
Appears in the SIGGRAPH 2001 Conference Proceedings.

Adaptive Shadow Maps

Randima Fernando Sebastian Fernandez Kavita Bala Donald P. Greenberg ∗

Program of Computer Graphics
Cornell University

Abstract

Shadow maps provide a fast and convenient method of identifying
shadows in scenes but can introduce aliasing. This paper introduces
the Adaptive Shadow Map (ASM) as a solution to this problem. An
ASM removes aliasing by resolving pixel size mismatches between
the eye view and the light source view. It achieves this goal by stor-
ing the light source view (i.e., the shadow map for the light source)
as a hierarchical grid structure as opposed to the conventional flat
structure. As pixels are transformed from the eye view to the light
source view, the ASM is refined to create higher-resolution pieces
of the shadow map when needed. This is done by evaluating the
contributions of shadow map pixels to the overall image quality.
The improvement process is view-driven, progressive, and confined
to a user-specifiable memory footprint. We show that ASMs enable
dramatic improvements in shadow quality while maintaining inter-
active rates.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Shading,Shadowing;

Keywords: Rendering, Shadow Algorithms

1 Introduction

Shadows provide important information about the spatial relation-
ships among objects [8]. One commonly used technique for shadow
generation is the shadow map [9]. A shadow map is a depth image
generated from the light source view. When rendering, points in
the eye view are transformed into the light source view. The depths
of the transformed points are then compared with the depths in the
shadow map to determine if the transformed points are visible from
the light source. A transformed point is considered lit if it is closer
to the light than the corresponding point in the shadow map. Oth-
erwise, the point is considered to be in shadow. This information is
then used to shade the eye view image.

One of the major drawbacks of shadow maps is aliasing, which
is depicted in Figure 1. Here we see views from two different loca-
tions in a simple scene: Viewpoint A and Viewpoint B. The grid in
each picture shows the projected pixel area of the shadow map as
seen by the current viewpoint. Since the projected area of the light
source pixels in Viewpoint A is roughly equal to the area of the

∗Email: {randy, spf, kb, dpg}@graphics.cornell.edu.
Web page: http://www.graphics.cornell.edu/pubs/papers.html

Viewpoint B

Viewpoint A

Light Source

Viewpoint A Viewpoint B

Figure 1: Aliasing in Shadow Maps.

shadow map pixels in the shadow map, aliasing is minimal in this
case. In contrast, Viewpoint B is quite close to the scene geometry,
resulting in large projected areas for the shadow map pixels in this
view. This means that large areas of Viewpoint B are shaded using
relatively small amounts of information from the shadow map. The
result is significant aliasing artifacts, depicted here as jagged edges.

In this paper we present the Adaptive Shadow Map (ASM), an
extension to the conventional shadow map that addresses a primary
cause of shadow map aliasing: inadequate shadow map resolu-
tion. We use a hierarchical grid structure to improve image qual-
ity on a view-driven and progressive basis by generating higher-
resolution pieces of the shadow map when needed. A combination
of least recently used (LRU) and priority-based memory manage-
ment schemes constrains the algorithm’s memory usage.

Lights are often placed in contrived locations to ensure adequate
shadow quality because traditional shadow maps perform poorly
when a light is far away or has a wide field of view. ASMs al-
low users to avoid such constraints by allowing realistic placements
and fields of view. The view-driven nature of ASMs also produces
high-quality shadows during interactive walkthroughs without care-
ful tweaking of conventional shadow map parameters or the use of
excessively large shadow maps.

2 Previous Work

A complete review of shadow generation algorithms is beyond the
scope of this paper, but [6] and [11] together present a comprehen-
sive review of the most popular methods. Introduced in [9], con-
ventional shadow mapping is a common technique used to generate
shadows. Since it is an image-space technique, it confers advan-
tages in terms of generality, speed, and ease of implementation.
However, removing aliasing in shadow maps has been a difficult
problem to resolve. Percentage-closer filtering [7] is a solution to
the aliasing problem, but in cases of severe aliasing it can only mask
the aliasing by blurring. The light buffer [3] resolves the aliasing
problem within the context of a non-interactive ray tracer by using a
flat shadow map with analytical testing of shadows. Most recently,
deep shadow maps [5] address aliasing by using jittered samples
and pre-filtering them. However, they do not deal with aliasing
caused by insufficient shadow map resolution.



Appears in the SIGGRAPH 2001 Conference Proceedings.

3 The Adaptive Shadow Map

ASMs are based on the observation that a high-quality shadow map
need not be of uniform high resolution; only regions that contain
shadow boundaries need to be sampled densely. In those regions,
the resolution of the shadow map should be at least as high as the
corresponding region in the eye view to avoid aliasing artifacts.

An ASM hierarchically subdivides an ordinary shadow map,
providing higher resolutions in visually important regions. Like
a conventional shadow map, an ASM takes as input a set of trans-
formed eye view points and allows shadow queries on this set, re-
turning true if a particular point is lit and false otherwise. In soft-
ware systems, ASMs can seamlessly replace conventional shadow
maps.

An ASM has three main characteristics:

• It is view-driven, meaning that the hierarchical grid structure
is updated based on the user’s viewpoint.

• It is confined to a user-specifiable memory limit. Memory is
managed efficiently and the ASM avoids the explosive growth
in memory usage that would be required by a conventional
shadow map of the same visual quality.

• It is progressive, meaning that once a particular viewpoint is
established, image quality continues to improve until the user-
prescribed memory limit is reached.

ASMs are organized as trees. Each node in an ASM tree has a
shadow map of a fixed resolution and a partitioning of that shadow
map into a fixed number of cells. Each of these cells may contain
another tree node. Two operations may be performed on a cell in
the tree. An empty cell may have a new node assigned to it when
it is determined that the resolution of the shadow map region cor-
responding to the cell is not high enough to provide the required
image quality. A cell containing a node may also have that node
and its descendants deleted. This is done in response to the user-
specified restrictions on memory usage.

3.1 Creating Nodes

At any time there are many cells that require new nodes to be as-
signed to them. In an interactive application, it is not always pos-
sible to fulfill all of these requirements. Therefore, we use a cost-
benefit metric to determine which cells to satisfy. It is only bene-
ficial to create a new node (and hence a higher resolution shadow
map piece) if it causes a perceived improvement in shadow quality.
We quantify this perceived benefit by counting the number of trans-
formed eye pixels within the cell that straddle a depth discontinuity
and whose shadow map resolution is lower than the eye view res-
olution. We use the mip-mapping capability of commodity graph-
ics hardware to estimate the resolution in the eye view and in the
shadow map. Section 4.1 explains this in detail.

The cost of creating a new node is the amount of time required
to generate its new shadow map. Using the ratio of eye view pixel
size to shadow map pixel size, the resolution required for the new
shadow map to match the eye view resolution is:

Nrequired = Ncurrent
Eye V iew Pixel Projected Area

Shadow Map Pixel Projected Area

where N is the number of pixels in a shadow map cell.
The cost of generating a new shadow map can be approximated

by:

cost = aNrequired + b

This cost model is based on the fact that hardware read-back perfor-
mance varies roughly linearly with the size of the buffer being read
back, becoming increasingly inefficient as the read-back size gets
very small. We perform a calibration test as a preprocess to evaluate
a (the per-pixel rendering cost) and b (the constant overhead) for a
given hardware setup.

The benefit of a new shadow map is the number of resolution-
mismatched eye pixels that could be resolved. Once the cost-benefit
ratio is computed for all prospective cells, the cells are sorted ac-
cording to this ratio. To maintain consistent frame rates, new
shadow map nodes are only generated for the most profitable cells
from this list until a given time limit has passed.

3.2 Removing Nodes

Since the ASM only uses a fixed amount of memory, a particular
node’s memory might need to be reclaimed. In order to do so, we
use a LRU scheme on all nodes that were not used in the last frame,
removing the least recently used nodes. If there are no such nodes,
then all nodes are currently visible. In this case, we remove an
existing node only if a new node that needs to be created has a
greater benefit than the existing node.

4 Implementation

This section discusses additional techniques and optimizations.

4.1 Mip-mapping

To determine when resolution mismatches occur, the algorithm
must calculate the projected area of a pixel (i.e., the area that the
pixel covers in world-space). Performing this calculation in soft-
ware would be too expensive for interactive rates, so we approxi-
mate this calculation using mip-mapping.

Mip-mapping [10] is traditionally used to avoid aliasing artifacts
associated with texture-mapping. Current graphics hardware im-
plements perspective-correct mip-mapping, which interpolates be-
tween textures of different resolutions based on the projected area
of the pixels being rendered. We use this feature to quickly ap-
proximate the projected pixel area as follows: the algorithm places
the resolution of each mip-map level in all the texels of that level.
Thus, the smallest level has a 1 in every texel, the second smallest
level has a 2, the third smallest level has a 4, and so on. Texture
coordinates are set up so that world-space texel sizes are uniform.
Every polygon is then drawn with this mip-mapped texture. When
the frame is read back, each pixel contains its trilinearly interpo-
lated mip-map level, which is a reasonable approximation of its
projected area. Anisotropic filtering is used to improve the accu-
racy of the approximation.

As a further optimization, the mip-map level is encoded only
in the alpha channel while the rest of the mip-map is white. This
allows the read-back to be done simultaneously with the polygon ID
read-backs described below, eliminating an extra rendering pass.

4.2 Combining ID and Depth Comparisons

Conventional shadow maps commonly use a depth comparison with
a bias factor to check if transformed pixels are lit. However, this ap-
proach exhibits artifacts on surfaces near edge-on to the light and
has difficulties in scenes with varying geometric scale. Using per-
polygon IDs to determine visibility instead of depth comparisons
was proposed in [4]. This approach is better in many cases but
results in artifacts along mesh boundaries. Therefore, we use a
combination of per-polygon IDs and depth comparisons to perform
the visibility determination for transformed pixels. If the ID test

2



Appears in the SIGGRAPH 2001 Conference Proceedings.

fails, the conventional depth comparison allows us to avoid artifacts
along polygon boundaries. Our results show that this simple mod-
ification is more robust than using just per-polygon IDs or depth
comparisons, although the bias problem persists.

4.3 Optimizations

It is possible to accelerate ASM queries using a depth culling tech-
nique similar to that described in [2]. A cache storing the most
recently queried leaf node further accelerates ASM lookups. Low-
level optimizations such as using Pentium family SSE/SSE2 in-
structions could be used to speed up pixel reprojection from the
eye view to the shadow map.

Our approach requires frequent renderings and read-backs as
cells are refined. Since it is inefficient to redraw the whole scene
for each grid cell during refinement, we use frustum culling for
each cell in the topmost level of the hierarchy.

Since analysis of all pixels in the image can be expensive, our
algorithm performs the cost-benefit analysis only on a fraction of
the transformed pixels. This choice might result in slower conver-
gence to an accurate solution. However, in our implementation,
we found that analyzing one-eighth of the pixels gives good perfor-
mance without significantly affecting the rate of convergence.

5 Results

Figures 2, 3, and 4 present our results for an interactive walkthrough
of a 31,000-polygon scene at an image resolution of 512×512 pix-
els. Our timings were performed on a 1 GHz Pentium III with a
NVIDIA GeForce2 Ultra graphics board. The scene features three
different objects designed to test different aspects of our algorithm.
The light source is a point light with a 122◦ field of view. It is
placed on the room ceiling, far from the objects. The first object
is a 20,000-polygon bunny model, which illustrates the algorithm’s
ability to deal with small triangles and frequent variations in poly-
gon ID. The other two objects are a robot and a sculpture with a fine
mesh, which demonstrate the algorithm’s ability to find and refine
intricate shadow details of varying scale.

During the walkthrough, a conventional 2,048×2,048 pixel
shadow map (using 16 MB of storage with 32 bits of depth per
pixel) averaged 8.5 frames per second, while our algorithm (also
using 16 MB of memory) averaged 4.9 frames per second. Fig-
ures 2 and 3 illustrate the dramatic improvement in image quality
achieved by the ASM. For close-ups of objects, the equivalent con-
ventional shadow map size is very large (65,536×65,536 pixels in
Figure 2 and 524,288×524,288 pixels in Figure 3). Creating such a
shadow map in practice for an interactive application would be in-
feasible not only because of the long creation time, but also because
of the enormous storage requirements.

Our results also demonstrate the ASM’s ability to accommodate
a wide field of view. Because of the ASM’s view-driven nature,
the starting shadow map size can be relatively small and its field
of view can be relatively large. In our walkthrough, the starting
resolution of the ASM was 512×512 pixels.

Figure 4 illustrates the algorithm’s memory management. From
left to right, we show images generated with a 2,048×2,048 pixel
conventional shadow map, an ASM using 8 MB of memory, and
an ASM using 16 MB of memory. The differences between the two
ASM images are small, but both show considerable improvement in
image quality when compared to the image on the left. To highlight
the improvement in image quality from an 8 MB ASM to a 16 MB
ASM, we have magnified two sections of each image.

The ASM used approximately 203 ms per frame, while a conven-
tional 2,048×2,048 pixel shadow map used 117 ms for the same
total memory usage (16 MB). The extra time was spent on cost-
benefit analysis (30 ms), node creation (5 ms), traversals through

the hierarchy for queries (35 ms), and an extra rendering and read-
back of the scene to gather per-polygon ID information (16 ms).

6 Conclusions

This paper presents a new technique, the ASM, which uses adaptive
subdivision to address aliasing in shadow maps caused by insuffi-
cient shadow map resolution. ASMs are view-driven, progressive,
and run in a user-specifiable memory footprint. They interface with
applications in the same way as conventional shadow maps, allow-
ing them to be easily integrated into existing programs that use soft-
ware shadow mapping. Since ASMs automatically adapt to produce
high-quality images and do not require experienced user interven-
tion, they should be useful in interactive modeling applications and
in off-line renderers.

The algorithm presented in this paper can be extended to pre-
filter and compress refined shadow map cells using techniques de-
scribed in [5]. In addition, perceptual masking [1] can be used to
refine less in heavily masked areas.

7 Acknowledgements

We would like to thank Bruce Walter, Eric Haines, Parag Tole,
Fabio Pellacini, and Reynald Dumont for their insights and com-
ments, Linda Stephenson for her administrative assistance, and
Rich Levy for his help in making the video. We would also like to
thank the anonymous reviewers for their valuable comments. This
work was supported in part by the National Science Foundation Sci-
ence and Technology Center for Computer Graphics and Scientific
Visualization (ASC-8920219). We also gratefully acknowledge the
generous support of the Intel Corporation and the NVIDIA Corpo-
ration.

References
[1] J. A. Ferwerda, S. N. Pattanaik, P. Shirley, and D. P. Greenberg. A Model of Vi-

sual Masking for Computer Graphics. In Proceedings of SIGGRAPH 97, Com-
puter Graphics Proceedings, Annual Conference Series, pages 143–152, August
1997. T. Whitted, editor.

[2] N. Greene and M. Kass. Hierarchical Z-Buffer Visibility. In Proceedings of SIG-
GRAPH 93, Computer Graphics Proceedings, Annual Conference Series, pages
231–240, August 1993. J. T. Kajiya, editor.

[3] E. A. Haines and D. P. Greenberg. The Light Buffer: a Shadow Testing Acceler-
ator. IEEE Computer Graphics and Applications, 6(9):6–16, September 1986.

[4] J. C. Hourcade and A. Nicolas. Algorithms for Antialiased Cast Shadows. Com-
puter and Graphics, 9(3):259–265, 1985.

[5] T. Lokovic and E. Veach. Deep Shadow Maps. In Proceedings of SIGGRAPH
2000, Computer Graphics Proceedings, Annual Conference Series, pages 385–
392, July 2000. K. Akeley, editor.

[6] T. Möller and E. A. Haines. Real-Time Rendering. A. K. Peters, Massachusetts,
1999.

[7] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering Antialiased Shad-
ows with Depth Maps. Computer Graphics (Proceedings of SIGGRAPH 87),
21(4):283–291, July 1987. M. C. Stone, editor.

[8] L. R. Wanger, J. A. Ferwerda, and D. P. Greenberg. Perceiving Spatial Relation-
ships in Computer-Generated Images. IEEE Computer Graphics and Applica-
tions, 12(3):44–58, May 1992.

[9] L. Williams. Casting Curved Shadows on Curved Surfaces. Computer Graphics
(Proceedings of SIGGRAPH 78), 12(3):270–274, August 1978. R. L. Phillips,
editor.

[10] L. Williams. Pyramidal Parametrics. Computer Graphics (Proceedings of SIG-
GRAPH 83), 17(3):1–11, July 1983. P. Tanner, editor.

[11] A. Woo, P. Poulin, and A. Fournier. A Survey of Shadow Algorithms. IEEE
Computer Graphics and Applications, 10(6):13–32, November 1990.

3



Appears in the SIGGRAPH 2001 Conference Proceedings.

Figure 2: A conventional 2,048×2,048 pixel shadow map (left) compared to a 16 MB ASM (right).
EFFECTIVE SHADOW MAP SIZE: 65,536×65,536 PIXELS.

Figure 3: A conventional 2,048×2,048 pixel shadow map (left) compared to a 16 MB ASM (right).
EFFECTIVE SHADOW MAP SIZE: 524,288×524,288 PIXELS.

Figure 4: A conventional 2048×2048 pixel shadow map (left), an 8 MB ASM (center), and a 16 MB ASM (right).

4


