value of 4.1716 x 107), which is clearly a contra-
diction. Neither the approximation methods discussed in this
paper, nor the methods proposed in Hertz and Stormo (1999),
demonstrate thisinstability.

It is important to note that the E-values from Consensus
werecalculated using an algorithm (LD; see below) that isfast
but at timesinaccurate. An example of theratio of Consensus
P-vauesto thetrue P-values (as cal culated by the slower but
accurate NC algorithm; seebelow) isshowninFigure2. Since
the Consensus-reported estimates can be up to two orders
of magnitude off, this work introduces a compromise that
achieves nearly the accuracy of NC, but at speeds comparable
toLD.

Hertz and Stormo (1999) suggest two possible approxim-
ation techniques for calculating the P-value. The first, NC,
replaces I withitslatticed cousin I := [1 /8] - 8. Inthiscase,
the pmf of the single column score I5(i), or ps, is therefore
alsolatticed, sothe L-fold convolution of ps canbedonemore
efficiently than the L-fold convolution of p. A naiveagorithm
for computing the L-fold convolution on a lattice requires
O (L?M?) time, where M isthe size of the lattice. Hertz and
Stormo (1999) notethat using thefast Fourier transform (FFT)
to perform the convolution would decrease the running time
to O(LMlog(LM)); however, the numerical instability of
the FFT a gorithm tends to wreak havoc on the computation’s
accuracy for small values, which is exactly the region we
are most interested in when searching for motifs. The second
method they suggest, LD, useslarge deviation theory to estim-
atethetail of an exponentially shifted probability distribution.
I n practicethisapproximation schemeworksquitewell except

i312

Computing the P-value of an ungapped local alignment

for a range of values near the maximal (or minimal) score,
whereit may be off by an order of magnitude or more. Never-
theless, LD isnearly 200 times faster to compute than NC for
L =10,A =4,n =100 and M = 16384 and is therefore
the method used in the popular Consensus tool.

Building ontheideaof NC, Keich (2005) proposesthe sFFT
agorithm to overcomethe numerical instability of the FFT for
the L-fold convolution step and al so delineates explicit bounds
on the accuracy of the result. Although this method has lower
complexity than NC, it is still somewhat time consuming on
large sample sizes. In Section 2, we present improvements
to sFFT that give rise to the fastest known algorithm that
has accuracy comparable to that of NC. We then describe an
optimization, the cyclic shifted FFT technique, to producethe
csFFT algorithm, which is more efficient for the computation
of asingle P-value, with speed comparable to LD.

2 APPROACH

We introduce the shifted-FFT (sFFT) algorithm following
the treatment in Keich (2005). The primary bottleneck of the
algorithm presented in that paper is the computation of the
pmf of one column’s entropy score, which we show here can
be done much more efficiently.

2.1 ThesFFT algorithm

The L-fold convolution of an arbitrary vector v € CY, written
v*L, can be computed as follows. Let N = M L and extend v
to N dimensionsby padding it with zeros. Thediscrete Fourier
transform, or DFT, of v is defined as (Press et al., 1992)

N-1

(Dv)(k) =Y &/Fn(j),

j=0

wherew = 27/N andi = v/—1. Definew € CV asw(k) =
[(Dv)(k)]%. Then v*L isgiven by theinverse DFT of w:

1 N-1
Ly - (-1 = —ijlo, (-
v = (D7) = ;e w(j).

Thestraightforward implementations of D and D~ require
O(N?) time, but using a recursive divide-and-conquer
strategy results in the FFT which takes O (N log NV) time. If
D and D~ arethe respectiveimplementationsof D and DL
then, owing to numerical errors, D and D! are not exactly
thelinear and mutually inverse operatorsthat D and D1 are.
The DFT of avector v produces aweighted sum of the entries
of v whose magnitudes can span from 10~°to 10~ C in atyp-
ical application. Since ., the relative machine precision for
double-precision arithmetic, is only 1016, the precision of
entries of v with values <s, max; v(j) is not preserved for
such asum. Correspondingly, we cannot recover these values

by applying D—1.

To avoid the problem of roundoff errors that dominate the
smaller P-values, we can emphasize the values of ps in the
region surrounding so by applying an appropriate exponential
shift prior to performing the L-fold convolution. Let

Pos(s) = ps(s)e”/M5(6),)

where M;(9) = E [¢//?] is the moment-generating func-
tion of the lattice score for one column. This particular form
of shifting commutes with the convolution operator, which
makes it easy to convert between p;% and p;”. Note that, as
s islatticed, pg s isan M-dimensional vector. We will usethe
notation py s(j) to refer to the j-th entry in that vector, and
Do .s(s) torefer to the value of py s for entropy scores.

Since 6 is a parameter, we can choose it in such away that
for a given aignment score so we get the maximal ‘resolv-
ing power’ relative to noise resulting from numerical error in
the DFT. Intuitively, the most significant contributions to the
P-value should come from values of p;{L close to sg, SO we
choose to center the mean of the shifted pmf for one column
at so/L sothat p}’ is centered about so. This can be satisfied,
based on a standard large deviation procedure (Dembo and
Zeitouni, 1998), by setting

6o = argngn[logMa(G) —6so/L]. (3

Of course, in order to proceed with the convolution, we
need an estimate for the pmf of a single column. This could
be performed by naively enumerating all possible empirical
distributions for a column. Although this approach has the
advantage of being the most accurate, it requires O (n~1)
time. For small values of A (as is the case for nuclectide
seguences) this algorithm is still computationally tractable.
However, in our experiments we found that even for small
values of n, with A = 4, this stage tends to dominate the
runtime of the algorithm.

An algorithm with runtime O(AMn?) to caculate the
pmf on a lattice was proposed by Hirji (1997), and later
rediscovered by Hertz and Stormo (1999). This particular
algorithm produces the pmf over the entire range of possible
values in one execution by using dynamic programming. An
improvement to the runtime of the algorithm can be obtained
by noting that, for small values of n, the number of non-zero
lattice points in the intermediate stages of the calculation is
small, which allows one to employ alist-based data structure
to reduce the runtime to O (AM’nlog (n)), where M’ is sig-
nificantly smaller than M in practice (<10 for the parameters
in Table 1). The resulting algorithm is more efficient than the
origina but it still suffers from the overhead of computing
with log-values in order to avoid underflows. (Addition of
log-valuesin aC program, for example, wasfound to be more
than 10 times slower than regular addition.)

The underflow conditionsin Hirji’s algorithm arise because
it multiplies and adds terms of the form r,(n’) = b," /n’!
(where b, is the background distribution for « € [1..A] and

i313

N.Nagarajan et al.

n’ € [0..n]) that areexponentialy small inn’. Thesetermsare
used to recursively compute the vector ps 4 v, Where

n'

Psan () =Y ra®") psa—tw—w (i — ja®”) (4

n"=0
()= n!-ri(n’) if j = j,(n")andn’ € [0..n]
e [otherwise

and j, (n") = round (8—1n’ log <"bﬂ)> Asisshown in Hertz
and Stormo (1999), ps(j) = ps.a.»(j) and so this procedure
recovers the pmf p;.

Inorder to avoid the use of logarithmsin these computations
wedesign thefollowing procedure: instead of computing with
the r, we shift them to get

}"; (l’l/) =7, (n/)eéja(n’)+n’(log(n)—1)

and perform the recursion in Equation (4) using r,,. Let the
corresponding result be p§. We can then recover p; based on
the following claim.

CLamM 1. ps(j) = pj(j)e®i o9 =D,

The proof of this claim is based on simple induction using
Equation (4) and is therefore omitted.

The shifted computation described above avoids the under-
flow conditions of Hirji’s original agorithm. Thisis because,
even though r, (n") decreases exponentially with respect ton’,
r}(n") remains approximately 1/+/27n’. For practical values
of n thisimprovement to Hirji’s algorithm does not introduce
any numerica errorsinto the result, and in some casesit may
be more accurate than relying on logarithms. As can be seen
from Figure 3, it also substantially improves the runtime (by
more than afactor of 10, on average).

The modified sFFT algorithm is shown in Figure 4. It is
important to note that the proof of correctnessfor the original
sFFT agorithm (Keich, 2005) istrivialy extended to thiscase
where the complete enumeration of the pmf is replaced with
the shifted-Hirji algorithm. Thus, this version of the sFFT
agorithm is faster than the original, yet just asreliable.

2.2 Thecyclic shifted FFT (csFFT) algorithm

The sFFT agorithm above computes P-values for arange of
possible alignment scores, whichiswasteful when all we need
isasingle P-value. Fortunately, most of themassof the shifted
pmf pj’ arises from a restricted range of possible s-values,
as Figure 5a suggests. We would like to avoid computing pgfs
on those large intervals where it is practically zero. To that
end, consider the following cyclic sum of p’ :

giy=" Y

{j:j mod M=i}

pa5(). (5)

In the example described in Figure 5a, p;’% ~ 0 for
j ¢ [(L —1)M,LM]; therefore, it follows that ¢ (i) (where

Runtime comparison of log-Hirji vs shifted-Hirji

log-Hirji
shifted-Hirji = y
25 | b

Al

15}

Runtime (in secs)

05 |

o
¥
o

XX
xxxxxxxxxxxxxxxx
OO

0 50 100 150 200 250 300 350 400
Number of sequences (n)

Fig.3. A comparisonof therunningtimesof Hirji’salgorithmimple-
mented using log-calculations (log-Hirji) and the shifted ‘logless
version described in the text. Here M = 1024 and the background
distribution is uniform.

Theinput to sFFT is

e 1, the number of sequences
e L, the number of columnsin the alignment
e b1,...,ba, the background frequencies of the A letters
e M, thesizeof thelattice
e 50, the observed score.
Given theinput, sFFT
1. Computes ps, an estimate of ps, by using the shifted
(logless) Hirji algorithm.
2. Finds 6y by numerically solving Equation (3).
3. Computes pg, s (s) according to Equation (2).
4. Computes pgfs by applying the FFT-based convolution
to p’g\ol’g (s).
5. Computes piL(j) = pik,(j)e o +LI9 e for jo <

J < Jjmax, Where jo and jmax are the lattice indices
corresponding to so and the maximum score smax.-

6. Returns sSFFT(so) := >/ piL ().

Fig. 4. The sFFT agorithm.

i=j mod M) approximates pgfs(j) on the interval j €
[(L —)M, LM)]. Since g is defined on a lattice of size M
rather than on alattice of size LM, we can immediately save
afactor of L, provided g is efficiently computable. Since g is
thecyclic convolution of py s it can beefficiently computed by

CLAM 2. g = D;,Ilw, where w(k) = [(DM pgya)(k)]L.

The proof of this claim can be found in Press et al. (1992).
The difference between the formula above and its non-cyclic

i314

Computing the P-value of an ungapped local alignment

() x10°
6

oL
Py 5

sk — — (L-am

Pog)
w

(&) _x10
oL
—— Pos |
s — wam ‘
|
|
ar |
|
= \
0o 3
= \
|
2 -
|
|
1r |
|
0 ‘
0 5 10 15
] x 10"
-5
x 10
© 45
oL
al Pos
— — (7M™
ask | — -(2m
3 -
— 25}
S
=
2 -
15}
1 -
0.5
0
0 5

Fig. 5. The convoluted pmf is O over much of the range of valid values for s. Here, M = 10000, n = 20, L = 15, b =
[0.2499, 0.2501, 0.2497, 0.2503]. The ‘essential support’ intervals here are described by indices for the latticed pmf. (a) An example where
p:,ffs has its essential support in anarrow interval defined by [(L — 1) M, LM]; so = 405. (b) Here, p;‘fg has its essential support in aninterval
larger than M, defined by [(L — 4)M, L M]; so = 350. (c) The support for p;‘g ismainly in aninterval of sizes L’M for L’ =5, but not of the

form [(L — L"YM, LM7; so = 350.

analog is the dimensionality of the DFT operator: hereit is
M, whereas the DFT operator previously had dimensionality
LM with pg s appropriately padded with (L — 1) M zeros.

More generaly, the essentia support interval of p;;fS may
be of size L'M (e.g. Fig. 5b). Such an interval may aso
not be strictly of the form [(L — L')M, LM]; instead it may
be centered about sp (e.g. Fig. 5¢). In this case, rather than
directly calculating

FhGo) =Y p3t (),
J=Jo
we approximate it with

FO*L(]O) = Z q(j)e—00j6+LlogM(60),
Jo=j=J

where J = min(jo + L'M /2, jmax)- Thisisjustified by

Z q(j)e—90j8+LlogM(90)
Jo=j=J

~ L, \a—0ojé+LlogM
~ Z Pg,a(l)e 6ojo+L log M (6o)

Jo<j=<J

~ Z p;%(j)e—00j8+L log M (6)

J=Jo

An appropriate choice of L’ would ensure that, say, 95%
of the mass of p;% liesin theinterval of size L'M centered
about jo. Thiswould be relatively easy if we had an explicit
function for p;’%, but thisis exactly the function we are trying
to estimate. Instead, we rely on the following formulafor L,

i315

N.Nagarajan et al.

under the assumption that p;"% isroughly normally distributed
(an assumption made by the LD algorithm):

Lo [@W | ®)
M

Here, 092 = Var py s, Where py 5 istheinteger lattice version
of Equation (2) and the variance is computed on the lattice

indices. Note that k,v/Log = ko/Var(p;%), so an interval

of size L' M centered about jo extends roughly &, /2 standard
deviations on each side. Thus, if we arbitrarily set k, := 4,
then Equation (6) roughly ensures the desired 95% condition
under the assumption of normality.

2.3 Boosting @ when sg = Smax

As observed in Hertz and Stormo (1999), when s approaches
Smax. 0 increaseswhileoy decreases. Thus, for sg cl0Seto smax,
if we increase or boost 6 beyond the computed 6y = 6 (so)
from Equation (3), we reduce oy. Since L’ depends linearly
on oy [from Equation (6)], such boosting can effectively
decrease the runtime by reducing L’. Another reason to boost
0 for s near smax is that it reduces the error introduced by
approximating sFFT with the cyclic sum in csFFT, as shown
next.

CLAaM 3. Letd = L'M andj’ = j mod d. Then

FhGo) - it Goy < Y. 3 ppt(jhe i (7)

Jo=i=d j'<j

+ D 2 ptUNERUT)

Jo<j<J j'>j
©)

> > ptah. ©)

Jotd/2<j<J j’>]

FL(jo) — FjE(jo) <

The proof of the claim is straightforward from the definitions
and is thus omitted.

Suppose s is sufficiently close to smax that jo + d/2 >
Jmax- Inthat casetheright-hand side of Equation (9) vanishes,
leaving ;L (jo) as an upper bound of the P-value, £ (jo).
Moreover, term (8) vanishes as well, and we are left with

0 < FxL(jo) — Fi* (jo) (10)
< Y D optGhe R, (11)

jofjfjmax j,<j

Thisupper bound ontheerror decreasesas 6y increases, which
supports our assertion that boosting 6 is beneficial for s close
t0 smax. Onemight betemptedto boost 6 by alargeamount, but
athough this would indeed reduce the error in Equation (11)
it would have the unfortunate side-effect of increasing the
numerical errors in the FFT [discussed at length in Keich
(2005)].

An intermediate solution is to boost 6 by adding

foost = 109(10%) /[(jimax — jo)31-

This solution can boost 6 significantly and bring corres-
ponding savings in runtime, as well as reduce the error in
Equation (11). It is aso designed (based on some assump-
tions about p;%) to till preserve theimportant entries of pj’
(for computing the P-value) during the FFT. Finally, although
thissolutionisheuristic, it workswell in practice, asisshown
in Sections 3.1 and 3.2.

The csFFT agorithm with boosting is shown in Figure 6.
For typical valuesof L, thecsFFT algorithmissimultaneously
more accurate than and comparable in speed to LD.

3 ANALYSIS
3.1 Runtimecharacterization

Assuming that the time-limiting step of sFFT is the calcu-
lation of the FFT itself, csFFT isroughly L/L’ times faster
than the sFFT algorithm described in the previous section.
Interestingly, the saving of L /L’ varies with so: the speed-up
for values of sg near the center of the distribution is modest,
wheras the best gains occur near the ends of the range of pos-
sibles-values. Thisfollowsfrom thefact that assq approaches
smax (OF smin), the corresponding oy goesto 0, yieldingasmal-
ler L" in Equation (6). In any case, the complexity of csFFT
islower than that of SFFT: by Equation (6) the complexity of
the FFT stepisnow O (+/LM log(~/LM)).

We conducted teststo verify that csFFT isindeed more effi-
cient than sFFT. Since sFFT and csFFT differ mainly in the
convolution step of the algorithm, where the running times
are roughly linear in L and L', respectively, we focus on
the growth of L’ in terms of L. Figure 7a demonstrates that,
if we take the average value of L’ over the range of s val-
ues, it grows roughly as /L when all other parameters are
fixed. In addition, the average value of L’ isroughly constant
for different b, from Table 1 (based on atest with L = 10
and n = 10) and decreases as n increases’ (see Figure 7b).
Furthermore, we found that boosting, when it is applicable,
gives substantial runtime gains, halving the runtime in many
cases. Finally, since csFFT relies on a substantially faster
convolution than sFFT, we found that for tests with large n,
small L and s close to smax the runtime of the algorithm is
no longer dominated by the time for the convolution. For
example, in atest case withn = 20, L = 15, b, = uniform,
M = 16384 and s = 380, csFFT takes 0.09 s to com-
pute the answer, of which 0.01 sis spent in the shifted-Hirji
step, 0.07 sis spent computing the shift and 0.01sis required
for the FFT (L’ = 2). We are currently working on tech-
niquesto reduce the time spent in computing the shift for such
examples.

2In practice the runtime increases with n as we have to increase M
proportionally to maintain the granularity of the lattice.

i316

Computing the P-value of an ungapped local alignment

Table 1. Range of test parameters

Table 2. Runtime comparison between csFFT and LD

Parameter Values n L s Runtime for csFFT () Runtime for LD (s)
5, 10, 15, 30 40 5 200 0.04 0.06
n 2,5, 10, 15, 20, 50 15 5 100 0.01 0.01
b, Uniform, sloped, blocked, perturbed uniform 15 30 600 0.05 0.01
40 30 600 0.12 0.06
Uniform refers to the case where b = [0.25,0.25,0.25,0.25], sloped refersto b = 40 5 260 0.02 0.06

[0.1,0.2,0.3,0.4], blocked refersto b = [0.2, 0.2, 0.3, 0.3] and perturbed uniform refers
to b = [0.2497, 0.2499, 0.2501, 0.2503].

Theinput to csFFT is

e 1, the number of sequences
e L, the number of columnsin the alignment
e b1,...,ba, the background frequencies of the A letters
e M, thesizeof thelattice
e 50, the observed score
Given theinput, csFFT
1. Computes ps, an estimate of ps, by using the shifted
(logless) Hirji algorithm.
2. Finds 6y by numerically solving Equation (3).
3. Computes L’ according to Equation (6) and using the
default k, = 4.
4. Boosts g if jo+ L'M/2 > jmax.
5. Computes pg,.s(s) according to Equation (2).
6. Computes pf;‘:)zya by applying the FFT-based cyclic-
convolution to pgq.s(s) with period L' M.
7. Computes ;;\g‘iL(j) = ;;a;ga(j)e*%/““"g’%(%) for jo <
j=J.

—~

8. Returns csFFT (so) 1= Y7_; piL(j).

Fig. 6. The csFFT algorithm for computing the P-value of an
entropy score so.

3.2 Error analysis

For each combination of parameter values in Table 1 we
tested >100 roughly evenly spaced values for s, and separ-
ately another set of 100 points lying in the tail of the pmf.
Because we have latticed s, the P-value of s has an inher-
ent lattice error, as discussed in Keich (2005). For any given
value of s, sSFFT(s) and csFFT(s) fall within a small range;
the true value falls somewhere in between the minimum and
maximum valuesin that range. The bounding interval for the
P-values computed by csFFT (compyy,in, COMPy,,,) Was then
compared with the provably reliable bounding interval from
SFFT (realmin, realmax). In the cases where these intervals do

The comparisons were made using the uniform b, (Table 1) and with Q set to
16384

not overlap we report an error ratio of
MiN(|COMPyya /T€8l min|, r€8l max /COMPpyin).

In all cases that we tested, we found that the error ratio is
at most 1.1, corresponding to at most 10% error. The cases
with the worst error ratios were usually found to be for values
of s close to the average of the pmf, where the P-values are
large and therefore not very relevant in most applications. In
addition, for the values tested in the tail of the pmf, the error
ratio indicated that the numerical error in the method was
smaller than the lattice error.

3.3 Stitching LD and csFFT

The csFFT agorithm is simultaneously more accurate than
and comparable in speed to LD. For example, for L = 10,
n = 100, b, = uniform, M = 16384 and s = 380, Con-
sensus's P-value computation required 0.32 s, while csFFT
required 0.20 swith L’ = 3. Admittedly, this is a somewhat
biased example as n = 100 is probably larger than typical
problems. For the example in the previous section, on the
other hand, LD isfaster by afactor of 4. Wepresent afew more
examplesin Table 2. In general, LD is faster than csFFT for
small n andlarge L and also for values of s that are away from
thetail withlarger L’. We can exploit thisby designing aheur-
istic rule that switchesto LD for appropriate values of n and
L. Indesigning aswitching criterion we also need to consider
the approximation errorsinherent to LD; an exampleisgiven
in the introduction in which LD gives avery poor approxim-
ation. Hertz and Stormo (1999) present an empirical test that
can be used to gauge the reliability of the LD-based normal
approximation. Essentialy, if s is<30 (o isSD (of the shifted
pmf)) from the tail of the pmf, then the normal approxima-
tion is no longer reliable. We calcul ated the observed error of
the LD method in the range defined by this test for the set of
parametersin Table 1 and found that in all casesthe error ratio
was <1.24, corresponding to <24% error. We can therefore
use this test in conjunction with csFFT to yield an algorithm
that is efficient and accurate over a larger range of n and L
values.

i317

N.Nagarajan et al.

@ Average L’ asafunction of L
6 - - -
AvgL’ ——
55
5t
45 t . 7
4t e
35+
3r 7

Averagel’
*

25t
2+

15

0 5 10 15 20 25 30 35 40 45 S0

Length of alignment (L)

(b) Average L’ asafunction of n
29

285 b
28|\
275 |
27t N

265 | \

|
255 | \

25t e

' Avg'L’ S

Average L’

24

5 10 15 20 25 30 35 40 45 50
Number of sequences (n)

Fig. 7. Averagevaluesof L’ versus(a) L and (b) N using the perturbed uniform b, (Table 1). (8) n =10 and M = 16384 and (b) L =10 and

M =16384.

4 CONCLUSION

Accurate methods for estimating the P-value of an align-
ment score are critical in aiding the discovery of biologically
meaningful signals from sets of related sequences. Although
existing tools provide estimates, it is clear that some estim-
ates are better than others. The method employed by MEME
is overly pessimistic about an alignment, which could con-
ceivably lead to missed signals. Although the method used by
Consensus is more accurate, it can still improperly estimate
the P-value.

Two methods were presented in this paper. Althogh thefirst
(sFFT) isnot quite asfast asLD, it issignificantly faster than
NC, has bounded error estimates and returns P-values for a
range of entropy scores. The second (csFFT) is comparable
in speed to LD and is empirically more accurate, but like LD
returns a P-value for only asingle entropy score.

The algorithms described in this paper are available from
http://www.cs.cornell.edu/"keich. They provide a general
method for the computation of P-values and we believe that
it is possible for aresearcher to use these algorithms as either
an integral part of, or as a post-processing step, to currently
existing motif-finding algorithms. Extending these methods
to account for gapped alignments is, however, an import-
ant and interesting topic for future research. The methods
described in this paper can also be used for applications other
than motif-finding. These tools may be helpful wherever a
statistical significance of a multiple alignment is desired, for
examplein the problem of profile—profile alignment or in the
analysis of protein families.

ACKNOWLEDGEMENT

Theauthorswould liketo thank Pavel Pevzner for constructive
initial direction.

REFERENCES

Baglivo,J., Olivier,D. and Pagano,M. (1992) Methods for exact
goodness-of-fit tests. J. Am. Stat. AssoB7, 464-4609.

Bailey, T.L. and Elkan,C. (1994) Fitting a mixture model by expect-
ation maximization to discover motifs in biopolymers. In Pro-
ceedings of the Second International Conference on Intelligent
Systems for Molecular Biologienlo Park, CA, pp. 28-36.

Hertz,G.Z. and Stormo,G.D. (1999) Identifying DNA and pro-
tein patterns with statistically significant alignments of multiple
sequences. Bioinformatics 15, 563-577.

Hirji, K.A. (1997) A comparison of algorithms for exact goodness-
of-fit tests for multinomial data. Comm. Stat.—Simulation and
Comput, 26, 1197-1227.

Keich,U. (2005) Efficiently computing the P-value of the entropy
score. J. Comput. Biol(In press).

Keich,U. and Nagargian,N. (2004) A faster reliable algorithm to
estimate the P-value of the multinomial Ilr statistic. In Proceed-
ings of the Fourth Workshop on Algorithms in Bioinformatics
(WABI-04)

PressW.H., Teukolsky,SAA., vetterling, W.T. and Flannery,B.P.
(1992) Numerical Recipes in C. The Art of Scientific Computing
2nd edn. Cambridge University Press, Cambridge, UK.

Stormo,G.D. (2000) DNA binding sites: representation and discov-
ery. Bioinformatics 16, 16-23.

Dembo,A. and Zeitouni,O. (1998) Large Deviation Techniques and
Applications 2nd edn. Springer-Verlag, NY.

i318

http://www.cs.cornell.edu/�keich

